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The concept of a Bäcklund transformation (BT) is introduced. Certain applica-
tions of BTs – both older and more recent ones – are discussed.  

 
1.  Introduction 

 

Given a difficult problem in mathematics we always look for some way to transform 
it to another problem that is easier to solve. Thus, for example, we seek an integrating 
factor that might transform a first-order ordinary differential equation into an exact 
one (or would reduce the order of a higher-order differential equation, in the more 
general case).  
      A notoriously difficult problem in the theory of partial differential equations 
(PDEs) is the case of nonlinear PDEs. In contrast to the case of linear PDEs, there is 
no general method for solving nonlinear ones. Thus, given a nonlinear PDE we look 
for ways to associate it with some other PDE (preferably a linear one!) whose solu-
tions are already known. For example, the Burgers equation  ut=uxx+2uux  is a nonlin-
ear PDE for the function u(x,t) (subscripts denote partial derivatives with respect to 
the indicated variables). This PDE can be transformed into the linear heat equation 
vt=vxx  by using the so-called Cole-Hopf transformation  u=vx /v. As can be shown, if 
v(x,t) is a solution of the heat equation then u(x,t) is a solution of the Burgers equation 
(the converse is not true in general).  
      Bäcklund transformations (BTs) were originally devised mainly as a tool for ob-
taining solutions of nonlinear PDEs (see [1] and the references therein). They were 
later also proven useful as recursion operators for constructing infinite sequences of 
nonlocal symmetries and conservation laws of certain types of PDEs [2–6].  
      In simple terms, a BT is a system of PDEs connecting two fields that are required 
to independently satisfy two respective PDEs [call them (a) and (b)] in order for the 
system to be integrable for either field. We say that the PDEs (a) and (b) are inte-
grability conditions for self-consistency of the BT. If a solution of PDE (a) is known, 
then a solution of PDE (b) is obtained simply by integrating the BT, without having to 
actually solve the latter PDE (which, presumably, would be a harder task). In the case 
where the two fields satisfy the same PDE, the auto-BT produces new solutions of 
this PDE from old ones.  
      As described above, a BT is an auxiliary tool for finding solutions of a given (usu-
ally nonlinear) PDE, using known solutions of the same or another PDE. Now, 
suppose the BT itself is the differential system whose solutions we are looking for. As 
will be seen, one possible way to solve this problem is to first seek parameter-
dependent solutions of both integrability conditions of the BT. By properly matching 
the parameters (provided this is possible) a solution of the given differential system is 
obtained.  
      The above method is particularly effective in linear problems, given that paramet-
ric solutions of linear PDEs are generally easier to find. An important paradigm of a 
BT associated with a linear problem is offered by the Maxwell system of equations of 
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electromagnetism [7,8]. As is well known, the consistency of this system demands 
that both the electric and the magnetic field independently satisfy a respective wave 
equation. The wave equations for the two fields have known, parameter-dependent 
solutions; namely, monochromatic plane waves with arbitrary amplitudes, frequencies 
and wave vectors (the “parameters” of the problem). By inserting these solutions into 
the Maxwell system, one may find the appropriate constraints for the parameters in 
order for the plane waves to also be solutions of Maxwell’s equations.  
      In Section 2 we review the classical concept of a BT. The solution-generating 
process by using a BT is demonstrated in a number of examples.  
      In Sec. 3 a different perception of a BT is presented, according to which it is the 
BT itself whose solutions are sought. The concept of parametric conjugate solutions 
is introduced.  
      In Sec. 4 we examine the connection between BTs and recursion operators for 
generating infinite sequences of nonlocal symmetries of PDEs.  
 

