Transformation Lie groups and operator representations

Costas J. Papachristou¹

Hellenic Naval Academy

A note on continuous groups of transformations on linear spaces and manifolds and the operator representations of transformation Lie groups and algebras.

1. Lie groups and Lie algebras: An overview

We review some basic definitions concerning Lie groups and Lie algebras.

A *group* is a set $G=\{a,b,c,...\}$ equipped with an internal "multiplication" operation with the following properties:

1. Closure: $ab \in G, \forall a, b \in G$.

2. Associativity: a(bc) = (ab)c.

3. Identity element: $\exists e \in G$: ae = ea, $\forall a \in G$.

4. Inverse element: $\forall a \in G, \exists a^{-1} \in G: aa^{-1} = a^{-1}a = e$.

A group is *abelian* (or commutative) if ab=ba, $\forall a,b \in G$.

A *subgroup* of G is a subset $H \subseteq G$ that is itself a group under the group operation of G. Obviously, H must contain the identity element e of G as well as the inverse of any element of H.

A map $\varphi: G \rightarrow G'$ from a group G to a group G' is called a *homomorphism* if it preserves group multiplication. That is, for any $a, b \in G$, the images $\varphi(a) \in G'$ and $\varphi(b) \in G'$ satisfy the relation

$$\varphi(a)\varphi(b) = \varphi(ab)$$
.

If the homomorphism φ is 1-1, it is called an *isomorphism*. An isomorphic relation of G with a group of matrices or operators is called a matrix or operator *representation* of G, accordingly.

A real $Lie\ algebra\ \mathcal{L}$ of dimension n is an n-dimensional real vector space equipped with an internal $Lie\ bracket$ operation $[\ ,\]$ that satisfies the following properties:

1. Closure: $[a,b] \in \mathcal{L}, \forall a,b \in \mathcal{L}$.

2. Linearity: $[\kappa a + \lambda b, c] = \kappa[a, c] + \lambda[b, c] \quad (\kappa, \lambda \in \mathbb{R})$.

3. Antisymmetry: [a,b] = -[b,a]. Corollary: [a,a] = 0.

4. Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

A Lie algebra is *abelian* (or commutative) if [a,b]=0, $\forall a,b \in \mathcal{L}$.

¹ cipapachristou@gmail.com

A *subalgebra* S of \mathcal{L} is a subspace of \mathcal{L} that itself is a Lie algebra. The algebra S is an *invariant subalgebra* or *ideal* of \mathcal{L} if $[a,b] \in S$, $\forall a \in S$, $b \in \mathcal{L}$. A Lie algebra \mathcal{L} is said to be *simple* if it contains no *ideals* other than itself; \mathcal{L} is *semisimple* if it contains no *abelian* ideals.

Examples of Lie algebras:

- 1. The algebra of $(m \times m)$ matrices, with [A, B] = AB BA (commutator). Diagonal matrices constitute an abelian subalgebra of this algebra.
- 2. The algebra of all vectors in 3-dimensional space, with $[\vec{V}, \vec{W}] = \vec{V} \times \vec{W}$ (vector product). Vectors parallel to a given axis form an abelian subalgebra of this algebra.

A map $\psi: \mathcal{L} \rightarrow \mathcal{L}'$ from a Lie algebra \mathcal{L} to a Lie algebra \mathcal{L}' is a *homomorphism* if it satisfies the following properties:

$$\psi(\kappa a + \lambda b) = \kappa \psi(a) + \lambda \psi(b) \quad (\kappa, \lambda \in R) ;$$

$$\psi([a, b]) = [\psi(a), \psi(b)] .$$

If the map ψ is 1-1, it is called an *isomorphism*. Isomorphic Lie algebras \mathcal{L} and \mathcal{L}' have equal dimensions [1]: $dim\mathcal{L}=dim\mathcal{L}'$.

Let $\{\tau_i / i = 1, 2, ..., n\}$ be a basis of an n-dimensional Lie algebra \mathcal{L} . Since the Lie bracket of any two basis elements τ_i and τ_j is an element of \mathcal{L} , it must be a linear combination of the $\{\tau_k\}$. That is,

$$[\tau_i, \tau_i] = C_{ii}^k \tau_k \tag{1}$$

(sum on k from 1 to n). By the antisymmetry of the Lie bracket, $C_{ij}^k = -C_{ji}^k$. The real constants C_{ij}^k are called *structure constants* of the Lie algebra \mathcal{L} .

