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MATHEMATICAL FORMULAS AND PROPERTIES 
 
 

Trigonometric formulas 
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Basic trigonometric equations 
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Hyperbolic functions 
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Power formulas 
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Quadratic equation:  ax2+ bx + c = 0 
 
Call    D=b2 – 4ac    (discriminant)  
 

Roots:   
2

b D
x

a

− ±
=     

 
Roots are real and distinct if D>0 ; real and equal if D=0 ; complex conjugate if D<0.  

 
 

Geometric formulas 
 
A= area or surface area ;   V= volume ;   P= perimeter  
 
Parallelogram of base b and altitude h :    A=bh   
 
Triangle of base b and altitude h :    A= (1/2)bh   
 
Trapezoid of altitude h and parallel sides a and b :    A= (1/2)(a+b)h   
 
Circle of radius r :    P=2πr  ,    A=πr2   
 
Ellipse of semi-major axis a and semi-minor axis b :    A=πab   
 
Parallelepiped of base area A and height h :    V=Ah   
 
Cylindroid of base area A and height h :    V=Ah   
 
Sphere of radius r :    A=4πr2  ,    V= (4/3)πr3   
 
Circular cone of radius r and height h :    V= (1/3)πr2h   
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Properties of inequalities 
 

 

2 3

2 3

1 1
0

0 0

0 1 , 1 , 1

1 , 1 , 1

0 ,

n n

n n

n n n n

a b and b c a c

a b and b a a b

a b a b

a b
a b

a b and c d a c b d

a b and c d a c b d

a a a a a a

a a a a a a

a b a b a b

< < ⇒ <

≥ ≥ ⇒ =

< ⇒ − > −

< < ⇒ >

< ≤ ⇒ + < +

< < < ≤ ⇒ <

< < ⇒ > > > < <

> ⇒ < < < > >

< < ⇒ < <

⋯

⋯

       

 
 
 
 
 

Properties of proportions 
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Properties of absolute values of real numbers 
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Properties of powers and logarithms 
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Derivatives and integrals of elementary functions 
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COMPLEX NUMBERS 
 
 
Consider the equation  x2 +1=0.  This has no solution for real x. For this reason we 
extend the set of numbers beyond the real numbers by defining the imaginary unit 
number  i  by  
 

i2 = −1     or, symbolically,     1i = −  . 
 
Then, the solution of the above-given equation is  x= ± i .  
 
    Given the real numbers  x  and  y, we define the complex number  
 

z = x+ i y . 
 
This is often represented as an ordered pair  
 

z = x+ i y ≡ (x, y) . 
 
The number  x= Re z  is the real part of  z  while  y= Im z  is the imaginary part of  z. 
In particular, the value  z =  0  corresponds to  x =  0  and  y =  0. In general, if  y =  0, 
then  z  is a real number.  
 
    Given a complex number  z = x+ i y,  the number  
 

z x i y= −  
  
is called the complex conjugate of  z (the symbol  z *  is also used for the complex 
conjugate). Furthermore, the real quantity  
 

| z | =  (x2 + y2) 1/2 
 
is called the modulus (or absolute value) of  z. We notice that  
 

| | | |z z=  . 
 

    Example:  If  z = 3+2 i , then  3 2z i= −   and  | | | | 13z z= =  .   
 
    Exercise:  Show that, if z z= ,  then   z  is real, and conversely.  
 
    Exercise:  Show that, if  z = x+ i  y,  then  
 

Re , Im
2 2

z z z z
z x z y

i

+ −
= = = =  . 
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    Consider the complex numbers  z1 = x1+  i  y1 ,  z2 = x2+  i  y2 . As we can show, their 
sum and their difference are given by  
 

z1 + z2 = (x1 + x2) + i (y1 + y2) , 
 

z1 – z2 = (x1 – x2) + i (y1 – y2) . 
 
    Exercise:  Show that, if  z1= z2 , then  x1= x2  and  y1=  y2 .  
 
    Taking into account that  i2 = −1,  we find the product of  z1  and  z2  to be  
 

z1 z2 = (x1 x2 – y1 y2) + i (x1 y2 + x2 y1) . 
 
In particular, for  z1 =   z = x+ i  y  and  z2 =  z x i y= − ,  we have:  
 

2 2 2| |z z x y z= + = . 
 
To evaluate the quotient  z1 / z2  (z2 ≠ 0) we apply the following trick:  
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    Exercise:  Given the complex numbers  z1 = 3 – 2 i  and  z2 =   −2 +  i  , evaluate the 

quantities  1 2| |z z± ,  1 2z z   and  1 2/z z  .  
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    Polar form of a complex number  
 
 
 
 
 
 
 

 
 
 
 
 
    A complex number  z = x+ i  y ≡ (x, y)  corresponds to a point of the x-y plane. It 
may also be represented by a vector joining the origin Ο of the axes of the complex 
plane with this point. The quantities x and y are the Cartesian coordinates of the point, 
or, the orthogonal components of the corresponding vector. We observe that  
 

x = r cos θ  ,     y = r sin θ 
 
where    

r = | z | =  ( x
2 + y2 ) 1/2      and     tan

y

x
θ =  . 

 
Thus, we can write  
 
                                          

    
 
 
The above expression represents the polar form of  z.  Note that  
 

(cos sin )z r iθ θ= − . 
 
    Let  z1= r 1 (cos θ1 +  i sin θ1)  and  z2= r 2 (cos θ2 +  i sin θ2)  be two complex 
numbers. As can be shown,  
 

1 2 1 2 1 2 1 2

1 1
1 2 1 2

2 2
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[cos( ) sin ( )] .

z z r r i

z r
i

z r
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In particular, the inverse of a complex number  z = r  (cos θ + i sin θ )  is written  
 

1 1 1 1
(cos sin ) [cos( ) sin( )]z i i

z r r
θ θ θ θ− = = − = − + −  . 

 
    Exercise:  By using polar forms, show analytically that   z z

 –1 = 1.  
 
 

 z = x+ i y = r (cos θ + i sin θ ) 
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x
x

y

y

θ
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    Exponential form of a complex number  
 
    We introduce the notation  
 

cos sinie iθ θ θ= +  
 
(this notation is not arbitrary but has a deeper meaning that reveals itself within the 
context of the theory of analytic functions). Note that  
 

( ) cos ( ) sin ( ) cos sini ie e i iθ θ θ θ θ θ− −= = − + − = −  . 
 
Also,   

2 2| | | | cos sin 1i ie eθ θ θ θ−= = + = . 
 
 
    Exercise:  Show that   

1/i i ie e eθ θ θ− = = . 
 
Also show that  

cos , sin
2 2

i i i ie e e e

i

θ θ θ θ

θ θ
− −+ −

= =  . 

 
    The complex number  z = r  (cos θ +  i  sin θ ),  where  | |r z= ,  may now be expressed 
as follows:  
 

                                                            iz r e θ=        
 
It can be shown that  
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where  1 2

1 1 2 2,i iz r e z r eθ θ= = .   

 

    Example:  The complex number  2 2z i= − ,  with  | z | =  r  =  2,  is written  
 

( / 4) / 42 2
2 2 cos sin 2 2

2 2 4 4
i iz i i e eπ ππ π − −      = − = − + − = =           

. 
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    Powers and roots of complex numbers   
 
    Let   z = r  (cos θ + i sin θ ) =  

ir e θ   be a complex number, where  r  =  | z | .  It can be 
proven that  
 

(cos sin ) ( 0, 1, 2, )n n in nz r e r n i n nθ θ θ= = + = ± ± ⋯  . 
 
In particular, for   z =  cos θ + i sin θ = e iθ  (r= 1)  we find the de Moivre formula  
 

(cos sin ) (cos sin )ni n i nθ θ θ θ+ = +  . 
 
Note also that, for  z ≠ 0, we have that  z 0 =  1  and  z –n = 1/z n

 .  
 
    Given a complex number  z = r  (cos θ + i sin θ ), where  r  =  | z | , an  nth root of  z  is 

any complex number  c  satisfying the equation  c n =  z . We write nc z= . An  nth root 
of a complex number admits  n  different values given by the formula  
 

2 2
cos sin , 0,1,2, , ( 1)n

k

k k
c r i k n

n n

θ π θ π+ + = + = − 
 

⋯  . 

