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This volume consists of 5 articles that deal with various kinds of transforma-
tions. Specifically,

- coordinate transformations in a linear space or manifold;

- Backlund transformations (BTs) relating solutions of different partial dif-
ferential equations (PDEs) or different solutions of the same PDE;

- symmetry transformations of PDEs, producing new solutions from old
ones by continuously varying a set of parameters;

- recursion operators as BTs relating different symmetries of a PDE; and
- transformations relating recursion operators of BT-related PDEs.

The articles may be viewed as “chapters” of a single book and it might thus
be useful to be read in sequence, given that, to some extent, each article
utilizes concepts and ideas introduced in the preceding articles.






On active and passive transfor mations

Costas J. Papachristou
Department of Physical Sciences, Hellenic Navald&ray, Piraeus, Greece

papachristou@hna.gr

The concepts of active and passive transformationa vector space are discussed.
Orthogonal coordinate transformations and matrmpresentations of linear operators
are considered in particular.

1. Introduction

A physical situation magppearchanging for two reasons: the physical systentfitse
may pass from one state to another, or,sdm@estate of the system may be viewed
from two different points of view (e.g., by two flifent observers, using different
frames of reference). The former case correspomds tactive” view of the situa-
tion, while the latter one to“@assive” view.

Given that many physical quantities are vegtof particular interest in Physics
are linear transformations on vector spaces. 8tawith the prototype transformation
of rotation on a plane, we study both the active tre passive view of these trans-
formations. In the case of a Euclidean space walntgSian coordinates, a passive
transformation corresponding to a change of basaiorthogonal transformation. On
the other hand, an active transformation on a vesgace is produced by a linear op-
erator, which is represented by a matrix in a givasis. A change of basis, leading to
a different representation, is a passive transfooman this space.

2. Active view of transfor mations

Consider thexy-plane with Cartesian coordinates, y) and basis unit vectors
{q,, 4} . We callR(6) the rotation operator on this plane, i.e., therafor which ro-

tates any vectoA on the plane by an angle(see Fig. 2.1; by conventiofiz0 for
counterclockwise rotation whilé<0 for clockwise rotation). This operator is lingar
given that adding two vectors and then rotatingghm is the same as first rotating
the vectors and then adding them.

y )
A’\

Figure 2.1
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Imagine, in particular, that we rotate eaebtwr in the basigl,, 0} by an angle

!

0 to obtain a new set of vectofs,, Gy'} (Fig. 2.2). The transformation equations
describing these rotations are

0, =R(#)0, =cosh U+ sird U
X X X y (2.1)
0, =R(6)0, =-sing i, + coP 1,

y

Figure 2.2

Now, letA= A 0 + A U, be a vector on they-plane (see Fig. 2.1). The rotation
operatorR(¢) will transform it into a new vector

A=R(@O)A= AL+ AT, (2.2)

We want to express the componefgsandA,” in terms ofA,, Ay andé. By the line-
arity of R(d) and by using (2.1), we have:

A=RO)(Al+AlY)= ARO) U+ ARO)Y,
=(Accost— A, sid) & +( A sid+ A cod),

By comparing this with (2.2), we get:

"= A cosf— A, sirg
A=A A (2.3)
A/ = Assing+ A cod
We define the matrix
cosd - sing
_Line c039} ¥
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The systems (2.1) and (2.3) are then rewritteh@férm of matrix equations as

lfj ! lf:l !
T l=MT {X} and A*, =M {A‘} (2.5)
u, Uy A A
respectively, wher® " is the transpose 1.
We note that the vectos and A' = R(0) A aredifferentgeometrical objects, the

latter one being a transformation of the former.t@a other hand, the components of
these vectors, connected by (2.3), are referrébdeteamebasis{t,, 0} . This is the

general idea of thactive viewof a linear transformation.
In a more abstract sense, we considaer-dimensional vector space with basis

vectors{é,s,....&} ={"g}, and we leR be a linear operator a@. We assume that
the basis vectors transform unéeas follows:

§=Reé=%2R (sumonj (2.6)

where the familiar summation convention for repeaipper and lower indices has
been used. Thus, for each valua,dhe right-hand side of (2.6) is actually a surerov
all values ofj, i.e., fromj=1 to j=n. Explicitly,

éL,:AqF‘lﬁA% I:%1+'"+Ar¢ R
%’:’\qFéZ—FA% Ié2+”'+,\le PQ (27)
én’:'qF%n"_A% F%n+"'+A# Rw
Now, let
V=Vg+Ve+ -+ Ve= Vi (2.8)

be a vector in2, and letV' =RV . We have:
V'=R(V!'8)=VIRe=V3eR= V].
Therefore the components of the original and thedfiormed vector are related by
V=R,V (2.9)

or, explicitly,
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VV=RyV'+ R, VPt RV
V¥ =RiVH+ R%, VPt RV

V=R, V+ R, V+...+ RV

Define thenxn matrix

M=[R] with M =R

The basis transformations (2.6) are then written as

Vn! VI']

3. Passive view of transfor mations

(2.10)

(2.11)

12)

12)

Imagine that our previous-y system of axes on the plane, with basis unit vecto
{q,, 4} , is rotated counterclockwise by an angl® obtain a new system of axes

andy’ with corresponding basil,, 0,} (Fig. 3.1). As before, the two bases are re-

lated by the system of equations

~ ! ~ . A
U, =cosdu,+ sind u,

~ ! . ~ A
u, =-sindu, + co u,

Figure 3.1

(3.1)
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A vector A on the plane can be expressed in both these tesstslows:
A=A+ A= AU+ A (3.2)

Substituting the basis transformations (3.1) irtte tight-hand side of (3.2), and
equating coefficients of similar unprimed basistoes, we find:

A = Acosd— A sirg

(3.3)
A = A/sind+ A cod
Solving this for the primed components, we get:
"= A cosd+ A, sird
A=A g (3.4)

A =—Asing+ A, cod

Notice that, in contrast to what we did in the poeg section, here we keep the geo-

metrical object A fixed and simply expand it in twdlifferent bases. This is the
adopted practice in theassive vievof a transformation.
Introducing the matrix

cosd - sinY
sind co9¥

we rewrite our previous equations in the matrafer

0, =MT {ux} (.5
Oy' Uy

and
A Al A/ a| A
=M =M 3.6
M M M M o
where
3 {cos@ sirﬂ} .
M= =M (3.7)
-sind coy

Notice that the transformation matik is orthogonal As will be shown below, this is
related to the fact that the transformation (rotaf axes) relates two Cartesian bases
in a Euclidean space.
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By comparing (2.3) and (3.4) it follows thtae transformation equations of the
passive view reduce to those of the active viewnugplacingd with —4. Physically

this means that a passive transformation in wHiehviectorA is fixed and the basis
of our space is rotatecbunterclockwises equivalent to an active transformation in

which the basis is fixed and the vect@ris rotatecclockwise
Let us generalize to the case of radimensional vector spac€ with basis

{6.8,...8) ={"g}. Let{§} be another basis related to the former one by
& =8 Al (3.8)

(note sum orj). A vectorV in Q may be expressed in both these bases, as follows:

V=Ve=V'¢=V"e\,

where use has been made of (3.8). This yields
Vi=AL WV (3.9

Introducing thexn matrix

M=[A'} ] with My =A') (3.10)
we write
Al ’Q
=MT|: (3.11)
&) L&
and
V2 Vl'_ VY Vi
=M = Cl=M7 (3.12)
Vl’l Vnr Vnr Vn

4. Orthogonal transformationsin a Euclidean space

In this section theassiveview of transformations will be adopted. L@tbe ann-
dimensional Euclidean space with Cartebiemordinates¢, x2,...x") = (<) and cor-
responding Cartesian bas{i@} . Let ') be another Cartesian coordinate system for

! Cartesian systems of coordinates exist only inlile@an spaces. For example, you can define a sys-
tem of Cartesian coordinates on a plane but gagmnotdefine such coordinates on the surface of a
sphere, which is aon-Euclidearspace.
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Q, with corresponding bas{g,} . We assume that the two coordinate systems have a
common origin0=(0,0,...,0). Both Cartesian bases artonormal in the sense that

A A

§§=F%

Al

£ =4q; (4.1)
Assuming that thénandednes®f the two coordinate systems is the same (eog., f
n=3, both coordinate systems are right-handed)apgarent that a linear transforma-
tion from one basis to the other is a “rotation¥dnLet us explore this in more detail.

Definition: A linear transformation from a Cartesian basiarother is said to be
anorthogonal transformation

Proposition 4.1:An orthogonal transformation is represented byogthogonal
matrix M:

M2=MT &« MTM=MM"=1 (4.2)

Proof: Assume a linear basis transformation of the foBB) &' = %;Aji' . Also,
let M be the transformation matrix defined in (3.10). Wéee:

A

Y :(@Aki,).( pA'j,):aKl Aki,A'j,:Zk:A'?,Akj,
:Zk:MkiMkj :zk:(MT)ik M, =(MTM)”_

where we have taken into account that the originaprimed) basis is orthonormal.
Given that the same is true for the transformein@al) basis, we have:

(M™™). =6, = MM =1.

Themagnitudeof a vectorV is a non-negative quantity whose square is ex-
pressed in a Cartesian basis in terms of the s@érproduct, as follows:

V" =V.V=(Ve) (V)= V Vieje g VA (4.3)
[Obviously, the last term in (4.3) is the sum o 8quares of the components\bf]

Proposition 4.2:An orthogonal transformation preserves the Catetrm (4.3)
of the magnitude of a vector.

Proof: By using the transformation formula (3.9) for campnts of vectors, de-
rived in the previous section, we have:
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5V 5, (Aik,\/k')(Ajl,\/')z(ZAik,Ail,J\7'\'/'

— kry g1l T K\ 17
_(ZM”‘M” jv Vv _(Z( M )ki M, jv Vv
=(MT™ )klvk'v" = 5y V'V
For a more compact proof, define the matrices
Vl
VI']
and similarly for the corresponding primed quaestiThen, in the unprimed basis,
512 kT K
M =[] v

Using the fact that, by (3.12@\/"] =M [VK’J , we have:

T CT\T T
T ) v L] g v
T
=[ve] [v]
CommentThe above proof suggests an alternate definiti@nmrthogonal trans-
formation as a linear transformation in a Euclidspace that preserves the Cartesian
form of the magnitude of vectors. In fact, thighe way orthogonal transformations

are usually defined in textbooks.

Now, letP be a point in2, with Cartesian coordinates'(3?,...x") = (). In this
system of coordinates the position vectoPofan be written ag =x'&. Since this
vector is a geometrical object independent of ffs¢esn of coordinates, we can write:

Fr=xé-= xj'?;'.
By using (3.8) we find, as in Sec. 3,
X =A X' (4.4)

which is the analog of (3.9). M is the matrix defined in (3.10), and ¥ is the col-
umn vector of thet, then by the general matrix relation (3.12) weehav
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(4.5)
where the orthogonality condition (4.2) has beerduget us call
MT=L withL; =M, =A", (4.6)

Then the matrix relation (4.5) can be written as/stem ofn linear equations of the
form

X" =Ly X+ L, X4+ L, X

which equations represent an orthogonal coordimnatesformation ir2

As an example far=2, letQ be a plane with Cartesian coordinatesx¢) = (x, y).

A position vector in2 is written: 7' = xU, + y{,. As seen in Sec. 3, the transformation
matrix M for a rotation of the basis vectors by an argke

cosf - sing - cog  siA
= . = L=M = _ .
sind co9y — sig  co8

The coordinate transformation equations (4.7) artem here as

X = Xcosf+ ysirg

y =—-xsind+ ycod

Exercise:By using the relationgzvjé and éj' = éA'j , together with (3.10)
and (4.1), show the following:

Vi=g.V

D>
D’

Under an orthogonal transformation from orat€sian system of coordinates to
another, the component&* of a vector transform like the coordinatéshemselves.
That is,

V=1,V
From (4.7) we have that
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X'
-
Therefore,
Vil Xy and, conversely, V :a—x_I v (4.8)
ox! ox’

5. Active and passive view combined

Let Q be ann-dimensional vector space with bagég ( k=12, ..., ). LetA be a lin-
ear operator o®. The action oA on the basis vectors is given by

AE =38 A=A (5.1)

(Note a slight change in the summation conveniiothis section subscripts only will
be used.) Thexn matrix A=[A;] is thematrix representation of the operatarin the
basis{g} .

A vector inQ is written:

X (®.2

X=2.%¢&

Let y=AX. If y=y &, then, by the linearity oA and by using (5.1) and (5.2) we
find that

Yi=A; % (sumonj (5.3)
which represents a systemrolinear equations fae 1,...n. In matrix form,
[Vid = Al %] 5.4)

where k] and jy] are column vectors.
Now, letA andB be linear operators ad. We define their product=AB by

CX=(AB)X=A(BX), VXeQ (5.5)

Then, in the basi§g} ,

Céj :A(BQ)ZA(A? B)= ﬁi(Afe)= iIAIjBiAeEiA gC
where
C;=AB or inmatrix form,C= AB (5.6)

10
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That is, in any basis @,

the matrix of the product of two operators is theduct of the matrices of
these operators.

Consider now a change of basis (passiveftranation) with transformation ma-
trix T=[Tj]:

The inverse transformation is

& =¥(TY), (58)

The same vector may be expressed in both theses laase= x & = ){A@', from
which we get, by using (5.7) and (5.8),

x=T; % and ¥=(T7) x (5.9)

]

In matrix form,

[xJ=T[x] and [x]=T7" ¥ (5.10)
How do the matrix elements of a linear opmrédt transform under a change of
basis of the form (5.7)? In other words, how ddesratrix of an active transforma-

tion transform under a passive transformation? {fetA X. By combining (5.10)
with (5.4), we have:

VI=THW=T"AX=T'AT{=R§k =
A =TT (5.11)
For an alternative proof, note that
Aéj’ =AT)=TAe= T eA= ;i A ré( -F)m
=(T ’1AT)k_ =% A => A T'AT
J
as before. A transformation of the form (5.11)afled asimilarity transformation
By applying the properties of the trace amel determinant of a matrix to (5.11) it
is not hard to show that, under basis transformatibe trace and the determinant of
the matrix representation of an operator remain hanoged:trA=trA’, deA=detA".

This means that the trace and the determinantamis-independent quantities that are
properties of the operator itself, rather than praps of its representation.

11
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Definition: A vector X = 0 is said to be arigenvectowof the linear operatok if a
constant exists such that

AR =A% (5.12)

The constani is aneigenvalueof A, to which eigenvalue this eigenvector belongs.
Note that, in general, more than one eigenvectyrhetong to the same eigenvalue.

In a given basi§&} , the linear system (5.3) corresponding to the reigkie
equation (5.12) takes on the form

Ajx =A% or  Rj=4dij)x =0 (5.13)

where B;j]=A is the matrix of the operatdy in the given basis. This is a homogene-
ous linear system of equations, which has a naatrsolution for the eigenvector
components iff

defA;—26;1=0 or detd—i1)=0 (5.14)

where 1 here is the-dimensional unit matrix. This polynomial equatiogetefmines
the eigenvalueg (not necessarily all different from each otherjhaf operatoA.
Now, in general, for any value of the constathe matrix 4—11) is the represen-

tation of the operatorA—11) in the considered bas{€} . Under a basis transforma-

tion to{&} this matrix transforms according to (5.11):

(A4=1)" =T U1 T=T AT -11=4"-)1.
On the other hand, by the invariance of the deteantiunder this transformation,
det(4'— A1) = det(4—41) .

In particular, ifA is an eigenvalue of the operaty the right-hand side of the above
equation vanishes in view of (5.14) and, thereftre,same must be true for the left-
hand siddor the same value af That is, the polynomial equation (5.14) determine
the eigenvalues oA uniquely, regardless of the chosen representaii conclude
that

the eigenvalues of an operator are a property efdperator itself and do not
depend on the choice of basis of the spgace

If we can findn linearly independent eigenvectof&} of A, belonging to the

corresponding eigenvalugg(not necessarily all different) we can use theseors to
define a basis of2. The matrix representation &f in this basis is given by (5.1):

AX; =X A . On the other hand, if= 1", then AX, = 1'% = '3, X. Therefore, since

the X, are linearly independent, we must h#@ye1'd; . We conclude that, in the ei-
genvector basis the matrix representation of tlezaiprA has thediagonalform

A= diag(/ll,/lz, ,in) .

