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Transformation Lie groups and operator representations 
 

Costas J. Papachristou1 

Hellenic Naval Academy 
 

A note on continuous groups of transformations on linear spaces and manifolds 
and the operator representations of transformation Lie groups and algebras.  

 
 

1.  Lie groups and Lie algebras: An overview 
 
We review some basic definitions concerning Lie groups and Lie algebras.  

      A group is a set G={ a,b,c,...} equipped with an internal “multiplication” operation 
with the following properties:  

      1. Closure:        ab∈G,  ∀ a, b∈G .   

      2. Associativity:        a (bc) = (ab) c . 

      3. Identity element:    ∃ e∈G:  ae=ea,  ∀ a∈G .   

      4. Inverse element:    ∀ a∈G,  ∃ a–1∈G:  aa–1 = a–1a = e .  

A group is abelian (or commutative) if  ab=ba,  ∀ a, b∈G .  

      A subgroup of G is a subset H⊆G that is itself a group under the group operation 
of G. Obviously, H must contain the identity element e of G as well as the inverse of 
any element of H.  

      A map φ : G→G΄ from a group G to a group G΄ is called a homomorphism if it 
preserves group multiplication. That is, for any a, b∈G, the images φ(a)∈G΄ and 
φ(b)∈G΄ satisfy the relation  

φ (a) φ (b) = φ (ab) . 

If the homomorphism φ is 1-1, it is called an isomorphism. An isomorphic relation of 
G with a group of matrices or operators is called a matrix or operator representation 
of G, accordingly.  

      A real Lie algebra L of dimension n is an n-dimensional real vector space 

equipped with an internal Lie bracket operation [ , ] that satisfies the following 
properties:  

      1. Closure:      [a, b]∈L,  ∀ a, b∈L .   

      2. Linearity:             [κa+λb, c] = κ [a, c]  + λ [b, c]  (κ, λ∈R) .  

      3. Antisymmetry:     [a, b]  = – [b, a] .   Corollary:  [a, a]  = 0 .  

      4. Jacobi identity:    [a, [b, c]] + [b, [c, a]] + [c, [a, b]]  = 0 .  

A Lie algebra is abelian (or commutative) if  [a, b]  = 0 , ∀ a, b∈L .  
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      A subalgebra S of L is a subspace of L that itself is a Lie algebra. The algebra S is 

an invariant subalgebra or ideal of L if [a, b]∈S,  ∀ a∈S, b∈L . A Lie algebra L is 

said to be simple if it contains no ideals other than itself; L is semisimple if it contains 

no abelian ideals.  
 
      Examples of Lie algebras:  

      1. The algebra of (m×m) matrices, with  [A, B]  = AB – BA  (commutator). Diagonal 
matrices constitute an abelian subalgebra of this algebra.  

      2. The algebra of all vectors in 3-dimensional space, with [ , ]V W V W= ×
� � � �

(vector 
product). Vectors parallel to a given axis form an abelian subalgebra of this algebra.  

      A map ψ : L→L΄ from a Lie algebra L to a Lie algebra L΄ is a homomorphism if it 

satisfies the following properties:  

ψ (κa+λb) = κ ψ (a) + λ ψ (b)  (κ, λ∈R) ; 

ψ ( [a, b]  ) = [ψ (a), ψ (b)] . 

If the map ψ is 1-1, it is called an isomorphism. Isomorphic Lie algebras L and L΄ 

have equal dimensions [1]:  dimL=dimL΄.  

      Let {τi  / i =1, 2, ... , n} be a basis of an n-dimensional Lie algebra L. Since the Lie 

bracket of any two basis elements τi and τj is an element of L, it must be a linear com-

bination of the {τk}. That is,  

[ , ] k
i j i j kCτ τ τ=                                                   (1) 

(sum on k from 1 to n). By the antisymmetry of the Lie bracket, k k
i j j iC C= − . The real 

constants k
i jC  are called structure constants of the Lie algebra L.  

      Proposition 1: Let ψ : L→L΄ be a Lie algebra isomorphism. If {τk} (k =1, 2, ... , n) 

is a basis of L, then {ψ (τk)} is a basis of L΄.  

      Proof: Being a basis of L, the {τk} are linearly independent; hence no linear com-

bination of them can be zero (unless, of course, all coefficients are trivially zero). 
Now, by the properties of ψ, a linear combination of the {τk} is mapped onto a linear 
combination of the {ψ (τk)} with the same coefficients. This means that the latter com-
bination cannot vanish, since it can only be zero if the former one is zero as well; that 
is, if all coefficients in the combination are zero. We conclude that the {ψ (τk)} are 
linearly independent and may serve as a basis for L΄.  