 
    Example:  Let  z =  1.  We seek the 4th roots of unity, i.e., the complex numbers  c  
satisfying the equation  c4=  1 . We write  
 

z  = 1 (cos 0 + i sin 0)       (that is,  r = 1 ,  θ = 0) . 
 
Then,  

2 2
cos sin cos sin , 0,1,2,3

4 4 2 2k

k k k k
c i i k

π π π π
= + = + =  . 

 
We find:  

c0 = 1 ,    c1 = i   ,    c2 =  − 1 ,    c3 =  − i  . 
 
 
    Example:  Let  z =  i  .  We seek the square roots of i, that is, the complex numbers  c  
satisfying the equation  c2=  i  . We have:  
 

z  = 1 [cos (π/2) + i sin(π/2)]       (that is,  r = 1 ,  θ = π/2) ; 
 

( / 2) 2 ( / 2) 2
cos sin , 0,1

2 2k

k k
c i k

π π π π+ +
= + =  ; 

0

1

2
cos( / 4) sin ( / 4) (1 ) ,

2

2
cos(5 / 4) sin (5 / 4) (1 ) .

2

c i i

c i i

π π

π π

= + = +

= + = − +
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ALGEBRA: SOME BASIC CONCEPTS 
 

 
Sets 

 
Subset:    X ⊆ Y  ⇔  ( x∈X  ⇒ x∈Y ) ;  

X = Y  ⇔  X ⊆ Y  and  Y ⊆ X    
      
Proper subset:   X ⊂ Y  ⇔  X ⊆ Y  and  X ≠Y   
   
Union of sets:    X ∪Y = { x / x∈X  or  x∈Y }  
    
Intersection of sets:   X ∩ Y = { x / x∈X  and  x∈Y }  
    
Disjoint sets:     X ∩ Y = ∅  
    
Difference of sets:    X −Y = { x / x∈X  and  x∉Y }  
   
Complement of a subset:   X ⊃Y  ;     X \ Y = X −Y  
   
Cartesian product:    X × Y = {( x, y) / x∈X  and  y∈Y }  
    
Mapping:      f : X → Y  ;    ( x∈X ) → y = f (x) ∈Y   
   

Domain / range of  f :   D (  f  ) = X ,   R (  f  ) = f ( X  ) = {  f ( x) / x ∈ X } ⊆ Y  ;   

f  is defined in X and has values in Y ;   

y= f ( x) is the image of  x under f     
 
Composite mapping:   f : X → Y ,     g : Y → Z  ;    

f o g : X → Z  ;    ( x∈X ) → g( f (x)) ∈Z   
 
Injective (1-1) mapping:  f (x1) = f (x2)  ⇔  x1= x2   ,   or   

       x1 ≠ x2  ⇔  f (x1) ≠ f (x2)   
 
Surjective (onto) mapping:   f ( X ) = Y    
 
Bijective mapping:   f  is both injective and surjective ⇒ invertible  
 
Identity mapping:    fid : X → X  ;    fid (x) = x ,  ∀x∈X   
    
Internal operation on X:  X × X → X  ;    [(x, y) ∈ X × X ] → z ∈ X  
 
External operation on X:  A × X → X  ;    [(a, x) ∈ A × X ] → y = a⋅ x  ∈ X    
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Groups 
 
A group is a set G, together with an internal operation G × G → G ;  (x, y) → z = x⋅ y, 
such that:  

1. The operation is associative:  x⋅ (y⋅ z) = (x⋅ y)⋅ z   
2. ∃ e∈G  (identity) :   x⋅ e = e⋅ x = x ,   ∀ x∈G   
3. ∀ x∈G ,  ∃ x−1∈G  (inverse):   x−1⋅x = x⋅ x−1 = e    

A group G is abelian or commutative if  x⋅ y = y⋅ x ,  ∀ x, y ∈G .  

A subset  S⊆G  is a subgroup of  G  if  S  is itself a group (clearly, then, S contains the 

identity e of G, as well as the inverse of every element of S ).   
 
 

Vector space over R 
 
Let  V={ x, y, z, ...}, and let  a, b, c, ... ∈R. Consider an internal operation + and an 
external operation ⋅ on V :  

 + :  V × V → V  ;    x+y = z   
  ⋅ :  R × V → V  ;    a⋅x = y   

Then, V is a vector space over R iff  

1. V is a commutative group with respect to + .  The identity element is denoted 
0, while the inverse of  x is denoted  –x .  

2. The operation ⋅ satisfies the following:  
a⋅(b⋅x)=  (ab)⋅x  
(a+b)⋅x = a⋅x + b⋅x  
a⋅(x+y) = a⋅x + a⋅y  
1⋅x = x ,     0⋅x = 0  

 
A set {x1 , x2 , ... , xk} of elements of V is linearly independent iff the equation1  
 
 c1 x1 + c2 x2 + ... + ck xk = 0  
 
can only be satisfied for  c1 = c2 =  ... = ck = 0 ; otherwise, the set is linearly 
dependent. The dimension dimV of V is the largest number of vectors in V that 
constitute a linearly independent set. If dimV=n , then any system {e1 , e2 , ... , en} of  
n linearly independent elements is a basis for V, and any x∈V can be uniquely 
expressed as  x = c1 e1 + c2 e2 + ... + cn en .  

A subset S⊆V is a subspace of V if S is itself a vector space under the operations (+) 

and (⋅). In particular, the sum x+y of any two elements of S, as well as the scalar 
multiple ax and the inverse −x of any element x of S, must belong to S. Clearly, this 
set must contain the identity 0 of V. If S is a subspace of V, then dim S ≤ dimV. In 
particular, S coincides with V  iff  dim S =  dimV.  
 
 

                                                 
1 The symbol (⋅) will often be omitted in the sequel.  



MATHEMATICAL HANDBOOK 

15 

Functionals 
 

A functional ω on a vector space V is a mapping  ω: V → R ; (x∈V) → t = ω(x)∈R. 
The functional ω is linear if  ω(a⋅x+b⋅y)=a⋅ω(x)+b⋅ω(y). The collection of all linear 
functionals on V is called the dual space of V, denoted V*. It is itself a vector space 
over R, and  dimV*=  dimV.  
 
 

Algebras 
 

A real algebra A is a vector space over R equipped with a binary operation  
(⋅ | ⋅) :  A × A → A  ;  (x | y) = z , such that, for  a, b ∈R,  

 (a⋅x + b⋅y | z) = a⋅(x | z) + b⋅(y | z)   
 (x | a⋅y + b⋅z) = a⋅(x | y) + b⋅(x | z)   

An algebra is commutative if, for any two elements x, y,  (x | y) = (y | x) ; it is 
associative if, for any x, y, z,  (x | (y | z)) = ((x | y) | z) .  
 
Example: The set Λ0(Rn) of all functions on Rn is a commutative, associative algebra. 
The multiplication operation  (⋅ | ⋅) :  Λ

0(Rn)× Λ0(Rn)→ Λ0(Rn)  is defined by  
 
 ( f | g )(x1, ... , xn) = f (x1, ... , xn) g(x1, ... , xn) .   
 
Example: The set of all n×n matrices is an associative, non-commutative algebra. The 
binary operation (⋅ | ⋅) is matrix multiplication.  
 
A subspace S of A is a subalgebra of A if S is itself an algebra under the same binary 
operation (⋅ | ⋅) . In particular, S must be closed under this operation; i.e., (x | y)∈S for 
any x, y in S. We write: S⊂A .   

A subalgebra S⊂A is an ideal of A iff  (x | y)∈S  and  (y | x)∈S , for any x∈S,  y∈A .  
 
 

Modules 
 
Note first that R is an associative, commutative algebra under the usual operations of 
addition and multiplication. Thus, a vector space over R is a vector space over an 
associative, commutative algebra. More generally, a module M over A is a vector 
space over an associative but (generally) non-commutative algebra. In particular, the 
external operation (⋅) on M is defined by    
 

⋅ :  A × M → M ;    a⋅x = y    (a∈A ;  x, y ∈M ) .  
 
Example: The collection of all n-dimensional column matrices, with A taken to be the 
algebra of  n×n matrices, and with matrix multiplication as the external operation.  
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Vector fields 
 
A vector field V on Rn is a map from a domain of Rn into Rn :  
 
 V : Rn ⊇U →Rn ;   [x ≡ (x1,..., xn)∈U ] → V(x) ≡ (V 1(xk),...,V n(xk))∈Rn .  
 
