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This volume consists of 5 articles that deal with various kinds of transforma-
tions. Specifically,  
 
    – coordinate transformations in a linear space or manifold;  

    – Bäcklund transformations (BTs) relating solutions of different partial dif-
ferential equations (PDEs) or different solutions of the same PDE;  

    – symmetry transformations of PDEs, producing new solutions from old 
ones by continuously varying a set of parameters;  

    – recursion operators as BTs relating different symmetries of a PDE; and  

    – transformations relating recursion operators of BT-related PDEs.  
 
The articles may be viewed as “chapters” of a single book and it might thus 
be useful to be read in sequence, given that, to some extent, each article 
utilizes concepts and ideas introduced in the preceding articles.  
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On active and passive transformations 
 

Costas J. Papachristou 
 

Department of Physical Sciences, Hellenic Naval Academy, Piraeus, Greece 
 

papachristou@hna.gr 
 
 

The concepts of active and passive transformations on a vector space are discussed. 
Orthogonal coordinate transformations and matrix representations of linear operators 
are considered in particular.  

 
 

1. Introduction 
 
A physical situation may appear changing for two reasons: the physical system itself 
may pass from one state to another, or, the same state of the system may be viewed 
from two different points of view (e.g., by two different observers, using different 
frames of reference). The former case corresponds to an “active”  view of the situa-
tion, while the latter one to a “passive” view.  
      Given that many physical quantities are vectors, of particular interest in Physics 
are linear transformations on vector spaces. Starting with the prototype transformation 
of rotation on a plane, we study both the active and the passive view of these trans-
formations. In the case of a Euclidean space with Cartesian coordinates, a passive 
transformation corresponding to a change of basis is an orthogonal transformation. On 
the other hand, an active transformation on a vector space is produced by a linear op-
erator, which is represented by a matrix in a given basis. A change of basis, leading to 
a different representation, is a passive transformation on this space.  
 
 

2. Active view of transformations 
 
Consider the xy-plane with Cartesian coordinates (x, y) and basis unit vectors 

ˆ ˆ{ , }x yu u . We call R(θ) the rotation operator on this plane, i.e., the operator which ro-

tates any vector A
�

 on the plane by an angle θ (see Fig. 2.1; by convention, θ>0 for 
counterclockwise rotation while θ<0 for clockwise rotation). This operator is linear, 
given that adding two vectors and then rotating the sum is the same as first rotating 
the vectors and then adding them.  
 

θ

O
x

y

ˆxu

ˆyu
A
�

A′
�

 
 

Figure 2.1 
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      Imagine, in particular, that we rotate each vector in the basis ̂ ˆ{ , }x yu u  by an angle 

θ to obtain a new set of vectors ̂ ˆ{ , }x yu u′ ′  (Fig. 2.2). The transformation equations 

describing these rotations are  
 

          
ˆ ˆ ˆ ˆ( ) cos sin

ˆ ˆ ˆ ˆ( ) sin cos

x x x y

y y x y

u u u u

u u u u

θ θ θ

θ θ θ

′ = = +

′ = = − +

R

R
                                  (2.1) 

 

θ

θ

x

y

ˆxu

ˆyu
ˆxu ′ˆyu ′

O

 
 

Figure 2.2 
 

      Now, let ˆ ˆx x y yA A u A u= +
�

 be a vector on the xy-plane (see Fig. 2.1). The rotation 

operator R(θ) will transform it into a new vector  
 

ˆ ˆ( ) x x y yA A A u A uθ ′ ′′ = = +R
� �

                                         (2.2) 

 
We want to express the components Ax΄ and Ay΄ in terms of Ax , Ay and θ. By the line-
arity of R(θ) and by using (2.1), we have:  
 

( )
( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆcos sin sin cos

x x y y x x y y

x y x x y y

A A u A u A u A u

A A u A A u

θ θ θ

θ θ θ θ

′ = + = +

= − + +

R R R
�

 

 
By comparing this with (2.2), we get:  
 

        
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ = −

′ = +
                                              (2.3) 

 
      We define the matrix  
 

            
cos sin

sin cos
M

θ θ
θ θ

− 
=  
 

                                                 (2.4) 
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The systems (2.1) and (2.3) are then rewritten in the form of matrix equations as  
 

      
ˆ ˆ

ˆˆ

x xT

yy

u u
M

uu

 ′  
  =  
 ′   

      and      
x x

yy

A A
M

AA

 ′  
  =  
 ′   

                          (2.5) 

 
respectively, where M T is the transpose of M.  