Proposition 1: Let $\psi: \mathcal{L} \rightarrow \mathcal{L}'$ be a Lie algebra isomorphism. If $\{\tau_k\}$ (k=1,2,...,n) is a basis of \mathcal{L} , then $\{\psi(\tau_k)\}$ is a basis of \mathcal{L}' .

Proof: Being a basis of \mathcal{L} , the $\{\tau_k\}$ are linearly independent; hence no linear combination of them can be zero (unless, of course, all coefficients are trivially zero). Now, by the properties of ψ , a linear combination of the $\{\tau_k\}$ is mapped onto a linear combination of the $\{\psi(\tau_k)\}$ with the same coefficients. This means that the latter combination cannot vanish, since it can only be zero if the former one is zero as well; that is, if all coefficients in the combination are zero. We conclude that the $\{\psi(\tau_k)\}$ are linearly independent and may serve as a basis for \mathcal{L}' .

Proposition 2: Isomorphic Lie algebras share common structure constants.

Proof: Let $\psi: \mathcal{L} \rightarrow \mathcal{L}'$ be a Lie algebra isomorphism and let τ_i , τ_j be any two basis elements of \mathcal{L} . Then, $\psi(\tau_i)$ and $\psi(\tau_j)$ are basis elements of \mathcal{L}' . By (1) and by the properties of ψ ,

$$\psi([\tau_i, \tau_j]) = \psi(C_{ij}^k \tau_k) \Rightarrow [\psi(\tau_i), \psi(\tau_j)] = C_{ij}^k \psi(\tau_k); \text{ q.e.d.}$$

Roughly speaking, a *Lie group* is a group G whose elements depend on a number of parameters that can be varied in a continuous way. The *dimension* n of G is the number of real parameters parametrizing the elements of G. We assume that dimG=n and we let $\{\lambda^1, \lambda^2, \dots, \lambda^n\}$ be the set of n parameters of G. We arrange the parameterization of G so that the identity element of G corresponds to $X^k=0$ for all $K=1,2,\dots,n$.

An important class of Lie groups consists of groups of $(m \times m)$ matrices parametrized by n parameters λ^k (k=1,2,...,n). Since an $(m \times m)$ matrix produces a *linear transformation* on an m-dimensional Euclidean space, matrix groups are called *linear groups*.

Lie groups are closely related to Lie algebras. Let G be an n-dimensional Lie group of $(m \times m)$ matrices $A(\lambda^1, \lambda^2, ..., \lambda^n) \equiv A(\lambda)$ (where by λ we collectively denote the set of the n parameters λ^k). We define the n $(m \times m)$ matrices τ_k by

$$\tau_k = \frac{\partial A(\lambda)}{\partial \lambda^k} \Big|_{\lambda^1 = \lambda^2 = \dots = \lambda^n = 0} \tag{2}$$

or, in terms of matrix elements,

$$(\tau_k)_{pq} = \frac{\partial A_{pq}}{\partial \lambda^k} |_{\lambda^1 = \lambda^2 = \dots = \lambda^n = 0}$$

(k=1,2,...,n; p,q=1,2,...,m). The n matrices τ_k are called *infinitesimal operators* (or generators) of the Lie group G and form the basis of an n-dimensional real Lie algebra \mathcal{L} [1]. Thus $[\tau_i,\tau_j]=C_{ij}^k\,\tau_k$, where the C_{ij}^k are real constants. A general element a of \mathcal{L} is written as a linear combination of the τ_k : $a=\xi^k\tau_k$ (sum on k), for real coefficients ξ^k . [Note carefully that the matrix elements $(\tau_k)_{pq}$ themselves are not required to be real numbers!]