      Proposition 2: Isomorphic Lie algebras share common structure constants.  

      Proof : Let ψ : L→L΄ be a Lie algebra isomorphism and let τi , τj   be any two basis 

elements of L. Then, ψ(τi) and ψ(τj) are basis elements of L΄. By (1) and by the prop-

erties of ψ,  
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([ , ]) ( ) [ ( ), ( )] ( )k k
i j i j k i j i j kC Cψ τ τ ψ τ ψ τ ψ τ ψ τ= ⇒ = ;  q.e.d. 

      Roughly speaking, a Lie group is a group G whose elements depend on a number 
of parameters that can be varied in a continuous way. The dimension n of G is the 
number of real parameters parametrizing the elements of G. We assume that dimG=n 
and we let {λ1, λ

2, ... , λn} be the set of n parameters of G. We arrange the parameteriza-
tion of G so that the identity element of G corresponds to  λk=0  for all k=1,2,...,n.  

      An important class of Lie groups consists of groups of (m×m) matrices pa-
rametrized by n parameters λk (k=1,2,...,n). Since an (m×m) matrix produces a linear 
transformation on an m-dimensional Euclidean space, matrix groups are called linear 
groups.  

      Lie groups are closely related to Lie algebras. Let G be an n-dimensional Lie 
group of (m×m) matrices A(λ1, λ2, ... , λn) ≡ A(λ) (where by λ we collectively denote the 
set of the n parameters λk ). We define the n (m×m) matrices τk by  

1 2 0

( )
| nk k

A
λ λ λ

λ
τ

λ = = = =

∂
=

∂ ⋯
                                           (2) 

or, in terms of matrix elements,  

1 2 0
( ) | n

pq
k pq k

A
λ λ λτ

λ = = = =

∂
=
∂ ⋯

 

(k=1,2,...,n ;  p, q=1,2,...,m). The n matrices τk are called infinitesimal operators (or 
generators) of the Lie group G and form the basis of an n-dimensional real Lie algebra 

L [1]. Thus [ , ] k
i j i j kCτ τ τ= , where the k

i jC  are real constants. A general element a of 

L is written as a linear combination of the τk : a=ξ 
k
τk  (sum on k), for real coefficients 

ξ 
k. [Note carefully that the matrix elements (τk)pq themselves are not required to be 

real numbers!]  

      Now, let  a=λk
 τk  be the general element of L . The general element A(λ) of the Lie 

group  G  parametrized by the  λ
k
  can then be written as [1,2]  

A (λ) =   e 
a  =  exp (λk

 τk)                                               (3) 

where  e 
a  is the matrix exponential function  

2

0

exp 1
! 2

l
a

l

a a
e a a

l

∞

=

≡ = = + + +∑ ⋯   

For infinitesimal values of the parameters  λ
k
  we may use the approximate expression  

e 
a ∼ 1+a  

so that  

A (λ) ∼ 1 + λk
  τk  . 

      The simplest example of a Lie group is a one-parameter continuous group, such as 
the group SO(2) of rotations on a plane. A rotation of a vector by an angle λ is repre-
sented by the (2×2) orthogonal matrix  
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cos sin
( ) ( )

sin cos
A R

λ λ
λ λ

λ λ
− 

= ∈ 
 

. 

(Notice that  A 
tA=1  and  detA=1.) Then  

sin cos

cos sin

dA

d

λ λ
λ λλ

− − 
=  − 

 

and, by Eq. (2), the single basis element  τ  of the associated Lie algebra is  

0

0 1
|

1 0

dA

d λτ
λ =

− 
= =  

 
 . 

According to (3),  A(λ)=e 
λτ  and, for infinitesimal λ,  A(λ) ∼1+λτ. Indeed, by setting  

sinλ=λ  and  cosλ=1, we have:  

1 1 0 0 1
( ) 1

1 0 1 1 0
A

λ
λ λ λτ

λ
− −     

= + = +     
     
≃ . 

      Another single-parameter Lie group is the unitary group U(1) with elements {e iλ} 
(λ∈R), which may be regarded as (1×1) matrices. Consider the map φ: U(1)→SO(2) 
defined by  

( ) cos sin

sin cos
ie λ λ λ

ϕ
λ λ

− 
=  
 

 . 

This map is a homomorphism, since  

( ) ( )

( ) ( )

( ) cos( ) sin( )

sin( ) cos( )

cos sin cos sin

sin cos sin cos

.

i i i

i i

e e e

e e

λ λ λ λ

λ λ

λ λ λ λ
ϕ ϕ

λ λ λ λ

λ λ λ λ
λ λ λ λ

ϕ ϕ

′ ′+

′

′ ′+ − + 
⋅ = =  ′ ′+ + 

′ ′− −   
=    ′ ′   

= ⋅

 

Moreover, it can be shown [1] that the map φ is 1-1. Therefore, φ is a Lie-group iso-
morphism.  

