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MATHEMATICAL FORMULASAND PROPERTIES

Trigonometric formulas

Sif A+ cog A= 1 ; tanx=—X . cok= X __ 1
COSX sinx  tarx
cofx=— T : sirf x= . tarf x
1+ tarf x 4 cofx * tahx

sin(A+ B)= sinAcosB+ CcosA siB
cos(A+ B)= cosA coBF sirA siB
tanAt tanB COtA coBx I

tan(AtB)=— , cot(A+ B)=———————
1F tanA tarmB coBt cofA

sin 2A = 2sinA COA
cos2A= cos A— sihA= 2cdsA- 4 -12sif A

tan 9A = 2tanA ot cot A- 1
1-tarf A 2CotA

SinA+ sinB= ZsinAJzr B ccsA_2 B

sinA— sinB= ZsinA; B cosA; B

COSA+ COB = 200@2—8 ceé;—B

cosA— coB= ZsinALB siﬂB_—A

sinAsinB:%[cos(A— B) cos@+ B)]
COSA cosB:% [cosA+ B } cosi&— B )]

sinAcosB:% [SinA+ B ) sin( B)]

sin(-A)=—-sinA , CcOos{tA ¥ COA
tanA)=—tanA , cot{A »— coir
sin(%iA): COsA , cos%iA%rr SiA
sin(zx A)=FsinA , cosf+ A¥x— coP
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sin | cos| tan| cot
0 0 1 0 o0

1| 3|3
76=30| = | X2 | X2 3

2 |2 |5 |3
nl4 = 45 ﬁ ﬁ 1 1

2 2

5|1 J3
n/3=60| = | = 3| X2

2 2 V3 3
n2=90| 1 0 0 0
=180 | O -1 0 o0

Basic trigonometric equations

oy i X=a+2Kr _ .
sinx = sinag = {X=(2k+l)7r—a k= 0 1 2
_ X=a+2kr _

COSX = CO%r = {x=2k7z—a k= 0t & 2
tanx = tanr = X=a+kr k= Ot & 2;-
cotx = coto = X=a+ kr (k= Ot Lt 2,
oy o X=2kr—a _ o
sinx=-sina = {X=a+(2k+1)7z k=0t 1t 2.

~ x=(2k+lr—-a
COSX=— CO%¥r — {X=0{+(2k+1)7z' k_ o B 2.

Hyperbolic functions

e g e sinh x é- ¢ 1

coshx:e ;. sinhx= . tankx= = =
2 2 coshx e*+e* coth

cosif x— sinf x= 1

coshEx )= coskx ,  sink(x 3— sink
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Power for mulas

(ath)?=a’+2ab+ If
(axb)®=a’+3ab+3alf+ b
a’-b?’=(a+b(a- b

a®+tb®=(at h(&F abr B)

(a+b)"=a"+ nd*lm% a2 B+%I(n_2) &3B++ B ( B1,23;)

Quadratic equation: ax*+bx+c=0

Call D=b®-4ac (discriminant)

—b+JD

2a

Roots: x=

Roots are real and distinctD0; real and equal iD=0; complex conjugate iD<0.

Geometric formulas
A= area or surface areaV= volume ; P= perimeter
Parallelogram of badeand altitudén: A=bh
Triangle of basé and altitudeh: A= (1/2)bh
Trapezoid of altitudé and parallel sidesandb : A= (1/2)@+b)h
Circle of radiug : P=2zr , A=ar’
Ellipse of semi-major axia and semi-minor axis : A=zab
Parallelepiped of base arAand heighh: V=Ah
Cylindroid of base areA and heighh: V=Ah
Sphere of radius:  A=4zr? |, V= (4/3)r?

Circular cone of radiusand heighti: V= (1/3)zr’h
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Properties of inequalities

a<b and bk c=> & C
a>b and b> a=> a b
a<b = —-a>-b

O<a<b > l>1

a

a<band < d=> a « b d

O<a<b and O< < d= a& bd

O<a<l= a>&>a>--, d<1, Ya<1]
a>l = a<d<a<-, d>1, Ya>1

O<a<b = a"<b", Ya<¥b

Properties of proportions

Assume thatﬁzlzzc. Then,
p o
aty
ad = , =K
By Y
atfB y+o a vy
p 1) frta oty
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Properties of absolute values of real numbers

laj]=a, if a>0
=-a, if a<0

\/¥=|a|

[X|<e & —e<x<e (>0)
[x]>a>0 < x>a or x<—¢
lal-1b|< latbl< Jaf ||

la-bl=|allb|

|a“|=laf (ke Z)

a

b

_lal
~ 15| ©*0
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Properties of powersand logarithms

x°=1  (x=0)

X% xP = xa+p
X" g
X_ﬂ_x
1 -
QX
X
e’ =
a X “ Xa
(xy)“ =Xy ; (—j - =
y y
In1=0
|n(ea):a (aeR) , elna:a (a€R+)

In(af)=Ina+Inp

(g2
o2

In(e*)=kina (keR)
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Derivatives and integrals of elementary functions

(c)'=0 (c= const) (sin X = cos x (arcsinX ¥ -
1-x
(x*)Y=ax** (¢e R (cosxJ=- sinx (arccos( ¥ — 1 =
1-x
(e*) =¢" (tan X = (arctanxﬁ—L
cos x I+ %
, 1 1 1
(Inx)'== (x>0) (cotx) =-— (arccotx)=———
X sin® x 1+ X
(sinhx) = coshx (cosix'¥ shnx
Xa+1
.[dx: x+ C ; jxadx: +C (az-1)
a+1
dx

—=In|x|+C
X
jexdx= €+ C
J'cosxdx: sinx+ C ; J'sinxdx:— cosx C

dx

=— cotx+ C
sirf x

=tanx+C ; J.

dx
I cos X

I dx =arcsinx+ C

V1-x2

I Xzzarctanx+C
1+x
Izd—lelnx;+c
=1 2 |x+

d
J'\/Xziﬂzln(x+\/x2i1)+c




C. J. PAPACHRISTOU
COMPLEX NUMBERS

Consider the equationé +1=0. This has no solution for real For this reason we
extend the set of numbers beyond the real numbedefining theimaginary unit
numberi by

i2=-1 or, symbolically, i=+-1.
Then, the solution of the above-given equationist i .
Given thaeal numbersx andy, we define theomplex number
Z=Xx+1iy.
This is often represented as an ordered pair
zZ=x+iy=(x,y).
The numberx= Re z is thereal partof z while y=1Im z is theimaginary partof z
In particular, the valuez= 0 corresponds tox=0 and y= 0. In general, ify= 0,
then z is areal number.
Given a complex number = x+ iy, the number

Z=X—1y

is called thecomplex conjugatef z (the symbol z* is also used for the complex
conjugate). Furthermore, tiheal quantity

212 0+
is called themodulus(or absolute value) of. We notice that
|z]=1Z].
Example: If z= 3+2i,then Z=3-2i and |z|=[z E+/15.
Exercise: Show that, ifz=7Z, then z isreal, and conversely.