Now, let $a=\lambda^k \tau_k$ be the general element of \mathcal{L} . The general element $A(\lambda)$ of the Lie group G parametrized by the λ^k can then be written as [1,2]

$$A(\lambda) = e^a = \exp(\lambda^k \tau_k) \tag{3}$$

where e^a is the matrix exponential function

$$e^{a} \equiv \exp a = \sum_{l=0}^{\infty} \frac{a^{l}}{l!} = 1 + a + \frac{a^{2}}{2} + \cdots$$

For infinitesimal values of the parameters λ^k we may use the approximate expression

$$e^a \sim 1+a$$

so that

$$A(\lambda) \simeq 1 + \lambda^k \tau_k$$
.

The simplest example of a Lie group is a one-parameter continuous group, such as the group SO(2) of rotations on a plane. A rotation of a vector by an angle λ is represented by the (2×2) orthogonal matrix

$$A(\lambda) = \begin{bmatrix} \cos \lambda & -\sin \lambda \\ \sin \lambda & \cos \lambda \end{bmatrix} \quad (\lambda \in R).$$

(Notice that $A^{t}A=1$ and detA=1.) Then

$$\frac{dA}{d\lambda} = \begin{bmatrix} -\sin\lambda & -\cos\lambda \\ \cos\lambda & -\sin\lambda \end{bmatrix}$$

and, by Eq. (2), the single basis element τ of the associated Lie algebra is

$$\tau = \frac{dA}{d\lambda}\big|_{\lambda=0} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

According to (3), $A(\lambda)=e^{\lambda \tau}$ and, for infinitesimal λ , $A(\lambda) \sim 1+\lambda \tau$. Indeed, by setting $\sin \lambda = \lambda$ and $\cos \lambda = 1$, we have:

$$A(\lambda) \simeq \begin{bmatrix} 1 & -\lambda \\ \lambda & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \lambda \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = 1 + \lambda \tau.$$

Another single-parameter Lie group is the unitary group U(1) with elements $\{e^{i\lambda}\}\$ $(\lambda \in R)$, which may be regarded as (1×1) matrices. Consider the map $\varphi: U(1) \rightarrow SO(2)$ defined by

$$\varphi(e^{i\lambda}) = \begin{bmatrix} \cos \lambda & -\sin \lambda \\ \sin \lambda & \cos \lambda \end{bmatrix}.$$

This map is a homomorphism, since

$$\begin{split} \varphi\Big(e^{i\lambda}\cdot e^{i\lambda'}\Big) &= \varphi\Big(e^{i(\lambda+\lambda')}\Big) = \begin{bmatrix} \cos(\lambda+\lambda') & -\sin(\lambda+\lambda') \\ \sin(\lambda+\lambda') & \cos(\lambda+\lambda') \end{bmatrix} \\ &= \begin{bmatrix} \cos\lambda & -\sin\lambda \\ \sin\lambda & \cos\lambda \end{bmatrix} \begin{bmatrix} \cos\lambda' & -\sin\lambda' \\ \sin\lambda' & \cos\lambda' \end{bmatrix} \\ &= \varphi\Big(e^{i\lambda}\Big) \cdot \varphi\Big(e^{i\lambda'}\Big) \,. \end{split}$$

Moreover, it can be shown [1] that the map φ is 1-1. Therefore, φ is a Lie-group isomorphism.

We finally remark that isomorphic Lie groups have isomorphic Lie algebras [1]. More generally, under certain restrictions, homomorphic Lie groups may have isomorphic Lie algebras, as the case is with the groups SU(2) and SO(3).

2. Group operators for a linear Lie group

Let $(x^1, ..., x^m)$ be a system of coordinates on R^m . Consider an *n*-dimensional Lie group G represented by $(m \times m)$ matrices g the elements of which depend on n real parameters $(a^1, ..., a^n)$. We call \vec{x} the column vector with components $(x^1, ..., x^m)$. The action of G on this vector is expressed as

$$\vec{x} \to g \vec{x} , g \in G$$
 (4)

In effect, Eq. (4) describes a linear coordinate transformation² on \mathbb{R}^m .