The vector x represents a point in U, with coordinates (x1,..., xn). The functions V i(xk) 
(i= 1,...,n) are the components of V in the coordinate system (xk).  
 
Given two vector fields U and V, we can construct a new vector field W=U+V such 
that W(x)=U(x)+V(x). The components of W are the sums of the respective 
components of U and V.  
 
Given a vector field V and a constant a∈R, we can construct a new vector field Z=aV 
such that Z(x)=  aV(x). The components of Z are scalar multiples (by a) of those of V.  
 
It follows from the above that the collection of all vector fields on Rn is a vector space 
over R .  
 
More generally, given a vector field V and a function f ∈Λ0(Rn), we can construct a 
new vector field Z=  f V such that Z(x)=  f (x)V(x). Given that Λ0(Rn) is an associative 
algebra, we conclude that the collection of all vector fields on Rn is a module over 
Λ

0(Rn) (in this particular case, the algebra Λ
0(Rn) is commutative).  

 
A note on linear independence:  
 
Let {V1 , ... ,Vr}  ≡ { Va} be a collection of vector fields on Rn.  
 
(a) The set {Va} is linearly dependent over R (linearly dependent with constant 
coefficients) iff there exist real constants c1 ,...,cr , not all zero, such that  
 
 c1V1 (x) + … + crVr (x) = 0 ,    ∀x∈Rn .  
 
If the above relation is satisfied only for  c1 = …= cr = 0, the set {Va} is linearly 
independent over R.  
 
(b) The set {Va} is linearly dependent over Λ0(Rn) iff there exist functions  f1 (x

k), ..., 
fr (x

k), not all identically zero over Rn, such that  
 
 f1 (x

k) V1 (x) + … + fr (x
k) Vr (x) = 0 ,    ∀x ≡ (x

k)∈Rn .  
 
If this relation is satisfied only for  f1 (x

k)=…= fr (x
k) ≡ 0, the set {Va} is linearly 

independent over Λ0(Rn).  
 
There can be at most n elements in a linearly independent system over Λ0(Rn). These 
elements form a basis {e1 , ..., en}≡{ ek} for the module of all vector fields on Rn. An 
element of this module, i.e. an arbitrary vector field V, is written as a linear 
combination of the {ek} with coefficients V k∈ Λ0(Rn). Thus, at any point x ≡ (x

k)∈Rn,  
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 V(x) = V 1(xk) e1  + ...+ V n(xk) en ≡ (V 1(xk), ... ,V
 n(xk)) .  

 
In particular, in the basis {ek},  
 
 e1 ≡ (1,0,0,...,0),   e2 ≡ (0,1,0,...,0),  …  , en ≡ (0,0,...,0,1) .    
 
Example: Let n=3, i.e., Rn=R3. Call {e1 , e2 , e3}  ≡ { i , j, k}. Let V be a vector field on 
R3. Then, at any point  x ≡ (x, y, z)∈R3,  
 
 V(x) = Vx (x, y, z) i  + Vy (x, y, z)  j  + Vz (x, y, z) k  ≡ (Vx , Vy , Vz ) .   
 
Now, consider the six vector fields  
 
 V1 = i ,  V2 = j ,  V3 = k ,  V4 = x j − y i ,  V5 = y k − z j ,  V6 = z i − x k .   
 
Clearly, the {V1 , V2 , V3 } are linearly independent over Λ0(R3), since they constitute 
the basis {i , j, k}. On the other hand, the V4 , V5 , V6 are separately linearly dependent 
on the {V1 , V2 , V3 } over Λ0(R3). Moreover, the set {V4 , V5 , V6 } is also linearly 
dependent over Λ0(R3), since  zV4 + xV5 + yV6 =  0 . Thus, the set {V1 , …………, V6} is 
linearly dependent over Λ0(R3). On the other hand, the system {V1 , …………, V6} is linearly 
independent over R, since the equation  c1V1 + … + c6V6 = 0 , with  c1 ,...,c6∈R 
(constant coefficients), can only be satisfied for  c1 = ...= c6 =  0 . In general,  
 

there is an infinite number of linearly independent vector fields on Rn over R , 
but only  n  linearly independent fields over Λ0(Rn).  

 
 

Derivation on an algebra 
 
Let L be an operation on an algebra A (an operator on A):  
 
 L :  A→A ;    (x∈A) → y = L x ∈A .   
 
L is a derivation on A iff, ∀x, y ∈A and a, b ∈R ,  

L (ax+by) = aL(x) + bL(y)            (linearity)   
L (x | y) = (L x | y) + (x | L y)       (Leibniz rule)   

 
Example: Let  A=Λ0(Rn)={ f (x1,…, x

n)}, and let L be the linear operator  
 
 L = φ1(xk) ∂/∂x1 + … + φ n (xk) ∂/∂xn ≡ φ i (xk) ∂/∂xi ,   
 
where the φ i(xk) are given functions. As can be shown,  
 
 L [ f (xk) g(xk)] = [L f (xk)] g(xk) +  f (xk) L g(xk) .   
 
Hence, L is a derivation on Λ0(Rn).  
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Lie algebra 
 
An algebra L over R is a (real) Lie algebra with binary operation [⋅ , ⋅]: L×L→L (Lie 

bracket) iff this operation satisfies the properties:  

 [ax + by , z] = a [x , z] + b [  y , z]   
 [x , y] = − [ y , x]         (antisymmetry)  
 [x , [ y , z]] + [  y , [z , x]] + [z , [x , y]] =  0    (Jacobi identity)  

(where x, y, z ∈L and a, b ∈R). Note that, by the antisymmetry of the Lie bracket, the 

first and third properties are written, alternatively,  

 [x , ay + bz] = a [x , y] + b [x , z] ,  
 [[x ,  y] , z] + [[  y , z] , x] + [[z , x] , y] =  0 .   

A Lie algebra is a non-associative algebra, since, as follows by the above properties,  

 [x , [ y , z]] ≠ [[x ,  y] , z] .   
 
Example: The algebra of n×n matrices, with  [A , B]=AB−BA  (commutator).  
 
Example: The algebra of all vectors in R3, with  [a , b] = a × b  (vector product).  
 
 

Lie algebra of derivations 
 

Consider the algebra  A=Λ0(Rn)={ f (x1,…, x
n)}. Consider also the set D(A) of linear 

operators on A, of the form  
 
 L = φ i (xk) ∂/∂xi     (sum on i = 1, 2, … , n) .   
 
These first-order differential operators are derivations on A (the Leibniz rule is 
satisfied). Now, given two such operators L1 , L2 , we construct the linear operator (Lie 
bracket of L1 and L2 ), as follows:  
 
 [L1 , L2 ] = L1 L2 −  L2 L1  ;    

 [L1 , L2 ] f (x
k) = L1 (L2 f (x

k)) −  L2 (L1 f (x
k))  .   

 
It can be shown that [L1 , L2 ] is a  first-order differential operator (a derivation), hence 
is a member of D(A). (This is not the case with second-order operators like L1L2!) 
Moreover, the Lie bracket of operators satisfies all the properties of the Lie bracket of 
a general Lie algebra (such as antisymmetry and Jacobi identity). It follows that  
 

the set D(A) of derivations on Λ0(Rn) is a Lie algebra, with binary operation 
defined as the Lie bracket of operators.  
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Direct sum of subspaces 
 
Let V be a vector space over a field K (where K may be R or C), of dimension 
dimV=n. Let S1 , S2  be disjoint (i.e., S1 ∩ S2 ={ 0}) subspaces of V. We say that V is 
the direct sum of S1 and S2 if each vector of V can be uniquely represented as the sum 
of a vector of S1 and a vector of S2 . We write: V= S1 ⊕ S2 . In terms of dimensions, 
dimV=dim S1 +dim S2 . We similarly define the vector sum of three subspaces of V, 
each of which is disjoint from the direct sum of the other two (i.e., S1 ∩ (S2⊕S3)={ 0}, 
etc.).  
 
 

Homomorphism of vector spaces 
 
Let V, W be vector spaces over a field K. A mapping Φ:V→W is said to be a linear 
mapping or homomorphism if it preserves linear operations, i.e.,  
 
 Φ(x+y) = Φ(x) + Φ( y) ,    Φ(kx) = k Φ(x) ,    ∀ x, y ∈V  and  k∈K .   
 