      We note that the vectors A
�

 and ( )A Aθ′ = R
� �

 are different geometrical objects, the 
latter one being a transformation of the former. On the other hand, the components of 
these vectors, connected by (2.3), are referred to the same basis ˆ ˆ{ , }x yu u . This is the 

general idea of the active view of a linear transformation.  
      In a more abstract sense, we consider an n-dimensional vector space Ω with basis 
vectors { } { }1 2ˆ ˆ ˆ ˆ, ,..., n ke e e e≡ , and we let R be a linear operator on Ω. We assume that 

the basis vectors transform under R as follows:  
 

         ˆ ˆ ˆ (sum on )j
i i j ie e e R j′ = =R                                       (2.6) 

 
where the familiar summation convention for repeated upper and lower indices has 
been used. Thus, for each value of i, the right-hand side of (2.6) is actually a sum over 
all values of  j, i.e., from  j= 1  to  j=n . Explicitly,  
 

              

1 2
1 1 1 2 1 1

1 2
2 1 2 2 2 2

1 2
1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

n
n

n
n

n
n n n n n

e e R e R e R

e e R e R e R

e e R e R e R

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                                    (2.7) 

 
      Now, let  
 

           1 2
1 2ˆ ˆ ˆ ˆn i

n iV V e V e V e V e= + + + ≡
�

⋯                                   (2.8) 

 

be a vector in Ω, and let V V′ = R
� �

. We have:  
 

ˆ ˆ ˆ ˆ( )j j j i i
j j i j iV V e V e V e R V e′′ = = = ≡R R

�
 . 

 
Therefore the components of the original and the transformed vector are related by  
 

                       i i j
jV R V′ =                                                    (2.9) 

 
or, explicitly,  
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1 1 1 1 2 1
1 2

2 2 1 2 2 2
1 2

1 2
1 2

n
n

n
n

n n n n n
n

V R V R V R V

V R V R V R V

V R V R V R V

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                               (2.10) 

 
      Define the n×n matrix  

              i
jM R =       with   i

i j jM R=                                     (2.11) 

 
The basis transformations (2.6) are then written as  
 

       
1 1ˆ ˆ

ˆˆ

T

nn

e e

M

ee

 ′  
   =   
   ′    

⋮ ⋮                                                  (2.12) 

 
while the component transformations (2.9) become  
 

                

1 1

nn

V V

M

VV

 ′  
   

=   
   ′    

⋮ ⋮                                                  (2.13) 

 
 

3. Passive view of transformations 
 
Imagine that our previous x-y system of axes on the plane, with basis unit vectors 

ˆ ˆ{ , }x yu u , is rotated counterclockwise by an angle θ to obtain a new system of axes x΄ 

and y΄ with corresponding basis ̂ ˆ{ , }x yu u′ ′  (Fig. 3.1). As before, the two bases are re-

lated by the system of equations  

             
ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

x x y

y x y

u u u

u u u

θ θ

θ θ

′ = +

′ = − +
                                        (3.1) 

 

  

θ

θ

O
x

y

x′

y′

ˆxu

ˆyu

ˆxu ′
ˆyu ′

A
�

 Figure 3.1        
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      A vector A
�

 on the plane can be expressed in both these bases, as follows:  
 

                  ˆ ˆ ˆ ˆx x y y x x y yA A u A u A u A u′ ′ ′ ′= + = +
�

                                  (3.2) 

 
Substituting the basis transformations (3.1) into the right-hand side of (3.2), and 
equating coefficients of similar unprimed basis vectors, we find:  
 

            
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ ′= −

′ ′= +
                                          (3.3) 

 
Solving this for the primed components, we get:  
 

          
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ = +

′ = − +
                                          (3.4) 

 
Notice that, in contrast to what we did in the previous section, here we keep the geo-
metrical object A