Let $\{L_1, ..., L_n\}$ be a basis of the Lie algebra of G, where the $\{L_\gamma\}$ are $(m \times m)$ matrices.³ Then there exist real structure constants $C_{\alpha\beta}^{\gamma}$ such that the following commutation relations are satisfied:

$$[L_{\alpha}, L_{\beta}] = C_{\alpha\beta}^{\gamma} L_{\gamma} \quad (\text{sum on } \gamma)$$
 (5)

An element $g \in G$ can then be put in the form $g = \exp(a^{\lambda}L_{\lambda})$ [1,2] so that (4) is written: $\vec{x} \to \exp(a^{\lambda}L_{\lambda})\vec{x}$. For infinitesimal values δa^{λ} of the group parameters,

$$\exp(\delta a^{\lambda}L_{\lambda}) \simeq 1 + \delta a^{\lambda}L_{\lambda}$$

so that $\vec{x} \rightarrow (1 + \delta a^{\lambda} L_{\lambda}) \vec{x} \equiv \vec{x} + \delta \vec{x}$, where

$$\delta \vec{x} = \delta a^{\lambda} L_{1} \vec{x} \iff \delta x^{i} = \delta a^{\lambda} (L_{1})^{i}_{k} x^{k} \tag{6}$$

The expression $g = \exp(a^{\lambda}L_{\lambda})$ is a representation of G in terms of linear coordinate transformations (4) on R^m . We now seek a different realization of G in terms of transformations of functions $F(\vec{x})$, $\vec{x} \in R^m$. We define the operators

 $T(g): F \to T(g)F, g \in G$

by

$$[T(g)F](\vec{x}) = F\left(g^{-1}\vec{x}\right) \tag{7}$$

Proposition 1: The operators T(g) constitute an operator representation of G.

Proof: Let $g_1, g_2 \in G$. Then, for an arbitrary function F on R^m ,

$$\begin{split} [T(g_1g_2)F](\vec{x}) &= F\left(g_2^{-1}g_1^{-1}\vec{x}\right) = [T(g_2)F]\left(g_1^{-1}\vec{x}\right) = \left\{T(g_1)[T(g_2)F]\right\}(\vec{x}) \\ &= \left\{[T(g_1)T(g_2)]F\right\}(\vec{x}) \implies \\ T(g_1g_2) &= T(g_1)T(g_2) \;, \text{ q.e.d.} \end{split}$$

² For definiteness we regard this as an *active* transformation from a point $x \in \mathbb{R}^m$ with coordinates x^k to a point x' with coordinates $x^{k'} = (gx)^k$.

 $^{^3}$ Greek indices run from 1 to n while Latin indices run from 1 to m. The summation convention will be used throughout.

For $g = \exp(a^{\lambda}L_{\lambda}) \simeq 1 + \delta a^{\lambda}L_{\lambda}$ we have that $g^{-1} \simeq 1 - \delta a^{\lambda}L_{\lambda}$, and so (7) yields, by using Eq. (A.1) in the Appendix:

$$[T(g)F](\vec{x}) \simeq F\left(\vec{x} - \delta a^{\lambda} L_{\lambda} \vec{x}\right) \simeq F(\vec{x}) - \delta a^{\lambda} L_{\lambda} \vec{x} \cdot \vec{\nabla} F(\vec{x})$$

$$= \left(1 - \delta a^{\lambda} L_{\lambda} \vec{x} \cdot \vec{\nabla}\right) F(\vec{x}) \implies$$

$$T(g) \simeq 1 - \delta a^{\lambda} L_{\lambda} \vec{x} \cdot \vec{\nabla} \equiv 1 + \delta a^{\lambda} P_{\lambda}$$
(8)

where $P_{\lambda} = -L_{\lambda}\vec{x} \cdot \vec{\nabla} = -(L_{\lambda}\vec{x})^{i} \frac{\partial}{\partial x^{i}} \Rightarrow$

$$P_{\lambda} = -\left(L_{\lambda}\right)^{i}_{k} x^{k} \frac{\partial}{\partial x^{i}} \equiv -\left(L_{\lambda}\right)^{i}_{k} x^{k} \partial_{i} \tag{9}$$

where we have introduced the notation $\partial_i \equiv \partial/\partial x^i$. For finite values of the group parameters a^{λ} , Eq. (8) generalizes to $T(g) = \exp(a^{\lambda}P_{\lambda})$ [3,4].

