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Abstract

Backlund transformations (BTs) are a useful toal ifde-
grating nonlinear partial differential equations DEs).
However, the significance of BTs in linear problestmould
not be ignored. In fact, an important linear systfnPDESs
in Physics, namely, the Maxwell equations
electromagnetism, may be viewed as a BT relatiegnthve
equations for the electric and the magnetic fidghiese
equations representing integrability conditions $ofution
of the Maxwell system. We examine the BT propeftyhis
system in detail, both for the vacuum case andffercase
of a linear conducting medium.

of

1. Introduction

Backlund transformations (BTs) are an effectivel tioy
integrating partial differential equations (PDES$hey are
particularly useful for obtaining solutions of nivdar
PDEs, given that these equations are often notslichard
to solve by direct methods (see [1] and the refa¥sn
therein).

Generally speaking, given two PDEs — sgyafid b) —
for the unknown functions andv, respectively, a BT relat-
ing these PDEs is a system of auxiliary PDEs cairtgi
bothu andyv, such that the consistenaptégrability) of this
system requires that the original PDB} &nd p) be sepa-
rately satisfied. Then, if a solution of PD&) (s known, a
solution of PDE lf)) is found simply by integrating the BT,
without having to integrate the PDb)(directly (which,
presumably, is a much harder task).

In addition to being a solution-generatingchremnism,
BTs may also serve agcursion operatorgor obtaining
infinite hierarchies of (generally nonlocal) symniet and
conservation laws of a PDE [1-7]. It is by this hoet that
the full symmetry Lie algebra of the self-dual Ya¥igls
equation was found [3,6].

In this article, the nature of which is mggiedagogical,
we adopt a somewhat different (in a sense, inverisey of
a BT, suitable for the treatment of linear proble®gppose
we are given a system of PDEs for the unknown fansu
andv. Suppose, further, that the consistency of thigesy
requires that two PDEs, one farand one fow, be sepa-
rately satisfied (thus, the given system is a Biineting

system, then a solution to this system has beendfoln
other words, we are seeking solutions of the gisgstem
by using known, parameter-dependent solutions efriti-
vidual PDEs expressing the integrability conditiafsthis
system. Pairs of functions,{) satisfying the system will be
said to represefBT-conjugatesolutions

This modified view of the concept of a BT has
important application in electromagnetism that seras a
paradigm for the significance of BTs in linear geohs. As
discussed in this paper, the Maxwell equationsaftinear
medium exactly fit this BT scheme. Indeed, as idl we
known, the consistency of the Maxwell system rezgithat
the electric and the magnetic field satisfy sepanmative
equations. These equations have known, parameter-
dependent solutions, namely, monochromatic planeesia
with arbitrary amplitudes, wave vectors, frequesgietc.
(the “parameters” of the problem). By insertingshesolu-
tions into the Maxwell system, one may find the essary
conditions on the parameters in order that theeplaaves
for the two fields represent BT-conjugate solutioof
Maxwell's equations.

The paper is organized as follows:

Section 2 reviews the classical concept @dTa The
solution-generating process by using a BT is demnatesl
in a number of examples.

In Sec. 3 the concept of parametric, BT-cgata solu-
tions is introduced. A simple example illustrates idea.

In Sec. 4 the Maxwell equations in empty space
shown to constitute a BT in the sense describeSeinn 3.
For completeness of presentation (and for the itenfethe
student) the process of constructing BT-conjugdsmes
wave solutions is presented in detail.

Finally, in Sec. 5 the Maxwell system forimehr con-
ducting medium is similarly examined.

The results of Secs. 4 and 5 are, of cowsdl, known
from classical electromagnetic theory. It is mathéoally
interesting, however, to revisit the problem of stoacting
solutions of Maxwell’s equations from a novel pabfitview
by using the concept of a BT and by treating tleetelc and
the magnetic component of a plane e/m wave as BT-
conjugate solutions.