Exercise: Show that, ifz = x+iy, then

NI
N
|
N

Rez= x:i , Imz= y=——.
2 2i



MATHEMATICAL HANDBOOK

Consider the complex numbezs= x;1+ i y1, z = X+ iy, . As we can show, their
sum and their difference are given by

z+2= (Xt X)) +i(y1+y2),
z-2=(xx—%)+i(1—¥).
Exercise: Show that, ifz;= z, , thenx;= x; andyi;=vy,.
Taking into account that =—1, we find the product of; and z to be
22= (XX —YY2) +i XYz + Xo W) -
In particular, forzz= z=x+iy and z= Z = x— iy, we have:
z7z= X+ y=| 74
To evaluate the quotiersy/ 2, (z # 0) we apply the following trick:

a_2z2z_ 7z (x (¥ 1y X% yy ., Xy X:
z %3 |3f X+ ¥ X+ ¥ ¥+ ¥

In particular, forz = x+iy,

Tz | R+ Y R+ ¥ & Y

1 zZ_ z  xiy_ X , y

Properties:

|7|:|Z| ) Z_Z:| 21 ) |1ZZZ4: |1Z||22

12" |= |2 H=U
z| |z

Exercise: Given the complex numberg = 3-2i and z= -2+ i, evaluate the
quantities |z + z |, Z z and z/z .
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Polar form of a complex number

y
| ————— e Z= X+ 1Y
r
)0 X
O X

A complex numberz = x+iy= (X, y) corresponds to a point of tixey plane. It
may also be represented by a vector joining thgiro of the axes of the complex
plane with this point. The quantiti@sandy are the Cartesian coordinates of the point,
or, the orthogonal components of the correspondaagor. We observe that

X=rcosf , y=rsind
where
r=lz|= (@+y*)*?  and tang=2 .

X

Thus, we can write

Z=Xx+iy=r(cosd+isinb)

The above expression representspblar formof z Note that
Z=r(cosd—i sirg .

Let z=r; (cosH, + i sinbfy) and z=r, (cosH, + i sinf,) be two complex
numbers. As can be shown,

zz=1trfcos@,+6,)+isin@.+6,)] .
4 _ Y cos@,—-6,)+i sin@,-6,)] .
5z 0
In particular, the inverse of a complex numlzerr (cosf + i sind) is written

7= Y icosp—ising =2 [costo yi sindo .
Z r r

Exercise: By using polar forms, show analytically thaz *=1.

10
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Exponential form of a complex number

We introduce the notation
e’ =cosf + i sing

(this notation is not arbitrary but has a deepeamrg that reveals itself within the
context of the theory of analytic functions). Ndtat

e’ =d? =cos6 )+ isin(h )= cod—i sif .
Also,
e’ =|e'’ E cod0+ sihd= .

Exercisec Show that

e?=1/d’= &,
Also show that
0, 40 0 A0
cos@:% , sirﬁ:i_

The complex numbez=r (cosf+isind), wherer =|z|, may now be expressed
as follows:

It can be shown that

'(61‘*'92)

2= ne

where z =r.e”, z= 1 é”.

Example. The complex numbez=~/2—iv/2, with |z|=r=2, is written

z= 2[£ - |£j = Z{CO{—%)H sirE—%ﬂ S DN YL

11
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Powers and roots of complex numbers

Let z=r (cosf + i sinf) = re'’ be a complex number, where= |z|. It can be
proven that

z"=r"e"=r"(cosnd+isinnd) (= 0x 1+ 2;
In particular, for z= cosf + i sind = €' (r=1) we find thede Moivre formula
(cosf +i sid ) = (cosd+i sind
Note also that, foz =0, we have thaz’=1 and z™"= 1/z".

Given a complex numbez=r (cosf + i sind), wherer =|z|, an nth root of zis

any complex numbec satisfying the equatiom "= z. We writec = Yz. An nth root
of a complex number admits different values given by the formula

ck:{‘/?(cose+r]2k7[+i sin0+r12k”j , k=012;- (- 1.

Example: Let z= 1. We seek the 4th roots of unity, i.e., the carpiumbersc
satisfying the equatiort’= 1. We write

z=1 (cosD +i sin0) (thatis,r=1, 6=0).

Then,
2kr . . 2Kkt kr . . kr
C =CO0S—+i si— = cos—+i sir— ,k= 0,1,2.
4 4 2 2
We find:
=1, =i, c=-1, c=-i.
Example: Let z=i. We seek the square roots gthat is, the complex numbecs

satisfying the equatio®= i . We have:

z =1 [cos(n/2) +i sin(z/2)] (thatis,r=1, 0= x/2);

(m12)+2knr . . (m12)+ XKx .
ckzcosfﬂsm# , k=0,;
C,=Cos( /4)ising /4):% &i ),
J2

¢, =cos(5r /4)i sin(F /4):—72 @&i)

12
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ALGEBRA: SOME BASIC CONCEPTS

Sets

Subset: XcY & (xeX =>xeY);
X=Y¥Y < XcYand YC X

Proper subset: XcY o XcY and XY
Union of sets: XY ={ x/ xeX or xeY}
Intersection of sets: RY ={ x/ xeX and xeY}
Disjoint sets: xY =9

Difference of sets: XY = { x/xeX and xgY}

Complement of a subset: =¥ ; X\Y =X-Y

Cartesian product: XY ={(xy)/ xeX and yeY}
Mapping: FEX>Y; (xeX)->y=f(X)eY
Domain/range of f: Df)=X, R(f)=f(X)={f(X)/xeX} Y ;

f isdefinedin X andhas valuesn Y ;
y=f (X) is theimageof x underf

Composite mapping: X->Y, g Y>Z,;
fog: X—>2Z; (xeX)—>9(f(X) ez

Injective (1-1) mapping: ) =f(x) © x1=x2 , or
XFEX < f(X)#T(x)

Surjective (onto) mapping: (X)=Y

Bijective mapping: f is both injective and sotjee = invertible
Identity mapping: id: X—> X ; fig(¥X) =x, VxeX
Internal operation on X: XX—>X; [Ky)eXxX]—>zeX

External operation on X: AX> X [@X)eAxX]—>y=axeX

13
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Groups

A groupis a se(, together with an internal operati@x G — G; (X,y) > z = Xy,
such that:

1. The operation iassociative x- (y-2) = (X-y)- z
2. 3eeG (dentity) : x-e=ex=x, VxeG
3. VxeG, 3xteG (inversd: x*x=x-x'=e

A groupG is abelianor commutativef x-y =y-x, V x,yeG.