A homomorphism which is also bijective (1-1) is called an isomorphism.  
 
The set of vectors x∈V mapping under Φ into the zero of W is called the kernel of the 
homomorphism Φ:  
 
 Ker Φ = { x∈V : Φ(x) = 0} .   
 
Note that Φ(0)=0, for any homomorphism (clearly, the two zeros refer to different 
vector spaces). Thus, in general, 0∈Ker Φ.  
 
If  Ker Φ ={0}, then the homomorphism Φ is also an isomorphism of V onto a 
subspace of W. If, moreover, dimV=dimW, then the map Φ:V→W is itself an 
isomorphism. In this case, Im Φ =W, where, in general, Im Φ (image of the 
homomorphism) is the collection of images of all vectors of V under the map Φ.  
 
 

The algebra of linear operators 
 
Let V be a vector space over a field K. A linear operator A on V is a homomorphism 
A : V→V. Thus,  
 
 A(x+y) = A(x) + A(y) ,    A(kx) = k A(x) ,    ∀ x, y ∈V  and  k∈K .   
 
The sum A+B and the scalar multiplication kA (k∈K) are linear operators defined by  
 
 (A+B) x = A x +  B x  ,     (kA) x = k (A x)  .    
 
Under these operations, the set Op(V) of all linear operators on V is a vector space. 
The zero element of that space is a zero operator 0 such that  0x=0, ∀x ∈V.  
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Since A and B are mappings, their composition may be defined. This is regarded as 
their product AB:  
 
 (AB) x ≡ A(Bx)  ,    ∀x ∈V.   
 
Note that AB is a linear operator on V, hence belongs to Op(V). In general, operator 
products are non-commutative: AB≠BA. However, they are associative and 
distributive over addition:  
 
 (AB)C = A (BC) ≡ ABC  ,     A (B+C) = AB+AC  .   
 
The identity operator E is the mapping of Op(V) which leaves every element of V 
fixed:  E x =  x . Thus, AE=EA=A . Operators of the form kE (k∈K), called scalar 
operators, are commutative with all operators. In fact, any operator commutative with 
every operator of Op(V) is a scalar operator.  
 
It follows from the above that the set Op(V) of all linear operators on a given vector 
space V is an algebra. This algebra is associative but (generally) non-commutative.  
 
An operator A is said to be invertible if it represents a bijective (1-1) mapping, i.e., if 
it is an isomorphism of V onto itself. In this case, an inverse operator A−1 exists such 
that AA−1= A−1A=E. Practically this means that, if A maps x∈V onto y∈V, then A−1 
maps y back onto x. For an invertible operator A,  Ker A={ 0}  and  Im A=V.  
 
 

Matrix representation of a linear operator 
 
Let A be a linear operator on V. Let {ei} (  i= 1,..., n) be a basis of V. Let  
 
 A ek = ei A i k      (sum on  i)    
 
where the Aik are real or complex, depending on whether V is a vector space over R or 
C. The n×n matrix A=[A i k] is called the matrix of the operator A in the basis { ei}.  
 
Now, let  x=xi ei (sum on i) be a vector in V, and let  y=A x. If  y= yi ei , then, by the 
linearity of A,  
 
 yi  = A i k xk     (sun on  k) .  
 
In matrix form,  
 
 [ y ]  n×1  =  [  A ]  n×n  [  x ]  n×1  .   
 
Next, let  A, B be linear operators on V. Define their product  C=AB  by  
 
 C x = (AB) x ≡ A (Bx)  ,    x∈V .   
 
Then, for any basis {ei},   C ek = A (B ek ) =  ei A i j B j k  ≡  ei C i k    ⇒   
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 C i k = A i j B j k    
 
or, in matrix form,  
 
 C = A B .    
 
That is,  
 

the matrix of the product of two operators is the product of the matrices of 
these operators, in any basis of V.   

 
Consider now a change of basis defined by the transition matrix T= [T i k]:  
 
 ek΄ = ei T i k  .   
 
The inverse transformation is  
 
 ek = ei΄ (T

 −1) i k  .   
 
Under this basis change, the matrix A of an operator A transforms as  
 
 A΄ = T −1A T     (similarity transformation) .   
 
Under basis transformations, the trace and the determinant of A remain unchanged:  
 
 trA΄ = trA   ,      detÁ  = detA  .   
 
An operator A is said to be nonsingular (singular) if  detA≠0  (detA=0). Note that this 
is a basis-independent property. Any nonsingular operator is invertible, i.e., there 
exists an inverse operator A−1∈Op(V) such that A A−1=  A−1A=E. Since an invertible 
operator represents a bijective mapping (i.e., both 1-1 and onto), it follows that 
KerA={ 0}  and  ImA=V. If A is invertible (nonsingular), then, for any basis {ei} 
(i= 1,..., n) of V, the vectors {Aei} are linearly independent and hence also constitute a 
basis.  
 
 

Invariant subspaces and eigenvectors 
 

Let V be an n-dimensional vector space over a field K, and let A be a linear operator 
on V. The subspace S of V is said to be invariant under A if, for every vector x of S, 
the vector Ax again belongs to S.  Symbolically, AS⊆S.  
 
A vector x≠0 is said to be an eigenvector of A if it generates a one-dimensional 
invariant subspace of V under A. This means that an element λ∈K exists, such that  
 
 A x = λ x  .   
 
The element λ is called an eigenvalue of A, to which eigenvalue the eigenvector x 
belongs. Note that, trivially, the null vector 0 is an eigenvector of A, belonging to any 
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eigenvalue λ. The set of all eigenvectors of A, belonging to a given λ, is a subspace of 
V called the proper subspace belonging to λ.  
 
It can be shown that the eigenvalues of A are basis-independent quantities. Indeed, let 
A=[Aik] be the (n×n) matrix representation of A in some basis {ei} of V, and let x=xiei 
be an eigenvector belonging to λ. We denote by X=[xi] the column vector representing 
x in that basis. The eigenvalue equation for A is written, in matrix form,  
 
 Aik xk = λ xi     or     A X = λ X  .   
 
This is written  
 
 (A−λ1n) X = 0  .   
 
This equation constitutes a linear homogeneous system for X=[xi], which has a 
nontrivial solution iff  
 
 det (A−λ1n) = 0  .   
 
This polynomial equation determines the eigenvalues λi (i= 1,...,n) (not necessarily all 
different from each-other) of A. Since the determinant of the matrix representation of 
an operator [in particular, of the operator (A−λE) for any given λ] is a basis-
independent quantity, it follows that, if the above equation is satisfied for a certain λ 
in a certain basis (where A is represented by the matrix A), it will also be satisfied for 
the same λ in any other basis (where A is represented by another matrix, say, A΄ ). We 
conclude that the eigenvalues of an operator are a property of the operator itself and 
do not depend on the choice of basis of V.  
 
If we can find n linearly independent eigenvectors {xi} of A, belonging to the 
corresponding eigenvalues λi , we can use these vectors to define a basis for V. In this 
basis, the matrix representation of A has a particularly simple diagonal form:  
 
 A = diag (λ1 , ... , λn )  .   
 
Using this expression, and the fact that the quantities trA, detA and λi are invariant 
under basis transformations, we conclude that, in any basis of V,  
 
 trA = λ1 + λ2 +...+ λn  ,       detA = λ1 λ2... λn  .   
 
We note, in particular, that all eigenvalues of an invertible (nonsingular) operator are 
nonzero. Indeed, if even one is zero, then detA=0 and A is singular.  
 
An operator A is called nilpotent if Am=0 for some natural number m>1. The smallest 
such value of m is called the degree of nilpotency, and it cannot exceed n. All 
eigenvalues of a nilpotent operator are zero. Thus, such an operator is singular (non-
invertible).  
 
An operator A is called idempotent (or projection operator) if A2=A. It follows that 
Am=A, for any natural number m. The eigenvalues of an idempotent operator can take 
the values 0 or 1.  
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BASIC MATRIX PROPERTIES 
 
 

The following properties concern square (n×n) matrices.  
 