�
 fixed and simply expand it in two different bases. This is the 

adopted practice in the passive view of a transformation.  
      Introducing the matrix  
 

cos sin

sin cos
M

θ θ
θ θ

− 
=  
 

 

 
we rewrite our previous equations in the matrix forms  
 

          
ˆ ˆ

ˆˆ

x xT

yy

u u
M

uu

 ′  
  =  
 ′   

                                               (3.5) 

and 

       
x x

y y

A A
M

A A

 ′ 
 = 
 ′   

      ⇒      1x x

yy

A A
M

AA

−
 ′  
  =  
 ′   

                           (3.6) 

 
where  

           1 cos sin

sin cos
TM M

θ θ
θ θ

−  
= = − 

                                       (3.7) 

 
Notice that the transformation matrix M is orthogonal. As will be shown below, this is 
related to the fact that the transformation (rotation of axes) relates two Cartesian bases 
in a Euclidean space.  
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      By comparing (2.3) and (3.4) it follows that the transformation equations of the 
passive view reduce to those of the active view upon replacing θ with –θ. Physically 
this means that a passive transformation in which the vector A

�
 is fixed and the basis 

of our space is rotated counterclockwise is equivalent to an active transformation in 
which the basis is fixed and the vector A

�
 is rotated clockwise.  

      Let us generalize to the case of an n-dimensional vector space Ω with basis 

{ } { }1 2ˆ ˆ ˆ ˆ, ,..., n ke e e e≡ . Let ˆ{ }ke ′  be another basis related to the former one by  

 

                ̂ ˆ j
i j ie e ′
′ = Λ                                                       (3.8) 

 

(note sum on j ). A vector V
�

 in Ω may be expressed in both these bases, as follows:  
 

ˆ ˆ ˆi j j i
i j i jV V e V e V e ′

′ ′ ′= = = Λ
�

 

 
where use has been made of (3.8). This yields  
 

              i i j
jV V′ ′= Λ                                                     (3.9) 

      Introducing the n×n matrix  

 

         i
jM ′ = Λ      with   i

i j jM ′= Λ                                      (3.10) 

we write  

          
1 1ˆ ˆ

ˆˆ

T

nn

e e

M

ee

 ′  
   =   
   ′    

⋮ ⋮                                                     (3.11) 

and  

          

1 1

n n

V V

M

V V

 ′ 
  

=   
   ′    

⋮ ⋮      ⇒     

1 1

1

nn

V V

M

VV

−

 ′  
   

=   
   ′    

⋮ ⋮                         (3.12) 

 
 

4. Orthogonal transformations in a Euclidean space 
 
In this section the passive view of transformations will be adopted. Let Ω be an n-
dimensional Euclidean space with Cartesian1 coordinates (x1, x2,...,xn) ≡ (xk) and cor-
responding Cartesian basis { }ˆke . Let (xk

΄) be another Cartesian coordinate system for 

                                                 
1 Cartesian systems of coordinates exist only in Euclidean spaces. For example, you can define a sys-
tem of Cartesian coordinates on a plane but you cannot define such coordinates on the surface of a 
sphere, which is a non-Euclidean space.  
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Ω, with corresponding basis ̂{ }ke ′ . We assume that the two coordinate systems have a 

common origin O≡(0,0,...,0). Both Cartesian bases are orthonormal, in the sense that  
 

          ˆ ˆ ˆ ˆi j i j i je e e e δ′ ′⋅ = ⋅ =                                               (4.1) 

 
Assuming that the handedness of the two coordinate systems is the same (e.g., for 
n=3, both coordinate systems are right-handed) it is apparent that a linear transforma-
tion from one basis to the other is a “rotation” in Ω. Let us explore this in more detail.  
 
      Definition: A linear transformation from a Cartesian basis to another is said to be 
an orthogonal transformation.  
 
      Proposition 4.1: An orthogonal transformation is represented by an orthogonal 
matrix M:  
 

           1 T T TM M M M MM− = ⇔ = = 1                                  (4.2) 
 

      Proof: Assume a linear basis transformation of the form (3.8): ˆ ˆ j
i j ie e ′
′ = Λ . Also, 

let M be the transformation matrix defined in (3.10). We have:  
 

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆk l k l k k
i j k i l j k l i j i j

k

T T
k i k j k ji k i j

k k

e e e e

M M M M M M

δ′ ′ ′ ′ ′ ′
′ ′⋅ = Λ ⋅ Λ = Λ Λ = Λ Λ

= = =

∑

∑ ∑
 

 
where we have taken into account that the original (unprimed) basis is orthonormal. 
Given that the same is true for the transformed (primed) basis, we have:  
 

( )T T
i ji j

M M M Mδ= ⇔ = 1 . 