A subsetSCG is asubgroupof G if S is itself a group (clearly, theB,contains the
identity e of G, as well as the inverse of every elemerfs hf

Vector spaceover R

Let V={x,y, z ...}, and let 4, b, ¢, ... eR. Consider an internal operation + and an
external operationonV :

+:VxV-o>V ; x+ty=2z
i RxV->V,; ax=y

Then,V is avector space over K

1. Vis a commutative group with respect to + . Thenidy element is denoted
0, while the inverse ok is denoted—x .
2. The operationsatisfies the following:
a-(b-x)= (ab)-x
(atb)-x =a-x + b-x
a(x+y) =ax +ay
Ix=x, O0x=0

A set {X1, X2, ... ,x of elements of is linearly independerniff the equation
CiX1+ CXot+ ... +CXk=0

can only be satisfied forc; = ¢, = ... = ¢k = 0 ; otherwise, the set inearly
dependent The dimensiondimV of V is the largest number of vectors Vhthat
constitute a linearly independent set. If #fiam, then any systeme{, &, ... ,e;} of
n linearly independent elements isbasis for V, and anyxeV can be uniquely
expressed agx =cie+ e+ ... +Ch 6.

A subsetSCV is asubspaceof V if Sis itself a vector space under the operations (+)

and (). In particular, the sum+y of any two elements of, as well as the scalar
multiple ax and the inverse x of any elemenk of S must belong t&. Clearly, this
set must contain the identiyof V. If Sis a subspace d&f, then dimS< dimV. In
particular,S coincides withv iff dimS=dimV.

! The symbol { will often be omitted in the sequel.

14
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Functionals

A functionalw on a vector spacé is a mappingw: V— R ; (xeV) - t= o(X)eR.
The functionalw is linear if w(a-x+b-y)=a-o(x)+b-w(y). The collection of all linear
functionals onV is called thedual spaceof V, denotedv*. It is itself a vector space
overR, and dinv*= dimV.

Algebras

A real algebra A is a vector space oveR equipped with a binary operation
(]): AxA—> A ; X|y) =z, suchthat, fora,b eR,

@x+by|2=a(x|2+b(y|2
(xlay+b2)=a(x]y) +b(x|2

An algebra iscommutativeif, for any two elementx, y, X |y) = (Y| X); itis
associativef, for anyx,y,z, x| 12)=(x]y) |2 .

Example:The setA°(R") of all functions orR" is a commutative, associative algebra.
The multiplication operation- ) : A°(R")x A°(R")— A%R") is defined by

(F1g)OE, o X)) =F 0, .. XN g0, ... . XY

Example:The set of alhxn matrices is an associative, nhon-commutative akyebne
binary operation-(-) is matrix multiplication.

A subspace of A is asubalgebraof A if Sis itself an algebra under the same binary
operation {|-) . In particular,S must be closed under this operation; ixe),y)eS for
anyx, yin S We write:ScA.

A subalgebr&—Ais anideal of Aiff (x|y)eS and {|x)eS, for anyxeS yeA.

Modules

Note first thatR is an associative, commutative algebra under sii@luoperations of
addition and multiplication. Thus, a vector spaserd? is a vector space over an
associative, commutative algebra. More generallypaaluleM over A is a vector
space over aassociativebut (generallyhon-commutativalgebra. In particular, the
external operation)onM is defined by

T AxM->M; ax=y (@eA; x,yeM).

Example:The collection of alh-dimensional column matrices, withtaken to be the
algebra ofnxn matrices, and with matrix multiplication as theezral operation.

15
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Vector fields
A vector fieldV onR" is a map from a domain &' intoR":
V:iR'oU SR [x= (.., xNeU] = VX) = (V... V') eR .

The vectorx represents a point id, with coordinates),..., X"). The functions/ '(x)
(i=1,...n) are thecomponentsf V in the coordinate systers).

Given two vector fielddJ andV, we can construct a new vector fish=U+V such
that W(x)=U(x)+V(x). The components ofN are the sums of the respective
components o) andV.

Given a vector field/ and a constar#teR, we can construct a new vector fiddaV
such thaZ(x)= aV(x). The components & are scalar multiples (k) of those ofV.

It follows from the above thahe collection of all vector fields o' & a vector space
over R.

More generally, given a vector fieM and a functiorf e A°%(R"), we can construct a
new vector fieldZ= f V such thaZ(x)= f (x)V(x). Given thatA%(R") is an associative
algebra, we conclude théte collection of all vector fields on"Rs a module over
A%R") (in this particular case, the algetYYR") is commutative).

A note on linear independence:

Let {V1,...,.Vi} ={Va} be a collection of vector fields dR".

(@) The set Y3} is linearly dependent over Rinearly dependent with constant
coefficients) iff there exist real constants... ¢, not all zerq such that

C1V1(X) + ... +CrVr(X) =0, vxeR".

If the above relation is satisfied only for; = ...= ¢, = 0, the set Y4} is linearly
independent over.R

(b) The set Y.} is linearly dependent ovex’(R") iff there exist functionsfy (X9, ...,
f, (<, not all identically zero oveR", such that

fL)ViX) +... +E(X)Vi(X) =0, vx=(xeR".

If this relation is satisfied only forf, (X)=...= f, (X) = 0, the set Y.} is linearly
independent ovek°(R").

There can be at most n elements in a linearly irddpnt system ove®(R"). These
elements form dasis{ey, ..., e}={ &} for the module of all vector fields oR". An
element of this module, i.e. an arbitrary vectaldiV, is written as a linear
combination of the g} with coefficientsV*e A%(R"). Thus, at any point=(X)eR’",

16
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V(X) = ViX) e + ..+ V" (X) e = (VIXY, ... V(X)) .
In particular, in the basisef},
e=(1,0,0,...,0), &= (0,1,0....,0),... ,&=(0,0,...,0,1) .

Example:Letn=3, i.e.,R’=R®. Call {e1, &, &3} ={i, j, k}. Let VV be a vector field on
R®. Then, at any poink = (x, y, 2) R,

VX)) =Vx(X, ¥, 21 +Vy(X, Y, 2 ] +V2(X Y, 2 Kk =(Vx, Vy, V).
Now, consider the six vector fields

Vi= [ , V2:j , V3= k, V4= Xj —yl , V5:yk—Zj , V= zi —xk.
Clearly, the ¥1, V2, V3} are linearly independent ovey’(R®), since they constitute
the basis [, j, k}. On the other hand, thé,, Vs, Ve are separately linearly dependent
on the {1, Vo, V3 } over A%R®). Moreover, the set\s, Vs, Vg } is also linearly
dependent oven%(R?), since 2V4 + XVs + We = 0 . Thus, the set\f, ..., Ve} is
linearly dependent ovex®(R%). On the other hand, the systeW{..., Vg} is linearly
independent over ,Rsince the equationc,Vy + ... + Ve = 0, with ¢ ,...CeR
(constant coefficients), can only be satisfied ¢ ...= cs= 0. In general,

there is an infinite number of linearly independeattor fields on Rover R,
but only n linearly independent fields ovaf(R").
Derivation on an algebra
Let L be an operation on an algel&xéanoperatoronA):
L: A>A; (keA)>y=LxeA.

L is aderivationonAiff, VX,y eAanda, b eR,

L (ax+by) = aL(x) + bL(y) (inearity)
L(x|y)=(Lx]|y)+X]|LY) Leibniz rulg

Example:Let A=A°(R)={ f (,...,x")}, and letL be the linear operator
L= g*(X) dloxt +... + " (X) 0lox" = o' (X dloX

where thep '(X‘) are given functions. As can be shown,
L [0 g0 = [Lf (<) g9 + f (X)L gx) .