12



ON ACTIVE AND PASSIVE TRANSFORMATIONS

Moreover, by the above formula and by the fact thatquantities &, detA andiy are
basis-independent (i.e., invariant under basissfcamations) it follows that, imny
basis ofQ,

WA =Jq+ o+ . +0n ,  deB =1 ds ..l (5.15)

Proposition 5.1:Let A andB be two linear operator a3. We assume tha& and
B have a common set oflinearly independent eigenvectdrg} . Then the operators

A andB commute
AB=BA < [A,B]=AB-BA=0

where A, B] denotes theommutatorof A andB.

Proof: Since then vectors{ X} are linearly independent, they define a basi€.of
By assumption, for each value lothe vectorX, is an eigenvector of both andB,
with corresponding eigenvalues, sayndg. Then,

(AB)X =A(BX)=A(B%)=L(AX)=faX
and similarly, BA X, =af%_ . Thus,
(AB)% =(BA)% < [A,B]% =0,
for allk=1,...n. Now, let'¥ =& X be an arbitrary vector i@2. Then,
[AB]Y=[ABI(5%) =§[AB % =0, V¥eQ.
This means tha#y, B]=0.

Definition: An operatorA is said to benonsingularif detA=0 (note that this is a
basis-independergroperty). A nonsingular operatorirs/ertible, in the sense that an
inverse linear operatak™" on Q exists such thaAA™ =A™A =1,,, wherel,, is the
unit operator. This allows us to write

J=AX < X=A1lYy.

By (5.4) it follows that, iA is the matrix representation of the nonsingulasrap
tor A in some basis, thethe matrix of the inverse operatar is the inverse A& of A
As is well known, the matrid may have an inverse iff d&t0, whence the definition
of a nonsingular operator. In view of the secondti@n in (5.15),

all eigenvalues of a nonsingular operator are nonze

Indeed, if even one eigenvalue vanishes, theA=d®in anyrepresentation.

13
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6. Comments

Both the active and the passive view are of impaeain Physics. Let us see some
examples:

1. TheGalilean transformatiorof Classical Mechanics and therentz transfor-
mation of Relativity’ arepassivetransformations connecting different inertial fiesn
of reference. When expressed in terms of mathealatguations, all physical laws
are required to be invariant in form upon passiogifone inertial frame to another.

2. The operators of Quantum Mechaha®active transformations from a quan-
tum state to a new state. On the other hand, latbssand operators may be repre-
sented by matrices in different bases, the tranmsdtion from one basis to another be-
ing apassivetransformation. Typically, the basis vectors & tfjuantum-mechanical
space are chosen to be eigenvectors of linear mpengepresenting physical quanti-
ties such as energy, angular momentum, etc. In auishsis the related operator is
represented by diagonal matrix, the diagonal elements being thgenvaluef the
operator. Physically, these eigenvalues give tissipte values that a measurement of
the associated physical quantity may yield in goeexnent.

2 H. GoldsteinClassical Mechanic2nd Ed. (Addison-Wesley, 1980).
% E. MerzbacherQuantum Mechani¢8rd Ed. (Wiley, 1998).

14



Transformation Lie groups and operator representations

Costas J. Papachristfou
Hellenic Naval Academy

A note on continuous groups of transformationsinedr spaces and manifolds
and the operator representations of transformafi@groups and algebras.

1. Liegroupsand Liealgebras: An overview

We review some basic definitions concerning Lieugand Lie algebras.

Agroupis a setG={a,b,c,...} equipped with an internal “multiplication” epation
with the following properties:

1. Closure: abeG, Va, beG.

2. Associativity: a(bc) = (ab)c.

3. Identity element: 3 ecG: ae=eg VacG.

4. Inverse element:VaeG, 3a'eG: aa'=a’a=e.
A group isabelian(or commutative) ifab=ba, Va,beG.

A subgroupof G is a subseHcG that is itself a group under the group operation
of G. Obviously,H must contain the identity elemembf G as well as the inverse of
any element oH.

A mapg : GG’ from a groupG to a groupG” is called ahomomorphisnif it
preserves group multiplication. That is, for amybeG, the imagesp(a)eG” and
p(b)eG’ satisfy the relation

9@ ¢ (b) = (ab).

If the homomorphisnp is 1-1, it is called amlsomorphismAn isomorphic relation of
G with a group of matrices or operators is callemiarix or operatorepresentation
of G, accordingly.

A real Lie algebra £ of dimensionn is an n-dimensional real vector space

equipped with an interndlie bracketoperation [ , ] that satisfies the following
properties:

1. Closure: ablel, Vabel .

2. Linearity: xkp+ib, c] = k[a,c] +A[b,C] (k,AeR).
3. Antisymmetry: d,b]=—[b,a]. Corollary: p,a]=0.
4. Jacobi identity: [a, [b,c]] + [b,[c,a]] +[c.[a,b]] =0.

A Lie algebra isabelian(or commutative) if 4,b] =0,V a,beL.

! cipapachristou@gmail.com
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Asubalgebra ®f £ is a subspace & that itself is a Lie algebra. The algel®&s
an invariant subalgebreor ideal of £ if [a,b]eS V acS bel. A Lie algebral is

said to besimpleif it contains no ideals other than itself;is semisimplef it contains
no abelianideals.

Examples of Lie algebras:

1. The algebra ofrixm) matrices, with A, B] = AB — BA (commutatoy. Diagonal
matrices constitute an abelian subalgebra of tgebaa.

2. The algebra of all vectors in 3-dimenslasmace, with[V, W] = Vx W(vector
product). Vectors parallel to a given axis formadelian subalgebra of this algebra.

A mapy: L—L’ from a Lie algebra to a Lie algebra " is ahomomorphisnif it
satisfies the following properties:
y(ka+ib) =xy (@) +iy(b) (x,AeR);
y([ab]) = [y @),y (D) .
If the mapy is 1-1, it is called amsomorphism Isomorphic Lie algebrag and L’
have equal dimensions [1H#im{=dimL".

Let { /i1=1,2,...,n} be a basis of an-dimensional Lie algebréd. Since the Lie

bracket of any two basis elemenrtands; is an element of, it must be a linear com-
bination of the {}. That is,

[7:,7,1=G 1) (
(sum onk from 1 ton). By the antisymmetry of the Lie brackélif} =— Cﬁ . The real

constantsCi'} are calledstructure constantef the Lie algebraC.

Proposition 1l:Lety: L—L" be a Lie algebra isomorphism. i} (k=1,2,...,n)
is a basis oL, then {y (=)} is a basis of".

Proof: Being a basis of, the {r} are linearly independent; hence no linear com-

bination of them can be zero (unless, of courdecafficients are trivially zero).
Now, by the properties af, a linear combination of thend is mapped onto a linear
combination of the ¥ (z,)} with the same coefficients. This means thatldtter com-
bination cannot vanish, since it can only be zétbe former one is zero as well; that
is, if all coefficients in the combination are zeWWe conclude that they{(z)} are

linearly independent and may serve as a basis for
Proposition 2:Isomorphic Lie algebras share common structursteits.

Proof: Lety: L—L" be a Lie algebra isomorphism anddetz; be any two basis

elements ofL. Then,y(r) andy(z) are basis elements 6f. By (1) and by the prop-
erties ofy,
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vz, D) =w(G ) = [¥(5), w(f)] =G (%) ; g.ed.

Roughly speaking, lae groupis a groupG whose elements depend on a number
of parameters that can be varied in a continuous Whe dimension nof G is the
number of real parameters parametrizing the elesnaid. We assume thaimG=n
and we let 1,43 ..., A"} be the set of parameters oB. We arrange the parameteriza-
tion of G so that the identity element Gfcorresponds ta“=0 for all k=1,2,...n.

An important class of Lie groups consists gobups of fhxm) matrices pa-
rametrized byn parameters® (k=1,2,...n). Since anrfixm) matrix produces &near
transformationon anm-dimensional Euclidean space, matrix groups areadhtear
groups

Lie groups are closely related to Lie algebraet G be ann-dimensional Lie
group of xm) matricesA(1}, 42,..., AN =A(1) (where by. we collectively denote the
set of then parameters®). We define the (mxm) matricesz by

0A(1)
W= PYL | iszee —anso (2)
or, in terms of matrix elements,
() :%| Lo, ]
pPa 6ﬂk A=A=---=4"=0

(k=1,2,...n; p,q=1,2,...m). Then matriceszx are callednfinitesimal operatorqor
generators) of the Lie group and form the basis of andimensional real Lie algebra

L [1]. Thus [ .7 ]= qﬁf 7., Where theCi‘J$ are real constants. A general elemzof
L is written as a linear combination of the a=¢*r, (sum ork), for real coefficients
&¥ [Note carefully that the matrix elementg){y themselvesre not required to be
real numbers!]

Now, leta=1*z be the general elemeuntt £ . The general eleme®(%) of the Lie
group G parametrized by thé can then be written as [1,2]

AQ) = €= exp(A“ny) ©)

where e? is the matrix exponential function

0 al a2
e"=expa=) — =1+ ar e

For infinitesimal values of the parametéfswve may use the approximate expression

e* ~ 1+a
so that
AQ) ~ 1+ 257 .
The simplest example of a Lie group is a paemeter continuous group, such as

the groupSQ2) of rotations on a plane. A rotation of a vedigran angléel is repre-
sented by the §2) orthogonal matrix
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cosl -—sinl
sini cost

A(g):{ } (1eR.

(Notice thatA'A=1 and detA=1.) Then

dA -sinA - cost
di | cosi —sinl

and, by Eq. (2), the single basis elemenf the associated Lie algebra is

r—d—A| _|9 -
S da*? 1 o)
According to (3), A(A)=e” and, for infinitesimall, A(1) ~1+lz. Indeed, by setting
sim=2 andcosi=1, we have:

sl gl
A1) = = + A =1+ Ar.
A1 01 1 0

Another single-parameter Lie group is thetanyigroupU(1) with elements ¢}
(AeR), which may be regarded asx() matrices. Consider the mapU(1)—>SQ2)

defined by
- cosi - sl
elﬂ — )
(o( ) sini cost

This map is a homomorphism, since

g L (et cos(l+A') —sinf+1")
(p(eﬂ.éi):(p(é(ﬂ M):Lin(ﬁm%') cosg + A’ )}

B cosi —-sinl|| cod' - sid’
“|sina  cost || sim’ cog’

ofe) o)

Moreover, it can be shown [1] that the mags 1-1. Thereforeyp is a Lie-group iso-
morphism.

We finally remark that isomorphic Lie grouipave isomorphic Lie algebras [1].
More generally, under certain restrictions, homagohar Lie groups may have iso-
morphic Lie algebras, as the case is with the g@2) andSQ(3).
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2. Group operatorsfor alinear Liegroup

Let (', ...,x™) be a system of coordinates B Consider am-dimensional Lie group
G represented bynxm) matricesg the elements of which depend omeal parame-
ters @',...,a"). We call X the column vector with components, (.., x™). The action
of G on this vector is expressed as

X—> g%, ge G 4)(

In effect, Eq. (4) describes a linear coordinaesformatiofon R™.

Let{L1,...,Ln} be a basis of the Lie algebra Gf where the [,} are (mxm) ma-
trices® Then there exist real structure consta@fs such that the following commu-
tation relations are satisfied:

[Lo: Lyl =ClyL, (sumony) (5)

An elementgeG can then be put in the forg= exp@’L,) [1,2] so that (4) is written:
X — exp @ L, )X. For infinitesimal valueda’ of the group parameters,

exp(da’L;) ~ 1 +da‘L,

so thatX — (1+da’ L, ) X= %+ J%, where

Sx=da'Lx & sX=5d(L), X (6)

The expressiog=exp@’L,) is a representation & in terms of linear coordinate
transformations (4) oR™. We now seek a different realization®fin terms of trans-

formations of functiond=(X), Xe R". We define the operators

T(9): F>T(gF, geG
by
[T(9) (R = F(g*¥ (7)

Proposition 1:The operator3 (g) constitute an operator representatiosof

Proof: Letg;, g. €G. Then, for an arbitrary functiof onR™,
[M(aW A =Fg 'ad"}=[T9 F ¢"%={T ¥ TyIx):

MHTRLIF(Y =
T(9192) =T(91) T(92) , g.e.d.

2 For definiteness we regard this asaativetransformation from a pointe R™ with coordinates to a
point x” with coordinatesc’= (gx).

® Greek indices run from 1 towhile Latin indices run from 1 tm. The summation convention will be
used throughout.
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For g= exp@“‘L,) ~ 1+sa’L, we have thatg™ ~ 1-da’L, , and so (7) vields, by
using Eq. (A.1) in the Appendix:
[T(QF(R=F(x5d L¥Y= RX-54 L'xXV EX
=(1-0a" L,x-V)F(%) =

T(g)=1l-sa LxV=1+5d P (8)

-

where Pﬂz—Lﬂx-?z—(Lﬂ)i% =
X
i 0 i
Pz:_(l—z)k)é(_axi E_(Lﬂ)k%ai 9

where we have introduced the notatigr= a/axi . For finite values of the group pa-
rametersa’, Eq. (8) generalizes t6(g) = exp(a’P;) [3,4].

Proposition 2:The operatorsR;} are the basis of a Lie algebra isomorphic to the
Lie algebra of the matriced.{. Thus, if the commutation relations (5) are valtiden
also

[Pa ’Pﬁ ]: Cz(/ﬂ P Oﬁl

/e
Proof: Consider the linear mapping
¥ Lo>P=Y(L)=-L\xs (11)

where the matridk is an element of the Lie algebra®f LetL;, L, be two such ele-
ments. Then,

Pi=W(Ly) = — L)W x6i , Pa=W(Lo) = — L)'k X 6 .
We have:
lP([Ll, Lz]) = lP(L]_Lz—LzL]_) = lP(L]_Lz) —\P(LzL]_) (SinCG\P IS Iinear)
= — (L1k2) 'k X6 + (LoLy) 'k X 0

= — L)'} (L) kX 6+ (L2) (L) kx5 .
On the other hand,

[W(L),¥(L2)] = [P1,Ps] = PiP2—P2Py

= (L) ¥ a[(L) X' ad - L2) " X a[(La) ¥ 6]

After a lengthy but straightforward calculation,dahy canceling out second-order
derivatives, we find:

[P(L), P(L)] = — L1)'} (L2) kX ai + (Lo) (La) kX .
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We thus conclude that
W([L1, Lo]) = [P(L1),¥(L2)]

which is what we needed to prove. Moreover,

[P, Bl =[¥(L), ¥(Ll =¥( L, L])=¥(C L)
=Cp¥(L)=Cyh
which verifies (10).

Example:Let G=S((3), the group of (83) real orthogonal matrices with unit de-
terminant. It is a 3-parameter Lie group [1,5] dimgs the associated Lie algelsig3)
is 3-dimensional. The basis £f(3) consists of the (8) antisymmetric matrices

00 0 0 01 0-1
L=[0 0 -1, L= 0 0 0 ,Ly=| 1 O
01 0 ~10 0 0 0

with commutation relations

[Li ) Lj] = &k Lk (sum Ofk)
whereei is antisymmetric in all pairs of indices, withps= e231=¢€312= 1. [We use
Latin instead of Greek indices for the basis elasefiso(3) since the number of

these elements matches the dimension&’pfon which space both th®Q3) and
sq(3) matrices act.] We notice that

(L) = =i -
The operator representation of the basiso®) is, according to (9),

Pi=- (Li)jk x"a,- = &ijk x"a,-
or, analytically,

P, = X362—x263 , P>= x163—X361 , P3= x261—x162 .