Proposition 2: The operators $\{P_{\lambda}\}$ are the basis of a Lie algebra isomorphic to the Lie algebra of the matrices $\{L_{\gamma}\}$. Thus, if the commutation relations (5) are valid, then also

$$[P_{\alpha}, P_{\beta}] = C_{\alpha\beta}^{\gamma} P_{\gamma} \tag{10}$$

Proof: Consider the linear mapping

$$\Psi \colon L \to P = \Psi(L) = -L_k^i x^k \, \hat{\partial}_i \tag{11}$$

where the matrix L is an element of the Lie algebra of G. Let L_1 , L_2 be two such elements. Then,

$$P_1 = \Psi(L_1) = -(L_1)^i_k x^k \partial_i$$
, $P_2 = \Psi(L_2) = -(L_2)^i_k x^k \partial_i$.

We have:

$$\Psi([L_1, L_2]) = \Psi(L_1L_2 - L_2L_1) = \Psi(L_1L_2) - \Psi(L_2L_1) \text{ (since } \Psi \text{ is linear)}$$

$$= -(L_1L_2)^i{}_k x^k \partial_i + (L_2L_1)^i{}_k x^k \partial_i$$

$$= -(L_1)^i{}_j (L_2)^j{}_k x^k \partial_i + (L_2)^i{}_j (L_1)^j{}_k x^k \partial_i.$$

On the other hand,

$$[\Psi(L_1), \Psi(L_2)] = [P_1, P_2] = P_1 P_2 - P_2 P_1$$

= $(L_1)_i^i x^j \partial_i [(L_2)_l^k x^l \partial_k] - (L_2)_l^k x^l \partial_k [(L_1)_i^i x^j \partial_i]$.

After a lengthy but straightforward calculation, and by canceling out second-order derivatives, we find:

$$[\Psi(L_1), \Psi(L_2)] = -(L_1)^i_{\ i}(L_2)^j_{\ k} x^k \partial_i + (L_2)^i_{\ i}(L_1)^j_{\ k} x^k \partial_i.$$

We thus conclude that

$$\Psi([L_1, L_2]) = [\Psi(L_1), \Psi(L_2)]$$

which is what we needed to prove. Moreover,

$$[P_{\alpha}, P_{\beta}] = [\Psi(L_{\alpha}), \Psi(L_{\beta})] = \Psi([L_{\alpha}, L_{\beta}]) = \Psi(C_{\alpha\beta}^{\gamma} L_{\gamma})$$
$$= C_{\alpha\beta}^{\gamma} \Psi(L_{\gamma}) = C_{\alpha\beta}^{\gamma} P_{\gamma}$$

which verifies (10).

Example: Let G=SO(3), the group of (3×3) real orthogonal matrices with unit determinant. It is a 3-parameter Lie group [1,5] and thus the associated Lie algebra so(3) is 3-dimensional. The basis of so(3) consists of the (3×3) antisymmetric matrices

$$L_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad L_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

with commutation relations

$$[L_i, L_j] = \varepsilon_{ijk} L_k$$
 (sum on k)

where ε_{ijk} is antisymmetric in all pairs of indices, with $\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$. [We use Latin instead of Greek indices for the basis elements of so(3) since the number of these elements matches the dimensions of R^3 , on which space both the SO(3) and so(3) matrices act.] We notice that

$$(L_i)^j_k = -\varepsilon_{ijk}$$
.

The operator representation of the basis of so(3) is, according to (9),

$$P_{i} = -(L_{i})^{j}_{k} x^{k} \partial_{i} = \varepsilon_{ijk} x^{k} \partial_{i}$$

or, analytically,

$$P_1 = x^3 \partial_2 - x^2 \partial_3$$
, $P_2 = x^1 \partial_3 - x^3 \partial_1$, $P_3 = x^2 \partial_1 - x^1 \partial_2$.

The reader may check that $[P_i, P_i] = \varepsilon_{ijk} P_k$.