2.  Bäcklund transformations and generation of solutions 
 

Let u(x,t) be a function of two variables. For the partial derivatives of u the following 
notation will be used:  

2 2 2

2 2
, , , , ,x x t t xx t t xt

u u u u u
u u u u u u u

x t x tx t

∂ ∂ ∂ ∂ ∂
= ∂ = = ∂ = = = =

∂ ∂ ∂ ∂∂ ∂
 

etc. In general, a subscript will denote partial differentiation with respect to the indi-
cated variable.  
      Let F be a function of x, t, u, as well as of a number of partial derivatives of u. We 
will denote this type of dependence by writing  

( , , , , , , , , ) [ ]x t xx t t xtF x t u u u u u u F u≡⋯  . 

We also write  

/ , / , / ,x x t t u uF F F x F F F t F F F u= ∂ = ∂ ∂ = ∂ = ∂ ∂ = ∂ = ∂ ∂  

etc. Note that in determining  Fx  and  Ft  we must take into account both the explicit 
and the implicit (through u and its partial derivatives) dependence of F on x and t. As 
an example, for  F [u]  =  3xtu2  we have  Fx = 3tu2 + 6xtuux  and  Ft = 3xu2 + 6xtuut .  
      Consider now two partial differential equations (PDEs) P[u]=0 and Q[v]=0 for the 
unknown functions u and v, respectively, where the bracket notation introduced above 
is adopted. Both u and v are functions of two variables x, t. Independently, for the 
moment, consider also a pair of coupled PDEs for u and v:  
 

    1 2[ , ] 0 ( ) [ , ] 0 ( )B u v a B u v b= =                                          (1) 

 
where the expressions Bi [u,v] (i= 1,2) may contain u, v as well as partial derivatives 
of u and v with respect to x and t. We note that u appears in both equations (a) and 
(b). The question then is: if we find an expression for u by integrating (a) for a given 
v, will it match the corresponding expression for u found by integrating (b) for the 
same v? The answer is that, in order that (a) and (b) be consistent with each other for 
solution for u, the function v must be properly chosen so as to satisfy a certain consis-
tency condition (or integrability condition or compatibility condition).  
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      By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for 
solution for v, for some given u, the function u must now itself satisfy a correspond-
ing integrability condition.  
      If it happens that the two consistency conditions for integrability of the system (1) 
are precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a 
Bäcklund transformation (BT) connecting solutions of P[u]=0 with solutions of 
Q[v]=0. In the special case where P≡Q, i.e., when u and v satisfy the same PDE, the 
system (1) is called an auto-Bäcklund transformation (auto-BT) for this PDE.  
      Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able 
to find a BT connecting solutions u of this equation with solutions v of the PDE 
Q[v]=0 (if P≡Q , the auto-BT connects solutions u and v of the same PDE) and let 
v=v0(x,t) be some known solution of Q[v]=0. The BT is then a system of PDEs for the 
unknown u,  
 

0[ , ] 0 , 1,2iB u v i= =                                                (2) 

 
The system (2) is integrable for u, given that the function v0 satisfies a priori the re-
quired integrability condition Q[v]=0. The solution u then of the system satisfies the 
PDE P[u]=0. Thus a solution u(x,t) of the latter PDE is found without actually solving 
the equation itself, simply by integrating the BT (2) with respect to u. Of course, this 
method will be useful provided that integrating the system (2) for u is simpler than 
integrating the PDE P[u]=0 itself. If the transformation (2) is an auto-BT for the PDE 
P[u]=0, then, starting with a known solution v0(x,t) of this equation and integrating 
the system (2), we find another solution u(x,t) of the same equation.  
      Let us see some examples of the use of a BT to generate solutions of a PDE:  
 

      1. The Cauchy-Riemann relations of Complex Analysis,  
 

        ( ) ( )x y y xu v a u v b= = −                                         (3) 

 
(where the variable t has here been renamed y) constitute an auto-BT for the Laplace 
equation,  
 

        [ ] 0xx yyP w w w≡ + =                                                 (4) 

 
Let us explain this: Suppose we want to solve the system (3) for u, for a given choice 
of the function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we 
must compare them in some way. We thus differentiate (a) with respect to y and (b) 
with respect to x, and equate the mixed derivatives of u. That is, we apply the inte-
grability condition (ux)y=  (uy)x . In this way we eliminate the variable u and find the 
condition that must be obeyed by v(x,y):  
 

[ ] 0xx yyP v v v≡ + =  . 