The reader may check thid, , Pj] = gijk Pk .
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3. Group operatorsfor general coordinate transformations

The previous results are valid flarear (matrix) groups, in which casgX represents

the action of annixm) matrix on a vector oR™ More generally, consider an
m-dimensional manifold/ with coordinatesx, ...,x™) and letG be ann-dimensional
local Lie group of coordinate transformations Mn(see [6] for rigorous definitions
and examples). The elementsf G depend om real parametersy, ..., a"). We call

x= (X, ..., X" a point onM and we denote bgx a (possibly nonlinear) coordinate
transformation on this manifold. To the first ordethe group parameteaé, l.e., for
infinitesimalda’, such a transformation is approximately lineathimda’. We write:

(@x)'= X+5% where sk=64d U (X (12)

LetF (x) be an arbitrary function a. As before, we define the operators

T@): F>T(@QF, geG
by
[T(9) FI(Y=F(g*¥ (13)

Again, theT (g) constitute an operator representatioGof

T(9192) =T(91) T(Q2) -

[Careful: g1 g2 is no longer a matrix product but a successionooirdinate transfor-
mations! It is still true, however, thah@,) ' = g, g1 %]

Given that, by (12),
(gx)'=X+5d U (X)
we have that

(97'%'= X-5d U, (X).
Let us justify this statement:
(979%'=(9%'-5d U(( oy
=X + &t Uy (X) -5 U, ( X+ & Uy)
By using Eq. (A.1) in the Appendix we have thatite first order in théa®,
satU} (X+sa u;)z 5&[u;(>&<)+5af Uo, U Jz)]
= sa* U} (X)

Thus, finally, @gx)'=x' < g~gx = identity transformation.
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By using (A.1) once more, the infinitesimaksion of (13) is written:

[T(9) FI(Y = F(X-5d U )= R x-64 Yo, K X
=(1-0a’U}0, )F(x) =

T@)=Lsa'U0 =k5dP (14)
where

P, =-U;(X)¢ [15

It can be proven [3] that the operatBys(A = 1,...,n) form the basis of an-
dimensional Lie algebra:

(R B=C, R i16
Let us see what this implies: Let

P,=-U,(X)0,, B=-Ui(X)o, .
Then,
[P, B]=(U,0, U}, -U,4 UL ) o,

A set of real constant§/; must then exist such that

U,o,U}-Uya Ul =-Cr,Ul (17)
Then,
[P, B1=-Cl, Ul o, = C, P .

Relations (17) are conditions for closure, underlile bracket, of the set of operators
spanned by the basi®f; that is, conditions in order that this set catusé a Lie al-
gebra.
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Appendix: Multidimensional Taylor expansion

The Taylor series expansion of a functigx) about a poink can be written as

f(x+ h) = Z H"( )f(x)—f(g f(x)

We write:

= 1(, d)" d
f(x+h){z—(h&” f(x):exp(h&j f(x) .

—on!

For infinitesimal h= 6x we may use the approximate expression

F(x46%) = F(x+0 x|
dx

More generally, consider a functign(x}, x?,---)=® (). Let a=(a’, a,---) be
a constant vector. Then,

(oo}

O(r+a) = Z @-V)"®(F)=0()+a- V(1) +-

n=0
whereV® = (60 /dx, 0D /6x%,---). We write:

O(F+4) = {i—(a V)" }@(F)zexp(é-?)d) ).
nO

For infinitesimala = 6t ,

OF+6F)=DF)+ -VOF)= Of)+5D where

"M)—(kr) (sum ork ) (A1)
oX

SO =S5F-VO(F) = 6
Indeed, notice that, infinitesimally,

5®:d®=%d% where dX=05 X.
X

10
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Backlund transformations: An introduction

Costas J. Papachristou

Hellenic Naval Academy

The concept of a Backlund transformation (BT) isdduced. Certain applica-
tions of BTs — both older and more recent ones-decussed.

1. Introduction

Given a difficult problem in mathematics we alw#&ysk for some way tdransform

it to another problem that is easier to solve. Tlhasexample, we seek an integrating
factor that might transform a first-order ordinahyferential equation into an exact

one (or would reduce the order of a higher-ordéfietintial equation, in the more

general case).

A notoriously difficult problem in the theorgf partial differential equations
(PDEs) is the case oonlinearPDEs. In contrast to the case of linear PDEsgtleer
no general method for solving nonlinear ones. Tigugen a nonlinear PDE we look
for ways to associate it with some other PDE (pedfly a linear one!) whose solu-
tions are already known. For example, Baggers equatiornu=uy+2uuy is a nonlin-
ear PDE for the function(x,t) (subscripts denote partial derivatives with respge
the indicated variables). This PDE can be transéornmto the lineaheat equation
Vi=Vyxx by using the so-calle@ole-Hopf transformatioru=vy /v. As can be shown, if
v(x,t) is a solution of the heat equation th&rt) is a solution of the Burgers equation
(the converse is not true in general).

Backlund transformationéBTs) were originally devised mainly as a tool -
taining solutions of nonlinear PDEs (see [1] anel teferences therein). They were
later also proven useful ascursion operatorgor constructing infinite sequences of
nonlocal symmetries and conservation laws of aetiges of PDEs [2—6].

In simple terms, a BT is a system of PDEseating two fields that are required
to independently satisfy two respective PDEs [t&im @) and )] in order for the
system to be integrable for either field. We sagt tthe PDEsd) and ) areinte-
grability conditionsfor self-consistency of the BT. If a solution dP (@) is known,
then a solution of PDEbJ is obtained simply by integrating the BT, withdaving to
actually solve the latter PDE (which, presumablguld be a harder task). In the case
where the two fields satisfy the same PDE, dbé-BT produces new solutions of
this PDE from old ones.

As described above, a BT is an auxiliary foolfinding solutions of a given (usu-
ally nonlinear) PDE, using known solutions of them& or another PDE. Now,
suppose the BT itself is the differential systenosdisolutions we are looking for. As
will be seen, one possible way to solve this pnoblis to first seek parameter-
dependent solutions of both integrability conditaf the BT. By properly matching
the parameters (provided this is possible) a smiutif the given differential system is
obtained.

The above method is particularly effectivéimear problems, given that paramet-
ric solutions of linear PDEs are generally easiefiid. An important paradigm of a
BT associated with a linear problem is offered iy Maxwell system of equations of

! cipapachristou@gmail.com
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electromagnetism [7,8]. As is well known, the cstemcy of this system demands
that both the electric and the magnetic field ireteently satisfy a respective wave
equation. The wave equations for the two fieldsehlmown, parameter-dependent
solutions; namely, monochromatic plane waves willitiary amplitudes, frequencies
and wave vectors (the “parameters” of the probldy)inserting these solutions into
the Maxwell system, one may find the appropriatest@ints for the parameters in
order for the plane waves to also be solutions akWell's equations.

In Section 2 we review the classical conagfpa BT. The solution-generating
process by using a BT is demonstrated in a numfexamples.

In Sec. 3 a different perception of a BT iegented, according to which it is the
BT itself whose solutions are sought. The concégtanametric conjugate solutions
is introduced.

In Sec. 4 we examine the connection betwe&s &d recursion operators for
generating infinite sequences of nonlocal synmewiePDESs.

2. Backlund transformations and generation of soltions

Let u(x,t) be a function of two variables. For the partiafidatives ofu the following
notation will be used:
ou o°u 0%u o°u

8 = f = y = , —— =
u=u, Use Uy —— = U

@—6 u=u — —
ot ! G ot?

ax X X

etc. In general, a subscript will denote partidfedentiation with respect to the indi-
cated variable.

LetF be a function ok, t, u, as well as of a number of partial derivatives.ofVe
will denote this type of dependence by writing

F X6 U UG U4 Yo Y Yoo )= AU
We also write

F =0,F=0F/ox, F,=0,F=0F/ot, F,=0,F=0F/ou ,

etc. Note that in determining, and F; we must take into account both teeplicit
and theimplicit (throughu and its partial derivatives) dependencé-afn x andt. As
an example, forF [u] = 3xtu? we haveF, = 3tu® + 6xtuy, and Fy = 3xu? + 6xtuu .

Consider now two partial differential equasoPDEsP[u]=0 andQ[Vv]=0 for the
unknown functionss andv, respectively, where the bracket notation intredliabove
is adopted. Bothu andv are functions of two variables t. Independently, for the
moment, consider also a pair of coupled PDEsifandv:

B,/[uM=0 (8 B[uy=0 (D (1)

where the expressiors [u,V] (i=1,2) may contain, v as well as partial derivatives
of u andv with respect tox andt. We note thati appears in both equatiors) @nd
(b). The question then is: if we find an expressionuf by integrating ) for a given

v, will it match the corresponding expression fofound by integratingh) for the
samev? The answer is that, in order that and p) be consistent with each other for
solution foru, the functionv must be properly chosen so as to satisfy a cectaisis-
tency conditior(or integrability conditionor compatibility conditioi.
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By a similar reasoning, in order thaj &nd @) in (1) be mutually consistent for
solution forv, for some giveny, the functionu must now itself satisfy a correspond-
ing integrability condition.

If it happens that the two consistency caadg for integrability of the system (1)
are precisely the PDE¥u]=0 andQ[Vv]=0, we say that the above system constitutes a
Backlund transformationBT) connecting solutions oP[u]=0 with solutions of
Q[V]=0. In the special case whelPe=Q, i.e., whenu andv satisfythe samePDE, the
system (1) is called aauto-Backlundransformation (auto-BT) for this PDE.

Suppose now that we seek solutions of the P[DE=0. Assume that we are able
to find a BT connecting solutions of this equation with solutiong of the PDE
Q[Vv]=0 (if P=Q, the auto-BT connects solutionsandv of the same PDE) and let
v=Vg(X,t) be some known solution v]=0. The BT is then a system of PDEs for the
unknownu,

Bluyl=0, i=12 2)

The system (2) is integrable far given that the functiomnp satisfiesa priori the re-
quired integrability conditioQ[v]=0. The solutioru then of the system satisfies the
PDEP[u]=0. Thus a solutiom(x,t) of the latter PDE is found without actually solgi
the equation itself, simply by integrating the B yith respect ta. Of course, this
method will be useful provided that integrating Bystem (2) fow is simpler than
integrating the PDIP[u]=0 itself. If the transformation (2) is an auto-B3r the PDE
P[u]=0, then, starting with a known solutiag(x,t) of this equation and integrating
the system (2), we find another solutig(,t) of the same equation.
Let us see some examples of the use of aBj€nerate solutions of a PDE:

1. TheCauchy-Riemann relatiorsf Complex Analysis,
U =vy (8 u=-v (B 3)

(where the variablé has here been renamgdconstitute an auto-BT for tHeaplace
equation

PLW] = W+ W, =0 @)

Let us explain this: Suppose we want to solve yis¢éem (3) foru, for a given choice
of the functionv(x,y). To see if the PDEsa) and {) match for solution fou, we
must compare them in some way. We thus differen{@twith respect toy and p)
with respect tox, and equate the mixed derivativesuwofThat is, we apply the inte-
grability condition (i)y= (Uy)x . In this way we eliminate the variableand find the
condition that must be obeyed ¥(x,y):

PV =V, +v,=0 .

Similarly, by using the integrability conditiomJy= ()« to eliminatev from the sys-
tem (3), we find the necessary condition in ordhat this system be integrable fgr
for a given functioru(x,y):

P[U =u,+ u,=0.
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In conclusion, the integrability of system (3) wiespect to either variableor v re-
quires that the other variable must satisfy thda@pequation (4).

Let nowvg(x,y) be a known solution of the Laplace equation @bstituting
V=Vp in the system (3), we can integrate this systemh wespect tau. As can be
shown by eliminating/y from the system, the solutianwill also satisfy the Laplace
equation (4). As an example, by choosing the smtuip(x,y)=xy we find a new solu-
tion u(xy)= (0¢—=y)/2 +C.

2. ThelLiouville equationis written
PlU=u,-¢=0 < y-=2¢& (5)

Due to its nonlinearity, this PDE is hard to intggr directly. A solution is thus
sought by means of a BT. We consider an auxiliancfionv(x,t) and an associated
PDE,

QM = v =0 (6)
We also consider the system of first-order PDES,
Ut =v2 &2 (g y-y=v2 &M (b ()

Differentiating the PDEd) with respect td and the PDEK) with respect tok, and
eliminating (i —v;) and (xt+vy) in the ensuing equations with the aid af and (),
we find thatu andv satisfy the PDEs (5) and (6), respectively. This,system (7) is
a BT connecting solutions of (5) and (6). Startivith the trivial solutiorv=0 of (6),
and integrating the system (7), which reads

UXZ\/EGU/Z, u[:\/_ZéJ/Z ﬂ

we find a nontrivial solution of (5):

X+t
u (X t)_—2ln(C—ﬁj

(see Appendix).

3. The 8ine-Gordon” equatiorhas applications in various areas of Physics, e.g.
in the study of crystalline solids, in the transsios of elastic waves, in magnetism,
in elementary-particle models, etc. The equationoge name is a pun on the related
linear Klein-Gordon equation) is written

Plu=u,-sinu=0 < uy,=sinu (8)

The following system of equations is an auto-BTtfe nonlinear PDE (8):

1 . (u-=-V 1 1 .(u+v
E(U+V)X: asm(Tj , —2(u— V)t=g sv(—zj 9)
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wherea (#0) is an arbitrary real constant. [Because of tesgnce of, the system
(9) is called gparametricBT.] Whenu is a solution of (8) the BT (9) is integrable for
v, which, in turn, also is a solution of (8fv]=0; and vice versa. Starting with the
trivial solution v=0 of v= sinv, and integrating the system (9), which reads

Si

4

. u 2
u,=2asin— , U=—
2 a

Nj=

we obtain a new solution of (8):
u(xt) :4arctan[ C exé ax+ %aj}

3. Method of parametric conjugate solutions

(see Appendix).

As presented in the previous section, a BT is adliaty device for constructing so-
lutions of a (usually nonlinear) PDE from known g@ns of the same or another
PDE. The related problem where solutions of théedghtial system representing the
BT itself are sought is also of interest, howewsd has been studied in connection
with the Maxwell equations of electromagnetism [.7,8

To be specific, assume that we need to iategx given system of PDEs connect-
ing two unknown functions(x,y) andv(x,y):

Bluv=0, i=12 (10)

Suppose that the integrability of the above sysi@nboth functions requires that
andv separately satisfy the respective PDEs

Plu=0 (9  dV¥=0 (b (11)

That is, the system (10) is a BT connecting sohgiof the PDEs (11). Assume, now,
that these PDEs possess kngyvanmameter-dependent solutioakthe form

u=~f(x vy,a,f,...) , v=0d(X VYx,1,..) (12)

wherea, f, k, 4, etc., are (real or complex) parameters. If valiethese parameters
can be determined for whiahandv jointly satisfy the system (10), we say that the
solutionsu andv of the PDEs (14) and (1D), respectively, areonjugate through the
BT (10) (orBT-conjugatefor short). By finding a pair of BT-conjugate stbns (12)
one thus automatically obtains a solution of thretesy (10).

Note that solutions dfoth integrability conditions (11) of the system (10ush
now be known in advance! From the practical pointiew the method is thus most
applicable inlinear problems, since it is much easier to find param@épendent so-
lutions of the PDEs (11) in this case.

Let us see an example: Going back to the IBaReemann relations (3), which is
an auto-BT connecting solutions of the Laplace &gnd4), we try the following pa-
rametric solutions of the latter PDE:
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u(x =a(X-yY)+pxyy,
V(X V)= Xy+A X+ u y.

Substituting these expressions into the BT (3),fwe that x=2a, u= andi= —.
Therefore, the solutions

u(x Y=a(X- )+ xyy,
V(X Y)=2axy-y xSy
of the Laplace equation are BT-conjugate throughGhuchy-Riemann relations.
As a counter-example, let us try a differ@mhbination of parametric solutions:
u(x y)=axy, Mxy=paxy.

Inserting these into the system (3) and taking adcount the independencexcnd
y, we find that the only possible values of the patersa andp area=£=0, so that
u(x,y)= v(x,y)=0. Thus, no non-trivial BT-conjugate solutions éxmsthis case.

4. BTs as recursion operators for symmetries of PEs

The concept of symmetries of PDEs has been exwgsiiscussed in [1] and [9]. Let
us review the main ideas:

Consider a PDE[u]=0, whereu=u(xt). A transformatioru (x,t) —> u’ (x,t) from
the functionu to a new functioru” represents aymmetryof this PDE if the following
condition is satisfiedu’(x,t) is a solution of[u]=0 if u(x,t) is a solution. That is,

F[u]=0 when FJ[u]=0 (23)
Aninfinitesimal symmetry transformatias written
uU=u+du=u+aqy (14)

wherea is an infinitesimal parameter. The functiQu]=Q(x, t, u, ux, U ,...) is called
thesymmetry characteristiof the transformation (14).

In order that a functioQ[u] be a symmetry characteristic for the PBRi]=0, it
must satisfy a certain PDE that expressessgimametry conditiorfor F[u]=0. We
write, symbolically,

S(Q; =0 when FJ[ul=0 (15)

where the expressidddependdinearly on Q and its partial derivatives. Thus, (15) is
a linear PDE forQ, in which equation the variable enters as a sort of parametric
function that is required to satisfy the PBRi]=0.

A recursion operatorfz [10] is a linear operator which, acting on any syetry
characteristi®, produces a new symmetry characteriiec- RQ. That is,

S(RQ =0 when S(Q 0= C (16)

It is easy to show thany power of a recursion operator also is a reconsoperator
This means that, starting with any symmetry charastic Q, one may in principle
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obtain an infinite set of characteristics (thus,iafimite number of symmetries) by
repeated application of the recursion operator.