3. Group operators for general coordinate transformations

The previous results are valid for *linear* (matrix) groups, in which case $g\vec{x}$ represents the action of an $(m \times m)$ matrix on a vector of R^m . More generally, consider an m-dimensional manifold M with coordinates (x^1, \dots, x^m) and let G be an n-dimensional local Lie group of coordinate transformations on M (see [6] for rigorous definitions and examples). The elements g of G depend on n real parameters (a^1, \dots, a^n) . We call $x \equiv (x^1, \dots, x^m)$ a point on M and we denote by gx a (possibly nonlinear) coordinate transformation on this manifold. To the first order in the group parameters a^{λ} , i.e., for infinitesimal δa^{λ} , such a transformation is approximately linear in the δa^{λ} . We write:

$$(gx)^i \simeq x^i + \delta x^i \quad \text{where} \quad \delta x^i = \delta a^\lambda U_1^i(x^k)$$
 (12)

 $(i = 1, ..., m; \lambda = 1, ..., n).$

Let F(x) be an arbitrary function on M. As before, we define the operators

 $T(g): F \to T(g)F, g \in G$

by

$$[T(g)F](x) = F\left(g^{-1}x\right) \tag{13}$$

Again, the T(g) constitute an operator representation of G:

$$T(g_1g_2) = T(g_1)T(g_2)$$
.

[Careful: g_1g_2 is no longer a matrix product but a succession of coordinate transformations! It is still true, however, that $(g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$.]

Given that, by (12),

$$(gx)^i \simeq x^i + \delta a^{\lambda} U^i_{\lambda}(x^k)$$

we have that

$$(g^{-1}x)^i \simeq x^i - \delta a^{\lambda} U^i_{\lambda}(x^k).$$

Let us justify this statement:

$$(g^{-1}gx)^{i} \simeq (gx)^{i} - \delta a^{\lambda}U_{\lambda}^{i}\left((gx)^{k}\right)$$
$$\simeq x^{i} + \delta a^{\lambda}U_{\lambda}^{i}(x^{k}) - \delta a^{\lambda}U_{\lambda}^{i}\left(x^{k} + \delta a^{\rho}U_{\rho}^{k}\right)$$

By using Eq. (A.1) in the Appendix we have that, to the first order in the δa^{λ} ,

$$\delta a^{\lambda} U_{\lambda}^{i} \left(x^{k} + \delta a^{\rho} U_{\rho}^{k} \right) \simeq \delta a^{\lambda} \left[U_{\lambda}^{i} (x^{k}) + \delta a^{\rho} U_{\rho}^{j} \partial_{j} U_{\lambda}^{i} (x^{k}) \right]$$
$$\simeq \delta a^{\lambda} U_{\lambda}^{i} (x^{k})$$

Thus, finally, $(g^{-1}gx)^i = x^i \iff g^{-1}gx \equiv identity transformation.$

TRANSFORMATION LIE GROUPS

By using (A.1) once more, the infinitesimal version of (13) is written:

$$[T(g)F](x) \simeq F\left(x^{i} - \delta a^{\lambda} U_{\lambda}^{i}\right) \simeq F(x) - \delta a^{\lambda} U_{\lambda}^{i} \partial_{i} F(x)$$
$$= \left(1 - \delta a^{\lambda} U_{\lambda}^{i} \partial_{i}\right) F(x) \implies$$

$$T(g) \simeq 1 - \delta a^{\lambda} U_{\lambda}^{i} \partial_{i} \equiv 1 + \delta a^{\lambda} P_{\lambda}$$
 (14)

where

$$P_{\lambda} = -U_{\lambda}^{i}(x^{k})\,\partial_{i} \tag{15}$$

It can be proven [3] that the operators P_{λ} ($\lambda = 1, ..., n$) form the basis of an *n*-dimensional Lie algebra:

$$[P_{\alpha}, P_{\beta}] = C_{\alpha\beta}^{\gamma} P_{\gamma} \tag{16}$$

Let us see what this implies: Let

$$P_{\alpha} = -\,U_{\alpha}^{i}(x^{k})\,\partial_{i}\;,\quad P_{\beta} = -\,U_{\beta}^{j}(x^{k})\,\partial_{j}\;.$$