Similarly, by using the integrability condition (vx)y=  (vy)x to eliminate v from the sys-
tem (3), we find the necessary condition in order that this system be integrable for v, 
for a given function u(x,y):  

[ ] 0xx yyP u u u≡ + =  . 
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In conclusion, the integrability of system (3) with respect to either variable u or v re-
quires that the other variable must satisfy the Laplace equation (4).  
      Let now v0(x,y) be a known solution of the Laplace equation (4). Substituting 
v=v0 in the system (3), we can integrate this system with respect to u. As can be 
shown by eliminating v0 from the system, the solution u will also satisfy the Laplace 
equation (4). As an example, by choosing the solution  v0(x,y)=xy  we find a new solu-
tion  u(x,y)=  (x

2 –y2)/2 +C .  
 

      2. The Liouville equation is written  
 

        [ ] 0u u
xt xtP u u e u e≡ − = ⇔ =                                       (5) 

 
Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus 
sought by means of a BT. We consider an auxiliary function v(x,t) and an associated 
PDE,  

        [ ] 0xtQ v v≡ =                                                       (6) 

 
We also consider the system of first-order PDEs,  
 

        ( ) / 2 ( ) /22 ( ) 2 ( )u v u v
x x t tu v e a u v e b− ++ = − =                       (7) 

 
Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and 
eliminating (ut −vt) and (ux+vx) in the ensuing equations with the aid of (a) and (b), 
we find that u and v satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is 
a BT connecting solutions of (5) and (6). Starting with the trivial solution v=0 of (6), 
and integrating the system (7), which reads  
 

/ 2 /22 , 2x t
u uu e u e= =

                                     (7a)
 

 
we find a nontrivial solution of (5):  

( , ) 2 ln
2

x t
u x t C

+ 
=− − 

 
  

(see Appendix).  
 

      3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., 
in the study of crystalline solids, in the transmission of elastic waves, in magnetism, 
in elementary-particle models, etc. The equation (whose name is a pun on the related 
linear Klein-Gordon equation) is written  
 

        [ ] sin 0 sinxt xtP u u u u u≡ − = ⇔ =                                    (8) 

 
The following system of equations is an auto-BT for the nonlinear PDE (8):  
 

        
1 1 1

( ) sin , ( ) sin
2 2 2 2x t

u v u v
u v a u v

a

− +   + = − =   
   

                    (9) 
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where a (≠0) is an arbitrary real constant. [Because of the presence of a, the system 
(9) is called a parametric BT.] When u is a solution of (8) the BT (9) is integrable for 
v, which, in turn, also is a solution of (8): P[v]=0; and vice versa. Starting with the 
trivial solution  v=0  of  vxt=  sin v , and integrating the system (9), which reads  
 

          
2

2 sin , sin
2 2x t
u u

u a u
a

= =                                      (9a) 

 
we obtain a new solution of (8):  

( , ) 4arctan exp
t

u x t C ax
a

  = +  
  

  

(see Appendix).  
 

3.  Method of parametric conjugate solutions 
 

As presented in the previous section, a BT is an auxiliary device for constructing so-
lutions of a (usually nonlinear) PDE from known solutions of the same or another 
PDE. The related problem where solutions of the differential system representing the 
BT itself are sought is also of interest, however, and has been studied in connection 
with the Maxwell equations of electromagnetism [7,8].  
      To be specific, assume that we need to integrate a given system of PDEs connect-
ing two unknown functions u(x,y) and v(x,y):  
 

        [ , ] 0 , 1,2iB u v i= =                                                (10) 

 
Suppose that the integrability of the above system for both functions requires that u 
and v separately satisfy the respective PDEs  
 