A new approach to recursion operators wagestgd in the early 1990s [2,3] (see
also [4-6] and [11-13]). According to this view,racursion operator for the PDE
F[u]=0 is an auto-BT for the linear PDE (15) that expessthe symmetry condition
of F[u]=0; that is, a BT producing new solutio@s of (15) from old onesQ. Typi-
cally, this type of BT producesonlocal symmetries, i.e., symmetry characteristics
depending omtegrals(rather than derivatives) of

As an example, consider tti@ral field equation

Flgl=(g7"g),+(g"'g), =0 (17)

(as usual, subscripts denote partial differentiefjavhereg is aGL(n,C)-valued func-
tion of x andt (i.e., an invertible complemxn matrix, differentiable for alk, t).
LetQ[g] be a symmetry characteristic of the PDE (17is ttonvenient to put

Qldl = g@[q]

and write the corresponding infinitesimal symmetaynsformation in the form
9'=9+69= g+a oP[ d (18)

The symmetry condition th& must satisfy will be a PDE linear ®, thus in® also.
As can be shown [9] this PDE is

S(@; 9= @, + Py +[g g, @ J+[ g' g @] =0 (19)

which must be valid wheR[g]=0 (where, in general, A] B] = AB-BA denotes the
commutator of two matrice& andB).

For a givery satisfyingF[g]=0, consider now the following system of PDEs for
the matrix functionsd and®’:

o, =@ +[gg,, @]

. (20)
- =0, +[g 0, , D]

The integrability condition®’ ), = (®}),, together with the equatidf{g]=0, require

that® be a solution of (19):S(® ; g) = 0. Similarly, by the integrability condition

(®,), =(D,), one finds, after a lengthy calculatioB(®"; g) = 0.

In conclusion, for ang satisfying the PDE (17), the system (20) is a Blating
solutions® and®’ of the symmetry condition (19) of this PDE; thst fielating dif-
ferent symmetries of the chiral field equation (IIMus, if a symmetry characteristic
Q=g of (17) is known, a new characterisf}éc=g®" may be found by integrating the
BT (20); the converse is also true. Since the B) (#oduces new symmetries from
old ones, it may be regarded aeursion operatofor the PDE (17).
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As an example, for any constant maivixthe choiced=M clearly satisfies the
symmetry condition (19). This corresponds to thametry characteristiQ=gM. By
integrating the BT (20) fod’, we getd'=[X, M] andQ '=g[X, M], whereX is the “po-
tential” of the PDE (17), defined by the systenP&fEs

Xe=9"g ., -%=0"g (21)
Note thenonlocal character of the BT-produced symmeQ{y due to the presence of
the potentialX. Indeed, as seen from (21), in order to fadne has tontegratethe
chiral field g with respect to the independent variablesdt. The above process can

be continued indefinitely by repeated applicatibrthe recursion operator (20), lead-
ing to an infinite sequence of increasingly nonl@yanmetries.

Appendix

We describe the process of integrating the BB &nd (%) for the Liouville equa-
tion and the sine-Gordon equation, respectively.

1. The system §J reads
u, =~/2 "2 AQ)
u, =2 e"2 A.2)

We integrate (A.1) for, treatingt as constant:

du u/2 SUI2 gz _ X
&—\/Ee :>je dU—x/EI dx= ¢ __$+ D)

[whereh(t) is a function to be determined], from which wedghat

u=-2 In{— . h(t)} and therefore u, __ =2
V2 - JXE + h(t)
Substituting the above results into (A.2), we get:
W)= ——— = hi)=——sC
V2 J2o o

Thus we finally have:

u(x t):—zln(c:—%tj .
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2. The system &) reads

u, = 2a sin% (A.3)
2 .U

= —sin— A.4

U =~ sin (A.4)

Integrating (A.3) forx and using the integral formula

du 1 ( kuj
J' - =—In| tan—
sinku k 2

we have:
du_ oasiney = j— du_ _ 2aj dx =
dx 2 sin(u/2)
In (tan%) =ax+ g(t) (A.5)
Similarly, integrating (A.4) fot we find:
In (tangj _t +h(x) (A.6)
4 a

By comparing (A.5) and (A.6) we have that
t t
ax+g(t):g+ Y = Y- ax g)t—a.

But, a function ofx cannot be identically equal to a function bfunless both are
equal to the same const&it h(x) —ax =g(t) -t/a=C =

h(Y=ax+ C, d)=—+ C.

a

From (A.5) and (A.6) we then get

In (tan%) = ax+l+ C = (by puttingC in place ofe®)
a

u (X, t):4arctar{C exé ax+éj} .
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Abstract. The study of symmetries of partial differentiabiatjons (PDEs) has been
traditionally treated as a geometrical problem.hditgh geometrical methods have
been proven effective with regard to finding infasimal symmetry transformations,
they present certain conceptual difficulties in ttese of matrix-valued PDEs; for
example, the usual differential-operator repregantaof the symmetry-generating
vector fields is not possible in this case. In thiticle an algebraic approach to the
symmetry problem of PDEs — both scalar and matixed — is described, based on
abstract operators (characteristic derivatives)ddanit a standard differential-operator
representation in the case of scalar-valued PDEsimber of examples are given.

Keywords: Matrix-valued differential equations, symmetryrnséormations, Lie algebras,
recursion operators

1. Introduction

The problem of symmetries of a system of partiffiedeéntial equations (PDES) has
been traditionally treated as a geometrical prohlethe jet space of the independent
and the dependent variables (including a sufficremhber of partial derivatives of the
latter variables with respect to the former ondsyo more or less equivalent ap-
proaches have been adopte:ifivariance of the system of PDEs itself, undénin
tesimal transformations generated by correspondaatpr fields in the jet space [1];
(b) invariance of a differential ideal of differentimrms representing the system of
PDEs, under the Lie derivative with respect tovbetor fields representing the sym-
metry transformations [2-6].

Although effective with regard to calculatisgmmetries, these geometrical ap-
proaches suffer from a certain drawback of con@ptature when it comes to ma-
trix-valued PDEs. The problem is related to thevitadly mixed nature of the coordi-
nates in the jet space (scalar independent vasialdesus matrix-valued dependent
ones) and the need for a differential-operatoresgmtation of the symmetry vector
fields. How does one define differentiation wittspect to matrix-valued variables?
Moreover, how does one calculate the Lie bracketwaf differential operators in
which some (or all) of the variables, as well as toefficients of partial derivatives
with respect to these variables, are matrices?

Although these difficulties were handled onm®e way in [4-6], it was eventually
realized that an alternative, purely algebraic apph to the symmetry problem would
be more appropriate in the case of matrix-valuedE®Elements of this approach
were presented in [7] and later applied in paréicgiroblems [8-10]; no formal theo-
retical framework was fully developed, however.

An attempt to develop such a framework is eniadthis article. In Sections 2 and
3 we introduce the concept dharacteristic derivatives an abstract generalization of
vector fields in differential-operator form — andevdemonstrate the Lie-algebraic
character of the set of these derivatives.
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The general symmetry problem for both scalad matrix-valued PDEs is pre-
sented in Sec. 4, and the Lie-algebraic propertyyofmetries of a PDE is proven in
Sec. 5. In Sec. 6 we discuss the conceptretarsion operatofl1,8-14] by which an
infinite set of symmetries may in principle be pnodd from any known symmetry.
An application of these ideas is made in Sec. ddnyg the chiral field equation as an
example.

A symmetry of a PDE amounts to the invariaotCthis equation under the action
of a corresponding characteristic derivative. Gitlem latter operator anfinitesimal
symmetry of the PDE may be defined. Section 8 dises the use of symmetry opera-
tors to construcfinite one-parameter symmetry transformations of PDEsa fpgsda-
gogical example, a number of point-symmetry tramsédgions for the two-
dimensional Laplace equation are derived in Sec. 9.

To simplify our formalism we will restrict oanalysis to the case of a single PDE
in one dependent variable. For systems of scalaedaPDEs in several dependent
variables see, e.g., [1].

2. Thefundamental operators

A PDE for the unknown function=u(x}, »2, ...) = u(x) [where by &) we collectively
denote the independent variabiésx?, ...] is an expression of the forju]=0, where
FE{u] =F(X, u, ug, U, ...) is a function in thget spacd1] of the independent variables
(X)), the dependent variable and the partial derivatives of various ordersiafith
respect to the, which derivatives will be denoted by using Sulgser Uy, U, Um,
etc. Asolutionof the PDE is any functiou:(p(x") for which the relatior[u]=0 is
satisfied.

The dependent variahleas well as all functionS[u] in the jet space, will gener-
ally be assumed to be square-matrix-valued of fijed otherwise unspecified) ma-
trix dimensions. In particular, we require that,ii® most general form, a function
F[u] in the jet space is expressible as a finite oinfinite sum of products of alternat-
ing x-dependent and-dependent terms, of the form

Flu=>axX)ynfg by ueH - (2.1)

where thea(x), b(x‘), c(X"), etc., are (generally) matrix-valued and wheeertratrices
IT[u], TT'[u], etc., are products of variablesuy, uy , etc., of the “fiber” space (or,
more generally, products of powers of these vaegblThe set of all functions (2.1) is
thus a (generally) non-commutative algebra.

If u is a scalar quantity, a total derivative operatom be defined in the usual dif-
ferential-operator form

0 0 0 0
D=—+u—+ U + U e 2.2
'ox TR ou, ik Ouy (2:2)

where the summation convention over repeated updamah indices (such gsandk
in this equation) has been adopted and will be tisedighout. If, howevewn is ma-
trix-valued, the above expression is obviously vadid. A generalization of the defi-
nition of the total derivative is thus necessaryrfatrix-valued PDEs.
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Definition 2.1.Thetotal derivative operatowith respect to the variabiéis a lin-
ear operatob; acting on functiong[u] of the form (2.1) in the jet space and having
the following properties:

1. On function§(xX") in the base spac); f(X) = of/ox = &; f(XY).
2. FoiF[u]=u, u;, u;, etc., we haveD;u=u;, Diju;=Dju = u;=u;, etc.

3. The operatdD; is aderivationon the algebra of all matrix-valued functions of
the form (2.1) in the jet space; i.e., thabniz ruleis satisfied:

Di (F[ulG[u]) = (Di F[u]) G[u] + F[u] DiG[u] (2.3)

Higher-order total derivative®;=D;D; may similarly be defined but they no
longer possess the derivation property. Given &t 6;0; and thatu;=uj; , it follows
thatD;D; = D;D; & Djj = Dj ; that is, total derivatives commute. We writB; [D;]=0,
where, in general A, B] = AB-BAwill denote thecommutatorof two operators or two
matrices, as the case may be.

If u™is the inverse afi, such thauu™= u™'u= 1, then we can define

D. (ufl) =—u'(Quju* (2.4)

Moreover, for any functiond[u] andBJ[u] in the jet space it can be shown that
Di[A B] = [DiA, B] + [A, Di B] (2.5)
As an example, lex’( x%) = (x, t) and letF[u]=xtu, whereu is matrix-valued.
Writing F[u]=Xtuxuy, we haveD; F[u]=XuUy® + Xt (U Uy + Uy Uyt ).

Let nowQ[u] = Q (X", u, Uy, Ug, ...) be a function in the jet space. We will cait
acharacteristic functior{or simply acharacteristig of a certain derivative, defined as
follows:

Definition 2.2.Thecharacteristic derivativavith respect t®@Q[u] is a linear opera-
tor Ag acting on function&[u] in the jet space and having the following projestt

1. On function§(x") in the base space,
Ao f(X)=0 &P

(that is,Aq acts only in the fiber space).
2. ForF[u]=u,
Aqu=Q[u (2.7)

3.Aq commutes with total derivatives:
AgDi=DiAq < [Ag,Di]=0 (alli) (2.8)

4. The operatkg is aderivationon the algebra of all matrix-valued functions of
the form (2.1) in the jet space (the Leibniz rdeatisfied):
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Aq (FIUIG[u]) = (AQF[ul) G[u] + F[u] AQGIu] (2.9)
Corollary: By (2.7) and (2.8) we have:
Aqui = Aq Diu=DiQ[u] (2.10)

We note that the operat is a well-defined quantity, in the sense thatabgon
of Ag on u uniquely determines the action af on any functionF[u] of the form
(2.1) in the jet space. Moreover, since, by assiompti and Q[u] are matrices of
equal dimensions, it follows from (2.7) thisg preserves the matrix characterupfas
well as of any functio[u] on which this operator acts.

We also remark that we have imposed conditi@®6) and (2.8) having a certain
property of symmetries of PDEs in mind; namayerysymmetry of a PDE can be
represented by a transformation of the dependemdbla u alone, i.e., can be ex-
pressed as a transformation in the fiber space{$e€hap. 5).

The following formulas, analogous to (2.4348.5), may be written:

AQ(ufl)z—ufl(AQu) ut (2.11)
Ao[A Bl = [AoA, B] + [A, AgB] (2.12)

As an example, lex'( x%) = (x, t) and letF[u]=a(x,t)u’b(x,t)+[uy, ] , wherea, b
and u are matrices of equal dimensions. Writiggruu and using properties (2.7),
(2.9), (2.10) and (2.12), we find\q F[u]=a(x,t)(Qu+uQ)b(x,t)+[Dx Q, u]+[ux, D; Q].

In the case whereis scalar-valued (thus so @u]) the characteristic derivative
Aq admits a differential-operator representatiorhefform

0 0 0
AQ=Q[U%+(D|QG)E+(DQQh)a+--- (2.13)

[See [1], Chap. 5, for an analytic proof of prop€#.8) in this case.]

3. TheLiealgebra of characteristic derivatives

The characteristic derivative'sy acting on functiong[u] of the form (2.1) in the jet
space constitute laie algebra of derivationsn the algebra of thig[u]. The proof of
this statement is contained in the following thirgepositions.

Proposition 3.1Let Ag be a characteristic derivative with respect todharacter-
istic Q[ul; i.e., Aqgu=QJ[u] [cf. Eq. (2.7)]. Letl be a constant (real or complex). We
define the operatoiAq by the relation

(AAQ) Flu] = 2 (AqF[u]).

Then,AAq is a characteristic derivative with characterig@u]. That is,

Ahg =40 (3.1)
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Proof. (a) The operatoiAq is linear, since so &g .
(b) ForF[u]=u, (AAg)u=A(Aqu)=AQ[U] .
(c) AAqg commutes with total derivativéy , since so doeAg .
(d) Given thatAq satisfies the Leibniz rule (2.9), it is easily simothat so doesAq .

Comment:Condition €) would not be satisfied if we allowédo be a function of
thex instead of being a constant, sir¢e) generally does not commute with the
Therefore, relation (3.1) is not valid for a nomstanti.

Proposition 3.2.Let A; and A, be characteristic derivatives with respect to the
characteristic€i[u] and Q,[u], respectively; i.e.A;u=Q;[u], A.u=Q[u]. We define
the operaton;+A; by

(A1+Az) F[u] = Ag Fu] + Az F[Uu] .
Then,A;+A; is a characteristic derivative with characteriQifu]+Q,[u]. That is,
Aj+A,=Ag with QU =Qd+Q U (3.2)

Proof. (a) The operaton;+A; is linear, as a sum of linear operators.
(b) ForF[ul=u, (Ai+Az)u= Aju+Au= Qi[u]+Q[u] .
(c) A1+A, commutes with total derivativey , since so da; andA; .

(d) Given that each af; andA; satisfies the Leibniz rule (2.9), it is not haodshow
that the same is true foR+A; .

Proposition 3.3.Let A; and A, be characteristic derivatives with respect to the
characteristic€i[u] and Q,[u], respectively; i.e.A;u=Q;[u], A,u=Q[u]. We define
the operatorA;, A;] (Lie bracketof A; andA,) by

[A1, Ag] F[U] = A1 (A2F[u]) —A2 (AL F[U]) .

Then, A1, A7] is a characteristic derivative with charactecigtiQo[u]l—A2Q1[u]. That
IS,

[Ay, Ajl=Aq with QU =4,Qf §-A,Q b= Q,]u (3.3)

Proof. (a) The linearity of A1, A;] follows from the linearity ofA; andA;.
(b) ForF[u]=u, [A1,AzJu= A1(Azu) —Az(A1u) = A1Qo[U]-A2Qu[U] = Q1 U] .
(©) [A1,Az] commutes with total derivativd3;, since so da; andA; .

(d) Given that each of; andA, satisfies the Leibniz rule (2.9), one can shovwefaf
some algebra and cancellation of terms) that threega true for A1, Az].

