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A note on continuous groups of transformationsinedr spaces and manifolds
and the operator representations of transformafi@groups and algebras.

1. Liegroupsand Liealgebras: An overview

We review some basic definitions concerning Lieugand Lie algebras.

Agroupis a setG={a,b,c,...} equipped with an internal “multiplication” epation
with the following properties:

1. Closure: abeG, Va, beG.

2. Associativity: a(bc) = (ab)c.

3. Identity element: 3 ecG: ae=eg VacG.

4. Inverse element:VaeG, 3a'eG: aa'=a’a=e.
A group isabelian(or commutative) ifab=ba, Va,beG.

A subgroupof G is a subseHcG that is itself a group under the group operation
of G. Obviously,H must contain the identity elemembf G as well as the inverse of
any element oH.

A mapg : GG’ from a groupG to a groupG” is called ahomomorphisnif it
preserves group multiplication. That is, for amybeG, the imagesp(a)eG” and
p(b)eG’ satisfy the relation

9@ ¢ (b) = (ab).

If the homomorphisnp is 1-1, it is called amlsomorphismAn isomorphic relation of
G with a group of matrices or operators is callemiarix or operatorepresentation
of G, accordingly.

A real Lie algebra £ of dimensionn is an n-dimensional real vector space

equipped with an interndlie bracketoperation [ , ] that satisfies the following
properties:

1. Closure: ablel, Vabel .

2. Linearity: xkp+ib, c] = k[a,c] +A[b,C] (k,AeR).
3. Antisymmetry: d,b]=—[b,a]. Corollary: p,a]=0.
4. Jacobi identity: [a, [b,c]] + [b,[c,a]] +[c.[a,b]] =0.

A Lie algebra isabelian(or commutative) if 4,b] =0,V a,beL.
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Asubalgebra ®f £ is a subspace & that itself is a Lie algebra. The algel®&s
an invariant subalgebreor ideal of £ if [a,b]eS V acS bel. A Lie algebral is

said to besimpleif it contains no ideals other than itself;is semisimplef it contains
no abelianideals.

Examples of Lie algebras:

1. The algebra ofrixm) matrices, with A, B] = AB — BA (commutatoy. Diagonal
matrices constitute an abelian subalgebra of tgebaa.

2. The algebra of all vectors in 3-dimenslasmace, with[V, W] = Vx W(vector
product). Vectors parallel to a given axis formadelian subalgebra of this algebra.

A mapy: L—L’ from a Lie algebra to a Lie algebra " is ahomomorphisnif it
satisfies the following properties:
y(ka+ib) =xy (@) +iy(b) (x,AeR);
y([ab]) = [y @),y (D) .
If the mapy is 1-1, it is called amsomorphism Isomorphic Lie algebrag and L’
have equal dimensions [1H#im{=dimL".

Let { /i1=1,2,...,n} be a basis of an-dimensional Lie algebréd. Since the Lie

bracket of any two basis elemenrtands; is an element of, it must be a linear com-
bination of the {}. That is,

[7:,7,1=G 1) (
(sum onk from 1 ton). By the antisymmetry of the Lie brackélif} =— Cﬁ . The real

constantsCi'} are calledstructure constantef the Lie algebraC.

Proposition 1l:Lety: L—L" be a Lie algebra isomorphism. i} (k=1,2,...,n)
is a basis oL, then {y (=)} is a basis of".

Proof: Being a basis of, the {r} are linearly independent; hence no linear com-

bination of them can be zero (unless, of courdecafficients are trivially zero).
Now, by the properties af, a linear combination of thend is mapped onto a linear
combination of the ¥ (z,)} with the same coefficients. This means thatldtter com-
bination cannot vanish, since it can only be zétbe former one is zero as well; that
is, if all coefficients in the combination are zeWWe conclude that they{(z)} are

linearly independent and may serve as a basis for
Proposition 2:Isomorphic Lie algebras share common structursteits.

Proof: Lety: L—L" be a Lie algebra isomorphism anddetz; be any two basis

elements ofL. Then,y(r) andy(z) are basis elements 6f. By (1) and by the prop-
erties ofy,
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vz, D) =w(G ) = [¥(5), w(f)] =G (%) ; g.ed.