Hencel is a derivation om\%(R").

17
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Liealgebra

An algebral overR s a (real)Lie algebrawith binary operation-|[, -]: LxL—L (Lie
bracke) iff this operation satisfies the properties:

[ax +by,Z =a[x,Z +b[y, 7

X,y =-[y.,X] @ntisymmetry
X, [y, dl+[y. [z, x]]+[z,[x,y]] =0 Jacobi identity

(wherex, y, z e £ anda, b eR). Note that, by the antisymmetry of the Lie brackiee
first and third properties are written, alternalyye

[x,ay+bz =a[x,y]+b[x, 7,
([x.y1.4+[y.Z.,x]+[[z,x],y]=0.
A Lie algebra is amon-associativalgebra, since, as follows by the above properties

x.[y.dl =[x, yl.4.
Example:The algebra ofixn matrices, with A, B|I=AB-BA (commutator).

Example:The algebra of all vectors R, with [a,b] = ax b (vector product).

Liealgebra of derivations

Consider the algebrad=A%R")={ f (x},..., X"}. Consider also the s@&@(A) of linear
operators o, of the form

L=g'(X)aloX (sumon=1,2,...,n).

These first-order differential operators aerivations on A (the Leibniz rule is
satisfied). Now, given two such operatbss Lo, we construct the linear operatrg
bracketof L; andL;), as follows:

[Li,L2] =Lilo— LoLy

[L1, L2 F (X9 = Lo(Laf (K9) = La(Laf (X9) .
It can be shown that |, L,] is a first-order differential operator (a derivation), hence
is a member oD(A). (This isnot the case with second-order operators likke,!)

Moreover, the Lie bracket of operators satisfiésha properties of the Lie bracket of
a general Lie algebra (such as antisymmetry anobdadentity). It follows that

the set DA) of derivations om\°(R") is a Lie algebra, with binary operation
defined as the Lie bracket of operators.

18
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Direct sum of subspaces
Let V be a vector space over a fiekd (where K may beR or C), of dimension
dimV=n. LetS,, S bedisjoint (i.,e., § N $ ={0}) subspaces of¥. We say thaV is
thedirect sumof S, andS; if each vector oV can beuniquelyrepresented as the sum
of a vector ofS; and a vector 05 . We write:V= 5 ® S In terms of dimensions,
dimV=dim S +dim S, . We similarly define the vector sum of three su#zgs ofV,

each of which is disjoint from the direct sum oé thther two (i.e.5 N (SDS3)={ 0},
etc.).

Homomor phism of vector spaces

Let V, W be vector spaces over a fidd A mappingd:V—W is said to be &near
mappingor homomorphisnif it preserves linear operations, i.e.,

D(x+y) =O(X) +D(y), Dkx)=kd(X), VX yeV andkeK.
A homomorphism which is aldmjective(1-1) is called ansomorphism

The set of vectorgeV mapping unde® into the zero oW is called the&kernelof the
homomorphismb:

Kerd = { xeV: d(x) =0}.

Note that®(0)=0, for any homomorphism (clearly, the two zeros referditferent
vector spaces). Thus, in genefatKer®.

If Ker ® ={0}, then the homomorphisn® is also an isomorphism &f onto a
subspace ofW. If, moreover, div=dimW, then the mapd:V—W is itself an

iIsomorphism In this case, Imd =W, where, in general, Imd (image of the
homomaorphisinis the collection of images of all vectors\btinder the mag.

The algebra of linear operators

Let V be a vector space over a fi?dd A linear operatorA onV is a homomorphism
A:V-V. Thus,

A(x+y) =AX) +A(Y), Akx) =KA(X), VX, yeV andkeK.
The sumA+B and the scalar multiplicatideA (keK) are linear operators defined by
(A+tB)x=Ax+Bx , KA)x=k(AX) .

Under these operations, the €xi(V) of all linear operators oN is a vector space.
The zero element of that space is a zero opebagach thatOx=0, Vx V.
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SinceA andB are mappings, their composition may be defineds Thregarded as
their productAB:

(AB)x=A(BXx) , VxeV.
Note thatAB is a linear operator on Vhence belongs tOp(V). In general, operator
products are non-commutativeAB=BA. However, they areassociative and
distributive over addition:

(AB)C=A(BC)=ABC , A(B+C)=AB+AC .
The identity operatorE is the mapping oDp(V) which leaves every element Wf
fixed: E x = x. Thus,AE=EA=A . Operators of the forrkE (keK), calledscalar
operators are commutative with all operators. In fact, apgrator commutative with

every operator oDp(V) is a scalar operator.

It follows from the above thdahe set OfV) of all linear operators on a given vector
space V is an algebr& his algebra is associative but (generally) nominutative.

An operatorA is said to benvertibleif it represents a&ijective (1-1) mapping, i.e., if
it is an isomorphism o¥ onto itself. In this case, anverse operatoA ™ exists such

that AA'= A A=E. Practically this means that, A mapsxeV ontoyeV, thenA™
mapsy back onta. For an invertible operat@d, KerA={0} andImA=V.

Matrix representation of a linear operator
Let A be a linear operator on Let {e} (i=1,...,n) be a basis o¥. Let
Aeg=eAix (sum oni)

where theAy are real or complex, depending on wheMés a vector space oveor
C. Thenxn matrix A=[A;] is called thamatrix of the operatoA in the basi{e}.

Now, let x=x; & (sum oni) be a vector i/, and lety=A x. If y=y; e, then, by the
linearity of A,

Vi =AikX% (sunonk) .

In matrix form,
[Ylnxe = [Alnxn [X]nx1

Next, let A, B be linear operators ovi Define their productC=AB by
Cx=(AB)x=A(Bx) , xeV.

Then, for any basise}, Cex=A(Be&)=€AijBjx=eCix =
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Cik=AijBj«
or, in matrix form,

C=AB.
That is,

the matrix of the product of two operators is theduct of the matrices of
these operators, in any basis of V.

Consider now a change of basis defined bytridngsition matrix T T ]:
& =eTik .
The inverse transformation is
a=e (T ik .
Under this basis change, the matinf an operatoA transforms as
A =T AT (similarity transformatiol .
Under basis transformatiortbe trace and the determinant of A remain unchanged
trA’=trA , detA =detA .
An operatorA is said to benonsingular(singulan if detA*0 (detA=0). Note that this
is a basis-independenproperty. Any nonsingular operator is invertible.e., there
exists an inverse operatdi 'eOp(V) such thatA A™*= A™*A=E. Since an invertible
operator represents a bijective mapping (i.e., dbth and onto), it follows that
KerA={0} and ImA=V. If A is invertible (nonsingular), then, for any base} {

(i=1,...,n) of V, the vectors Ae} are linearly independent and hence also constidut
basis.

I nvariant subspaces and eigenvectors
Let V be ann-dimensional vector space over a fi€ldand letA be a linear operator
onV. The subspacg of V is said to benvariant underA if, for every vectoix of S
the vectorAx again belongs t8. Symbolically ASCS.