In the case whene (thus theQ'’s also) is scalar-valued, the Lie bracket admits a
standard differential-operator representation:
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[A, Az]:Ql,z[qa_i+(qQ1,) ‘ +(DD] Q12)£+ (3.4)

Zaq J

where Q]_,z[U] = [A]_, Az] u= A]_QQ[U] —AZQ]_[U] .
The Lie brackety; , A] has the following properties:

1. [A1,aAx*+bAs] = af[A1, A] +b[A1,Ag] ;
[aA1+bA,, As] = a[A1, Ag] +b[A2, A3] @ b =const.)

2. [A1,A))=-[A2,A1] (antisymmetry

3. [A1, [A2,As]] + [Az, [As, Aq]] + [As, [A1,A2]] =0
[[A1,Az], Ag] + [[A2,As], Aq] + [[A3,Ad] , Al =0 @acobi identity

4. Infinitesmal symmetry transfor mations of a PDE

Let F[u]=0 be a PDE in the independent variabtés x*, »°, ..., and the (generally)
matrix-valued dependent variahle A transformatioru(x)—u’(x) from the function
u to a new functioru” represents aymmetryof the PDE if the following condition is
satisfied:u’(x") is a solution of[u]=0 whenu(xX") is a solution; that i5[u’]=0 when

F[u]=0.

We will restrict our attention toontinuous symmetriegnd, for the moment, to
infinitesimal transformations. Although such symnest may involve transformations
of the independent variableg), they may equivalently be expressed as transforma
tions ofu alone (see [1], Chap. 5), i.e., as transformatiorise fiber space.

An infinitesimal symmetry transformation isitten symbolically as

u— u=u+du

wheredu is an infinitesimal quantity, in the sense thatpalwers §u)" with n>1 may
be neglected. Theymmetry conditiors thus written

Flu+éu] =0 when F[u] =0 4.1)
An infinitesimal changéu of u induces a chang#-[u] of F[u], where
oF[u] = F[u+du] — F[u] < F[u+ou] = F[u] + 6F[u] (4.2)
Now, if éu is an infinitesimal symmetry and if is a solution ofF[u]=0, thenu+du
also is a solution; that i$[u+ou]=0. This means thadF[u]=0 whenF[u]=0. The
symmetry condition (4.1) is thus written as follows
oF[u]=0 mod F[u] *.3
A finite symmetry transformation (we dendtl) of the PDEF[u]=0 Eroduces a

one-parameter family of solutions of the PDE frony given solutioru(x’). We ex-
press this by writing
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M: u(X) —>T(X5e) with T(X;0)= u X) (4.4)
For infinitesimal values of the parameter

u(xXa)= uUxX)+ad § where QQ=3—U (4.5)
(04

a=0

The functionQ[u] = Q(X*, u, Uy, g, ...) in the jet space is called thearacteristicof
the symmetry (or, theymmetry characterisficPutting

Su=u(X;a)- u X) (4.6)
we write, for infinitesimakb,
ou = aQ[u] 4.7)

We notice that the infinitesimal operatdras the following properties:
1. According to its definition (4.2),is a linear operator

Oo(F[u]+G[u]) = (F[u+du]+ Glu+du]) —(F[u]+G[u]) = oF[u]+0G[U] .

2. By the nature of our symmetry transformatiofiggroduces changes in the fiber
space while it doesn't affect functioh&<) in the base space [this is implicitly stated
in (4.6)].

3. Sinced represents a difference, it commutes with alll tdéaivativesD; :

o (Di AlU]) = Di (6A[L]) -
In particular, forA[u]=u,
ou; = 5(Di U) =bh (5U) = aD; Q[U] )

where we have used (4.7).
4. Sinceo expresses an infinitesimal change, it may be aqmated to a differential;
in particular, it satisfies the Leibniz rule:

o (ALu]B[ul) = (6A[u]) B[u] + Alu] oB[u] .

For example,d(u?) = 5(uu) = (Su)u+udu = a(Qu+uQ).

Now, consider the characteristic derivaihgwith respect to the symmetry char-
acteristicQ[u]. According to (2.7),

Aqu= Q[u] (4.8)

We observe that the infinitesimal operadaand the characteristic derivati¥g share
common properties. From (4.7) and (4.8) it follothat the two linear operators are
related by
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ou = aAqu (4.9
and, by extension,
oui = aD; Q[u] = alAgui, etc.

[see (2.10)]. Moreover, for scalar-valuadand by the infinitesimal character of the
operator, we may write:

OoF[u] :2—55u+2—55q o= o{%q l]|+2—|; DO }J+§% LD p_]u+---}
|

while, by (2.13),

AQFM:%Q[M%DQW% DO Q- (4.10)
The above observations lead us to the coiociubat, in general, the following
relation is true:
OF[u] = a Aq F[U] (4)11
The symmetry condition (4.3) is thus written:
AqF[u]=0 mod F[u] (4.12)

In particular, ifu is scalar-valued, the above condition is written
oF oF oF
—Q[u+—D +— +---=0 mod 4.13
auQ[] o d 4 aquQQ]J Tt (4.13)

which is a linear PDE faQ[u]. More generally, for matrix-valuedland for a function
F[u] of the form (2.1), the symmetry condition for tRBEF[u]=0 is alinear PDE for
the symmetry characterist@u]. We write this PDE symbolically as

S(Q;u) =AgF[ul =0 mod F[u] (4.14)

where the functiors(Q; u) is linear inQ and all total derivatives d. (The linearity
of Sin Q follows from the Leibniz rule and the specificiof2.1) ofF[u].)

Below is a list of formulas that may be usdficalculations:

o Aou=DiQ[u], Aquj=D;iD;Q[u], etc.

o AqU’= Ag(uu)= Q[ulu+uQ[u] (etc.)

o AgU)=—-UuT(Aqu)u=—utQuuT

e Aq[Alu], B[Ul] = [AgA, B] + [A, AgB]
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CommentAccording to (4.12)AqF[u] vanishes ifF[u] vanishes. Given thalg is
a linear operator, the reader may wonder whetherctindition is identically satisfied
(a linear operator acting on a zero function alwageduces a zero function!). Note,
however, that the functioR[u] is not identicallyzero; it becomes zero onlgr solu-
tions of the given PDE. What we need to do, therefardo ifirst evaluatég F[u] for
arbitrary u andthen demand that the result vanigtnen uis a solution of the PDE
F[u]=0.

An alternative — and perhaps more transparergrsion of the symmetry condi-
tion (4.12) is the requirement that the followimdation be satisfied:

AoFlul = LAY (415

whereL is a linear operator acting on functions in thesfgace (see, e.g., [1], Chap. 2
and 5, for a rigorous justification of this conditiin the case of scalar-valued PDES).
For example, one may have

AFIU =Y A BAT+Y (¥ DD E U+ 8§ Flu+ [Flu(B X
I 1)

where theg; andy; are scalar-valued whilé& and B are matrix-valued. Let us see
some examples, restricting for the moment our atterio scalar PDESs.

Example 4.1Thesine-Gordon (s-G) equatias written

F[u] = ux— sinu=0.
Here, &%) =(xt). Since sin can be expanded into an infinite series in powérs
we see thaE[u] has the required form (2.1). Moreover, sinds a scalar function, we
can write the symmetry condition by using (4.13):

S(Q;u)=Qx —(co) Q=0 mod F[u]

where§Q; u)= Aq F[u] and where by subscripts we denote total diffeations with
respect to the indicated variables. Let us vetiiy solutionQ[u] = ux . As will be
shown in Sec. 9, this characteristic producesithiefsymmetry transformation

M: u(xt)>U(x ta)=u(xa, ) (4.16)

which implies that, ifu(x,t) is a solution of the s-G equation, the(x, t) = u( X+ «, 1)
also is a solution. We have:

Qxt — (cou) Q = (Ux) xt — (co) Ux= (Ux; — SiNU)x= DxF[u] =0 mod F[u] .

Notice thatAgF[u] is of the form (4.15), withL = D,. Similarly, the characteristic
Q[u]=u; corresponds to the symmetry

M:u(xt)>T(x ta)=u(x tra) (4.17)
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That is, if u(xt) is a solution of the s-G equation, then s@i (% t)=u(x t+«a). The
symmetries (4.16) and (4.17) reflect the fact thats-G equation does not contain the
variablesx andt explicitly. (Of course, this equation has many ensymmetries that
are not displayed here; see, e.g., [1].)

Example 4.2Theheat equations written
Flul=u-uw=0.
The symmetry condition (4.13) reads
S(Q;u)=Qi—Qx=0 mod F[u]

where§Q; u)= AgF[u]. As is easy to show, the symmetries (4.16) anti7(dare valid
here, too. Let us now try the soluti@Qfiu] =u. We have:

Qt _QXX: Ui — Uxx = F[U] =0 mod F[U] .
As will be shown in Sec. 9, this symmetry correggmoto the transformation
M: u(xt)>U(x ta)= €& u( X} (4.18)

and is a consequence of the linearity of the hga&tgon.
Example 4.30ne form of thBurgers equatioris

Flul= u- uxx_Ux2= 0.
The symmetry condition (4.13) is written
S(Q;u) =Qt —Qux—2uQx=0 mod F[u]

where, as alwaysyQ; u)=Aq F[u]. Putting Q= ux, andQ= u; , we verify the symme-
tries (4.16) and (4.17):

Qt _QXX_ZUXQXZ Uxt— Wexx— 2uxuxx= DxF[U] =0 mod F[U]
Qt — Qux—2UkQx = Uit — Ut— 2UxU = DtF[u] =0 mod F[u]

Note again thatgF[u] is of the form (4.15), with_ = D, and L= D,. Another sym-
metry isQ [u]=1, which corresponds to the transformation (see S)

M: u(xt)—> u(x ta)=u(x )+« (4.19)

and is a consequence of the fact thanters=[u] only through its derivatives.
Example 4.4Thewave equatioms written

Flul= u— c®ux=0 (c=const.)

10
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and its symmetry condition reads
S(Q;u)=Qy —c®Qw=0 mod F[u] .

The solutionQ[u] =X Uyt tu; corresponds to the symmetry transformation (Sec. 9
M:u(xt)>TU(x ta)=u(é& x &Y (4.20)

expressing the invariance of the wave equation nadeale change ofandt. [The
reader may show that the transformations (4-1@).19) also express symmetries of
the wave equation.]

It is remarkable that each of the above PBdsits an infinite set of symmetry
transformations [1]. An effective method for findisuch infinite sets is the use of a
recursion operatarwhich produces a new symmetry characteristicyetrare it acts
on a known characteristic. More on recursion opesawill be said in Sec. 6.

5. TheLiealgebra of symmetries

As is well known [1] the set of symmetries of a PBE[lH]=0 has the structure of a Lie
algebra. Let us demonstrate this property in theeecd of our formalism.

Proposition 5.1.Let £ be the set of characteristic derivatives with respect to
the symmetry characteristi€fu] of the PDEF[u]=0. The set is a (finite or infinite-
dimensional) Lie subalgebra of the Lie algebraludracteristic derivatives acting on
functionsF[u] in the jet space (cf. Sec. 3).

Proof. (a) Let Age £ < AgF[u]=0 (modF[u]). If 4 is a constant (real or complex,

depending on the nature of the problem) thexy)F[u] = 1Aq F[u]=0, which means
that 1Aqe L. Given thatiAq=A,q [see Eq. (3.1)] we conclude thatQfu] is a sym-
metry characteristic d¥f[u]=0, then so Q[ ul].

(b) Let AseL and A,eL be characteristic derivatives with respect to shemetry

characteristic®i[u] and Q[u], respectively. ThenA;F[u]=0, A,F[u]=0, and hence
(A1+A2)F[u] = A1F[u]+AoF[u]=0; therefore, A;:+Az)e L. It also follows from Eq. (3.2)
that, if Qi[u] and Q,[u] are symmetry characteristics Bfu]=0, then so is their sum

Qu[u]+Q2[u].
(c) LetA;eL andAye L, as above. Then, by (4.15),
AF[U =LA, AFU=0Ad.

Now, by the definition of the Lie bracket and tlwehrity of bothA; and [| (i=1,2)
we have:

[Ar, AJFIU =A{AH D) —AGAF D =AGLED —AG LFD
= (AL, —A,L)F[u] =0 mod F[u]

11
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We thus conclude that\f, A;] L. Moreover, it follows from Eq. (3.3) that, @;[u]
andQ[u] are symmetry characteristicsEffu]=0, then so is the function

Q1.2[U] = A1 QofU] — A2Qu[U] .

Assume now that the PDHu]=0 has ann-dimensional symmetry algebré&

(which may be a finite subalgebra of an infiniteagnsional symmetry Lie algebra).
Let {A1, Az, ..., An}={ A}, with corresponding symmetry characteristi€g}, be a set

of n linearly independent operators that constitutasisofL, and letA; , Aj be any

two elements of this basis. Given that,[Aj] € £, this Lie bracket must be expressible
as a linear combination of tha{}, with constant coefficients. We write

[A; Aj]:iqu(Ak (5.1)
k=1

where the coefficients of th& in the sum are the antisymmetsicucture constants
of the Lie algebra in the basis Ay}.

The operator relation (5.1) can be expresseth equivalent, characteristic form
by allowing the operators on both sides to actuoand by using the fact that

AU=QyJu]:

[A,, Aj]uz(iqjmkjmiqu ) =
k=1 k=1

Ain[U]—AjQ[l]=an:¢Qll 5.2)
=1

Example 5.10ne of the several forms of tK@rteweg-de Vries (KdV) equatios
Flul= U+ U+ U= 0 .
The symmetry condition (4.14) is written
S(Q;u)=Qi+ Que+ UQ+ Qux=0 mod F [u] (5.3)

where§Q; u)= AqF[u]. The KdV equation admits a symmetry Lie algebirantinite
dimensions [1]. This algebra has a finite, 4-dinemal subalgebra of point trans-
formations A symmetry operator (characteristic derivative) is determined by its
corresponding characteris@fu]=Aqu. Thus, a basisA;,...,A4} of £ corresponds to

a set of four independent characteristi@s {..,Q4}. Such a basis of characteristics is
the following:

Qiul= ux, Qul=u, Qsu]l=tux—1, Qafu]= xuk+3tu;+ 2u

TheQ,...,Q, satisfy the PDE (5.3), since, as we can show,

12
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S(Qu;u)=DxF[u], S(Qz;u)=DiF[ul, S(Qs;u)=tD«F[u],
S(Q4; u) = (5+xDy+ 3tDy) F[u]

[Note once more thatgF[u] is of the form (4.15) in each case.] Let us n@e svo
examples of calculating the structure constants by application of (5.2). We have:

A1Qy—ALQ=A U —Au=(A 10— (A ,0,=(Q)—(QN=(Y—(Y,=0
4

chsz

k=1

Since theQy are linearly independent, we must necessarily hq'y&O , k=1,2,3,4
Also,

AyQ3—A3Q,=A (tu —1)-A zu= t{A ,U,—(A 39= (Q)—( Q)
:tutx_(ux+tuxt):_ u=—Q = 24: éS Q
=]

Therefore, Cj;=—1, C3,=C3,= c5,=0.

6. Recursion operators

Let ou=aQ[u] be an infinitesimal symmetry of the POEuU]=0, whereQ[u] is the
symmetry characteristic. For any solutia@*) of this PDE, the functio®[u] satisfies
the linear PDE

S(Q: U) = AgF[u] =0 (6.1)

Because of the linearity of (6.1) @, the sumQ[u]+Q[u] of two solutions of this
PDE, as well as the multipk[u] of any solution by a constant, also are solutiohs
(6.1) for a givenu. Thus, for any solutiow of F[u]=0, the solutions Q[u]} of the
PDE (6.1) form a linear space, which we &l

A recursion operatorfz Is a linear operator that maps the sp&cento itself.
Thus, if Q[u] is a symmetry characteristic &{u]=0 (i.e., a solution of (6.1) for a

givenu) then so islfeq d:
S(RQ 0=0 when S(Q U= C (6.2)

Obviously, any power of a recursion operator assa recursion operator. Thus, start-
ing with any symmetry characteristifu], one may in principle obtain an infinite set
of such characteristics by repeated applicaticih@fecursion operator.

A new approach to recursion operators wagestgd in the early 1990s [11,15-
17] (see also [8-10]) according to which a recursoperator may be viewed as an
auto-Backlund transformatio(BT) [18] for the symmetry condition (6.1) of tRDE
F[u]=0. By integrating the BT, one obtains new solns®@[u] of the linear PDE
(6.1) from known onesQ[u]. Typically, this type of recursion operator prods

13
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nonlocal symmetries in which the symmetry characteristipeshels onintegrals
(rather than derivatives) af. This approach proved to be particularly effectioe
matrix-valued PDEs such as the nonlinear self-Maaig-Mills equation, of which
new infinite-dimensional sets of “potential symnmesi were discovered [9,11,15].