2. Backlund transformations: definition and
examples

these PDEs). The PDEs are assumed to possess known

solutions foru andv, each solution depending on a number
of parameters. If, by a proper choice of the patarse
these functions are made to satisfy the originfiedintial

The general idea of a Backlund transformation (BVEs
explained in [1] (see also the references therdir}. us
review the main points:



We consider two PDHER[u]=0 and Q[v]=0, where the
expressiond[u] and Q[v] may contain the unknown func-
tionsu andv, respectively, as well as some of their partial
derivatives with respect to the independent vagigbFor
simplicity, we assume thatandv are functions of only two
variablesx, t. Partial derivatives with respect to these vari-
ables will be denoted by using subscripts, aig, U, Uy,

Uyt , Uy, €tC.
We also consider a system of coupled PDEs &rdy,

B[uv=0, i=12 (1)
where the expressior [u,v] may containu, v and certain
of their partial derivatives with respect xcandt. The sys-
tem (1) is assumed to be integrabledthe two equations
are compatible with each other for solution f9rwhenu
satisfies the PDIP[u]=0. The solutiorv, then, satisfies the
PDE Q[Vv]=0. Conversely, the system (1) is integrable for
if v satisfies the PDE)[V]=0, the solutioru then satisfying
P[u]=0.

If the above assumptions are valid, we say tihe sys-
tem (1) constitutes a BT connecting solutionsPpfi|=0
with solutions ofQ[v]=0. In the special case wheR=Q,
i.e., whenu andv satisfy the same PDE, the system (1) is
called armauto-Béacklundransformation (auto-BT).

Suppose now that we seek solutions of the PIE=O.
Also, assume that we possess a BT connecting aotuti
of this equation with solutionsof the PDEQ[V]=0 (if P=Q
the auto-BT connects solutiomsandv of the same PDE).
Let v=vy(x,t) be a known solution dd[v]=0. The BT is then
a system of equations for the unknown

B[luv]=0, i=12

. )
Given thatQ[vg]=0, the system (2) is integrable forand its
solution satisfies the PDE[u]=0. We may thus find a solu-
tion u(xt) of P[u]=0 without solving the equation itself,
simply by integrating the BT (2) with respect to Of
course, the use of this method is meaningful preithat
we know a solutiomvy(x,t) of Q[v]=0 beforehand, as well as
that integrating the system (2) foiis simpler than integrat-
ing the PDEP[uU]=0 directly. If the transformation (2) is an
auto-BT, then, starting with a known solutiog(x,t) of
P[u]=0 and integrating the system (2), we find anot@u-
tion u(x,t) of the same equation.

Let us see some examples of using a BT tergém
solutions of a PDE:

1. TheCauchy-Riemann relatioraf complex analysis,

u =V,

(& y=-v (Y ©)

(here, the variablehas been renamsgl constitute an auto-
BT for the (linear)Laplace equation

PIwW =w,+w =0 (4)
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Indeed, differentiating @ with respect toy and (d) with
respect tok, and demanding that thietegrability condition
(uy=(uy)x be satisfied, we eliminate the variahlgo find
the consistency condition that must be obeyed/(gy) in
order that the system (3) be integrableuor

PM=v,+v,=0.

Conversely, eliminating from the system (3) by using the
integrability condition ),=(w)x , we find the necessary
condition foru in order for the system to be integrablevor

Plu=u,+u, =0.

Now, letvg(x,y) be a known solution of the Laplace equa-
tion (4). Substitutingr=v, in the system (3), we can inte-
grate the latter with respect toto find another solution of
the Laplace equation. For example, by choosyigy)=xy
we find the solutioru(x,y)= (*~y?)/2 +C .

2. TheLiouville equationis written

Plu=uy,-€=0 < y,=2¢ (5)

Solving the PDE (5) directly is a difficult task inew of
this equation’s nonlinearity. A solution can be ridu how-
ever, by using a BT. We thus consider an auxilfanction
v(x,t) and an associated linear PDE,

QM =v, =0 (6)
We also consider the system of first-order PDEs,
u +v, = \/E guv/2
(7

u, -y, :\/E QU2

It can be shown that the self-consistency of thetesy (7)
requires that andv independently satisfy the PDEs (5) and
(6), respectively. Thus, this system constituteBTacon-
necting solutions of (5) and (6). Starting with thivial
solutionv=0 of (6) and integrating the system

UXZ\/EGUIZ, U‘:\/_Z eu/2 ,

we find a solution of (5):

u(xt) =—2In(C—X—+tj .
2

3. The 8ine-Gordon” equatiorhas applications in vari-
ous areas of Physics, such as in the study of aliyst
solids, in the transmission of elastic waves, irgnaism, in
elementary-particle models, etc. The equation (&@htame



is a pun on the related linear Klein-Gordon equmtits
written

u, =sinu (8)
As can be proven, the differential system

1 (u-v

—(u+v), = asinf —

2 2

)
1 —

[where a (#0) is an arbitrary real constant] is a parametric
auto-BT for the PDE (8). Starting with the trivisblution
v=0 of v,= sinv, and integrating the system