A vector x£0 is said to be arigenvectorof A if it generates a one-dimensional
invariant subspace & underA. This means that an eleménrtK exists, such that

AX=1X .

The elementl is called areigenvalueof A, to which eigenvalue the eigenvector
belongs. Note that, trivially, the null vectdis an eigenvector @&, belonging to any
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eigenvaluel. The set of all eigenvectors Af belonging to a given, is a subspace of
V called theproper subspace belonging io

It can be shown thdhe eigenvalues & are basis-independent quantitiésdeed, let
A=[Ai] be the (ixn) matrix representation & in some basisg} of V, and letx=x;g
be an eigenvector belongingAoWe denote bX=[x] the column vector representing
X in that basis. The eigenvalue equation&as written, in matrix form,

AXk=A% or AX=AX.
This is written
(A-11,) X=0 .

This equation constitutes a linear homogeneousesydbr X=[x], which has a
nontrivial solution iff

det(A-11,) =0 .

This polynomial equation determines the eigenvakuéis1,...n) (not necessarily all
different from each-other) d&. Since the determinant of the matrix representatio
an operator [in particular, of the operat&-¢E) for any giveni] is a basis-
independent quantity, it follows that, if the abaauation is satisfied for a certain
in a certain basis (where is represented by the mat@y, it will also be satisfiedor
the samé in any other basis (whereis represented by another matrix, say). We
conclude thathe eigenvalues of an operator are a property efdperator itself and
do not depend on the choice of basis .of V

If we can find n linearly independent eigenvectorg;{ of A, belonging to the
corresponding eigenvalugs, we can use these vectors to define a basi¥.for this
basis, the matrix representationfohas a particularly simpl@agonalform:

A=diag(11, ... ,An) -

Using this expression, and the fact that the qtiastirA, detAand; are invariant
under basis transformations, we conclude thaniybasis oiV,

trA= A1+ A +...+ 4, , detA =1145... 1, .

We note, in particular, thail eigenvalues of an invertible (nonsingular) ogter are
nonzero Indeed, if even one is zero, theéetA=0 andA is singular.

An operatorA is callednilpotentif A™=0 for some natural numben>1. The smallest
such value ofm is called thedegree of nilpotengyand it cannot exceed. All
eigenvalues of a nilpotent operator are zefaus, such an operatorssgular (non-
invertible).

An operatorA is calledidempotent{or projection operatoy if A>=A. It follows that

A™=A for any natural numbem. The eigenvalues of an idempotent operator can take
the values O or.1
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BASIC MATRIX PROPERTIES

The following properties concern squamneif) matrices.

(A+Bf=A+B; (AB'=F A

(A+B)'=A"+B"; (AB'= B A where M'= (M )= (M)
kA" =kA ; (KA'=KA (k ¢

(AB) = BIAY (A)'=(AY (A)=(AY]
[AB"=[B, Al; [AB'{ B A where [ AB= AB B!/

At=—L adiA (det Az 0)
detA

a b]" 1 [d -
c d| ad-bc|-c a
tr(kA+AB) =« trA+ A trB
trAT =trA ;. trAT = (trA)”

tr(AB)=tr(BA), tr(ABC)= t((BCA= t( CAB, etc.
tr[A,B] =0

detA” = detA ; det = (deA”
det(AB)= detBA)= detA deB
det(A™)= 1/detA

detCA)= c' detA
If any row or column oA\ is multiplied byc, then so is deA.

[ABl=-[B A= AB- BA

[AB+C=[ABH{ AC; [ A BLH AICE  BIC
[ABC=[ABC+ BAC;, [ ABIC= [ABI& ,AC
[AIBCIHB[CAAL d ABD

[AB, g+ B¢ A CIA |BD

Let A= A(Y)=[a;(9] be an ixn) matrix function. The derivative dtis the
(nxn) matrix dA/dt with elements

dA d
(al,- Tt

The integral ofA is the ixn) matrix defined by
(jA(t)dt)”_ =[a; (ydt.

23



C.J. PAPACHRISTOU

If B=B(t)=[h;(9] is anotherrfxn) matrix function,

d dA  dB dE
— (AtB)=—+—: — =— B+ A—
dt (A£B) dt dt ( AB) dt dt

Sna{s a2

We also have:

%(Al):—AleAl —  d(Ad=— AYdA Al

tr (d—Aj = d (trA)
dt ) dt

Let A= A(x Y). Call 6A/ox=0, A= A, etc.:
O (ATA) -0 (ATA)+[ ATA, A A]=0
O (A AN -0 (AAY-[AAY A AY=0
AATA), AT =(AAY, & A(AAY, A(A A,

Matrix exponential relations:

© An A2
A: — —_— JES— cee
e’ =expA z hy 1+ A+ o

segt
() = (&) =¢: (¢)=4& (§'= ¢
eff == é&Pwhen [ AB=0

In general, e*é® = & where

1 1
C=A+ B+E[AE]+1—2([ AlABH{ H BIp)+

By definition, logB= A< B= €.

det(eA): d* o detB= d(°9®) — tr(logB) log(detB)
det(1+ 6A)= L+ tr6A , for infinitesimab A

tr (A'A,) = tr (A,A ") = tr(log A), = [tr(log A)] . = [log (det A)],
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DETERMINANTS

Consider the 22 matrix

Thedeterminanof 4 is defined by

a b
detA= ‘ =ad-Dbc. (1)
c d
Next, consider thex3 matrix
a b c
A=|d e f
g h k

To evaluate its determinant, we work as followsstiwe draw a &3 “chessboard”
consisting of + (plus) and — (minus) signs, as shbelow.Careful: At thetop leftwe
always put glussign!

We may now develop the determinant?olvith respect to any row or any colunthe
result will always be the same. Let us assume, gt we choose to develop with
respect to théirst row. Its first element ig. At the position where this element is lo-
cated (top left) the “chessboard” has a + signthues leave the sign @f unchanged.
Imagine now that weross off both the row and the column to which éksnent be-
longs (first row, first column in this case). What igtlever is a lower-order,>2 ma-
trix with determinant

e f
h k|’

We multiply this determinant byyand we save the result.

The second element in the first rowhisAt its location, the chessboard has a — sign;

we thus write b. We “cross off” the row and the column to whibtbelongs (first
row, second column) and we get the2leterminant
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d f
g k-
We multiply this by b and we save this result, too.
The third element in the first row ¢s At its location the chessboard has a + sign, thus

we leave the sign of unchanged. Crossing off the first row and thedttgolumn,
wherec is located, we find the determinant

g .
We multiply this byc and again we save this result in the “memory”.