        [ ] 0 ( ) [ ] 0 ( )P u a Q v b= =                                        (11) 
 
That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, 
that these PDEs possess known parameter-dependent solutions of the form  
 

        ( , ; , , ) , ( , ; , , )u f x y v g x yα β κ λ= =… …                                (12) 
 
where α, β, κ, λ, etc., are (real or complex) parameters. If values of these parameters 
can be determined for which u and v jointly satisfy the system (10), we say that the 
solutions u and v of the PDEs (11a) and (11b), respectively, are conjugate through the 
BT (10) (or BT-conjugate, for short). By finding a pair of BT-conjugate solutions (12) 
one thus automatically obtains a solution of the system (10).  
      Note that solutions of both integrability conditions (11) of the system (10) must 
now be known in advance! From the practical point of view the method is thus most 
applicable in linear problems, since it is much easier to find parameter-dependent so-
lutions of the PDEs (11) in this case.  
      Let us see an example: Going back to the Cauchy-Riemann relations (3), which is 
an auto-BT connecting solutions of the Laplace equation (4), we try the following pa-
rametric solutions of the latter PDE:  
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2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

α β γ

κ λ µ

= − + +

= + +
 

Substituting these expressions into the BT (3), we find that κ=2α, µ=β and λ= –γ. 
Therefore, the solutions  

2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

α β γ

α γ β

= − + +

= − +
 

of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination of parametric solutions:  

( , ) , ( , ) .u x y xy v x y xyα β= =  

Inserting these into the system (3) and taking into account the independence of x and 
y, we find that the only possible values of the parameters α and β are α=β=0, so that 
u(x,y)= v(x,y)=0. Thus, no non-trivial BT-conjugate solutions exist in this case.  
 

4.  BTs as recursion operators for symmetries of PDEs 
 

The concept of symmetries of PDEs has been extensively discussed in [1] and [9]. Let 
us review the main ideas:  
      Consider a PDE F[u]=0, where u=u(x,t). A transformation u (x,t) → u΄ (x,t) from 
the function u to a new function u΄ represents a symmetry of this PDE if the following 
condition is satisfied:  u΄(x,t) is a solution of F[u]=0  if   u(x,t) is a solution. That is,  
 

    [ ] 0 when [ ] 0F u F u′ = =                                          (13) 
 
      An infinitesimal symmetry transformation is written  
 

    [ ]u u u u Q uδ α′ = + = +                                              (14) 
 
where α is an infinitesimal parameter. The function Q[u]≡Q(x, t, u, ux , ut ,...) is called 
the symmetry characteristic of the transformation (14).  
      In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it 
must satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We 
write, symbolically,  
 

   ( ; ) 0 when [ ] 0S Q u F u= =                                         (15) 
 
where the expression S depends linearly on Q and its partial derivatives. Thus, (15) is 
a linear PDE for Q, in which equation the variable u enters as a sort of parametric 
function that is required to satisfy the PDE F[u]=0.  
      A recursion operator R̂  [10] is a linear operator which, acting on any symmetry 

characteristic Q, produces a new symmetry characteristic ˆQ RQ′ = . That is,  
 

  ˆ( ; ) 0 when ( ; ) 0S RQ u S Q u= =                                     (16) 
 
It is easy to show that any power of a recursion operator also is a recursion operator. 
This means that, starting with any symmetry characteristic Q, one may in principle 
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obtain an infinite set of characteristics (thus, an infinite number of symmetries) by 
repeated application of the recursion operator.  
      A new approach to recursion operators was suggested in the early 1990s [2,3] (see 
also [4-6] and [11-13]). According to this view, a recursion operator for the PDE 
F[u]=0 is an auto-BT for the linear PDE (15) that expresses the symmetry condition 
of F[u]=0; that is, a BT producing new solutions Q΄ of (15) from old ones, Q. Typi-
cally, this type of BT produces nonlocal symmetries, i.e., symmetry characteristics 
depending on integrals (rather than derivatives) of u.  
      As an example, consider the chiral field equation  
 