Roughly speaking, lae groupis a groupG whose elements depend on a number
of parameters that can be varied in a continuous Whe dimension nof G is the
number of real parameters parametrizing the elesnaid. We assume thaimG=n
and we let 1,43 ..., A"} be the set of parameters oB. We arrange the parameteriza-
tion of G so that the identity element Gfcorresponds ta“=0 for all k=1,2,...n.

An important class of Lie groups consists gobups of fhxm) matrices pa-
rametrized byn parameters® (k=1,2,...n). Since anrfixm) matrix produces &near
transformationon anm-dimensional Euclidean space, matrix groups areadhtear
groups

Lie groups are closely related to Lie algebraet G be ann-dimensional Lie
group of xm) matricesA(1}, 42,..., AN =A(1) (where by. we collectively denote the
set of then parameters®). We define the (mxm) matricesz by

0A(1)
W= PYL | iszee —anso (2)
or, in terms of matrix elements,
() :%| Lo, ]
pPa 6ﬂk A=A=---=4"=0

(k=1,2,...n; p,q=1,2,...m). Then matriceszx are callednfinitesimal operatorqor
generators) of the Lie group and form the basis of andimensional real Lie algebra

L [1]. Thus [ .7 ]= qﬁf 7., Where theCi‘J$ are real constants. A general elemzof
L is written as a linear combination of the a=¢*r, (sum ork), for real coefficients
&¥ [Note carefully that the matrix elementg){y themselvesre not required to be
real numbers!]

Now, leta=1*z be the general elemeuntt £ . The general eleme®(%) of the Lie
group G parametrized by thé can then be written as [1,2]

AQ) = €= exp(A“ny) ©)

where e? is the matrix exponential function

0 al a2
e"=expa=) — =1+ ar e

For infinitesimal values of the parametéfswve may use the approximate expression

e* ~ 1+a
so that
AQ) ~ 1+ 257 .
The simplest example of a Lie group is a paemeter continuous group, such as

the groupSQ2) of rotations on a plane. A rotation of a vedigran angléel is repre-
sented by the §2) orthogonal matrix
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cosl -—sinl
sini cost

A(g):{ } (1eR.

(Notice thatA'A=1 and detA=1.) Then

dA -sinA - cost
di | cosi —sinl

and, by Eq. (2), the single basis elemenf the associated Lie algebra is

r—d—A| _|9 -
S da*? 1 o)
According to (3), A(A)=e” and, for infinitesimall, A(1) ~1+lz. Indeed, by setting
sim=2 andcosi=1, we have:

sl gl
A1) = = + A =1+ Ar.
A1 01 1 0

Another single-parameter Lie group is thetanyigroupU(1) with elements ¢}
(AeR), which may be regarded asx() matrices. Consider the mapU(1)—>SQ2)

defined by
- cosi - sl
elﬂ — )
(o( ) sini cost

This map is a homomorphism, since

g L (et cos(l+A') —sinf+1")
(p(eﬂ.éi):(p(é(ﬂ M):Lin(ﬁm%') cosg + A’ )}

B cosi —-sinl|| cod' - sid’
“|sina  cost || sim’ cog’

ofe) o)

Moreover, it can be shown [1] that the mags 1-1. Thereforeyp is a Lie-group iso-
morphism.

We finally remark that isomorphic Lie grouipave isomorphic Lie algebras [1].
More generally, under certain restrictions, homagohar Lie groups may have iso-
morphic Lie algebras, as the case is with the g@2) andSQ(3).
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2. Group operatorsfor alinear Liegroup

Let (', ...,x™) be a system of coordinates B Consider am-dimensional Lie group
G represented bynxm) matricesg the elements of which depend omeal parame-
ters @',...,a"). We call X the column vector with components, (.., x™). The action
of G on this vector is expressed as

X—> g%, ge G 4)(

In effect, Eq. (4) describes a linear coordinaesformatiofon R™.