† † † † † † † * *

† * †

1 1 1 1 1 † 1 1 †

† † †

( ) ; ( )

( ) ; ( ) where ( ) ( )

( ) ; ( ) ( )

( ) ; ( ) ( ) ; ( ) ( )

[ , ] [ , ] ; [ , ] [ , ] where [ , ]

T T T T T T

T T

T T

T T

T T T

A B A B AB B A

A B A B AB B A M M M

kA kA kA k A k C

AB B A A A A A

A B B A A B B A A B AB BA

− − − − − − −

+ = + =

+ = + = ≡ =

= = ∈

= = =

= = = −

 

 

1

1

1
(det 0)

det

1

A adjA A
A

a b d b

c d c aad bc

−

−

= ≠

−   
=   −−   

 

 

† *

( )

; ( )

( ) ( ) , ( ) ( ) ( ) , etc.

[ , ] 0

T

tr A B trA trB

trA trA trA trA

tr AB tr BA tr ABC tr BCA tr CAB

tr A B

κ λ κ λ+ = +

= =

= = =

=

 

 
† *

1

det det ; det (det )

det( ) det( ) det det

det( ) 1/ det

det( ) det

T

n

A A A A

AB BA A B

A A

cA c A

−

= =

= = ⋅

=

=

 

If any row or column of A is multiplied by c, then so is det A.  
 
[ , ] [ , ]

[ , ] [ , ] [ , ] ; [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] ; [ , ] [ , ] [ , ]

[ , [ , ]] [ , [ , ]] [ , [ , ]] 0

[[ , ], ] [[ , ], ] [[ , ], ] 0

A B B A AB BA

A B C A B A C A B C A C B C

A BC A B C B A C AB C A B C A C B

A B C B C A C A B

A B C B C A C A B

= − ≡ −

+ = + + = +

= + = +

+ + =

+ + =

 

 
Let ( ) [ ( )]i jA A t a t= =  be an (n×n) matrix function. The derivative of A is the 

(n×n) matrix  dA/dt  with elements  

( )i j
i j

dA d
a t

dt dt
  = 
 

 .  

The integral of A is the (n×n) matrix defined by  

( )( ) ( )i j
i j

A t dt a t dt=∫ ∫  .  
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If ( ) [ ( )]i jB B t b t= =  is another (n×n) matrix function,  

( ) ; ( )

[ , ] , ,

d dA dB d dA dB
A B AB B A

dt dt dt dt dt dt
d dA dB

A B B A
dt dt dt

± = ± = +

   = +      

 

 
We also have:  

1 1 1 1 1 1( ) ( ) ( )

( )

d dA
A A A d A A dA A

dt dt
dA d

tr trA
dt dt

− − − − − −= − ⇒ = −

  = 
 

 

 
Let ( , )A A x y= . Call / x xA x A A∂ ∂ ≡ ∂ ≡ , etc.:  

1 1 1 1

1 1 1 1

1 1 1 1 1 1

( ) ( ) [ , ] 0

( ) ( ) [ , ] 0

( ) ( ) ( ) ( )

x y y x x y

x y y x x y

x y y x y x x y

A A A A A A A A

A A A A A A A A

A A A A A A A A A A A A

− − − −

− − − −

− − − − − −

∂ − ∂ + =

∂ − ∂ − =

= ⇔ =

 

 
Matrix exponential relations:  

( ) ( ) ( ) ( )

( )

1

* †

2

0

1

* † 1

exp 1
! 2

; ; ;

when [ , ] 0

In general,     where

1 1
[ , ] [ , [ , ]] [ , [ , ]]

2 12

T

n
A

n

A BAB

TA A A A A A A A

A B B A A B

A B C

A A
e A A

n

B e B e

e e e e e e e e

e e e e e A B

e e e

C A B A B A A B B B A

−

∞

=

−

− −

+

≡ = = + + +

=

= = = =

= = =

=

= + + + + +

∑ ⋯

⋯

 

 

By definition,  log AB A B e= ⇔ = .  

( ) (log )

1 1

det det (log ) log(det )

det (1 ) 1 , for infinitesimal

( ) ( ) (log ) [ (log )] [log(det )]

A trA tr B

x x x x x

e e B e tr B B

A tr A A

tr A A tr A A tr A tr A A

δ δ δ
− −

= ⇔ = ⇔ =

+ +

= = = =

≃  
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DETERMINANTS 
 
 
Consider the 2×2 matrix  
 

a b
A

c d

 
=  
 

 .    

 
The determinant of Α is defined by  
 

det
a b

A ad bc
c d

≡ = −  .                                           (1) 

 
Next, consider the 3×3 matrix  
 

a b c

A d e f

g h k

 
 =  
  

 .   

 
To evaluate its determinant, we work as follows: First, we draw a 3×3 “chessboard” 
consisting of + (plus) and – (minus) signs, as shown below. Careful: At the top left we 
always put a plus sign!  
 

+ − +

− + −

+ − +

 .     

 
We may now develop the determinant of A with respect to any row or any column; the 
result will always be the same. Let us assume, e.g., that we choose to develop with 
respect to the first row. Its first element is a. At the position where this element is lo-
cated (top left) the “chessboard” has a + sign; we thus leave the sign of a unchanged. 
Imagine now that we cross off both the row and the column to which this element be-
longs (first row, first column in this case). What is left over is a lower-order, 2×2 ma-
trix with determinant  
 

e f

h k
 .   

 
We multiply this determinant by a and we save the result.  
 
The second element in the first row is b. At its location, the chessboard has a – sign; 
we thus write –b. We “cross off” the row and the column to which b belongs (first 
row, second column) and we get the 2×2 determinant  
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d f

g k
 .   

 
We multiply this by –b and we save this result, too.  
 
The third element in the first row is c. At its location the chessboard has a + sign, thus 
we leave the sign of c unchanged. Crossing off the first row and the third column, 
where c is located, we find the determinant  
 

d e

g h
 .   

 
We multiply this by c and again we save this result in the “memory”.  
 
Summing the contents of the memory, we finally find the determinant of A:  
 

det

a b c
e f d f d e

A d e f a b c
h k g k g h

g h k

≡ = − +  .                      (2) 

 
Of course, to complete the job we must evaluate the minor determinants according to 
Eq. (1), which is an easy task.  
 
    Exercise: Evaluate again the determinant of A, this time by developing with respect 
to the second column, and show that  
 

det

a b c
d f a c a c

A d e f b e h
g k g k d f

g h k

≡ = − + −  .   

 
Verify that your result is the same as before.  
 
    Exercise: With the aid of the chessboard  
 

+ −

− +
   

 
(the + sign always on the top left!) and by following an analogous procedure, verify 
formula (1) for a 2×2 determinant. (By definition, the determinant of a 1×1 matrix [a] 
is equal to the single element of the matrix.)  
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For a 4×4 matrix, the chessboard is of the form (with a + sign always on the top left)  
 

+ − + −

− + − +

+ − + −

− + − +

 .   

 
The development of a 4×4 determinant leads to 3×3 determinants that are developed 
as shown previously. As is obvious, the problem becomes harder as the dimension of 
the determinant increases!  
 
    Exercise: Show that  
 

1 1 1

2 0 2 0

1 1 1

−

− =

− −

 ,   

 
by developing with respect to a row and, again, with respect to a column. Choose the 
row and column that will make your calculations easier. (Obviously, as a general rule, 
it is in our best interest to choose a row or a column with as many zeros as possible!)  
 
 
 

Properties of determinants 
 
 
Let A be an n×n matrix and let detA be the determinant of A. The following statements 
are true:  
 
1.  If all elements of a row or a column of A are zero, then detA=0.  
 
2.  If every element of a row or a column of A is multiplied by λ, then detA is multi-
plied by λ as well.  
 
3.  If all elements of A are multiplied by λ, then detA is multiplied by λn (where n is 
the dimension of A). That is,  
 

det (λA) = λn detA .    
 
4.  If any two rows or any two columns of A are interchanged, the value of detA is 
multiplied by (–1).  
 
5.  If two rows or two columns of A are identical, then detA=0. The same is true, more 
generally, if two rows or two columns are multiples of each other.  
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6.  The value of detA remains the same if the rows and columns of A are interchanged. 
That is,  
 

det (AT ) = detA ,    
 
where AT is the transpose of A:  (AT )ij = Aji .   
 
7.  If A and B are n×n matrices,  
 

det (AB) = det (BA) = detA . detB .   
 
Also,  
 

det (Ak ) = (detA)k  ,   k=1,2,3,... .    
 
8.  If A–1 is the inverse of A (see below),  
 

det (A–1 ) = 1 / detA .   
 