   1 1[ ] ( ) ( ) 0x x t tF g g g g g− −≡ + =                                        (17) 

 
(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued func-
tion of x and t (i.e., an invertible complex n×n matrix, differentiable for all x, t).  
      Let Q[g] be a symmetry characteristic of the PDE (17). It is convenient to put  
 

Q [g] = g Φ[g] 
 
and write the corresponding infinitesimal symmetry transformation in the form  
 

    [ ]g g g g g gδ α′ = + = + Φ                                          (18) 
 
The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in Φ also. 
As can be shown [9] this PDE is  
 

  1 1( ; ) [ , ] [ , ] 0xx t t x x t tS g g g g g− −Φ ≡ Φ + Φ + Φ + Φ =                      (19) 

 
which must be valid when F[g]=0  (where, in general,  [A, B]  ≡ AB–BA  denotes the 
commutator of two matrices A and B).  
      For a given g satisfying F[g]=0, consider now the following system of PDEs for 
the matrix functions Φ and Φ΄:  
 

     
1

1

[ , ]

[ , ]

x t t

t x x

g g

g g

−

−

′Φ = Φ + Φ

′− Φ = Φ + Φ
                                              (20) 

 
The integrability condition ( ) ( )x t t x′ ′Φ = Φ , together with the equation F[g]=0, require 

that Φ be a solution of (19):  S (Φ ; g) = 0.  Similarly, by the integrability condition 
( ) ( )t x x tΦ = Φ  one finds, after a lengthy calculation:  S (Φ΄; g) = 0.  

      In conclusion, for any g satisfying the PDE (17), the system (20) is a BT relating 
solutions Φ and Φ΄ of the symmetry condition (19) of this PDE; that is, relating dif-
ferent symmetries of the chiral field equation (17). Thus, if a symmetry characteristic 
Q=gΦ of (17) is known, a new characteristic Q΄=gΦ΄ may be found by integrating the 
BT (20); the converse is also true. Since the BT (20) produces new symmetries from 
old ones, it may be regarded as a recursion operator for the PDE (17).  
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      As an example, for any constant matrix M the choice Φ=M  clearly satisfies the 
symmetry condition (19). This corresponds to the symmetry characteristic Q=gM. By 
integrating the BT (20) for Φ΄, we get Φ΄=[X, M] and Q΄=g[X, M], where X is the “po-
tential” of the PDE (17), defined by the system of PDEs  
 

1 1,x t t xX g g X g g− −= − =                                           (21) 

 
Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of 
the potential X. Indeed, as seen from (21), in order to find X one has to integrate the 
chiral field g with respect to the independent variables x and t. The above process can 
be continued indefinitely by repeated application of the recursion operator (20), lead-
ing to an infinite sequence of increasingly nonlocal symmetries.  
 
 

Appendix 
 

We describe the process of integrating the BTs (7a) and (9a) for the Liouville equa-
tion and the sine-Gordon equation, respectively.  
 
      1. The system (7a) reads  

      / 22x
uu e=                                                   (A.1) 

     / 22t
uu e=                                                   (A.2) 

 
We integrate (A.1) for  x, treating  t  as constant:  
 

/ 2 / 2/ 22 2 ( )
2

u uudu x
e e du dx e h t

dx
− −= ⇒ = ⇒ = − +∫ ∫  

 
[where h(t) is a function to be determined], from which we have that  
 

2 ln ( )
2

x
u h t

 
= − − + 

 
    and therefore    

2 ( )

( )
2

t
h t

u
x

h t

′−
=

− +
  . 

Substituting the above results into (A.2), we get:  
 

1
( ) ( )

2 2

t
h t h t C′ = − ⇒ = − +  . 