Summing the contents of the memory, we finally fihd determinant oA:

SR

Of course, to complete the job we must evaluataertimor determinants according to
Eq. (1), which is an easy task.

detA=

Q o 9
> o T
X =~ O

ExerciseEvaluate again the determinantAfthis time by developing with respect
to thesecond columrand show that
a a
+ - :
%9 j +d j

o f
SRl

Verify that your result is the same as before.

detA

1l
Q o 9
> o T
X = O

ExerciseWith the aid of the chessboard

+_

-+

(the + sign always on thep left) and by following an analogous procedure, verify
formula (1) for a 22 determinant. (By definition, the determinant dixd matrix [a]
is equal to the single element of the matrix.)
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For a 4«4 matrix, the chessboard is of the form (with agh slways on théop left)

+ - + -
- + - +
+ -+ -
- + - +
The development of ax4 determinant leads tox3 determinants that are developed
as shown previously. As is obvious, the problenobees harder as the dimension of
the determinant increases!

Exercise:Show that

1 -1 1
2 0 -2=20,
1 1 -

by developing with respect to a row and, againhwaspect to a column. Choose the
row and column that will make your calculationsieagObviously, as a general rule,
it is in our best interest to choose a row or alewl withas many zeros as possifle

Properties of deter minants
Let A be annxn matrix and let dé&& be the determinant & The following statements
are true:
1. If all elements of a row or a columnAfre zero, then datO0.

2. If every element of a row or a columnAfs multiplied by, then deA is multi-
plied by/ as well.

3. If all elements ofA are multiplied byi, then deA is multiplied byi" (wheren is
the dimension o). That is,

det ¢A) = A"detA .

4. If any two rows or any two columns Afare interchanged, the value of Ale$
multiplied by (-1).

5. If two rows or two columns & are identical, then d&t0. The same is true, more
generally, if two rows or two columns are multiptdseach other.

27



C.J. PAPACHRISTOU

6. The value of dé&tremains the same if the rows and columna afe interchanged.
That is,

det A) = detA

whereA' is thetransposeof A: (AT); = A; .
7. If A andB arenxn matrices,

det AB) = det BA) = detA.deB .
Also,

det AX) = (detd)® , k=1,2,3,....
8. If A is theinverseof A (see below),

det @) = 1/detA .

9. The determinant of diagonal(or, more generally, &iangular) matrix A is equal
to the product of the elements of the diagonad.of

10. The value of détis unchanged if to any row or any columnfoive add an arbi-
trary multiple of any other row or column, respeely.

Evaluation of amatrix inverse

Consider a 83 matrix4:

&, 8 a3
A=lay &, as|=[g] (Jj=123).
A p A

Let &; be an arbitrary element df (the one that belongs to th¢h row and thg-th
column). By “crossing off” the row and the colunmwhichg; belongs, we obtain a
2x2 matrix. We calD;; the determinant of this latter matrix.

We now construct ax3 matrix M, as follows: We replace every elemegtof the
given matrix4 by the corresponding quantity

(- Dij -

That is, in place o&; we put the minor determinabt multiplied by the sign that ex-
ists on the chessboard at the position;of\&/e thus get
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Dy —-Dj, Dy
M = _D21 D22 _Dzs .
D;y; —Ds; Dy

Finally, we take théransposeV/” of M, which is called thadjoint of the matrixA:

Dy -Dyu Day
adjA=M"=|-D, D, -Dg
Dis —Dy; Dgs

Theinversed™ of 4, satisfying44™= 474 = | (wherel is the X3 unit matrix) is
given by

-~ adjA 3)

Obviously, a necessary condition in order thatitiverse ofA may exist (i.e., in order
that the matrix4 beinvertible) is that det = 0. The process described above, leading
to relation (3), is generally valid f@anynxn matrix (1=2,3,4,...).

Exercisefor the 22 matrix

show that

Verify that

10
AAlelA{ }
0 1

ExerciseBy using (3), show that

-1

0 1 -3 -1 -1 O
-1 -1 3 = |-1/2 0 3/
0 1 -1 -1/2 0 1/2

Verify that your result satisfies the relatiotd ™= A4 = | .
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Solution of linear systems

The method we will describe applies to dimgar system of equationse., system of
n linear equations with unknowns 1=2,3,4,...). For simplicity, we consider a system
of two equations:

Ay X+ A %=

(4)

Ay X+ Ay Xp= by,

In matrix form, this is written

a,, a b
Ax=b < nowe {Xl} |t (5)
Ay Qx| X b,

where4 is the matrix of the coefficients of the unknowrsds the column vector of
the unknowns ant is the column vector of the constants. In the easereb=0 <
b;=b,=0, the given system is said to lhemogeneous linear

We note the following:

1. If detA = 0, the matrix4 is invertible and the system hasuaique solutiorthat is
obtained as follows:

Ax=b = A (A)=A'b = (A*Ax= A =
x=A"'b (6)

In the case wherb=0 (homogeneous system), the only solution of tistesy is the
trivial one: x=0 < x;=x,=0.

2. If detA=0 (the matrix4 is non-invertiblg, the system either has no solutionifis
consistentor has annfinite numberof solutions (see below).

The difficulty in solving (6) lies in the necessity determining the inverse matrix.
Let us now see an alternative expression for thetisa of the system, based on
Cramer’s methodor method of determinantsAs before, we calll the matrix of the
coefficients of the unknowns in system (4):

Ao a; app .
dp1 Ay
Furthermore, we calf; the matrix obtained from by replacement of its first column

(i.e., the column of the coefficienss; anday; of x;) with the column of the constant
termsb; andb, . Similarly, we call4, the matrix obtained from by replacing its sec-
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ond column (the one with the coefficients»@j with the column of the constants.

Analytically,
b, a;, a,; b
A=y - Fes b,|
2 Ay a Dy
Then, the solution of system (4) — if it exists-wiritten

detA detA,
X1: , X2:
detA detA

(7)

The determinants of the matricésandA4, are calledCramer’s determinants

Exercise:Write the analytical expression of the generalisoh (7), for any given
a; andb; .

ExerciseConsider the system

ax+tby=c
ex+fy=g

(where we have pug=x, X,=y) . Show that its solution is

X_cf—bg _ag-ce

af-be’ af- be’

Assume now that we “rewrite” the system by invegtihe order of the two equations:

ex+fy=g
ax+tby=c

Must we expect a different solution? How is youswaar related to the properties of
determinants?

More generally, for a linear systemméquations witln unknowns,

A Xt Ap Xt @y X= b
Ay Xt anXt -+ ay X= b, (8)
An X+ By X+ + 8y 4= R

the solution is written

. i=1,2,--n (9)
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where4 is thenxn matrix of the coefficientsy of the unknowns, whiléy is the ma-
trix obtained from4 by replacing the column of the coefficientsxpfwith the column
of the constantby.

We note the following:

1. If detA = O (i.e., if the matrix4 is invertible) a unique solution (9) of the syst&h
exists.

2. If detA=0 (the matrix4 is not invertible) and ifeven oneof the Cramer determi-
nants dedy in (9) is non-vanishing, the system {&s no solutiorfis inconsistent as
follows from (9).