. u 2
u,=2asin— , U =— si
2 a

NS =

we obtain a new solution of (8):

3. BT-conjugate solutions

u(xt)=4 arctar{ C exé

Consider a system of coupled PDEs for the functioasd
v of two independent variablesy:

B[uv=0, i=12 (20)
Assume that the integrability of this system fothow andv
requires that the following PDEs be independeratisfed:

P[u=0 (8 dvy=0 (b 11)
That is, the system (10) represents a BT connedtieg
PDEs (11). Assume, further, that the PDEs (11) gssss
parameter-dependent solutions of the form

u= f(x y,a,b.7,..) ,

(12)

v=9(X Yk, A,4,...)
wherea, B, x, A, etc., are (real or complex) parameters. If
values of these parameters can be determined fahwh
andv satisfy the system (10), we say that the solutioasd
v of the PDEs (14) and (1b), respectively, areonjugate
through the BT(10) (orBT-conjugatefor short).

Let us see an example: Going back to the IBauc
Riemann relations (3), we try the following pararitet
solutions of the Laplace equation (4):
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u(x y)=a(X-y)+pxry,
VX, Y=k Xy+ A X uy.

Substituting these into the BT (3), we find that2a, u=p
andA= —y. Therefore, the solutions

u(x, =a(X-y)+Bxyy,
V(X Y)=2axy—y X+ By

of the Laplace equation are BT-conjugate througé th
Cauchy-Riemann relations.
As a counter-example, let us try a differeminbination:
u(x y)=axy, vxy=pgxy.
Inserting these into the system (3) and taking adoount
the independence afandy, we find that the only possible
values of the parametessandf area=£=0, so thau(x,y)=

v(x,y)=0. Thus, no non-trivial BT-conjugate solutions éxis
in this case.

4. Application to the Maxwell equations in
empty space

As is well known, according to the Maxwell theotyedec-
tromagnetic (e/m) disturbances propagate in spaceaaes
running at the speed of light. It is interestingnfr the
mathematical point of view that the vacuum waveatigns
for the electric and the magnetic field are conegdb each
other through the Maxwell system of equations ircmthe
same way two PDEs are connected via a Backlung-tran
formation. In fact, certain parameter-dependenttgmis of
the two wave equations are BT-conjugate through the
Maxwell system.

In empty space, where no charges or curr@vitether
free or bound) exist, th®axwell equations are written in
S.1. units [8]:

N S 0B
(@ V-E=0 (¢ VxE=-—
ot
. (13)
(b) V-B=0  (d) ﬁxézgoyoa—

ot

where E and B are the electric and the magnetic field,
respectively. In order that this system of PDESs sed-
consistent (thus integrable for the two fields)yt&@i& consis-
tency conditions (omtegrability conditiony must be satis-
fied. Four are satisfied automatically:

0, V-(VxB)=0,

|

(6 )t=§'a '



Two others read:

Vx(VXE)=V(V-E)-V’E (14)

Vx(VxB)=V(V-B)-V’B (15)
Taking therot of (13x) and using (14), (18 and (138l), we
find:

(16)

Similarly, taking therot of (13d) and using (15), (1% and
(13c), we get:

V’B - (17)

No new information is furnished by the remainingptimte-
grability conditions,

(ﬁxé)tzﬁxét . (Vx B),=VxB
Putting

! c ! (18)
E =" <& =

¢’ NENTR

. 190°E
V’E - — =0 (19)

¢ ot?

,~ 1 0°B
VB - — =0 (20)

c’ ot?

The PDEs (19) and (20) are consistency conditidma t

must be separately satisfied Byand B in order that the
differential system (13) be integrable for eithigld, given
the value of the other field. In other words, tlygstem (13)
is a BT relating solutions of the wave equation8) (and
(20).

It should be noted carefully that the BT (18not an
autoBT! Indeed, although the PDEs (19) and (20) look
similar, they concerdifferentfields with different physical
dimensions and physical properties. A true autosBould
connect similar objects (such as, e.g., differeathamatical
expressions for the electric field).

The above wave equations admit plane-wavetisok

of the formE (k- F — w t) , with
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%:c where k= [K | 1)

The simplest such solutions armnochromatic plane waves
of angular frequency, propagating in the direction of the

wave vectork :

(T, exp{l (k r—owt)} (a) 22)
(F,

exp{l(k r-ot)} (b

where the EO and I§0 represent constant complex ampli-

tudes. Since all constants appearing in equati®f} (that
is, amplitudes, frequency and wave vector) canrbérar-
ily chosen, they can be regardedbasameterson which the
solutions (22) of the wave equations depend.