      We finally remark that isomorphic Lie groups have isomorphic Lie algebras [1]. 
More generally, under certain restrictions, homomorphic Lie groups may have iso-
morphic Lie algebras, as the case is with the groups SU(2) and SO(3).  
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2.  Group operators for a linear Lie group 
 
Let (x1, ... , xm) be a system of coordinates on Rm. Consider an n-dimensional Lie group 
G represented by (m×m) matrices g the elements of which depend on n real parame-
ters (a1, ... , an). We call x

�

 the column vector with components (x1, ... , xm). The action 
of G on this vector is expressed as  
 

,x g x g G→ ∈
� �

                                                  (4) 
 
In effect, Eq. (4) describes a linear coordinate transformation2 on Rm.  

      Let {L1 , ... , Ln} be a basis of the Lie algebra of G, where the {Lγ} are (m×m) ma-

trices.3 Then there exist real structure constants Cγ
αβ  such that the following commu-

tation relations are satisfied:  
 

      [ , ] (sum on )L L C Lγ
α β αβ γ γ=                                        (5) 

 
An element  g∈G  can then be put in the form  g= exp(a 

λLλ) [1,2] so that (4) is written:  

exp( )x a L xλ
λ→

� �

. For infinitesimal values δa 
λ of the group parameters,  

 
exp (δa 

λLλ)  ∼  1 + δa 
λLλ  

 

so that  (1 )x a L x x xλ
λδ δ→ + ≡ +

� � � �

,  where  

    ( )i i k
kx a L x x a L xλ λ

λ λδ δ δ δ= ⇔ =
� �

                                   (6) 

 
      The expression  g= exp(a 

λLλ)  is a representation of G in terms of linear coordinate 
transformations (4) on Rm. We now seek a different realization of G in terms of trans-

formations of functions ( ) , mF x x R∈
� �

. We define the operators  
 

T (g) :  F → T (g) F,   g∈G 
by  

      ( )1[ ( ) ]( )T g F x F g x−=
� �

                                             (7) 

 
      Proposition 1: The operators T (g) constitute an operator representation of G.  

      Proof: Let g1 , g2 ∈G. Then, for an arbitrary function F on Rm,  
 

( ) ( ) { }

{ }

1 1 1
1 2 2 1 2 1 1 2

1 2

[ ( ) ]( ) [ ( ) ] ( )[ ( ) ] ( )

[ ( ) ( )] ( )

T g g F x F g g x T g F g x T g T g F x

T g T g F x

− − −= = =

≡ ⇒

� � � �

�
 

T (g1 g2) = T (g1) T (g2) ,   q.e.d. 

                                                 
2 For definiteness we regard this as an active transformation from a point x∈Rm with coordinates xk to a 
point x΄ with coordinates xk

΄=  (gx) 
k .  

3 Greek indices run from 1 to n while Latin indices run from 1 to m. The summation convention will be 
used throughout.  
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      For  g= exp(a 
λLλ) ∼ 1+δa 

λLλ  we have that  g–1 ∼ 1– δa 
λLλ , and so (7) yields, by 

using Eq. (A.1) in the Appendix:  
 

( )
( )

[ ( ) ]( ) ( ) ( )

1 ( )

T g F x F x a L x F x a L x F x

a L x F x

λ λ
λ λ

λ
λ

δ δ

δ

− − ⋅∇

= − ⋅∇ ⇒

�� � � � � �

≃ ≃

�� �
 

 

       ( ) 1 1T g a L x a Pλ λ
λ λδ δ− ⋅∇ ≡ +
��

≃                                      (8) 

 

where  ( )i
i

P L x L x
x

λ λ λ
∂

= − ⋅∇ = − ⇒
∂

�� �

  

        ( ) ( )i k i k
k k ii

P L x L x
x

λ λ λ
∂

= − ≡ − ∂
∂

                                     (9) 

 
where we have introduced the notation  ∂i ≡ ∂/∂x 

i . For finite values of the group pa-
rameters a 

λ
 , Eq. (8) generalizes to  T (g) = exp (a 

λPλ) [3,4].  