Let{L1,...,Ln} be a basis of the Lie algebra Gf where the [,} are (mxm) ma-
trices® Then there exist real structure consta@fs such that the following commu-
tation relations are satisfied:

[Lo: Lyl =ClyL, (sumony) (5)

An elementgeG can then be put in the forg= exp@’L,) [1,2] so that (4) is written:
X — exp @ L, )X. For infinitesimal valueda’ of the group parameters,

exp(da’L;) ~ 1 +da‘L,

so thatX — (1+da’ L, ) X= %+ J%, where

Sx=da'Lx & sX=5d(L), X (6)

The expressiog=exp@’L,) is a representation & in terms of linear coordinate
transformations (4) oR™. We now seek a different realization®fin terms of trans-

formations of functiond=(X), Xe R". We define the operators

T(9): F>T(gF, geG
by
[T(9) (R = F(g*¥ (7)

Proposition 1:The operator3 (g) constitute an operator representatiosof

Proof: Letg;, g. €G. Then, for an arbitrary functiof onR™,
[M(aW A =Fg 'ad"}=[T9 F ¢"%={T ¥ TyIx):

MHTRLIF(Y =
T(9192) =T(91) T(92) , g.e.d.

2 For definiteness we regard this asaativetransformation from a pointe R™ with coordinates to a
point x” with coordinatesc’= (gx).

® Greek indices run from 1 towhile Latin indices run from 1 tm. The summation convention will be
used throughout.
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For g= exp@“‘L,) ~ 1+sa’L, we have thatg™ ~ 1-da’L, , and so (7) vields, by
using Eq. (A.1) in the Appendix:
[T(QF(R=F(x5d L¥Y= RX-54 L'xXV EX
=(1-0a" L,x-V)F(%) =

T(g)=1l-sa LxV=1+5d P (8)

-

where Pﬂz—Lﬂx-?z—(Lﬂ)i% =
X
i 0 i
Pz:_(l—z)k)é(_axi E_(Lﬂ)k%ai 9

where we have introduced the notatigr= a/axi . For finite values of the group pa-
rametersa’, Eq. (8) generalizes t6(g) = exp(a’P;) [3,4].

Proposition 2:The operatorsR;} are the basis of a Lie algebra isomorphic to the
Lie algebra of the matriced.{. Thus, if the commutation relations (5) are valtiden
also

[Pa ’Pﬁ ]: Cz(/ﬂ P Oﬁl

/e
Proof: Consider the linear mapping
¥ Lo>P=Y(L)=-L\xs (11)

where the matridk is an element of the Lie algebra®f LetL;, L, be two such ele-
ments. Then,

Pi=W(Ly) = — L)W x6i , Pa=W(Lo) = — L)'k X 6 .
We have:
lP([Ll, Lz]) = lP(L]_Lz—LzL]_) = lP(L]_Lz) —\P(LzL]_) (SinCG\P IS Iinear)
= — (L1k2) 'k X6 + (LoLy) 'k X 0

= — L)'} (L) kX 6+ (L2) (L) kx5 .
On the other hand,

[W(L),¥(L2)] = [P1,Ps] = PiP2—P2Py

= (L) ¥ a[(L) X' ad - L2) " X a[(La) ¥ 6]

After a lengthy but straightforward calculation,dahy canceling out second-order
derivatives, we find:

[P(L), P(L)] = — L1)'} (L2) kX ai + (Lo) (La) kX .



TRANSFORMATION LIE GROUPS

We thus conclude that
W([L1, Lo]) = [P(L1),¥(L2)]

which is what we needed to prove. Moreover,

[P, Bl =[¥(L), ¥(Ll =¥( L, L])=¥(C L)
=Cp¥(L)=Cyh
which verifies (10).

Example:Let G=S((3), the group of (83) real orthogonal matrices with unit de-
terminant. It is a 3-parameter Lie group [1,5] dimgs the associated Lie algelsig3)
is 3-dimensional. The basis £f(3) consists of the (8) antisymmetric matrices

00 0 0 01 0-1
L=[0 0 -1, L= 0 0 0 ,Ly=| 1 O
01 0 ~10 0 0 0

with commutation relations

[Li ) Lj] = &k Lk (sum Ofk)
whereei is antisymmetric in all pairs of indices, withps= e231=¢€312= 1. [We use
Latin instead of Greek indices for the basis elasefiso(3) since the number of

these elements matches the dimension&’pfon which space both th®Q3) and
sq(3) matrices act.] We notice that

(L) = =i -
The operator representation of the basiso®) is, according to (9),

Pi=- (Li)jk x"a,- = &ijk x"a,-
or, analytically,

P, = X362—x263 , P>= x163—X361 , P3= x261—x162 .