3. If detA=0 and ifall Cramer determinants dgt(k=1,2,...n) are zero, the system (8)
has arinfinite numberof solutions.

Particularly significant for applications is theseaof ahomogeneousystem, in which
all constant termby (k=1,2,...n) are zero:

Ay X+ QX+ 8y % =0
Ay X+ Ago XpFoF 8y X =0
G212 S22 % X (10)
A X+ By Xo oo+ 8y %, =0

In this caseall Cramer determinants d&t(k=1,2,...n) are zero (explain this!). The
following possibilities thus exist:

1. If the determinant of the matrik of the coefficients of the unknowns is non-zero
(detA=0), the only possible solution of the system (18) the trivial solution
X1=X2= ... =X,= 0, as follows from (9).

2. If detA=0, the system (10) admits anrfinite numberof nontrivial solutions.
Exercise:Show the following: §) A homogeneous linear system always has a solu-

tion, i.e., is never inconsistenb)(For such a system to possegssoatrivial solution

(different, that is, from the zero solution) thaedeninant of the matrix of coefficients

of the unknowns must be zero.

ExampleConsider the homogeneous system

2x—-y=0
—-6x+3y=0

(where we have pug=x, x,=y). The determinant of the coefficients of the unkne
IS
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2 -
=6-6=0.
el

This occurs because the second line is a multiple-8) of the first. And this, in turn,

reflects the fact that the equations in the sysieemot independertdf each other (the

second one is just a multiple of the first, thugslaot provide any useful new infor-
mation). The only thing we can say is tgaPx, with arbitrary x. This means that the
system has aimfinite numberof solutions, one for each chosen valu&.of

Application to the vector product

Consider the vectors

A=AL+AU+AU=(A A A,
B=B,0,+B, U+ BUu=(B, B B,
where 4, , G, U, are theunit vectorson the axes, y, z, respectively, of a standard

Cartesian system. As we know from vector analytsis,vector product(or “cross
product”) of A and B can be written in determinant form, as follows:

AX Ay AZ
AxB=|A A A
B, B, B,

Moreover, the necessary condition in order thAaand B beparallel to each other is
AxB=0.

Example:Find the values ofx and g for which the vectorsA= (1,«,3) and
B=(-2,— 4, B) are parallel to each other.

Solution:We must haveAx B=0 =

~ A A

u u u
X % z
1 a 3[=0= G,@F+12-0, B+ 60, €4 2 )k (
2 -4 B

(where the determinant has been developed witlecesp the first row, i.e., the row
of the unit vectors). Given that the unit vectoomgtitute a linearly independent set,
the only way the above equality may be satisfieblyisetting all three coefficients of
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the corresponding unit vectors equal to zero. Wis thbtain a system tiiree equa-
tions withtwo unknowns:

20-4=0, f+6=0, af+12=0.

The first two equations yieldx=2, = — 6 . The third equation simply verifies this
result. That is, the third equationdempatiblewith the other two but furnishes no ad-
ditional information, since this last equatisnnot independentf the preceding ones
but follows directly from them. Note that, with tkialues ofx andg found above, the

third row of the determinant that represerts B becomes a multiple (by —2) of the
second row, so that the determinant automaticalhshes.

Exercise:Show that no values of andg exist for which the vectord\= (1, «, 3)
and B= (-2, 33, 6) are parallel to each other.

Exercise:Show that there is anfinite number of values af andg for which the

vectors A= (1, 3) and B= (-2, 3,— 6) are parallel to each other. What relation
must exist betweem and S ?
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THE EXPONENTIAL FUNCTION

Problem: Let a be a positive real number. We know how to deiff@ with m andn
integers. But, how do we defir®* for a general, reat that may be arrrational
number, i.e., cannot be written as a quotient @gearsm andn ?

Well, if it is difficult to define a functionlirectly, we may try defining the inverse
function (assuming it exists). To this end, we edasthe function

x1
|nx=j1¥dt, x>0 1)
Then,
(Inx)'=1/x

where the prime denotes differentiation with respecx. Note in particular that
In1=0. It can also be shown [1] that, farbeR’, In(@ab)=Ina+Inb, In(a/b)=Ina—Inb.
Thus, Inx is a logarithmic function in the usual sense.

The functionin x is increasing fox >0 (indeed, its derivative 1is positive for
x>0). Since Irx is monotone, this function is invertible. Cabkpx the inverse of Ix.
That is,

y=expx < x=Iny.
This means that
exp(lny)=y and Inexpx)=x.

It can be shown [1] that expis an exponential function in the usual sense,it.bas
the form exp= e* for some real constarg>0, to be determined. We write

y=e* < x=Iny (xeR, yeR)
so that

e™=y and Ine*)=x.

Note in particular that, fox=0 we havee’=1 and In1=0, as required. Also, for=1
we have thatn (") = 1 and, by the definition (1) of the logarithmic fuimat,

Inezjf% dt=1.

We will now show that the functioe” (xeR) can be expressed as the limit of a
certain infinite sequence:

e = lim (1+§jn (xe R )

N—o0

Then, for anyacR" we will have thata=e"™ =

n
) xln a
a*=e"2= |im (1+ j )

n—o0 n
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Proposition 1Given a functioru=f (X) that assumes positive values fondilh its
domain of definition, the derivative df [ f (X)] is given by

£(X)
f(x

diny du 1du  f(3y

du dx udx fX

3)

d
—In f(x) =
™ (X)

Proof. d In f(x)=
dx

Proposition 2The derivative ofe* is given by(e*)'=e*.

Proof. In(e*)=x = [In(e¥)]'=1 = (*)/e*=1 = (e¥)'=e”*, where we have

used relation (3) for the derivative lof(e").

Corollary: [expf (X)] =1 (x) expf (X) .

n
Now, consider the functiomg(x) = lim (1+5j (xeR). We have:
n—o n

n-1 n-1 n -1
g'(x):lim|:n(1+§j 1}:Iim(l+5j ~ lim Kul(j (1+—Xj }
n—o n n n—w n N—>o0 n n

n -1
— lim (1+5) -lim (1%) — g(¥)-1= g(.

nN—o n n—o0

Moreover,g(0)=1. Hence the functiop=g(x) satisfies the differential equatigri=y
with initial condition y=1 for x=0. On the other hand, the functigre” satisfies the
same differential equation with the same initiahdidion. Since the solution of this
differential equation with given initial conditiae unique, we conclude that the func-
tionsg(x) ande* must be identical. Therefore relation (2) mustrbe.t

We note that, for=1, Eq. (2) gives

e=lim (1+1jn (=2.72) (4)

n—o n

This is the formula by which the numbers usually defined.
In the same spirit we may show that anothessible representation of the
exponential functiore* is in the form of a power (Maclaurin) series [2]:

e=>

0

@, X" X X

— =14+ X+—+—+--- (Xe 5
—=n! 2! 3! (xe R ®)
Indeed, notice that thederivative of this series is the series itselfivad as that the
value of the series is equal to 1 #r0. Although expressions (2) and (5) do not look
alike, they represent treamefunction, exp«! (Note: Two functions ofx are consid-

ered identical if they have the same domaionf definition and assume equal values
for all xeD.)
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We defined®” (a>0, xeR) in a rather indirect way by first defining thenfition e
as the inverse of the functionxrand then by writinga*=e ™. There is, however, a
more direct definition oR*. Let x;, X2, ... , Xy, ... beanyinfinite sequence aftional

numbersx, such thatlim x, = xe R. [Question:Can a sequence of rational numbers
nN—co

have anrrational limit? Yes! See, e.g., the expression (4)dowhere the latter num-
beris irrational (see, e.qg., [3]) We now definea* as follows:

a*=lima" (a>0, xe R.

nN—oo

Since x, is a rational number for afl, raisinga to a rational number should not be a
problem. Note that the value @ does not depend on the specific choice of the se-
guencex,, as long as the limit of this sequencex.is

y y
=Inx
y=¢ 4
/1 0 1 X
0 X /

Graphs of exponential and logarithmic functions.

n
TheoremConsider the functior- (x) = z A exp(k x), where the real constarks
i=1
are different from each other. F(x)=0 for all x, thenA; =0 for alli=1,2,...n. Thus,
the functions {ex|pkix), i=1,2,...n} are a linearly independent set.