 

      The magnitude of a vector V
�

 is a non-negative quantity whose square is ex-
pressed in a Cartesian basis in terms of the scalar (dot) product, as follows:  
 

             ( ) ( )2
ˆ ˆ ˆ ˆi j i j i j
i j i j i jV V V V e V e V V e e V Vδ= ⋅ = ⋅ = ⋅ =

� � �
                      (4.3) 

 

[Obviously, the last term in (4.3) is the sum of the squares of the components of V
�

.]  
 
      Proposition 4.2: An orthogonal transformation preserves the Cartesian form (4.3) 
of the magnitude of a vector.  
 
      Proof: By using the transformation formula (3.9) for components of vectors, de-
rived in the previous section, we have:  
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( )( )

( )

( )

i j i k j l i i k l
i j i j k l k l

i

k l T k l
ik il i lk i

i i

T k l k l
k lk l

V V V V V V

M M V V M M V V

M M V V V V

δ δ

δ

′ ′ ′ ′
 ′ ′ ′ ′= Λ Λ = Λ Λ 
 

   ′ ′ ′ ′= =   
   

′ ′ ′ ′= =

∑

∑ ∑  

 
For a more compact proof, define the matrices  
 

1

k

n

V

V

V

 
   ≡   
 
 

⋮      and     1Tk nV V V   ≡   ⋯  

 
and similarly for the corresponding primed quantities. Then, in the unprimed basis,  
 

2 Tk kV V V   =    
�

. 

 

Using the fact that, by (3.12), k kV M V ′  =   
, we have:  

 

( )T TTk k k k k T k

T
k k

V V M V M V V M M V

V V

       ′ ′ ′ ′    = =           

   ′ ′=
   

 

      
      Comment: The above proof suggests an alternate definition of an orthogonal trans-
formation as a linear transformation in a Euclidean space that preserves the Cartesian 
form of the magnitude of vectors. In fact, this is the way orthogonal transformations 
are usually defined in textbooks.  
 
      Now, let P be a point in Ω, with Cartesian coordinates (x1, x2,...,xn) ≡ (xk). In this 

system of coordinates the position vector of P can be written as ˆi
ir x e=

�
. Since this 

vector is a geometrical object independent of the system of coordinates, we can write:  
 

ˆ ˆi j
i jr x e x e′ ′= =

�
. 

 
By using (3.8) we find, as in Sec. 3,  
 

i i j
jx x′ ′= Λ                                                     (4.4) 

 
which is the analog of (3.9). If M is the matrix defined in (3.10), and if [xk] is the col-
umn vector of the xk, then by the general matrix relation (3.12) we have:  
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        1k k k k T kx M x x M x M x−   ′ ′     = ⇒ = =        
                     (4.5) 

 
where the orthogonality condition (4.2) has been used. Let us call  
 

               withT j
i j j i iM L L M ′≡ = = Λ                                     (4.6) 

 
Then the matrix relation (4.5) can be written as a system of n linear equations of the 
form  
 

              

1 1 2
11 12 1

2 1 2
21 22 2

1 2
1 2

n
n

n
n

n n
n n nn

x L x L x L x

x L x L x L x

x L x L x L x

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                                      (4.7) 

 
which equations represent an orthogonal coordinate transformation in Ω.  
      As an example for n=2, let Ω be a plane with Cartesian coordinates (x1, x2) ≡ (x, y). 
A position vector in Ω is written: ˆ ˆx yr xu yu= +

�
. As seen in Sec. 3, the transformation 

matrix M for a rotation of the basis vectors by an angle θ is  
 

cos sin cos sin

sin cos sin cos
TM L M

θ θ θ θ
θ θ θ θ

−   
= ⇒ = =   −   

. 

 
The coordinate transformation equations (4.7) are written here as  
 

cos sin

sin cos

x x y

y x y

θ θ

θ θ

′ = +

′ = − +
 

 

      Exercise: By using the relations ˆj
jV V e=

�
 and ˆ ˆ l

j l je e ′
′ = Λ , together with (3.10) 

and (4.1), show the following:  
 

ˆi
iV e V= ⋅
�

, 

ˆ ˆi j i jM e e′= ⋅ . 

 
      Under an orthogonal transformation from one Cartesian system of coordinates to 
another, the components V k of a vector transform like the coordinates xk themselves. 
That is,  

i j
i jV L V′ = . 