Clearly, although every pair of field&, B) that satis-

fies the Maxwell equations (13) also satisfies ribspective
wave equations (19) and (20), the converse isrnet This
means that the solutions (22) of the wave equatiemota
priori solutions of the Maxwell system of equations (id®
not represent e/m fields). This problem can be diedk
however, by appropriate choice of the parameteosthis
end, we substitute the general solutions (22) timosystem
(13) in order to find the extra conditions this teys re-
quires; that is, in order to make the two functiamq22)
BT-conjugate solutions of the respective wave dqoat
(19) and (20).

Substituting (28 and (2®) into (13) and (1®), re-

spectively, and taking into account thae'*" = ik ",
we have:

(Eo e—iwl).ﬁeik'vr' -0 > (—k- E) é(k‘-r'—ml) =0 '

(éo efiml).ﬁeik'vr' -0 > (T( ”g) é(k’~r>wt) =0 ,
so that

k-E =0, k-B=0. (23)

Physically, this means that the monochromatic plafme
wave is aransversavave.

Next, substituting (29 and (2d) into (1%) and (18l),
we find:

(k f-ot)

th(velkr)X% w"%
(k % EO) el (k-r—wt) % (kr wt)
efiwt (6 ei k‘-r')X —% - —iw £, 1, T;o ei(lZ»r'—wt) =
-5 i (KF-ot) “ - i (KF-ot)
(kxB))e = E e ,



so that

- = o @ -
kxE =w B , kx%:—g E (24)

This means that the field& and B are normal to each
other as well as being normal to the direction of
propagation. It can be seen that the two vectoataus in
(24) are not independent of each other; indeedssero

multiplying the first relation byz we get the second one.
Introducing a unit vectof in the direction of the wave

vectork ,
f=klk (k=|kl=w/c),

we rewrite the first of Egs. (24) as

k . - 1. -
B,=—(rxE)=—(txE) .
[ Cc

The BT-conjugate solutions in (22) are now written:

E(F,t)=E exp{i(k-T-wt)} ,
B(F,t) 1 (FxE,)exp{i(k-T - ot)} (25)
C
1. -
=—7xE
Cc

As constructed, the complex vector field§2B) satisfy
the Maxwell system (13), which is a homogeneousdin
system with real coefficients. Evidently, the rgalrts of
these fields also satisfy this system. To find ékpressions
for the real solutions (which, after all, carry thRysics of
the situation) we take the simplest case of a tiggaolar-
ized e/m wave and write:

E,=E,€" (26)

where the vectoE, , and the numbes are real. Theeal
versions of the fields (25), then, read:

m
Il
o
@]
)
=
—
|
S
i
Q
A

E

.
Il

~~
N>

xE Jcosk - o t+a) (27)

>

X
m

olr olr Jm

We note, in particular, that the fields and B “oscillate”
in phase.

Our results for the Maxwell equations in vacucan be
extended to the case oflimear non-conducting medium
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upon replacement of, and zo with ¢ andx, respectively.
The speed of propagation of the e/m wave is, ;¢hse,

1

N

5. The Maxwell system for a linear conducting
medium

1%

=~ |2

In a linear conducting medium of conductivity in which
Ohm's law is satisfiedJ, = cE (where J, is the free
current density), the Maxwell equations read [8]:

(a)
* (28)
oE

(b) (d) Vx B= po E+eu —
ot

By the integrability conditions
Vx(VxE)=V(V-E)-V’E,
Vx(VxB)=V(V-B)-V?’B,

we get thenodified wave equations

oE
—uo—=0
ot

d’E
ot?
d’B
ot?

V’E

ep

oB @9
—uo—=0
ot

V°B -

Ep

No new information is furnished by the remainindein
grability conditions (cf. Sec. 4).

We observe that the linear differential syst@8) is a
BT relating solutions of the wave equations (29 é&-
plained in the previous section, this BTnigt an auto-BT).
As in the vacuum case, we seek BT-conjugate sulth so
tions. As can be verified by direct substitutionoirEqgs.
(29), these PDEs admit parametric plane-wave swisitbf
the form

E(,t) = E, exp{-s7-F+i (k- T - wt)}
=E, exp{(i—fj IZ-F} expfimt )

B(F,t) = B, exp{-st-T+i(k-T— ot)}

=B, exp{(i—fj R-F} expFiot )

(30)



where 7 is the unit vector in the direction of the waveve
tor k ,

f=klk (k=|k|=wlv)

(v is the speed of propagation of the wave insidecthe
ducting medium) and where, for given physical cheeas-
tics e, u, o of the medium, the parametexk andw satisfy
the algebraic system

Sz—k2+g,ua)2:0, 31)
How—2sk=0

Up to this point the complex amplitud§§ and BO in
relations (30) are arbitrary and the vector figl@i8) are not

We also set

K+ 8§ & ;

k+is=|k+is|e" =

tanp=s/k .