9.  The determinant of a diagonal (or, more generally, a triangular) matrix A is equal 
to the product of the elements of the diagonal of A.  
 
10.  The value of detA is unchanged if to any row or any column of A we add an arbi-
trary multiple of any other row or column, respectively.  
 
 
 

Evaluation of a matrix inverse  
 
 
Consider a 3×3 matrix Α:  
 

11 12 13

21 22 23

31 32 33

[ ] ( , 1,2,3)i j

a a a

A a a a a i j

a a a

 
 = ≡ = 
  

 .   

 
Let aij be an arbitrary element of Α (the one that belongs to the i-th row and the j-th 
column). By “crossing off” the row and the column to which aij belongs, we obtain a 
2×2 matrix. We call Dij the determinant of this latter matrix.  
 
We now construct a 3×3 matrix Μ, as follows: We replace every element aij of the 
given matrix Α by the corresponding quantity  
 

( 1)i j
i jD+−  .   

 
That is, in place of aij we put the minor determinant Dij multiplied by the sign that ex-
ists on the chessboard at the position of aij . We thus get  
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11 12 13

21 22 23

31 32 33

D D D

M D D D

D D D

− 
 = − − 
 − 

 .   

 
Finally, we take the transpose Μ Τ of Μ, which is called the adjoint of the matrix Α:  
 

11 21 31

12 22 32

13 23 33

adj T

D D D

A M D D D

D D D

− 
 = = − − 
 − 

 .   

 
The inverse Α–1 of Α, satisfying ΑΑ–1= Α–1

Α = I (where I is the 3×3 unit matrix) is 
given by  
 

1 1
adj

det
A A

A
− =                                                    (3) 

 
Obviously, a necessary condition in order that the inverse of A may exist (i.e., in order 
that the matrix Α be invertible) is that detA ≠ 0. The process described above, leading 
to relation (3), is generally valid for any n×n matrix (n=2,3,4,...).  
 
    Exercise: For the 2×2 matrix  
 

a b
A

c d

 
=  
 

 ,   

 
show that  
 

1 1 d b
A

c aad bc
− − 
=  −−  

 .   

 
Verify that  
 

1 1 1 0

0 1
AA A A− −  

= =  
 

 .   

 
    Exercise: By using (3), show that  
 

1
0 1 3 1 1 0

1 1 3 1/ 2 0 3/ 2

0 1 1 1/ 2 0 1/ 2

−
− − −   

   − − = −   
   − −   

 .   

 
Verify that your result satisfies the relation  ΑΑ

–1= Α–1
Α = I .  
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Solution of linear systems 
 
 
The method we will describe applies to any linear system of equations; i.e., system of 
n linear equations with n unknowns (n=2,3,4,...). For simplicity, we consider a system 
of two equations:  
 

    
11 1 12 2 1

21 1 22 2 2

a x a x b

a x a x b

+ =

+ =
                                                   (4) 

 
In matrix form, this is written  
 

    
11 12 11

221 22 2

a a bx
A

xa a b

    
= ⇔ =    

       
x b                                    (5) 

 
where Α is the matrix of the coefficients of the unknowns, x is the column vector of 
the unknowns and b is the column vector of the constants. In the case where b=0 ⇔ 
b1=b2=0, the given system is said to be homogeneous linear.  
 
We note the following:  
 
1. If detA ≠ 0, the matrix Α is invertible and the system has a unique solution that is 
obtained as follows:  
 

1 1 1 1( ) ( )A A A A A A A− − − −= ⇒ = ⇒ = ⇒x b x b x b  
 

    1A−=x b                                                          (6) 
 
In the case where b=0 (homogeneous system), the only solution of the system is the 
trivial one:  x=0 ⇔ x1=x2=0 .   
 
2. If detA=0 (the matrix Α is non-invertible), the system either has no solution (is in-
consistent) or has an infinite number of solutions (see below).  
 
The difficulty in solving (6) lies in the necessity of determining the inverse matrix. 
Let us now see an alternative expression for the solution of the system, based on 
Cramer’s method (or method of determinants). As before, we call Α the matrix of the 
coefficients of the unknowns in system (4):  
 

11 12

21 22

a a
A

a a

 
=  
  

 .   

 
Furthermore, we call Α1 the matrix obtained from Α by replacement of its first column 
(i.e., the column of the coefficients a11 and a21 of x1) with the column of the constant 
terms b1 and b2 . Similarly, we call Α2 the matrix obtained from Α by replacing its sec-
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ond column (the one with the coefficients of x2) with the column of the constants. 
Analytically,  
 

1 12 11 1
1 2

2 22 21 2

,
b a a b

A A
b a a b

   
= =   
      

 .   

 
Then, the solution of system (4) – if it exists – is written  
 

    1 2
1 2

det det
,

det det

A A
x x

A A
= =                                            (7) 

 
The determinants of the matrices Α1 and Α2 are called Cramer’s determinants.  
 
    Exercise: Write the analytical expression of the general solution (7), for any given 
aij and bi .  
 
    Exercise: Consider the system  
 

a x + b y = c   

e x + f y = g 
 
(where we have put x1=x, x2=y) . Show that its solution is  
 

,
c f bg ag ce

x y
a f be a f be

− −
= =

− −
 .    

 
Assume now that we “rewrite” the system by inverting the order of the two equations:  
 

e x + f y = g   

a x + b y = c   
 
Must we expect a different solution? How is your answer related to the properties of 
determinants?  
 
More generally, for a linear system of n equations with n unknowns,  
 

    

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =

+ + + =

+ + + =

⋯

⋯

⋮

⋯

                                        (8) 

 
the solution is written  
 

    
det

, 1,2, ,
det

i
i

A
x i n

A
= = ⋯                                          (9) 
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where Α is the n×n matrix of the coefficients ajk of the unknowns, while Ai is the ma-
trix obtained from Α by replacing the column of the coefficients of xi  with the column 
of the constants bk .  
 
We note the following:  
 
1. If detA ≠ 0 (i.e., if the matrix Α is invertible) a unique solution (9) of the system (8) 
exists.  
 
2. If detA=0 (the matrix Α is not invertible) and if even one of the Cramer determi-
nants detAk in (9) is non-vanishing, the system (8) has no solution (is inconsistent), as 
follows from (9).  
 
3. If detA=0 and if all Cramer determinants detAk (k=1,2,...,n) are zero, the system (8) 
has an infinite number of solutions.  
 
Particularly significant for applications is the case of a homogeneous system, in which 
all constant terms bk (k=1,2,...,n) are zero:  
 

    

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0

0

0

n n

n n

n n nn n

a x a x a x

a x a x a x

a x a x a x

+ + + =

+ + + =

+ + + =

⋯

⋯

⋮

⋯

                                       (10) 

 
In this case all Cramer determinants detAk (k=1,2,...,n) are zero (explain this!). The 
following possibilities thus exist:  
 
1. If the determinant of the matrix A of the coefficients of the unknowns is non-zero 
(detA≠0), the only possible solution of the system (10) is the trivial solution  
x1 = x2 =  … = xn =  0,  as follows from (9).  
 
2. If detA=0, the system (10) admits an infinite number of nontrivial solutions.  
 
    Exercise: Show the following: (a) A homogeneous linear system always has a solu-
tion, i.e., is never inconsistent. (b) For such a system to possess a nontrivial solution 
(different, that is, from the zero solution) the determinant of the matrix of coefficients 
of the unknowns must be zero.  
 
    Example: Consider the homogeneous system  
 

2 x – y = 0   

– 6 x + 3 y = 0   
 
(where we have put x1=x, x2=y). The determinant of the coefficients of the unknowns 
is  
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2 1
6 6 0

6 3

−
= − =

−
 .   

 
This occurs because the second line is a multiple (by –3) of the first. And this, in turn, 
reflects the fact that the equations in the system are not independent of each other (the 
second one is just a multiple of the first, thus does not provide any useful new infor-
mation). The only thing we can say is that y=2x, with arbitrary x. This means that the 
system has an infinite number of solutions, one for each chosen value of x.  
 