The reader may check thid, , Pj] = gijk Pk .
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3. Group operatorsfor general coordinate transformations

The previous results are valid flarear (matrix) groups, in which casgX represents

the action of annixm) matrix on a vector oR™ More generally, consider an
m-dimensional manifold/ with coordinatesx, ...,x™) and letG be ann-dimensional
local Lie group of coordinate transformations Mn(see [6] for rigorous definitions
and examples). The elementsf G depend om real parametersy, ..., a"). We call

x= (X, ..., X" a point onM and we denote bgx a (possibly nonlinear) coordinate
transformation on this manifold. To the first ordethe group parameteaé, l.e., for
infinitesimalda’, such a transformation is approximately lineathimda’. We write:

(@x)'= X+5% where sk=64d U (X (12)

LetF (x) be an arbitrary function a. As before, we define the operators

T@): F>T(@QF, geG
by
[T(9) FI(Y=F(g*¥ (13)

Again, theT (g) constitute an operator representatioGof

T(9192) =T(91) T(Q2) -

[Careful: g1 g2 is no longer a matrix product but a successionooirdinate transfor-
mations! It is still true, however, thah@,) ' = g, g1 %]

Given that, by (12),
(gx)'=X+5d U (X)
we have that

(97'%'= X-5d U, (X).
Let us justify this statement:
(979%'=(9%'-5d U(( oy
=X + &t Uy (X) -5 U, ( X+ & Uy)
By using Eq. (A.1) in the Appendix we have thatite first order in théa®,
satU} (X+sa u;)z 5&[u;(>&<)+5af Uo, U Jz)]
= sa* U} (X)

Thus, finally, @gx)'=x' < g~gx = identity transformation.
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By using (A.1) once more, the infinitesimaksion of (13) is written:

[T(9) FI(Y = F(X-5d U )= R x-64 Yo, K X
=(1-0a’U}0, )F(x) =

T@)=Lsa'U0 =k5dP (14)
where

P, =-U;(X)¢ [15

It can be proven [3] that the operatBys(A = 1,...,n) form the basis of an-
dimensional Lie algebra:

(R B=C, R i16
Let us see what this implies: Let

P,=-U,(X)0,, B=-Ui(X)o, .
Then,
[P, B]=(U,0, U}, -U,4 UL ) o,

A set of real constant§/; must then exist such that

U,o,U}-Uya Ul =-Cr,Ul (17)
Then,
[P, B1=-Cl, Ul o, = C, P .

Relations (17) are conditions for closure, underlile bracket, of the set of operators
spanned by the basi®f; that is, conditions in order that this set catusé a Lie al-
gebra.
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Appendix: Multidimensional Taylor expansion

The Taylor series expansion of a functigx) about a poink can be written as

f(x+ h) = Z H"( )f(x)—f(g f(x)

We write:

= 1(, d)" d
f(x+h){z—(h&” f(x):exp(h&j f(x) .

—on!

For infinitesimal h= 6x we may use the approximate expression

F(x46%) = F(x+0 x|
dx

More generally, consider a functign(x}, x?,---)=® (). Let a=(a’, a,---) be
a constant vector. Then,

(oo}

O(r+a) = Z @-V)"®(F)=0()+a- V(1) +-

n=0
whereV® = (60 /dx, 0D /6x%,---). We write:

O(F+4) = {i—(a V)" }@(F)zexp(é-?)d) ).
nO

For infinitesimala = 6t ,

OF+6F)=DF)+ -VOF)= Of)+5D where

"M)—(kr) (sum ork ) (A1)
oX

SO =S5F-VO(F) = 6
Indeed, notice that, infinitesimally,

5®:d®=%d% where dX=05 X.
X

10
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