From (4.7) we have that  
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i

i j j

x
L

x

′∂
=
∂

. 

Therefore,  

          and, conversely,
i i

i j i j
j j

x x
V V V V

x x

′∂ ∂′ ′= =
′∂ ∂

                        (4.8) 

 
 

5. Active and passive view combined 
 
Let Ω be an n-dimensional vector space with basis ˆ{ } ( 1,2, , )ke k n= … . Let A be a lin-

ear operator on Ω. The action of A on the basis vectors is given by  
 

           ˆ ˆ ˆj i i j i i j
i

e e A e A= ≡∑A                                           (5.1) 

 
(Note a slight change in the summation convention; in this section subscripts only will 
be used.) The n×n matrix A=[Aij] is the matrix representation of the operator A in the 
basis ˆ{ }ke .  

      A vector in Ω is written:  
 

                 ˆ ˆi i i i
i

x x e x e= ≡∑�                                                (5.2) 

 
Let y x= A
� �

. If ˆi iy y e=
�

, then, by the linearity of A and by using (5.1) and (5.2) we 

find that  
 

               (sum on )i i j jy A x j=                                           (5.3) 

 
which represents a system of n linear equations for i= 1,...,n. In matrix form,  
 

                [ ] [ ]k ky A x=                                                   (5.4) 

 
where [xk] and [yk] are column vectors.  
      Now, let A and B be linear operators on Ω. We define their product C=AB by  
 

           ( ) ( ) ,x x x x= ≡ ∀ ∈ΩC AB A B
� � � �

                                    (5.5) 
 
Then, in the basis ̂{ }ke ,  

 
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )j j l l j l j l i l l j i i i je e e B B e A B e e C= = = = ≡C A B A A  

where  

                 or, in matrix form,i j i l l jC A B C AB= =                              (5.6) 
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That is, in any basis of Ω,  
 

the matrix of the product of two operators is the product of the matrices of 
these operators.  

 
      Consider now a change of basis (passive transformation) with transformation ma-
trix T=[Tij]:  
 

                   ̂ ˆj i i je e T′ =                                                       (5.7) 

 
The inverse transformation is  
 

         ( )1ˆ ˆj i i j
e e T−′=                                                    (5.8) 

 

The same vector may be expressed in both these bases as ˆ ˆi i j jx x e x e′ ′= =
�

, from 

which we get, by using (5.7) and (5.8),  
 

       ( )1andi i j j i ji j
x T x x T x−′ ′= =                                     (5.9) 

 
In matrix form,  
 

          1[ ] [ ] and [ ] [ ]k k k kx T x x T x−′ ′= =                                 (5.10) 

 
      How do the matrix elements of a linear operator A transform under a change of 
basis of the form (5.7)? In other words, how does the matrix of an active transforma-
tion transform under a passive transformation? Let y x= A

� �
. By combining (5.10) 

with (5.4), we have:  
 

1 1 1[ ] [ ] [ ] [ ] [ ]k k k k ky T y T A x T AT x A x− − −′ ′ ′′= = = ≡ ⇒  

 
       A΄ = Τ  –1

Α Τ                                                    (5.11) 
 
For an alternative proof, note that  
 

( )
( )

1

1 1

ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ

j i i j i j i i j l li li i j k k l

k k k jk j

e e T T e T e A A T e T

T AT e e A A T AT

−

− −

′ ′= = = =

′ ′ ′ ′= ≡ ⇒ =

A A A
 

as before. A transformation of the form (5.11) is called a similarity transformation.  
      By applying the properties of the trace and the determinant of a matrix to (5.11) it 
is not hard to show that, under basis transformations, the trace and the determinant of 
the matrix representation of an operator remain unchanged: trA=trA΄, detA=detA΄. 
This means that the trace and the determinant are basis-independent quantities that are 
properties of the operator itself, rather than properties of its representation.  
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      Definition: A vector 0x ≠
�

 is said to be an eigenvector of the linear operator A if a 
constant λ exists such that  
 

                 x xλ=A
� �

                                                    (5.12) 
 
The constant λ is an eigenvalue of A, to which eigenvalue this eigenvector belongs. 
Note that, in general, more than one eigenvector may belong to the same eigenvalue.  
 