 
 

Application to the vector product 
 
 
Consider the vectors  
 

ˆ ˆ ˆ ( , , ) ,

ˆ ˆ ˆ ( , , ) ,

x x y y z z x y z

x x y y z z x y z

A A u A u A u A A A

B B u B u B u B B B

= + + ≡

= + + ≡

�

�     

 
where ˆ ˆ ˆ, ,x y zu u u  are the unit vectors on the axes x, y, z, respectively, of a standard 

Cartesian system. As we know from vector analysis, the vector product (or “cross 
product”) of A

�
 and B

�
 can be written in determinant form, as follows:  

 

ˆ ˆ ˆx y z

x y z

x y z

u u u

A B A A A

B B B

× =
� �

 .   

 
Moreover, the necessary condition in order that A

�
 and B

�
 be parallel to each other is 

0A B× =
� �

.  
 

    Example: Find the values of α and β for which the vectors (1, , 3)A α≡
�

 and 

( 2, 4, )B β≡ − −
�

 are parallel to each other.  
 

    Solution: We must have 0A B× =
� �

 ⇒   
 

ˆ ˆ ˆ

ˆ ˆ ˆ1 3 0 ( 12) ( 6) ( 4 2 ) 0

2 4

x y z

x y z

u u u

u u uα αβ β α
β

= ⇒ + − + + − + =

− −

   

 
(where the determinant has been developed with respect to the first row, i.e., the row 
of the unit vectors). Given that the unit vectors constitute a linearly independent set, 
the only way the above equality may be satisfied is by setting all three coefficients of 
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the corresponding unit vectors equal to zero. We thus obtain a system of three equa-
tions with two unknowns:  
 

2 α – 4 = 0 ,      β + 6 = 0 ,      αβ + 12 = 0 .   
 
The first two equations yield  α=2,  β= – 6 . The third equation simply verifies this 
result. That is, the third equation is compatible with the other two but furnishes no ad-
ditional information, since this last equation is not independent of the preceding ones 
but follows directly from them. Note that, with the values of α and β found above, the 
third row of the determinant that represents A B×

� �
 becomes a multiple (by –2) of the 

second row, so that the determinant automatically vanishes.  
 

    Exercise: Show that no values of α and β exist for which the vectors (1, , 3)A α≡
�

 

and ( 2, , 6)B β≡ −
�

 are parallel to each other.  
 
    Exercise: Show that there is an infinite number of values of α and β for which the 

vectors (1, , 3)A α≡
�

 and ( 2, , 6)B β≡ − −
�

 are parallel to each other. What relation 
must exist between  α  and  β ?  
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THE EXPONENTIAL FUNCTION 
 
 
Problem: Let a be a positive real number. We know how to define a 

m/n with m and n 
integers. But, how do we define a x for a general, real x that may be an irrational 
number, i.e., cannot be written as a quotient of integers m and n ?  
      Well, if it is difficult to define a function directly, we may try defining the inverse 
function (assuming it exists). To this end, we consider the function  
 

1

1
ln , 0

x
x dt x

t
= >∫                                                (1) 

Then,   
(ln x)΄=1/x 

 
where the prime denotes differentiation with respect to x. Note in particular that  

ln1=0. It can also be shown [1] that, for a, b∈R+, ln(ab)=lna+lnb, ln(a/b)=lna–lnb. 
Thus, ln x  is a logarithmic function in the usual sense.  
      The function  ln x  is increasing for x >0 (indeed, its derivative 1/x is positive for  
x >0). Since ln x  is monotone, this function is invertible. Call  exp x  the inverse of ln x. 
That is,  

y =  exp x   ⇔   x =  ln y . 

This means that  

exp (ln y) =  y   and   ln (exp x) =  x . 
 
It can be shown [1] that exp x is an exponential function in the usual sense, i.e., it has 
the form  exp x =  e x  for some real constant  e >0, to be determined. We write  
 

y =  e x   ⇔   x =  ln y   (x∈R ,  y∈R+) 

so that  

e ln y =  y   and   ln (e x ) = x . 
 
Note in particular that, for x=0 we have  e0=1  and  ln1=0, as required. Also, for x=1 
we have that  ln (e1) =  1  and, by the definition (1) of the logarithmic function,  

1

1
ln 1

e
e dt

t
= =∫ . 

      We will now show that the function  e x (x∈R) can be expressed as the limit of a 
certain infinite sequence:  

lim 1 ( )
n

x

n

x
e x R

n→∞

 = + ∈ 
 

                                           (2) 

 
Then, for any  a∈R+ we will have that  a=e lna  ⇒  

ln ln
lim 1

n
x x a

n

x a
a e

n→∞

 = = + 
 

. 
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      Proposition 1. Given a function  u= f (x) that assumes positive values for all x in its 
domain of definition, the derivative of  ln [  f (x)]   is given by  
 

( )
ln ( )

( )

d f x
f x

dx f x

′
=                                                      (3) 

 

      Proof.  
(ln ) 1 ( )

ln ( )
( )

d d u du du f x
f x

dx du dx u dx f x

′
= = =  .  

 
      Proposition 2. The derivative of  e x is given by  (e x)΄=  e x .  
 
      Proof.  ln (e x ) = x  ⇒  [ln (e x )]΄=1  ⇒  (e x )΄/ e x  =1  ⇒  (e x )΄= e x , where we have 

used relation (3) for the derivative of  ln (e 
x).  

      Corollary:   [exp f (x)]΄ = f ΄ (x) exp f (x) .  

      Now, consider the function  ( ) lim 1
n

n

x
g x

n→∞

 = + 
 

  (x∈R).  We have:  

1 1 1

1

1
( ) lim 1 lim 1 lim 1 1

lim 1 lim 1 ( ) 1 ( ).

n n n

n n n

n

n n

x x x x
g x n

n n n n n

x x
g x g x

n n

− − −

→∞ →∞ →∞

−

→∞ →∞

          ′ = + = + = + +          
             

   = + ⋅ + = ⋅ =   
   

 

 
Moreover, g(0)=1. Hence the function y=g(x) satisfies the differential equation y΄=y 
with initial condition  y=1 for x=0. On the other hand, the function  y=e x satisfies the 
same differential equation with the same initial condition. Since the solution of this 
differential equation with given initial condition is unique, we conclude that the func-
tions g(x) and  e x must be identical. Therefore relation (2) must be true.  
      We note that, for x=1, Eq. (2) gives  
 

1
lim 1 ( 2.72)

n

n
e

n→∞

 = + 
 

≃                                             (4) 

 
This is the formula by which the number  e  is usually defined.  
      In the same spirit we may show that another possible representation of the 
exponential function  e x is in the form of a power (Maclaurin) series [2]:  
 

2 3

0

1 ( )
! 2! 3!

n
x

n

x x x
e x x R

n

∞

=

= = + + + + ∈∑ ⋯                                  (5) 

 
Indeed, notice that the x-derivative of this series is the series itself, as well as that the 
value of the series is equal to 1 for x=0. Although expressions (2) and (5) do not look 
alike, they represent the same function, exp x !  (Note: Two functions of x are consid-
ered identical if they have the same domain D of definition and assume equal values 
for all  x∈D.)  
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      We defined  a 
x (a>0,  x∈R) in a rather indirect way by first defining the function ex 

as the inverse of the function ln x and then by writing  a 
x=e xlna. There is, however, a 

more direct definition of  a x. Let  x1 , x2 , ... , xn , ... be any infinite sequence of rational 
numbers  xn  such that lim n

n
x x R

→∞
= ∈ . [Question: Can a sequence of rational numbers 

have an irrational limit? Yes! See, e.g., the expression (4) for e, where the latter num-
ber is irrational (see, e.g., [3]).] We now define  a x as follows:  
 

lim ( 0, )nxx

n
a a a x R

→∞
= > ∈ . 

 
Since  xn  is a rational number for all n, raising  a  to a rational number should not be a 
problem. Note that the value of  a 

x does not depend on the specific choice of the se-
quence  xn , as long as the limit of this sequence is  x.  
 
 

           

x

y

0

1

xy e=

0 1

y

x

lny x=

          
 

Graphs of exponential and logarithmic functions. 

 

      Theorem. Consider the function 
1

( ) exp( )
n

i i
i

F x A k x
=

=∑ , where the real constants ki 

are different from each other. If F(x) ≡ 0 for all x, then Ai =0 for all i= 1,2,...,n. Thus, 
the functions {exp (ki  x) , i= 1,2,...,n} are a linearly independent set.  

      Proof. We will prove the theorem by induction. The case n=1 is obvious, given 
that the function exp(kx) is nonzero for any finite x. Let us check the case n=2. Thus, 
assume that  
 

F(x) = A1 exp (k1x) + A2 exp (k2x) ≡ 0  (for all real x) . 
 