7. An example: Thechiral field equation

Let us consider thehiral field equation
Flal=(g7g)+(g"g), =0 (7.1)

where, in general, subscriptsandt denote total derivativeld, andD; , respectively,
and whereg is aGL(n,C)-valued function ofx andt, i.e., a complex, non-singular
(nxn) matrix function, differentiable for ak andt. Let 5g=aQ[g] be an infinitesimal
symmetry transformation for the PDE (7.1), with syetry characteristiQ[g]=Aq Q.

It is convenient to put

Qlgl=go[g < @[g]=97Qd-
The symmetry condition for (7.1) is
AqF[g] =0 mod F[g] .

This condition will yield a linear PDE fd® or, equivalently, a linear PDE fdr. By
using the properties of the characteristic deneatve find the latter PDE to be

S(@: 9= D(®,+[g" g, @)+ D(®+[ g" g @])=0mod K §  (72)

where the square brackets denote commutators oicest
A useful identity that will be needed in thexjuel is the following:

(9790« (978) +[g" g, g'gl=0 (7.3)
Let us first consider symmetry transformagion the base space, i.e., coordinate
transformations ok, t. An obvious symmetry ig-translation x=x+«, given that the
PDE (7.1) does not contain the independent varialaeplicitly. For infinitesimal
values of the parameter we writedx=a. The symmetry characteristic@g]=gx, so
that ®[g]=g gy . By substituting this expression fdr into the symmetry condition
(7.2) and by using the identity (7.3), we can vetiifat (7.2) is indeed satisfied:
S(®;9)=DxF[g] =0 mod F[g] .

Similarly, fort-translationt '=t+ « (infinitesimally, t=a) with Q[g]=g;, we find

S(®;9)=DiF[g] =0 mod F[g] .

14
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Another obvious symmetry of (7.1) is a scale chamigbothx andt: x'=4x, t'=Ait.
Settingi=1+a, wherea is infinitesimal, we writeix=oXx, dt=at. The symmetry char-
acteristic isQ[g]=xgx+tg: , so that®[g]=xg ‘g+tg~'g: . Substituting ford into the
symmetry condition (7.2) and using the identity8fAvhere necessary, we find that

S(®;g)= (2+xDx+tDy) F[g] =0 mod F[g] .

Let us callQi[g]=0x , Q2[g]=0:, Q3[g]=xgx+tg: , and let us consider the corre-
sponding characteristic derivative operatdrslefined byA; g=Q; (i=1,2,3). It is then
straightforward to verify the following commutatioalations:

[A1, A0 g =A1Q2 —A Q=0 < [A1,A] =0
[A1,A5] 9 =A1Q3 —AsQ1 = == - Q1= - A19 < [A1,Ag] =—Aq;
[A2,A3] 9 = A2Q3 —A3Q2=—0=—Qx=—A29 < [A2,A3]=—A;.

Next, we consider the “internal” transfornoati(i.e., transformation in the fiber
space)g =gA, whereA is a non-singular constant matrix. Then,

Flg'1= A™F[g]A=0 mod F[qg],

which indicates that this transformation is a syrmmnef (7.1). SettingA=1+aM,
whereo is an infinitesimal parameter whiM is a constant matrix, we write, in infini-
tesimal form,0g=agM. The symmetry characteristic g]=gM, so that®[g]=M.
Substituting for® into the symmetry condition (7.2), we find:

S(®;9)=[Flgl.M] =0 mod Fg].

Given a matrix functiog(x,t) satisfying the PDE (7.1), consider the following
system of PDEs for two functiods{g] and®’[g]:

@) = @ +[g7'g, , D]

’ . (7.4)
-O =0, +[g 0,, D]

The integrability condition(or consistency condition®’), = (®}), of this system
requires thatb satisfy the symmetry condition (7.2); i.&(® ; g)=0. Conversely, by
applying the integrability conditiod, ), = (P,), and by using the fact thgtis a so-
lution of F[g]=0, one finds tha®” must also satisfy (7.2); i.eS(®"; g) = 0.

We conclude that, for any functigxt) satisfying the PDE (7.1), the system
(7.4) is anauto-Backlund transformatio(BT) [18] relating solution® and®” of the
symmetry condition (7.2) of this PDE; that is, telg different symmetries of the
chiral field equation. Thus, if a symmetry charaste Q=g® of the PDE (7.1) is
known, a new characterist@'=g®" may be found by integrating the BT (7.4); the
converse is also true. Since the BT (7.4) produese symmetries from old ones, it
may be regarded agecursion operatofor the PDE (7.1) [8-11,15-17].

15
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As an example, consider the internal-symmeltigracteristi€Q[g]=gM (whereM
is a constant matrix) corresponding®fg]=M. By integrating the BT (7.4) fab’, we
get ®'=[X, M] and thusQ'=g[X, M], whereX is the “potential’ of the PDE (7.1), de-
fined by the system of PDEs

X,=g'g,, -X=d'g (7.5)

Note thenonlocal character of the BT-produced symme®¥y due to the presence of
the potentialX. Indeed, as seen from (7.5), in order to ffhdne has tantegratethe
chiral field g with respect to the independent variablesdt. The above process can
be continued indefinitely by repeated applicatibnhe recursion operator (7.4), lead-
ing to an infinite sequence of increasingly nonl@yanmetries.

Unfortunately, as the reader may check, ne iméormation is furnished by the
BT (7.4) in the case of coordinate symmetries @ample, by applying the BT for
Q=gx we get the known symmetQ '=g; ). A recursion operator of the form (7.4),
however, does produce new nonlocal symmetries ftoordinate symmetries in re-
lated problems with more than two independent Wé&® such as the self-dual Yang-
Mills equation [8-11,15].

8. Generation of finite symmetry transformations

As we saw in Sec. 4, given a symmetry opera@one may immediately define an
infinitesimal symmetry of a PDE. Our starting poinbwever, was the idea of using a
finite symmetry transformation to generate a one-paranfetgly of solutions of the
PDE. We thus need to generalize the discussiorof&by allowing the parameter
to assume finite values.

According to (2.7), the characteristic detiv@Ag with respect to the characteris-
tic functionQ[u] satisfies the relation

Aqpu u = Q[Uu] (8.1)
By (8.1) and the properties at, one may determine the action/af on any function
F[u] of the form (2.1), thus construct a new functitgF[u].
Obviously, a change af will induce a corresponding change on any function

F[u]. Given a functionu(x"), a continuous change afmay be expressed as a one-
parameter family of transformations

M: u(xX) > u(xX; ) with T(X;0)= u %) (8.2)

wherea >0. We suppress the independent variabfesvhich are unaffected by the
transformatiorM, and write, simply,

M:u—U(a) with T(0)= u.
Expandingu(«) in powers ofz, we have:

U(a) = u+aQ 4y + higher-order terms irax (8.3)

16



Symmetry operators and symmetry transformatiorBEs

whereQ[u] is given by

d _
EU(Ot)LF0 = QU = Agy U (8.4)

Now, we assume that, for finite values of plaeameter,

d _ — —
Eu(a) = QU(@)]= Aqpuey U@) (8.5)

which is obviously consistent with (8.4). By theoperties of the characteristic de-
rivative it then follows that, for any functidf{u] of the form (2.1),

d . _ _
EF[u(a)]: Aorucay FlU(@)] (8.6)

As an example, leF[ul =u* = AU )] =W a) Wa) . Then, by (8.5) and by using
the Leibniz rule,

d U(a) dTJ(a)

—F[U( a)] = U(a) + W) ——

- {AQ[U(a)] u (0!)} U(a)+ u(“)Aqua)] Ua)
- AQ[U(Ol)] (U(d)U(O{)) = Aqqa)] F[U(O{)]

Equation (8.5), together with the initial dion T(0)=u, is an initial-value
problem that, upon integration, yields a one-patam&ansformation of the form
(8.2). We say that the operaty is thegeneratorof this transformation. As regards
its action on functions, the operatg is seen to be equivalent to the derivativeof
differential geometry (see, e.g., Chap. 5 of [18])d, the latter derivative plays a key
role in the differential-geometric methods for stimgy invariance properties of PDEs
[2-4]. We now revisit the symmetry problem for PDiEsthe context of our present,
more abstract algebraic formalism.

The transformatioM of Eq. (8.2) is asymmetry transformatioor the PDE
F[u]=0 if it leaves this PDE invariant, in the sense thfii(«)] =0 if F[u] =0 . We

write:
F[u(«)] =0 mod F[u] (8.7)

So, if (xX*;0)= u(xX) is a solution ofF[u]=0, then so isu(X*;«) for all values of

the parametera >0. This means thaE[u(«)], viewed as a function af, retains a
constant (zero) value under continuous changes lof mathematical terms,

%F[U(a)]zo mod F[U @)

or, in view of (8.6),

Aoruy F[U(@)]=0 mod F[U@) .

17
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Since this must be valid for any value @fthe above relation will still be true if we
replacea by a new parametgi=a+c, wherec is any constant such th&t0. In par-
ticular, by choosing=—-a = =0, we rewrite the above equation in the simplemfor

Agpy F[u]=0 mod F[u] (8.8)

which is the condition for invariance of the PBRI]=0. As we have seen, this condi-
tion yields a linear PDE for the symmetry charasterQ[u], of the form

S(Q;u)=Agy F[ul=0 mod F[u] (8.9)

where the expressid®(Q;u) is linear inQ and all total derivatives @. In particular,
for scalar-valued (thus scala@Q[u] also) the operatoqg has the form (2.13) and the
symmetry condition (8.9) takes on the form

oF

oF oF
Tt i DA 4+ em

DDQ@b+---=0 mod F ¥ (8.10)

An important class of symmetriedasal (point) symmetries. As discussed in [1],
the symmetry characteristQ[u] of a local symmetry cannot depend on second or
higher-order derivatives af with respect to th&*, while the dependence fon the
first-order derivativesi is also subject to certain restrictions. Oncecalleymmetry
characteristicQ[u] is found by solving (8.9) or (8.10), a one-parsandamily of
symmetry transformations of the PBI]=0, of the form

M:u(xX) > Tu(xX;a) ; T(¥;0)= u X) (8.11)
is obtained by solving the initial-value problent. [Eq. (8.5)]
d _ _
Eu(x“; a)= Q[T
a(x<: 0) = u(xX)

18)

9. Example: Thetwo-dimensional L aplace equation
As an example for illustrating the process of filglone-parameter symmetry trans-

formations of a PDE, we choose the two-dimensiduagdlace equatiorfor a scalar
functionu(x,t):

F[ul= ux+ut=0 (9.1)
Here, &*,x%)=(x,t). The symmetry condition (8.9) or (8.10) yielde tmear PDE
S(Q;u)=Qux+ Q=0 mod F[u] (9.2)

where subscripts indicate total differentiationack symmetry of the PDE (9.1) cor-
responds to a solutio@[u] of (9.2) and leads to a one-parameter familyyofhmmetry

18
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transformations (8.11) by solving the initial-valpeoblem (8.12). Let us see some
examples:

1.Q[u]=1 is a solution of (9.2), hence a symmetry charastierof (9.1). The ini-
tial-value problem (8.12) is written

iU(oz):l ; U(@)=u
da

which is easily integrated to givi@(x, t;) = u( x )+ « . Thus, ifu(xt) is a solution of
(9.1), then so isu(xt)+a . This symmetry reflects the fact thaenters the PDE (9.1)
only through its derivatives (i.e=[u] does not contain itself).

2. For the symmetry characteris@fu]=u we have

iU(oz):U ; U0)=u
do

with solution U(x, t;a) = € U % ). Thus, ifu(xt) is a solution of (9.1), then so is
u(xt) for any constant. This symmetry reflects the fact that the PDE Y&Ihomo-
geneous linear in.

3.Q[u]=uy is another symmetry characteristic; indeed, ncae3{Q;u)=D,F[u]=0
whenF[u]=0. The initial-value problem is written

iU(X,t;a):tk » u(x t0)=U% 9.
da

A way to solve this is to consider the parametes a variable of equal footing wixh
andt. The above ordinary differential equation thendmees a homogeneous linear
first-order PDE that can be integrated by standaethods (see, e.g., Chap. 4 of [19]):

0 -0,=0 (9.3)

We form the characteristic system

and seek 3 first integrals of this system. Thesetat C , t=C,, x+a= G,. The
general solution of (9.3) is the®(C;, C,,C3)=0 , where the functio® is arbitrary.
That is,

o@U, t,x+a2)=0 = T(Xtx)=0(X+a,t).

By the initial conditionU(x t;0)=u(xt) we have thatw(x,t)=u(xt), and hence
w(X+a, t)=u(x+a,t). Thus, finally,u(x t;a) = u(x+«, 1).

In a similar manner, from the symmetry charastic Q[u]=u; we get the trans-
formation U(x t;a) = u(x t+«). The two symmetries found above reflect the fact
that the PDE (9.1) does not contain the independmmblesx andt explicitly.
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4. For the symmetry characterisffu]= xu+tu; we have
d _ L
—Uu(xt;a)=x0+tg ; UXt0)= u xJ.
da
Working as in the previous example, we form thstforder PDE

XU, +t04 -7, =0 4.
with characteristic system
dx_dt_ dr_ du
x t -1 0
Three first integrals arei=C,, Inx+a=GC,, Int+a = G,. The general solution of
the PDE (9.4) is®(C,,C;,C3)=0, with® arbitrary. That is,

o@U, Inx+a,Int+a)=0 =

U(x t;a)=o(n x+a, In t+a)=w[|n(é* ¥, In( & )]

By the initial conditiont(x, t;0)= u(x t) we have that(In x, Int)=u(x,t), and hence
o[In(€X), In(e"t)]=u(e”x, €t). Thus, finally,u(x t;a) = u(€ x €& }. This transforma-

tion expresses the invariance of the PDE (9.1) uadeale change—/x, t—At of x
andt.

5. Q[u]= tux—Xxu is a symmetry characteristic sin€Q;u)=(tDx — xDy)F[u]=0

whenF[u]=0. We write
%U()gt;a):tﬁx— XY ; Uxt0)= ux)
and form the PDE
«—XG-T, =0 5.
with characteristic system
One first integral i = C,. Another one is found fronux/t = — d’x = d(*+t%)=0=
X*+12= C,. A third integral is
o+ arctanx/t) = Cs.

Let us prove this. Setting/t=z, we have:

d(a +arctanz )= dy+ 92 _ g, tdx xdi

1+22 X+ t2
But, by the system (9.6)x= —tdz and dt=xda , so that

2 2
d[a+arctanf & | = da—%z ( qg.e.d.

The general solution of the PDE (9.5}€C;,C;,C3)=0 , with® arbitrary. That is,
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@[U, X+ %, a + arctanf /tj: 0=

U(x,t;a):a)[xz+ , o+ arctan(x /tj (9.7)

By the initial conditionT(x,t;0)= u(x t) we have thatw[}x*+t 2, arctang/t)]=u(xt).
Putting xcosr+t sine and tcost—xsina in place of andt, respectively, we find:

. . X +1tsi
u(xcosa +t sin ,t cos— x sin :)a)( R+ €, arctan X s.mj (9.8)
t cosa — X sin

On the other hand, we can show that

XCOSax +t Sinx
t cosa — X Sinx

tan[a + arctang 1 )=

X +1tsi
a +arctani & )= arctan cosx s.ra (9.9)
tcosa — X sinx

From (9.8) and (9.9) we have that
u(xcosi+t sina, tcosi—xsina) = w[X°+t?, a+arctangit)] .
Thus (9.7) assumes the final form
U(x t;) = u( xcosa + tsinx ,— X sim+ t cog (9.10)

The transformation (9.10) admits a certain geor@trinterpretation that becomes
evident if we define the new variables= xcos:+t sine and t'= —xsSina+t cosx. In

matrix form,
X | cosa sinx || X
t'| | -sina cosx||t]|’

This relation describes a rotation of the vecior) (on thext-plane by an angle. The
PDE F[u]=0 is thus invariant under such a rotation on trem@lof the independent
variables.

10. Concluding remarks

The algebraic approach to the symmetry problemDES, presented in this article, is,
in a sense, an extension to matrix-valued problefritbie ideas contained in [1], in
much the same way as [4] and [5] constitute a @dzation of the Harrison-
Estabrook geometrical approach [2] to matrix-valas well as vector-valued and
Lie-algebra-valued) PDEs.