      Proposition 2: The operators {Pλ} are the basis of a Lie algebra isomorphic to the 
Lie algebra of the matrices {Lγ}. Thus, if the commutation relations (5) are valid, then 
also  

        [ , ]P P C Pγ
α β αβ γ=                                                  (10) 

 
      Proof: Consider the linear mapping  
 

       Ψ :  L → P = Ψ(L) =  – Li
k  x k ∂i                                         (11) 

 
where the matrix L is an element of the Lie algebra of G. Let L1 , L2 be two such ele-
ments. Then,  
 

P1 = Ψ(L1) =  – (L1) i
k  x k ∂i  ,    P2 = Ψ(L2) =  – (L2) i

k  x k ∂i  . 

We have:  
 

Ψ ([L1 , L2]) = Ψ(L1L2 – L2L1) = Ψ(L1L2) – Ψ(L2L1)   (since Ψ is linear) 

=  – (L1L2) i
k  x k ∂i + (L2L1) i

k  x k ∂i   

=  – (L1) i
j (L2)

 j
k  x k ∂i + (L2) i

j (L1)
 j
k  x k ∂i . 

 
On the other hand,  

[  Ψ(L1) , Ψ(L2)] = [P1 , P2] = P1P2 – P2 P1  

= (L1) i
j   x j ∂i [(L2) k

l   x l ∂k] – (L2) k
l   x l ∂k [(L1) i

j   x j ∂i] . 
 
After a lengthy but straightforward calculation, and by canceling out second-order 
derivatives, we find:  
 

[  Ψ(L1) , Ψ(L2)] =  – (L1) i
j (L2)

 j
k  x k ∂i + (L2) i

j (L1)
 j
k  x k ∂i . 

 



TRANSFORMATION LIE GROUPS 
 

 7  

We thus conclude that  

Ψ ( [L1 ,  L2]  ) = [Ψ(L1) , Ψ(L2)] 
 
which is what we needed to prove. Moreover,  
 

( ) ( )[ , ] [ ( ) , ( )] [ , ]

( )

P P L L L L C L

C L C P

γ
α β α β α β αβ γ

γ γ
αβ γ αβ γ

= Ψ Ψ = Ψ = Ψ

= Ψ =
 

which verifies (10).  

      Example: Let G=SO(3), the group of (3×3) real orthogonal matrices with unit de-
terminant. It is a 3-parameter Lie group [1,5] and thus the associated Lie algebra so(3) 
is 3-dimensional. The basis of so(3) consists of the (3×3) antisymmetric matrices  
 

1 2 3

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

L L L

−     
     = − = =     
     −     

 

 
with commutation relations  
 

[  Li ,  Lj ] =  εijk Lk    (sum on k) 
 
where εijk is antisymmetric in all pairs of indices, with ε123 = ε231 = ε312 = 1. [We use 
Latin instead of Greek indices for the basis elements of so(3) since the number of 
these elements matches the dimensions of R3, on which space both the SO(3) and 
so(3) matrices act.] We notice that  

(Li) 
j
k  = – εijk  . 

 
The operator representation of the basis of so(3) is, according to (9),  
 

Pi =   – (Li) 
j
k  x 

k ∂j  =   εijk  x 
k ∂j  

or, analytically,  
 

P1 =  x3 ∂2 – x2 ∂3  ,   P2 =  x1 ∂3 – x3 ∂1  ,   P3 =  x2 ∂1 – x1 ∂2 . 
 
The reader may check that  [Pi ,  Pj  ]  = εijk Pk  .  
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3.  Group operators for general coordinate transformations 
 
The previous results are valid for linear (matrix) groups, in which case g x

�

 represents 

the action of an (m×m) matrix on a vector of Rm. More generally, consider an  
m-dimensional manifold M with coordinates (x1, ... , xm) and let G be an n-dimensional 
local Lie group of coordinate transformations on M (see [6] for rigorous definitions 
and examples). The elements g of G depend on n real parameters (a1, ... , an). We call  
x ≡ (x1, ... , xm) a point on M and we denote by gx a (possibly nonlinear) coordinate 
transformation on this manifold. To the first order in the group parameters a 

λ, i.e., for 
infinitesimal δa 

λ, such a transformation is approximately linear in the δa 
λ. We write:  

     ( ) where  ( )i i i i i kg x x x x a U xλ
λδ δ δ+ =≃                             (12) 

( i  =  1, ... , m ;  λ =  1, ... , n ).  

      Let F (x) be an arbitrary function on M. As before, we define the operators  
 

T (g) :  F → T (g) F,   g∈G 
by  

                  ( )1[ ( ) ]( )T g F x F g x−=                                            (13) 

 
Again, the T (g) constitute an operator representation of G:  
 

T (g1 g2) = T (g1) T (g2) . 
 