Taking the real parts of Egs. (35), we finally have

E(f,t)=E,,e " "cos(k-T-wt+a),
o \V k2+32 A~ = _sti N
B(f,t)=—— (rxER)e cosk-T-ot+ta+e).

4]

6. Summary and concluding remarks

Backlund transformations (BTs) were originally dmd as

a priori solutions of the Maxwell equations (28), thus are a tool for finding solutions of nonlinear partiaffdrential

not yet BT-conjugate solutions of the respectiveevaqua-
tions in (29). To find the restrictions these amyles must
satisfy, we insert Egs. (30) into the system (28)th the
aid of the relation

it is not hard to show that (a38and (2®) impose the condi-
tions
k-E =0, k-B=0 (32)
Again, this means that the e/m wave is a transvwesase.
Substituting (30) into (28 and (28l), we find two more
conditions:

(k+is)7x E = 0B (33)

(k+i8)7x B, = — (suw + iuo) E, (34)
However, (34) is not an independent equation sincan be
reproduced by cross-multiplication of (33) byand use of
relations (31).

The BT-conjugate solutions of the wave ecunti(29)
are now written:

E(F,t) — Eo e—sr-T‘ ei(k-f—(ot) ,

. K+iS . = oir i (35)
B(F,t) = (txE,)e gk
w

To find the corresponding real solutions, we asslinear
polarization of the e/m wave and set, as before,

E,=E.€e".
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equations (PDEs). They were later also proven usefu
nonlocal recursion operators for constructing iitdinse-
guences of symmetries and conservation laws ofaicert
PDEs [2-7].

Generally speaking, a BT is a system of PBdmect-
ing two fields that are required to independendiisfy two
respective PDEs in order for the system to be ratadg for
either field. If a solution of either PDE is knowthen a
solution of the other PDE is obtained by integmatine BT,
without having to actually solve the latter PDE koifly
(which, presumably, would be a much harder task)the
case where the two PDEs are identical, an autoiBdiyzces
new solutions of a PDE from old ones.

As described above, a BT is an auxiliary foolfinding
solutions of a given (usually nonlinear) PDE, uskmpwn
solutions of the same or another PDE. In this lasticow-
ever, we approached the BT concept differently ttyally
inverting the problem. According to this schemeisitthe
solutions of the BT itself that we are after, haviparame-
ter-dependent solutions of the PDEs that expressrte-
grability conditions at hand. By a proper choicetlté pa-
rameters, a pair of solutions of these PDEs magiblysbe
found that satisfies the given BT. These solutiares then
said to beconjugatewith respect to the BT.

A pedagogical paradigm for demonstrating frasticu-
lar approach to the concept of a BT is offered Hxy Max-
well system of equations of electromagnetism. Wenstd
that this system can be thought of as a BT whasgiiabil-
ity conditions are the wave equations for the eleend the
magnetic field. These wave equations have knowrgme-
ter-dependent solutions (monochromatic plane wawéts)
arbitrary amplitudes, frequencies, wave vectors, &y
substituting these solutions into the BT, one matkednine
the required relations among the parameters inrahaé the
plane waves also represent electromagnetic fiéles,are
BT-conjugate solutions of the Maxwell system. Thsults
arrived at by this method are, of course, well knowv
advanced electrodynamics. The process of deriviregnt
however, is seen here in a new light by employhegdon-
cept of a BT.



We remark that the physical situation wasmgrad
from the point of view of a fixed inertial observérhus,
since no spacetime transformations were involves used

the classical form of the Maxwell equations (wEhand B
retaining their individual characters) rather thhe mani-
festly covariant form of these equations.

An interesting conclusion is that the conceyt a
Béacklund transformation, which has been provenesxély
useful for finding solutions of nonlinear PDEs, darcertain
cases also prove useful for integratiligear systemsof
PDEs. Such systems appear often in Physics andrigéc
Engineering (see, e.g., [9]) and it would certaibg of in-
terest to explore the possibility of using BT methdor
their integration.
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