Then,

$$[P_{\alpha}, P_{\beta}] = \left(U_{\alpha}^{i} \partial_{i} U_{\beta}^{j} - U_{\beta}^{i} \partial_{i} U_{\alpha}^{j}\right) \partial_{j}.$$

A set of real constants $C_{\alpha\beta}^{\gamma}$ must then exist such that

$$U_{\alpha}^{i}\partial_{i}U_{\beta}^{j} - U_{\beta}^{i}\partial_{i}U_{\alpha}^{j} = -C_{\alpha\beta}^{\gamma}U_{\gamma}^{j}$$

$$\tag{17}$$

Then,

$$[P_{\alpha}, P_{\beta}] = -C_{\alpha\beta}^{\gamma} U_{\gamma}^{j} \partial_{j} = C_{\alpha\beta}^{\gamma} P_{\gamma}.$$

Relations (17) are conditions for closure, under the Lie bracket, of the set of operators spanned by the basis $\{P_{\lambda}\}$; that is, conditions in order that this set constitute a Lie algebra.

Appendix: Multidimensional Taylor expansion

The Taylor series expansion of a function f(x) about a point x can be written as

$$f(x+h) = \sum_{n=0}^{\infty} \frac{1}{n!} h^n \left(\frac{d}{dx}\right)^n f(x) = f(x) + h \frac{df(x)}{dx} + \cdots$$

We write:

$$f(x+h) = \left[\sum_{n=0}^{\infty} \frac{1}{n!} \left(h \frac{d}{dx}\right)^n\right] f(x) = \exp\left(h \frac{d}{dx}\right) f(x) .$$

For infinitesimal $h \equiv \delta x$ we may use the approximate expression

$$f(x+\delta x) \simeq f(x) + \delta x \frac{df(x)}{dx}$$
.

More generally, consider a function $\Phi(x^1, x^2, \dots) \equiv \Phi(\vec{r})$. Let $\vec{a} \equiv (a^1, a^2, \dots)$ be a constant vector. Then,

$$\Phi(\vec{r} + \vec{a}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\vec{a} \cdot \vec{\nabla})^n \Phi(\vec{r}) = \Phi(\vec{r}) + \vec{a} \cdot \vec{\nabla} \Phi(\vec{r}) + \cdots$$

where $\vec{\nabla}\Phi \equiv (\partial \Phi / \partial x^1, \partial \Phi / \partial x^2, \cdots)$. We write:

$$\Phi(\vec{r} + \vec{a}) = \left[\sum_{n=0}^{\infty} \frac{1}{n!} (\vec{a} \cdot \vec{\nabla})^n\right] \Phi(\vec{r}) = \exp(\vec{a} \cdot \vec{\nabla}) \Phi(\vec{r}) .$$

For infinitesimal $\vec{a} \equiv \delta \vec{r}$,

$$\Phi(\vec{r} + \delta \vec{r}) \simeq \Phi(\vec{r}) + \delta \vec{r} \cdot \vec{\nabla} \Phi(\vec{r}) \equiv \Phi(\vec{r}) + \delta \Phi \quad \text{where}$$

$$\delta \Phi = \delta \vec{r} \cdot \vec{\nabla} \Phi(\vec{r}) = \delta x^k \frac{\partial \Phi(\vec{r})}{\partial x^k} \quad (\text{sum on } k)$$
(A.1)

Indeed, notice that, infinitesimally,

$$\delta \Phi \simeq d\Phi = \frac{\partial \Phi}{\partial x^k} dx^k$$
 where $dx^k \equiv \delta x^k$.

TRANSFORMATION LIE GROUPS

References

- 1. J. F. Cornwell, *Group Theory in Physics*, Vol. I & II (Academic Press, 1984).
- 2. D. H. Sattinger, O. L. Weaver, *Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics* (Springer-Verlag, 1986).
- 3. R. Gilmore, *Lie Groups, Lie Algebras, and Some of their Applications* (Wiley, 1974).
- 4. M. Postnikov, Lie Groups and Lie Algebras (Mir Publishers, 1986).
- 5. W.-K. Tung, Group Theory in Physics (World Scientific, 1985).
- 6. P. J. Olver, *Applications of Lie Groups to Differential Equations*, 2nd Edition (Springer, 1993).