Thus we finally have:  

( , ) 2 ln
2

x t
u x t C

+ 
=− − 

 
 . 
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      2. The system (9a) reads  

       2 sin
2x
u

u a=                                                    (A.3) 

       
2

sin
2t
u

u
a

=                                                     (A.4) 

  
Integrating (A.3) for  x  and using the integral formula  
 

1
ln tan

sin 2

du ku

ku k
 =  
 ∫  

we have:  

2 sin 2
2 sin ( / 2)

du u du
a a dx

dx u
= ⇒ = ⇒∫ ∫  

 

       ln tan ( )
4

u
ax g t

  = + 
 

                                           (A.5) 

 
Similarly, integrating (A.4) for  t  we find:  
 

      ln tan ( )
4

u t
h x

a
  = + 
 

                                             (A.6) 

 
By comparing (A.5) and (A.6) we have that  
 

( ) ( ) ( ) ( )
t t

ax g t h x h x ax g t
a a

+ = + ⇒ − = −  . 

 
But, a function of  x  cannot be identically equal to a function of  t  unless both are 
equal to the same constant C:   h(x) – ax = g(t) – t /a = C   ⇒  
 

( ) , ( )
t

h x ax C g t C
a

= + = +  . 

 
From (A.5) and (A.6) we then get  
 

ln tan
4

u t
ax C

a
  = + + ⇒ 
 

   ( by putting C in place of eC ) 

( , ) 4arctan exp
t

u x t C ax
a

  = +  
  

 . 

 
 
 
 



C. J. PAPACHRISTOU 

 10  

References 
 

1. C. J. Papachristou, Symmetry and integrability of classical field equations, 
https://arxiv.org/abs/0803.3688.  

2. C. J. Papachristou, Potential symmetries for self-dual gauge fields, Phys. Lett. 
A 145 (1990) 250.  

3. C. J. Papachristou, Lax pair, hidden symmetries, and infinite sequences of 
conserved currents for self-dual Yang-Mills fields, J. Phys. A 24 (1991) L 
1051.  

4. C. J. Papachristou, Symmetry, conserved charges, and Lax representations of 
nonlinear field equations: A unified approach, Electron. J. Theor. Phys. 7, No. 
23 (2010) 1.  

5. C. J. Papachristou, B. K. Harrison, Bäcklund-transformation-related recursion 
operators: Application to the self-dual Yang-Mills equation, J. Nonlin. Math. 
Phys., Vol. 17, No. 1 (2010) 35.  

6. C. J. Papachristou, Symmetry and integrability of a reduced, 3-dimensional 
self-dual gauge field model, Electron. J. Theor. Phys. 9, No. 26 (2012) 119.  

7. C. J. Papachristou, The Maxwell equations as a Bäcklund transformation, Ad-
vanced Electromagnetics, Vol. 4, No. 1 (2015) 52, 
https://aemjournal.org/index.php/AEM/article/view/311.   

8. C. J. Papachristou, A. N. Magoulas, Bäcklund transformations: Some old and 
new perspectives, Nausivios Chora, Vol. 6 (2016) C-3, 
https://nausivios.hna.gr/docs/2016C.pdf.  

9. C. J. Papachristou, Infinitesimal symmetry transformations of matrix-valued 
differential equations: An algebraic approach, Nausivios Chora, Vol. 7 
(2018) C-31,  https://nausivios.hna.gr/docs/2018C3.pdf.  

10. P. J. Olver, Applications of Lie Groups to Differential Equations (Springer-
Verlag, 1993).  

11. G. A. Guthrie, Recursion operators and non-local symmetries, Proc. R. Soc. 
Lond. A 446 (1994) 107.  

12. M. Marvan, Another look on recursion operators, in Differential Geometry 
and Applications (Proc. Conf., Brno, 1995) 393.  

13. M. Marvan, A. Sergyeyev, Recursion operators for dispersionless integrable 
systems in any dimension, Inverse Problems 28 (2012) 025011.  

 
 