Since F(x) is the constant function, its derivative must vanish identically:  
 

F΄(x) = k1 A1 exp (k1x) + k2 A2 exp (k2x) ≡ 0 . 
 
Then, F΄(x) – k1 F(x) = 0 ⇒ (k2 – k1) A2 exp (k2 x) ≡ 0 ⇒ A2 =0, given that, by assumption,  
k2 ≠ k1 . Thus,  F(x) = A1 exp (k1x) ≡ 0 ⇒ A1 =0. For n=3, let  
 

F(x) = A1 exp (k1x) + A2 exp (k2x) + A3 exp (k3x) ≡ 0 . 
 
Then, F΄(x) – k1 F(x) = 0 ⇒ (k2 – k1) A2 exp (k2x) + (k3 – k1) A3 exp (k3x) ≡ 0 ⇒ A2 =A3 = 0 
(case n=2). Hence,  F(x) = A1 exp (k1x) ≡ 0 ⇒ A1 =0.  
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      Now, assume that the theorem is valid for some value of n >2. We want to show 
that it is also valid for n+1. To this end, we consider the function 

1

1

( ) exp( )
n

i i
i

F x A k x
+

=

=∑ . It is convenient to rename the (n+1)-term as 0-term, and write  

0 0
1

( ) exp( ) exp( ) 0
n

i i
i

F x A k x A k x
=

= + ≡∑  

so that 0 0 0
1

( ) exp( ) exp( ) 0
n

i i i
i

F x k A k x k A k x
=

′ = + ≡∑ . Then,  

F΄(x) – k0 F(x) = 0  ⇒ 0 1 2
1

( ) exp( ) 0 0
n

i i i n
i

k k A k x A A A
=

− ≡ ⇒ = = = =∑ ⋯  

given that, by assumption, ki ≠ k0 , as well as that the theorem is assumed to be valid 
for a sum with n terms. Thus, F(x) = A0 exp (k0 x) ≡ 0 ⇒ A0 =0. In conclusion:  
 

The functions {exp (ki  x) , i= 1,2,...} form a linearly independent set for different 
values of the real constants ki .  
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MACLAURIN SERIES EXPANSIONS OF SOME FUNCTIONS 
 
 
    We denote by D the interval within which each expansion is valid.  

 

 ( ) 2

0

1 1
( ) (0) (0) (0) (0)

! 2!
n n

n

f x f x f f x f x
n

∞

=

′ ′′= = + + +∑ ⋯ ,    D=  (−l  , l  )   

 

 
2 3

0

1 ,
! 2! 3!

n
x

n

x x x
e x D R

n

∞

=

= = + + + + =∑ ⋯     

 

 
2 3

0

( 1) 1 ,
! 2! 3!

n
x n

n

x x x
e x D R

n

∞
−

=

= − = − + − + =∑ ⋯      

 

 
2 1 3 5

0

sin ( 1) ,
(2 1)! 3! 5!

n
n

n

x x x
x x D R

n

+∞

=

= − = − + − =
+∑ ⋯     

 

 
2 2 4

0

cos ( 1) 1 ,
(2 )! 2! 4!

n
n

n

x x x
x D R

n

∞

=

= − = − + − =∑ ⋯     

 

 
2 1 3 5

0

sinh ,
(2 1)! 3! 5!

n

n

x x x
x x D R

n

+∞

=

= = + + + =
+∑ ⋯  

 

 
2 2 4

0

cosh 1 ,
(2 )! 2! 4!

n

n

x x x
x D R

n

∞

=

= = + + + =∑ ⋯  

 

 2 3

0

1
1 , ( 1 , 1)

1
n

n

x x x x D
x

∞

=

= = + + + + = −
− ∑ ⋯     

 

 2 3

0

1
( 1) 1 , ( 1 , 1)

1
n n

n

x x x x D
x

∞

=

= − = − + − + = −
+ ∑ ⋯     

 

 
1 2 3 4

0

ln (1 ) ( 1) , ( 1, 1)
1 2 3 4

n
n

n

x x x x
x x D

n

+∞

=

+ = − = − + − + = −
+∑ ⋯    
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FOURIER SERIES AND FOURIER INTEGRAL 
 
 
Let  f (x) be periodic with period 2L. Its Fourier-series expansion is given by  
 

        

0
1

0

( ) cos sin where

1
( )

2
1

( ) cos , 1,2,

1
( ) sin , 1,2,
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∫

∫

∫
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Complex form of Fourier series:  
 

        / /1
( ) where ( )

2

Lin x L in x L
n n L

n
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−

−
= −∞
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Consider  f (x) defined in (–∞,∞) and not periodic. Its Fourier-integral representation is  
 

        
0

( ) [ ( )cos ( )sin ] where

1 1
( ) ( )cos , ( ) ( )sin

f x a k kx b k kx dk

a k f x kxdx b k f x kxdx
π π

∞
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∫

∫ ∫
       

 
The Fourier transform of  f (x) is given by the relations  
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2
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VECTOR FORMULAS 
 
 

ˆ ˆ ˆ ( , , )x x y y z z x y zA A u A u A u A A A= + + ≡
�

 ;    2 2 2 1/ 2| | ( )x y zA A A A= + +
�

   

| || | cosx x y y z zA B A B A B A B A B θ⋅ = + + =
� �� �

 ;   2, | |A B B A A A A⋅ = ⋅ ⋅ =
� � � � �� �

   

ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )

| | | || |sin ; , 0

x y z

y z z y x z x x z y x y y x z x y z

x y z

u u u

A B A B A B u A B A B u A B A B u A A A

B B B

A B A B A B B A A Aθ

× = − + − + − =

× = × = − × × =

� �

� � � � � �� � � �

   

ˆ ˆ ˆ , ,x y zgrad u u u
x y z x y z

Φ Φ Φ Φ Φ Φ
Φ Φ

 ∂ ∂ ∂ ∂ ∂ ∂
= ∇ = + + ≡  ∂ ∂ ∂ ∂ ∂ ∂ 

�
     

x y zA A A
div A A

x y z

∂ ∂ ∂
= ∇ ⋅ = + +

∂ ∂ ∂

� � �
    

ˆ ˆ ˆz y x z y x
x y z

A A A A A A
rot A A u u u

y z z x x y

∂ ∂ ∂ ∂ ∂ ∂     
= ∇× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     

� ��

ˆ ˆ ˆx y z

x y z

u u u

x y z

A A A

∂ ∂ ∂
=

∂ ∂ ∂
   

( ) 0rot gradΦ Φ= ∇×∇ =
� �

 ,    ( ) ( ) 0div rot A A= ∇ ⋅ ∇× =
� � � �

     

2 2 2
2

2 2 2
( )div grad

x y z

Φ Φ Φ
Φ Φ Φ

∂ ∂ ∂
= ∇⋅∇ = + + = ∇

∂ ∂ ∂

� �
         

( ) ( ) ( )
b b

a a
dl d b aΦ Φ Φ Φ∇ ⋅ = = −∫ ∫
����

  ,    ( ) 0
C

dlΦ∇ ⋅ =∫
����

�      

Gauss’ theorem:  ( )
V S

A dv A da∇⋅ = ⋅∫ ∫
���� � �

�      
V

S

da
���

da

      

Stokes’ theorem:  ( )
S C

A da A dl∇× ⋅ = ⋅∫ ∫
��� ���� � �

�      

S

C

da
���

da

dl
���
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Various properties:  

( ) ( ) ( )
x y z

x y z

x y z

A A A

A B C B C A C A B B B B

C C C

⋅ × = ⋅ × = ⋅ × =
� � � � � �� � �
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∇× = ∇ × + ∇×

∇⋅ × = ⋅ ∇× − ⋅ ∇×

∇× ∇× = ∇ ∇⋅ −∇

� � � � � �� � �

� � �� � �

� � �� � �

� � �� � � � � �
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Vector operators in cylindrical coordinates (ρ, φ, z):  

2 2
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2 2 2
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Vector operators in spherical coordinates (r, θ, φ):  

2
2

2 2
2

1 1
ˆ ˆ ˆ

sin

1 1 1
( ) (sin )

sin sin

1 1 1 1
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θ
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ψ

∂ ∂ ∂
∇ = + +
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∂ ∂ ∇ =  ∂ ∂ 
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