      In a given basis ̂{ }ke , the linear system (5.3) corresponding to the eigenvalue 

equation (5.12) takes on the form  
 

       Ai  j  xj = λ xi      or      (Ai  j  – λ δi  j ) xj  = 0                              (5.13) 
 
where [Aij]=A is the matrix of the operator A in the given basis. This is a homogene-
ous linear system of equations, which has a nontrivial solution for the eigenvector 
components iff  
 

          det [Ai  j   – λ δi  j ] = 0     or     det (Α – λ1) = 0                            (5.14) 
 
where 1 here is the n-dimensional unit matrix. This polynomial equation determines 
the eigenvalues λi (not necessarily all different from each other) of the operator A.  
      Now, in general, for any value of the constant λ the matrix (Α–λ1) is the represen-
tation of the operator (A–λ1) in the considered basis ̂{ }ke . Under a basis transforma-

tion to ˆ{ }ke ′  this matrix transforms according to (5.11):  

 
(Α–λ1)́  = Τ  –1 (Α–λ1) Τ = Τ  –1A T – λ1 ≡ Α΄– λ1 . 

 
On the other hand, by the invariance of the determinant under this transformation,  
 

det (Α΄– λ1) = det (Α – λ1) . 
 
In particular, if λ is an eigenvalue of the operator A, the right-hand side of the above 
equation vanishes in view of (5.14) and, therefore, the same must be true for the left-
hand side for the same value of λ. That is, the polynomial equation (5.14) determines 
the eigenvalues of A uniquely, regardless of the chosen representation. We conclude 
that  

the eigenvalues of an operator are a property of the operator itself and do not 
depend on the choice of basis of the space Ω.  

 
      If we can find n linearly independent eigenvectors { }kx

�
 of A, belonging to the 

corresponding eigenvalues λk (not necessarily all different) we can use these vectors to 
define a basis of Ω. The matrix representation of A in this basis is given by (5.1): 

j i i jx x A=A
� �

. On the other hand, if λj ≡ λ΄, then j j i j ix x xλ λ δ′ ′= =A
� � �

. Therefore, since 

the kx
�

 are linearly independent, we must have Aij=λ΄δij . We conclude that, in the ei-

genvector basis the matrix representation of the operator A has the diagonal form  
 

A = diag (λ1 , λ2 , ... , λn ) . 
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Moreover, by the above formula and by the fact that the quantities trA, detA and λk are 
basis-independent (i.e., invariant under basis transformations) it follows that, in any 
basis of Ω,  

       tr A = λ1 + λ2 + ... + λn   ,      det A = λ1 λ2 ... λn                       (5.15) 
 
      Proposition 5.1: Let A and B be two linear operator on Ω. We assume that A and 
B have a common set of n linearly independent eigenvectors { }kx

�
. Then the operators 

A and B commute:  

AB = BA    ⇔    [A, B] ≡ AB – BA = 0 
 
where [A, B] denotes the commutator of A and B.  
 
      Proof: Since the n vectors { }kx

�
 are linearly independent, they define a basis of Ω. 

By assumption, for each value of k the vector kx
�

 is an eigenvector of both A and B, 

with corresponding eigenvalues, say, α and β. Then,  
 

( ) ( ) ( ) ( )k k k k kx x x x xβ β βα≡ = = =AB A B A A
� � � � �

 

 
and similarly, ( ) k kx xαβ=BA

� �
. Thus,  

 
( ) ( ) [ , ] 0k k kx x x= ⇔ =AB BA A B

� � �
, 

 

for all k=1,...,n. Now, let i ixξΨ =
� �

 be an arbitrary vector in Ω. Then,  

 

[ , ] [ , ]( ) [ , ] 0,i i i ix xξ ξΨ = = = ∀Ψ∈ΩA B A B A B
� �� �

. 

 
This means that [A, B]=0.  
 
      Definition: An operator A is said to be nonsingular if detA≠0 (note that this is a 
basis-independent property). A nonsingular operator is invertible, in the sense that an 
inverse linear operator A–1 on Ω exists such that AA–1 =A–1A =1op , where 1op is the 
unit operator. This allows us to write  
 

1y x x y−= ⇔ =A A
� � � �

. 
 
      By (5.4) it follows that, if A is the matrix representation of the nonsingular opera-
tor A in some basis, then the matrix of the inverse operator A–1 is the inverse A–1 of A. 
As is well known, the matrix A may have an inverse iff detA≠0, whence the definition 
of a nonsingular operator. In view of the second relation in (5.15),  
 

all eigenvalues of a nonsingular operator are nonzero.  
 