Proof. We will prove the theorem by induction. The casel is obvious, given
that the function exj§) is nonzero for any finite. Let us check the case=2. Thus,
assume that

F(X) = Arexp(kix) + Az exp(kx) =0 (for all realx) .
SinceF(X) is the constant function, its derivative mustigandentically:

F'(X) = ki Arexp(kix) + ka Az exp(kox) =0 .

Then,F'(X)—k; F(X) =0 = (ko—ki1) Az exp(k2x) =0 = A, =0, given that, by assumption,
ko= ki . Thus, F(X) = A exp(kiX) =0 = A; =0. Forn=3, let

F(X) = Arexp(kiX) + Azexp(kax) + Agexp(ksx) =0 .
Then,F’(X)—ki; F(X) =0 = (ko—k1) Az exp(koX) + (ks—k1) Asexp(ksx) =0 = A, =A3=0
(casen=2). Hence,F(X)=A; exp(kix) =0 = A; =0.
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Now, assume that the theorem is valid forsamamue ofn>2. We want to show

that it is also valid forn+l. To this end, we consider the function
n+1

F(X)= z A exp(k x). It is convenient to rename theHl1)-term as O-term, and write
i=1

F ()= A exploX) > Aexp(k = €
i=1

so thatF'(x) = k, Ayexp(k, x)+i k Aexp(k X= C Then,
i=1
F-koF09=0 = Y (k —k) Aexp(k )= 0= A= A=-= A=
i=1

given that, by assumptiok; = ky, as well as that the theorem is assumed to bd vali
for a sum witn terms. Thusk(x) =Asexp(koX) =0 = Ay =0. In conclusion:

The functiongexp (ki x), i=1,2,...}form a linearly independent set for different
values of the real constarits
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MACLAURIN SERIES EXPANSIONS OF SOME FUNCTIONS

We denote bip the interval within which each expansion is valid.

F(x) = f‘,% FOO)x" = (0)+ f’(O)x+2—1' () %+, D=(,1)

n=0 ""*

0 n 2
eX:zX—=1+x+i+— D= R
n! 3!
n=0
0 n
e =T X o XX D- R
=0 2! 3!
© 2n+1 3 5
sinx = 3 1= ox- X D- R
= (2n+1)! 31 5l
0 2n 2 4
cosx = Y (1 >— = 1-= 4+ 2 ... D=R
= 7 (2n)! 21 41
0 XZI’H—l 3 5
sinhx = ) = X+ — 4+ — . D=R
~ (2n+1)! 31 5l
0 2n 2 4
coshx = > - XX , D=R
n:0(2n)! 2! 2y
1 = ZXr‘: 1+ x+ ¥+ X+, D=(-1,1)
1-x =
1 o0
— =N (D)"X"=1- x+ ¥—= ¥+--- , D=(1,1
1+x Zg,( ) ¢ )
© Xn+1 X2 X3 X4
In(1+x) = —1)" = X—-—+ = -2 4., D=(1,1
1+2) EO( ) n+1 2 3 4 Ll
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FOURIER SERIESAND FOURIER INTEGRAL
Let f(X) be periodic with periodl2 Its Fourier-series expansion is given by

f(x)= ao+i(q1005nil_x+ o sin%(j wher
n=1

1 L

aozz N f(X) dx

1.t Nz X
a, :IJ—L f(X) COST dx, n=1,2-
1.t . NrX
b, :IJ-—'- f(Ysin==dx, n=12;-
Complex form of Fourier series:

f(x)= z ChénﬂX/L where qzz_ll_'[_'-l_ £ (%) gL g

N=—o

Considerf (x) defined in (s0,00) and not periodic. Its Fourier-integral represgatais

f(x):j:[a(k)coskx+ k(K sin k{§ dk where

a()=—=[" f(9coskxdx, BR==]" f(Jsin kxd
T Y /s
TheFourier transformof f(x) is given by the relations

f(x):%jiF(k)ékxdk, F(@:j: f(y e~ d
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VECTOR FORMULAS

A= AT+ AU+ AU=(A A A A= (AZ+ A7+ A
A-B= AB+ AB+ AB=| Al Bcog ; A-B=B A AA|N
a, 0, Q,

AxB=(AB-AB)U+(AB- ABU+( AB AR u-| A 4

|AxB|=|A||B|si® ; AxB=—B< A, A A O

gmd@:§¢:8¢iy+&b%+a@AEE8@'8@’8@
OX oy 0z oX 0y 0z

0 0
AL OA L OA
oXx oy o0z

i o A[ O OA 0A, A (OA DA
rotAVA(ay azju‘(az juj[ aj%

divA=V-: A=

P %|Q) ><C>
> 2los
> Rl e

rot(grad@)=VxV@ =0, div(rotA=V-(VxA=0

’d 0 0D

o oy o7 Ve

div(grad®)=V-V®

I:(Wﬁ)a =j:da> —o()-o(a) , § (Vo).di=

da

Gauss’ theorem: jv (V- A) dv= chS A da

Stokes’ theorem: J'S(ﬁ x A)-da= <]5C A dl ¢
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Various properties:

) ) Ac A A
(BxC)=B(Cx A=C(A B=| B B
C, C, C

z

)>¢

Ax(BxO)=B(AQ- QA B
V- (fA)=(Vf)-A+ fV-A
Vx(fA) =(Vf)x A+ fVx A

Vector operators in cylindrical coordinatesd, 2):

81//A 10y . OWA
+——U

Y= 6p u, 6 U,

¢ 0

95210 (pp)s 1% A

p@p 0z

<!

pop

Vi = 1of,9% +i2—+—l//
p8p ap op° 0z

Vector operators in spherical coordinate®,():

ﬁy/ al’yﬁr_{_lal’y'\g_y 1 6_(//,\
or r o0 r sinf op
= = 0
V-A:——( A Aﬂ
r2or 9849 rS|n¢9 op
= R 1 1 1 oA ©
VxA= —(sindA,)—— Sl ——T——A(r
rsm&[ (S04 } Line dp o ()| W

or r’sing 06 00

V2W=iﬁ(r28—lﬂj+ 1 5(Sm95§//j 1 &y
r?sin’ op?
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