The symmetry transformations we have consuiénvolve only the change of the
dependent variable of the PDE, while leaving the independent variah{e un-
changed. Indeed, as Olver [1] has shoaugrysymmetry of a PDE may be expressed
as a transformation of the dependent variable aliome as a transformation in the fi-
ber space. The symmetry-generating characterigtiovative Aq corresponds to
Olver’s evolutionary vector fielavith characteristi€[ul].

Inlocal (point) symmetries of the PDHu]=0 the symmetry characteristi§u]
contain at most first-order derivatives wfwith respect to the® (a number of such
symmetries were considered in the last sectiorommection with the Laplace equa-
tion). The case ajeneralizednon-local) symmetries is more complex; a fornwlis
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tion to the problem of obtaining one-parameter fesiof generalized symmetry
transformations of PDEs is given in Sec. 5.1 of [1]

Admittedly, the abstract algebraic formaligra have presented does not exhibit
significant advantages over the standard geometriethods (in particular, those de-
scribed in [4]) with regard téinding symmetries of PDEs. However, by employing
the concept of the characteristic derivative onabie to bypass the difficulty of hav-
ing to represent symmetry-generating operatorseatov fields in the form of differ-
ential operators when matrix-valued variables awlved, which situation can only
be handled by making certaad hocassumptions regarding the action of such “un-
natural” operators. The algebraic view offers aenigorous framework for identify-
ing symmetry operators and finding infinitesimahsyetry transformations of ma-
trix-valued PDEs, as well as for studying the Ligehraic structure of the set of
symmetry generators (see, e.g., [9]).
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study a method for relating symmetries and recursion operators of two partial differ-
ential equations connected to each other by a non-auto-Bécklund transformation. We
prove the Lie-algebra isomorphism between the symmetries of the SDYM equation
and those of the potential SDYM (PSDYM) equation, and we describe the construc-
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the PSDYM symmetry algebra, we draw conclusions regarding the Lie algebraic
structure of the “potential symmetries” of the SDYM equation.
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I. Introduction

Recursion operators are powerful tools for the study of symmetries of partial differen-
tial equations (PDEs). Roughly speaking, a recursion operator is a linear operator
which produces a new symmetry characteristic of a PDE whenever it acts on an “old”
characteristic (see Appendix). The concept was first introduced by Olver [1, 2] and
subsequently used by many authors (see, e.g., [2, 3] and the references therein). An
alternative view, based on the concept of a Bicklund transformation (BT), was devel-
oped in a series of papers by the present authors [4-6] who studied the symmetry
problem for the self-dual Yang-Mills equation (SDYM). The general idea is that a re-
cursion operator can be viewed as an auto-BT for the “linearization equation” (or
symmetry condition) of a (generally nonlinear) PDE. This idea was later further de-
veloped and put into formal mathematical perspective by Marvan [7].

It has been known for some time (see, e.g., Section 7.4 of [3] and the references
therein) that, when two nonlinear PDEs are connected by a non-auto-BT, symmetries
of either PDE may yield symmetries of the other. This can be achieved by using the
original BT to construct another non-auto-BT which relates solutions of the lineariza-
tion equations of the two PDEs. In the particular case of the SDYM equation, the
original BT associates this PDE with the “potential SDYM equation” (PSDYM). The
symmetries of the latter PDE can then be used to construct the “potential symmetries”
of SDYM [5, 8]. We now attempt to go one step further: Can we find a BT which re-
lates recursion operators of two PDEs? Given that, as said above, a recursion operator
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is itself an auto-BT, what we are after is a BT connecting two auto-BTs, each of
which produces solutions of a respective linear PDE (symmetry condition). Thus, we
are looking for “a transformation of transformations” rather than a transformation of
functions.

Our “laboratory” model will again be SDYM, for good reasons. First, it possesses a
rich symmetry structure; second, this PDE has been shown to constitute a sort of pro-
totype equation from which several other integrable PDEs are derived by reduction
(see, e.g., [9, 10]). By employing a non-auto-BT that connects SDYM with PSDYM,
we will show how symmetries and recursion operators of either system can be associ-
ated with symmetries and recursion operators, respectively, of the other system.
Moreover, we will prove that the symmetry Lie algebras of these two PDEs are iso-
morphic to each other. This conclusion is more than of academic importance, since it
allows us to investigate the symmetry structure of the SDYM problem by studying the
relatively easier PSDYM problem. As an example, we will recover the known infi-
nite-dimensional symmetry algebras of SDYM [11-13] from the symmetry structure
of PSDYM [8] and show how these algebras are related to potential symmetries.

II. The Symmetry Problem for the SDYM-PSDYM System

We write the SDYM equation in the form

F[J1=Dy(J7J,)+D(J7J.) =0 (1)

We denote by x* =y, z, 3,z (u=1,---,4) the independent variables, and by D, D_,

etc., the total derivatives with respect to these variables. We will also use the notation
D F=F,, etc, for any function F. We assume that J is SL(N,C)-valued (i.e.,

detJ=1).
We consider the non-auto-BT

JV, =X, JU.=-X. )

y z z y
The integrability condition (X5). =(X;); yields the SDYM equation (1). The inte-

grability condition (J,), =(J),, which is equivalent to

D,(JJ)-D.(J )+ [, JU.]=0,

yields a nonlinear PDE for the “potential” X of (1), called the “potential SDYM equa-
tion” or PSDYM:

GIX]=X,;+X .~ [X;, X-]=0 3)

Noting that, according to (2), (#X), = [#r(InJ)], =[In(detJ)], etc., we see that the

condition detJ=1 can be satisfied by requiring that #X=0 [this requirement is com-
patible with the PSDYM equation (3)]. Hence, SL(N,C) SDYM solutions correspond
to s/((N,C) PSDYM solutions.
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Let oJ=aQ and 0X=a® be an infinitesimal symmetry of system (2) (« is an infini-
tesimal parameter). This means that (J+o0J, X+0X) is a solution to the system when
(/, X) is a solution. This suggests that the integrability conditions F[J+dJ]=0 and
G[X+0X]=0 are satisfied when the integrability conditions F[J]=0 and
G[X]=0 are satisfied; that is, J+dJ and X+d.X are solutions of (1) and (3), respectively.
The functions Q and @ are symmetry characteristics for the above PDEs. Geometri-
cally, the symmetries of system (2) are realized as transformations in the jet-like space
of the variables {x",J, X} and the various derivatives of J and X with respect to the x“.
These transformations are generated by vector fields which, without loss of generality,
may be considered “vertical”, i.e., with vanishing projections on the base space of the
x* [2]. We formally represent these vectors by differential operators of the form

V= Q% + @aiX (+ prolongation terms) 4)

Consider a function M(J, X). Denote by 4M(J, X) the Fréchet derivative [2] of M
with respect to V' (which in this context is locally the same as the Lie derivative). The
infinitesimal variation of M in the “direction” of V' is then oM=aAM. The linear opera-
tor 4 is a derivation on the algebra of all g/(N,C)-valued functions. The Leibniz rule is
written

A(M N)=(AM)N + MAN (5)

In particular, for the Lie algebra of sl(N,C)-valued functions, the Leibniz rule may
also be written as

A[M,N]=[AM,N]+[M,AN] (6)

By definition, the Fréchet derivatives of the fundamental variables J and X are given
by

AJ=0, AX=® (7)

We also note that the Fréchet derivative with respect to a vertical vector field com-
mutes with all total derivative operators [2]. Finally, for an invertible matrix M,

AM HYy=—MT(AMYM ™ (8)

(For a discussion of the general symmetry problem for matrix-valued PDEs, see [14].)
We introduce the covariant derivative operators

. P B
A,=D,+[J J,, 1=D,+[X;, ] ©)
A,=D,+[J'J,, 1=D,-[X;, ]

where the BT (2) has been taken into account. By using (3) and the Jacobi identity,
the zero-curvature condition [ﬁy , 2!2]:0 is shown to be satisfied, as expected in view
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of the fact that the “connections” J ™ 'J , and J ‘IJZ are pure gauges. Moreover, the

linear operators of (9) are derivations on the Lie algebra of s/(NV,C)-valued functions,
satisfying a Leibniz rule of the form (6):

[M,N]=[4,M,N]+[M, A,N]

Iay
- . - (10)
A [M,N]=[A.M,N]+[M, A.N]

If Egs. (1)-(3) are satisfied, then so must be their Fréchet derivatives with respect to
the symmetry vector field V' of (4). We now derive the symmetry condition for each of
the above three systems. For SDYM (1), the symmetry condition is 4F [J]=0, or

Dy A(J7',) +D- A(J7.) =0 (11)

(since the Fréchet derivative 4 commutes with total derivatives). By using (5), (7), (8)
and (9), it can be shown that

AJTI)=4,(J70), AJ)=4.J70) (12)
The SDYM symmetry condition (11) then becomes
(DyA,+D.4)(J'Q)=0 (13)
The symmetry condition for PSDYM (3) is 4G [X]=0, or, by using (6), (7) and (9),
A,@;+A.®. = (A,D; +4.D.)® =0 (14)
We note the operator identity
A,D;+A,D. =D, A, +D.A (15)

which is easily verified by letting the right-hand side act on an arbitrary function M.
Then, (14) is written in the alternate form,

(D;A, +D:A,)® =0 (16)

Comparing (13) and (16), we observe that the symmetry characteristic @ of
PSDYM, and the function J ’1Q , where Q is an SDYM symmetry characteristic, sat-
isfy the same symmetry condition. We thus conclude the following (see also [5]):

e IfQisan SDYM characteristic, then ®=.J'Q is a PSDYM characteristic.

Conversely,

o if @isa PSDYM characteristic, then O=J® is an SDYM characteristic.
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Finally, the Fréchet derivative with respect to V" also leaves the system of PDEs (2)
invariant: A(J7'J,)=(4X): , A(J7'J.)=—(4X);. With the aid of (12) and (7) we
are thus led to a pair of PDEs,

A7) =0., A.(J'0)=-a; (17)

Equation (17) is a BT connecting the symmetry characteristic @ of PSDYM with the
symmetry characteristic Q of SDYM. Indeed, the integrability condition
(@.); =(D5); yields the symmetry condition (13) for SDYM. So, when Q is an
SDYM symmetry characteristic, the BT (17) is integrable for @. Conversely, the inte-
grability condition [1:12 , A NIe) ~'0) =0, valid in view of the zero-curvature condition,
yields the PSDYM symmetry condition (14) for @ and guarantees integrability for Q.
We note that, for a given Q, the solution of the BT (17) for @ is not unique, and
vice versa. To achieve uniqueness we thus need to make some additional assumptions:
(a) If @ is a solution for a given Q, then so is @®+M(y, z), where M is an arbitrary ma-
trix function. We make the agreement that any arbitrary additive term of the form
M(y, z) will be ignored when it appears in the solution for @. (b) If O is a solution for
a given @, thensois Q+¢&(y,z)J, where £(,z) is an arbitrary matrix function. We
agree that any arbitrary additive term of the form ¢(y,z)J will be ignored when it

appears in the solution for Q.

With the above conventions, the BT (17) establishes a 1-1 correspondence between
the symmetries of SDYM and those of PSDYM. In particular, the SDYM characteris-
tic O=0 corresponds to the PSDYM characteristic @=0. It will be shown below that
this correspondence between the two symmetry sets is a Lie algebra isomorphism.

III. Recursion Operators and Lie-Algebra Isomorphism
Since the two PDEs in (17) are consistent with each other and solvable for @ when Q

is an SDYM symmetry characteristic, we may use, say, the first equation to formally
express @ in terms of Q'

®=D."4,(J7Q)=R(JQ) (18)
where we have introduced the linear operator
R=D."4, (19)

Proposition 1: The operator (19) is a recursion operator for PSDYM.

Proof : Let @ be a symmetry characteristic for PSDYM. Then, @& satisfies the
symmetry conditions (14) or (16). We will show that @’ =R® also is a symmetry
characteristic. Indeed,
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(A,D; +A4,D.)®" = (4,D; +A,D.)R®
T S TN 'Ry
=A,D. " D;A,®+A4,4,®
_ 1 n-! p p 1 _
=A,D."(D;A,+D-A)D+[4,,4,]0 =0,
in view of (16) and the zero-curvature condition [21 ) 1212]:0 . i

For sI(N,C) PSDYM solutions, the symmetry characteristic @ must be traceless.

Then, so is the characteristic @' =R @ . That is, the recursion operator (19) preserves

the s/(N,C) character of PSDYM.

Is there a systematic process by which one could derive the recursion operator (19)?
To this end, we seek an auto-BT relating solutions of the PSDYM symmetry condi-
tion (14). As shown in [5], such a BT is

A0=0., AL0=-0. (19a)

The first of these equations can then be re-expressed as @' =R® , with R given by

(19).
Consider now a symmetry characteristic Q of SDYM, i.e., a solution of the symme-
try condition (13). Also, consider the transformation

Q'=JR(UJ'Q)=TQ (20)
where we have introduced the linear operator
T=JRJ™ (21)

Proposition 2: The operator (21) is a recursion operator for SDYM.

Proof : By assumption, O is an SDYM symmetry characteristic. Then, as shown
above, d=J'0Q is a PSDYM characteristic. Since R is a PSDYM recursion operator,

@' =R®=R(J'Q) also is a PSDYM characteristic. Then, finally, Q'=J@’, given
by (20), is an SDYM characteristic. Wl

For SL(N,C) SDYM solutions, the symmetry characteristic O must satisfy the con-
dition #(J'Q)=0. As can be seen, this condition is preserved by the recursion op-
erator (21). [Note, in this connection, that the BT (17) or (18) properly associates
SL(N,C) SDYM characteristics Q with s/(N,C) PSDYM characteristics @.]

The recursion operator (21) also can be derived from an auto-BT for the SDYM
symmetry condition (13). This BT was constructed in [6] by using a properly chosen
Lax pair for SDYM (we refer the reader to this paper for details). We may thus con-
clude that recursion operators such as (19) or (21) in effect represent auto-BTs for
symmetry conditions of respective nonlinear PDEs (see also [7]).
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Lemma: The Fréchet derivative 4 with respect to the vector V' of (4), and the recur-
sion operator R of (19), satisty the commutation relation

[4,R]=D."'[@., ] (22)

where @=4X, according to (7).

Proof : Introducing an auxiliary function F, and using the derivation property (6) of
A and the commutativity of 4 with all total derivatives (as well as all powers of such
derivatives), we have:

ARF=AD."'AF =D."'A(D,F +[X. ,F])
=D." (D, AF +[(AX). ,F1+[X ,AF])
1,7 A -1
=D."'(4,AF +[®. ,F]) = RAF + D."'[®. ,F],

from which there follows (22). W

Proposition 3: The BT (17), or equivalently, its solution (18), establishes an iso-
morphism between the symmetry Lie algebras of SDYM and PSDYM.

Proof': Let V be a vector field of the form (4), generating a symmetry of the BT (2).
As explained previously, since this BT is invariant under V, the same will be true with
regard to its integrability conditions. Hence, J also represents a symmetry of the
SDYM-PSDYM system of equations (1) and (3). The SDYM and PSDYM character-
istics are O=A4J and ®=4X, respectively, where 4 denotes the Fréchet derivative with
respect to V. Consider the linear map / defined by (18):

[: @=1{Q}=RJ'Q (23)
or
[: AX=I{AJ}y=RJ'AJ (24)

Consider also a pair of symmetries of system (2), indexed by i and j. These are gener-
ated by vector fields V"), where r =i, j. The Fréchet derivatives with respect to the

V") will be denoted A. The SDYM and PSDYM symmetry characteristics are
0" =A"J and @ =A" X , respectively. According to (24),

AVX =1{AV T} =RT AT =RI'QV ; r=i,j (25)

By the Lie-algebraic property of symmetries of PDEs, the functions [4), 4“”]J and

[49 A1 X also represent symmetry characteristics for SDYM and PSDYM, re-
spectively, where we have put

[A(l') A(j)]JE A(i)A(j)J_A(J')A(i)J:A(i)Q(j)_A(.i)Q(l')
[A(i) A(j)]XEA(i)A(j)X—A(j)A(i)X=A(i)@(j)—A(j)@(i).
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We must now verify that
[A(i), A(J’)]X =7 {[A(i), A(j)]J} =RJ! [A(i), A(j)]J (26)

Putting 7=/ into (25), and applying the Fréchet derivative A4, we have:

ADAD x = A(i)I%J—lQ(J') — [A(i) ]%]J_IQ(D + I’éA(i)J—lg(j)

=D} [(DQ) J—1Q(J')] + ]'éA(i)J—lQ(j)
where we have used the commutation relation (22). By (23) and (19),
(i) _ p -1 _ 4 71
@ =D.RJ Q" =4,J0".