[Careful: g1 g2 is no longer a matrix product but a succession of coordinate transfor-
mations! It is still true, however, that (g1 g2) –1 = g2

 –1g1
 –1.]  

      Given that, by (12),  

( ) ( )i i i kg x x a U xλ
λδ+≃  

we have that  

1( ) ( )i i i kg x x a U xλ
λδ− −≃ . 

Let us justify this statement:  

( )( )
( )

1( ) ( )

( )

ki i i

i i k i k k

g g x g x a U g x

x a U x a U x a U

λ
λ

λ λ ρ
λ λ ρ

δ

δ δ δ

− −

+ − +

≃

≃

 

By using Eq. (A.1) in the Appendix we have that, to the first order in the δa 
λ,  

 

( ) ( ) ( )

( )

i k k i k j i k
j

i k

a U x a U a U x a U U x

a U x

λ ρ λ ρ
λ ρ λ ρ λ

λ
λ

δ δ δ δ

δ

 + + ∂ ≃

≃

 

 
Thus, finally,  ( g –1g x) i   = x i  ⇔  g –1g x  ≡  identity transformation.  
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      By using (A.1) once more, the infinitesimal version of (13) is written:  
 

( )
( )

[ ( ) ]( ) ( ) ( )

1 ( )

i i i
i

i
i

T g F x F x a U F x a U F x

a U F x

λ λ
λ λ

λ
λ

δ δ

δ

− − ∂

= − ∂ ⇒

≃ ≃

 

 

        ( ) 1 1i
iT g a U a Pλ λ

λ λδ δ− ∂ ≡ +≃                                      (14) 

where  

               ( )i k
iP U xλ λ= − ∂                                                 (15) 

 
      It can be proven [3] that the operators Pλ (λ =  1, ... , n ) form the basis of an n-
dimensional Lie algebra:  

[ , ]P P C Pγ
α β αβ γ=                                                 (16) 

 
Let us see what this implies: Let  
 

( ) , ( )i k j k
i jP U x P U xα α β β= − ∂ = − ∂  . 

Then,  

( )[ , ] i j i j
i i jP P U U U Uα β α β β α= ∂ − ∂ ∂ . 

 

A set of real constants Cγ
αβ  must then exist such that  

 

        i j i j j
i iU U U U C Uγ

α β β α αβ γ∂ − ∂ = −                                      (17) 

Then,  

[ , ] j
jP P C U C Pγ γ

α β αβ γ αβ γ= − ∂ =  . 

 
Relations (17) are conditions for closure, under the Lie bracket, of the set of operators 
spanned by the basis {Pλ}; that is, conditions in order that this set constitute a Lie al-
gebra.  
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Appendix:  Multidimensional Taylor expansion 
 
The Taylor series expansion of a function  f (x) about a point x can be written as  
 

0

1 ( )
( ) ( ) ( )

!

n
n

n

d d f x
f x h h f x f x h

n dx dx

∞

=

 + = = + + 
 

∑ ⋯  

We write:  

0

1
( ) ( ) exp ( )

!

n

n

d d
f x h h f x h f x

n dx dx

∞

=

    + = =    
     

∑  . 

 
For infinitesimal  h ≡ δx  we may use the approximate expression  
 

( )
( ) ( )

d f x
f x x f x x

dx
δ δ+ +≃  . 

 

      More generally, consider a function 1 2( , , ) ( )x x rΦ ≡ Φ
�

⋯ . Let 1 2( , , )a a a≡
�

⋯  be 
a constant vector. Then,  
 

0

1
( ) ( ) ( ) ( ) ( )

!
n

n

r a a r r a r
n

∞

=

Φ + = ⋅∇ Φ = Φ + ⋅∇Φ +∑
� �� � � � � � �

⋯  

 

where 1 2( / , / , )x x∇Φ ≡ ∂Φ ∂ ∂Φ ∂
�

⋯ . We write:  
 

0

1
( ) ( ) ( ) exp( ) ( )

!
n

n

r a a r a r
n

∞

=

 
Φ + = ⋅∇ Φ = ⋅∇ Φ 

 
∑

� �� � � � � �

 . 

 
For infinitesimal a rδ≡

� �

,  
 

( ) ( ) ( ) ( ) where

( )
( ) (sum on )k

k

r r r r r r

r
r r x k

x

δ δ δ

δ δ δ

Φ + Φ + ⋅∇Φ ≡ Φ + Φ

∂Φ
Φ = ⋅∇Φ =

∂

�� � � � � �

≃

�
�� �

                   (A.1) 

 
Indeed, notice that, infinitesimally,  
 

wherek k k
k

d dx dx x
x

δ δ
∂Φ

Φ Φ = ≡
∂

≃ . 
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