Moreover, by properties (5) and (8) of the Fréchet derivative,

A(i)J—lg(j) — _J—l (A(i)J)J—lQ(j) +J—1A(i)Q(j)
— _J—IQ(i)J—lQ(j) + J—1A(i)Q(j) )
So,

OADN Yy _ p -l g 771n® 7-1~() p 710 -1~ () L p 771 4D ()
AVAYX =D.7[4,J70",J7QV]-RITQVITQV +RITAVOY
Subtracting from this the analogous expression for 44X | we have:

[A(i), A(j)]X = A(i)A(j)X_A(j)A(i)X
:szl([ﬁyJ*IQ(i)’ J*IQ(./')] + [J*IQ(I')’ IayJ*IQ(j)])
_jé [J—lQ(i) J—lQ(j)] +IA€J"(A(”Q(” _A(j)Q(i))
=D.'4,[77'0", J0 ] - R [0V, J0V)]
+]A€J_1(A(i)A(j)J—A(j)A(i)J)
—RJ™! [A(i), A(j)]J

where we have used the derivation property (10) of zzly and we have taken (19) into
account. Thus, (26) has been proven. W

Now, suppose P is a recursion operator for SDYM, while S is a recursion opera-
tor for PSDYM. Thus, if QO and @ are symmetry characteristics for SDYM and

PSDYM, respectively, then '=PQ and @' = S® also are symmetry characteristics.

Definition: The linear operators P and S will be called equivalent with respect to
the isomorphism I (or I-equivalent) if the following condition is satisfied:

S@=[{PO} when ®=1{0} (27)
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By using (23), the above condition is written
SO=RJ'PQ when ®=RJ'Q = SRJ'Q=RJ'PQO .

Thus, in order that 2 and S be I-equivalent recursion operators, the following opera-
tor equation must be satisfied on the infinite-dimensional linear space of all SDYM
symmetry characteristics:

SRJ'=RJ'P (28)
Having already found a PSDYM recursion operator S=R, we now want to evaluate
the I-equivalent SDYM recursion operator P . To this end, we put S=R in (28) and

write

R(RJ'-J'P)=0.
As is easy to see, this is satisfied for P =7, in view of (21). We thus conclude that

e the recursion operators R and T, defined by (19) and (21), are I-equivalent.

We note that (28) is a sort of BT relating recursion operators of different PDEs,
rather than solutions or symmetries of these PDEs. Thus, if a recursion operator is
known for either PDE, this BT will yield a corresponding operator for the other PDE.
Note that we have encountered BTs at various levels: (a) The non-auto-BT (2), relat-
ing solutions of two different nonlinear PDEs (1) and (3); (b) the BT (17), or equiva-
lently (18), relating symmetry characteristics of these PDEs; (c) the recursion opera-
tors (19) and (21), which can be re-expressed as auto-BTs for the symmetry condi-
tions (14) and (13), respectively; and (d) the BT (28), relating recursion operators for
the original, nonlinear PDEs. (We make the technical observation that the first three
BTs are “strong”, while the last one is “weak”; see Appendix.)

Example: Consider the PSDYM symmetry characteristic @ =X _ (z-translation).
To find the /-related SDYM characteristic O, we use (23):

RIT'O=0 = D.'4,(J7'Q)=X. = 4,(J'0)=X_. 2
O, +IY, TT01=(TY).
which is satisfied for Q =J . By applying the recursion operator T on 0,
Q'=TQ=JRJ'Q=JD."4,(J"J.)=JD.{(JV.), +[J 7, J ]|
=JD. 7 (J7J)), 2 JD.'X_. =JX, .
To find the /-related PSDYM characteristic @, we use (23) once more:

@' =RJ'Q'=RX.=R® .
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We notice that R® =1 {T'Q} when & =1{Q}, as expected by the fact that R and T

are /-equivalent recursion operators. W

Now, let 0'” be some SDYM symmetry characteristic. By repeated application of

the recursion operator T, we obtain an infinite sequence of such characteristics:
Q(l) — f'Q(O) Q(2) — j’Q(l) — fZQ(O) Q(n) — fQ(n—l) — f“nQ(O)
(we note that any power of a recursion operator also is a recursion operator). Also, let
@ :I{Q(O)} :RJ—IQ(O) (29)

be the PSDYM characteristic which is I-related to Q”. Repeated application of the

PSDYM recursion operator R will now yield an infinite sequence of PSDYM charac-

teristics. Taking into account that R and 7 are I-equivalent recursion operators, we
can write this sequence as follows:

OV RO = [{F0O), @D =R = [{7200, ...
DM =R @O = [{F QO ...

Assume now that the infinite set of SDYM symmetries represented by the characteris-
tics {0} (n=0,1,2,---) has the structure of a Lie algebra. This set then constitutes a

symmetry subalgebra of SDYM. Given that the set {@ ™} is I-related to {Q™} and
that / is a Lie-algebra isomorphism, we conclude that the infinite set of characteristics
{@™} corresponds to a symmetry subalgebra of PSDYM which is isomorphic to the

associated subalgebra {Q™} of SDYM.
More generally, let {QE{O)/ k=1,2,---, p} be a finite set of SDYM symmetry char-

acteristics, and let {(D,({O)/ k=1,2,---,p} be the I-related set of PSDYM characteris-
tics, where

O =10y =RIOP ; k=12-p 30
Assume that the infinite set of characteristics
00 =170 /n=0,1,2,+; k=12, p} (31

corresponds to a Lie subalgebra of SDYM symmetries. Then, the /-related set of char-
acteristics

(D =R"®O | n=0,1,2, 1 k=12, p} (32)

corresponds to a PSDYM symmetry subalgebra which is isomorphic to that of (31).
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Let us summarize our main conclusions:

e The infinite-dimensional symmetry Lie algebras of SDYM and PSDYM are
isomorphic, the isomorphism / being defined by (23) or (24).

e The recursion operators T and R, defined in (21) and (19), when applied to /-
related symmetry characteristics [such as those in (29) or (30)], may generate
isomorphic, infinite-dimensional symmetry subalgebras of SDYM and
PSDYM, respectively.

e Since the structures of the symmetry Lie algebras of SDYM and PSDYM are
similar, all results regarding the latter structure are also applicable to the
SDYM case.

Comment: At this point the reader may wonder whether it is really necessary to go
through the PSDYM symmetry problem in order to solve the corresponding SDYM
problem. In principle, of course, the SDYM case can be treated on its own. In prac-
tice, however, it is easier to study the symmetry structure of PSDYM first and then
take advantage of the isomorphism between this structure and that of SDYM. This
statement is justified by the fact that the PSDYM recursion operator is considerably
easier to handle compared to the corresponding SDYM operator. This property of the
former operator is of great value in the interest of computational simplicity (in
particular, for the purpose of deriving various commutation relations; cf. [8]).

IV. Potential Symmetries and Current Algebras

We recall that every SDYM symmetry characteristic can be expressed as Q=J®,
where @ is a PSDYM characteristic (we note that @ is not I-related to Q). Let @ be a
characteristic which depends locally or nonlocally on X and/or various derivatives of
X. By the BT (2), X must be an integral of J and its derivatives, and so it and its de-
rivatives X, and X, are nonlocal in J. On the other hand, according to (2), the quanti-
ties X; and X, depend locally on J. Thus, in general, @ can be local or nonlocal in
J. In the case where @ is nonlocal in J, we say that the characteristic Q=J® expresses
a potential symmetry of SDYM [3, 5]. (See Appendix for a general definition of local-
ity and nonlocality of symmetries.)

A. Internal Symmetries. The PSDYM equation is generally invariant under a trans-
formation of the form

A =00 =[x, M] (33)

where M is any constant s/(N,C) matrix. Since the characteristic @ is nonlocal in J,
the transformation

0=J0=J[X, M]

is a genuine potential symmetry of SDYM. Note that the SDYM characteristic which
is I-related to @ is not Q, but rather O‘”=JM , since we then have
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RJ'QO=RM=D.'[X. M]=[X,M] =2
Let {z,} be a basis for s{(N,C):
[z;,7;]= Cikj T .

Then M is expanded as M = a* 7, , and (33) is resolved into a set of independent basis
transformations

APX =0 = [X, 7]
corresponding to the SDYM potential symmetries

0,=Jo"=J[X,7,].
These are not the same as the /-related characteristics

AV =00 =z, .
Consider now the infinite set of transformations
ANX =@ =R"®" =R"[X,7,] (n=0,1,2,-) (34)

As can be shown, they satisfy the commutation relations of a Kac-Moody algebra:

(47, AVX =Cf A7 X

ij

In view of the isomorphism 7, this structure is also present in SDYM. Indeed, this is
precisely the familiar hidden symmetry of SDYM [11, 12]. The SDYM transforma-
tions which are /-related to those in (34) are given by

A(kn)Jng(n)zfvanco)zfanTk (l’l :O’I’Z,...) .

They constitute an infinite set of potential symmetries (note, for example, that
AVJ=J[X, 7, ]1=J@\”) and they satisfy the commutation relations

[4, AT = Cf, AP

ij

B. Symmetries in the Base Space. A number of local PSDYM symmetries corre-
sponding to coordinate transformations are nonlocal in J, hence lead to potential
symmetries of SDYM. By using isovector methods [4, 15], nine such PSDYM sym-
metries can be found. They can be expressed as follows:



Bécklund-Transformation-Related Recursion Operators 13

A=V =[ X (k=1,2,--,9) (35)

where the L . are nine linear operators which are explicitly given by

~
I

=D,, L,=D,, Ly=zD,-yD., L,=yD.-zDj,
Ly=yD,—zD.-yD;+ZD., Lg=1+yD, +zD.,

L,=1-yD;-zD., Ly=yLi+z(yD:-zD;),
Ly=zL, +y(zD; —yD:).

The il, ﬁz represent translations of y and z, respectively, while the i3, i4 represent
rotational symmetries. The Ls, Ly, L, express scale transformations, while L, and

A

L, represent nonlinear coordinate transformations which presumably reflect the spe-
cial conformal invariance of the SDYM equations in their original, covariant form.
The first five operators L, ,---,L, form the basis of a Lie algebra, the commutation

relations of which we write in the form
[L,,L1=-fr Ly (k=L--5) .
Consider now the infinite set of transformations
ANX =0 =R"®'" =R"L X (k=1,-5) (36)
As can be shown [8], these form a Kac-Moody algebra:
(A, A X = fLAT X
Consider also the infinite sets of transformations
AMX =R"L, X and AWX=R"L,X (37)
As can be proven [8], each set forms a Virasoro algebra (apart from a sign):
[A™, A X == (m—n)A™™MX .

Taking the isomorphism / into account, we conclude that the SDYM symmetry al-
gebra possesses both Kac-Moody and Virasoro subalgebras (“current algebras™ [16]),
both of which are associated with infinite sets of potential symmetries. The former
subalgebras are associated with both internal and coordinate transformations, while
the latter ones are related to coordinate transformations only. These conclusions are in
agreement with those of [13], although the mathematical approach there is different
from ours.
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V. Summary

By using the SDYM-PSDYM system as a model, we have studied a process for asso-
ciating symmetries and recursion operators of two nonlinear PDEs related to each
other by a non-auto-BT. The concept of a BT itself enters our analysis at various lev-
els: (a) The non-auto BT (2) relates solutions of the nonlinear PDEs (1) and (3);
(b) the non-auto-BT (17) or (18) relates symmetry characteristics of these PDEs;
(c) the auto-BTs for the symmetry conditions (14) and (13) lead to the recursion op-
erators (19) and (21), respectively; and (d) the transformation (28) may be perceived
as a BT associating recursion operators for the original, nonlinear PDEs. We have
proven the isomorphism between the infinite-dimensional symmetry Lie algebras of
SDYM and PSDYM, and we have used this property to draw several conclusions re-
garding the Lie-algebraic structure of the potential symmetries of SDYM.

For further reading on recursion operators, the reader is referred to [17-22]. A nice
discussion of the SDYM symmetry structure and its connection to the existence of
infinitely many conservation laws can be found in the paper by Adam et al. [23].

VI. Appendix: Some Basic Definitions

To make the paper as self-contained as possible, basic definitions of some key con-
cepts that are being used are given below:

A. Recursion Operators. Consider a PDE F'[u]=0, in the dependent variable u and
the independent variables x* (¢=1,2....). Let du=aQ [u] be an infinitesimal symmetry
transformation of the PDE, where QO [u] is the symmetry characteristic. The symmetry
is generated by the (formal) vector field

V:Q[u]ierrolongation :QiJrQ iJrQ Vi-l-"' (A.1)
ou ou ~“ou, ~"ou,
(where the O ,=D, O, etc., denote total derivatives of Q). The symmetry condition is
expressed by a PDE, linear in O:

S(O;u)= AF[u] = 0 mod F[u] (A.2)

where 4 denotes the Fréchet derivative with respect to V. If u is a scalar quantity, then
(A.2) takes the form

S(Q;u)=VFlu]= QZ_Z+Q” 865 +0,, ﬁiF +--=0 mod Flu] (A3)

u uv

Since the PDE (A.2) is linear in Q, the sum of two solutions (for the same u) also is
a solution. Thus, for any given u, the solutions {Q [u]} of (A.2) form a linear space S,,.

A recursion operator R is a linear operator which maps the space S, into itself. Thus,
if O is a symmetry characteristic of F'[u]=0 [i.e., a solution of (A.2)], then so is IAQQ :

S(RO;u)=0 when S(Q;u)=0 (A.4)

We note that R>Q,R>0,---,R"Q also are symmetry characteristics. This means that
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e any power R" of a recursion operator also is a recursion operator.

Thus, starting with any symmetry characteristic O, we can obtain an infinite set of
such characteristics by repeated application of the recursion operator.

A symmetry operator L is a linear operator, independent of u, which produces a
symmetry characteristic O [u] when it acts on . Thus, Lu =Q[u]. We note that R Lu
is a symmetry characteristic, which means that

e the product RL of a recursion operator and a symmetry operator is a symme-
try operator.

Thus, given that R" is a recursion operator, we conclude that R"Lu is a member of
S,. Examples of symmetry operators are the nine operators ik that appear in (35), as

well as the operator L=[,M] which is implicitly defined in (33).

B. “Strong” and “Weak” Bécklund Transformations. In the most general sense, a
BT is a set of relations (typically differential, although in certain cases algebraic ones
are also considered) which connect solutions of two different PDEs (non-auto-BT) or
of the same PDE (auto-BT). The technical distinction between “strong” and “weak”
BTs [24, 25] can be roughly described as follows: In a strong BT connecting, say, the
variables u and v, integrability of the differential system for either variable demands
that the other variable satisty a certain PDE. A weak BT, on the other hand, is much
like a symmetry transformation: u# and v are not, a priori, required to satisfy any par-
ticular PDEs for integrability. If, however, u satisfies some specific PDE, then v satis-
fies some related PDE. (An example is the Cole-Hopf transformation, connecting so-
lutions of Burgers' equation to solutions of the heat equation.)

The BT (2) is strong, since its integrability conditions force the functions J and X to
satisfy the PDEs (1) and (3), respectively. Similar remarks apply to the BTs (17) and
(19a). On the other hand, transformation (28) does not a priori impose any specific

properties on the operators P and S. If, however, P is an SDYM recursion operator,

then S is the I-equivalent PSDYM recursion operator. Thus, equation (28) is a Bick-
lund-like transformation of the weak type, although this particular transformation re-
lates operators rather than functions.

C. Local and Nonlocal Symmetries. Let F [u]=0 be a PDE in the dependent vari-
able u and the independent variables x* (#=1,2,...). A symmetry characteristic Q [u]
represents a local symmetry of the PDE if Q depends, at most, on x, u, and deriva-
tives of u with respect to the x. A symmetry is nonlocal if the corresponding charac-
teristic O contains additional variables expressed as integrals of u with respect to the
X" (or, more generally, integrals of local functions of u). As an example, the PSDYM
characteristic @ =[X, M ] (where M is a constant matrix) represents a local symme-

try of this PDE (since it depends locally on the PSDYM variable X ), whereas the
SDYM characteristic Q=J[X, M ] represents a nonlocal symmetry of that PDE

since it contains an additional variable X which is expressed as an integral of a local
function of the principal SDYM variable J [this follows from the BT (2)]. The infinite
symmetries (34), (36) and (37) are increasingly nonlocal in X for n>0, since they are

produced by repeated application of the integro-differential recursion operator R.
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