Indeed, if even one eigenvalue vanishes, then detA=0 in any representation.  
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6. Comments 
 
Both the active and the passive view are of importance in Physics. Let us see some 
examples:  
      1. The Galilean transformation of Classical Mechanics and the Lorentz transfor-
mation of Relativity2 are passive transformations connecting different inertial frames 
of reference. When expressed in terms of mathematical equations, all physical laws 
are required to be invariant in form upon passing from one inertial frame to another.  
      2. The operators of Quantum Mechanics3 are active transformations from a quan-
tum state to a new state. On the other hand, both states and operators may be repre-
sented by matrices in different bases, the transformation from one basis to another be-
ing a passive transformation. Typically, the basis vectors of the quantum-mechanical 
space are chosen to be eigenvectors of linear operators representing physical quanti-
ties such as energy, angular momentum, etc. In such a basis the related operator is 
represented by a diagonal matrix, the diagonal elements being the eigenvalues of the 
operator. Physically, these eigenvalues give the possible values that a measurement of 
the associated physical quantity may yield in an experiment.  
 
 
 

                                                 
2 H. Goldstein, Classical Mechanics, 2nd Ed. (Addison-Wesley, 1980).  
3 E. Merzbacher, Quantum Mechanics, 3rd Ed. (Wiley, 1998).  
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Transformation Lie groups and operator representations 
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A note on continuous groups of transformations on linear spaces and manifolds 
and the operator representations of transformation Lie groups and algebras.  

 
 

1.  Lie groups and Lie algebras: An overview 
 
We review some basic definitions concerning Lie groups and Lie algebras.  

      A group is a set G={ a,b,c,...} equipped with an internal “multiplication” operation 
with the following properties:  

      1. Closure:        ab∈G,  ∀ a, b∈G .   

      2. Associativity:        a (bc) = (ab) c . 

      3. Identity element:    ∃ e∈G:  ae=ea,  ∀ a∈G .   

      4. Inverse element:    ∀ a∈G,  ∃ a–1∈G:  aa–1 = a–1a = e .  

A group is abelian (or commutative) if  ab=ba,  ∀ a, b∈G .  

      A subgroup of G is a subset H⊆G that is itself a group under the group operation 
of G. Obviously, H must contain the identity element e of G as well as the inverse of 
any element of H.  

      A map φ : G→G΄ from a group G to a group G΄ is called a homomorphism if it 
preserves group multiplication. That is, for any a, b∈G, the images φ(a)∈G΄ and 
φ(b)∈G΄ satisfy the relation  

φ (a) φ (b) = φ (ab) . 

If the homomorphism φ is 1-1, it is called an isomorphism. An isomorphic relation of 
G with a group of matrices or operators is called a matrix or operator representation 
of G, accordingly.  

      A real Lie algebra L of dimension n is an n-dimensional real vector space 

equipped with an internal Lie bracket operation [ , ] that satisfies the following 
properties:  

      1. Closure:      [a, b]∈L,  ∀ a, b∈L .   

      2. Linearity:             [κa+λb, c] = κ [a, c]  + λ [b, c]  (κ, λ∈R) .  

      3. Antisymmetry:     [a, b]  = – [b, a] .   Corollary:  [a, a]  = 0 .  

      4. Jacobi identity:    [a, [b, c]] + [b, [c, a]] + [c, [a, b]]  = 0 .  

A Lie algebra is abelian (or commutative) if  [a, b]  = 0 , ∀ a, b∈L .  

                                                 
1 cjpapachristou@gmail.com   
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      A subalgebra S of L is a subspace of L that itself is a Lie algebra. The algebra S is 

an invariant subalgebra or ideal of L if [a, b]∈S,  ∀ a∈S, b∈L . A Lie algebra L is 

said to be simple if it contains no ideals other than itself; L is semisimple if it contains 

no abelian ideals.  
 
      Examples of Lie algebras:  

      1. The algebra of (m×m) matrices, with  [A, B]  = AB – BA  (commutator). Diagonal 
matrices constitute an abelian subalgebra of this algebra.  

      2. The algebra of all vectors in 3-dimensional space, with [ , ]V W V W= ×
� � � �

(vector 
product). Vectors parallel to a given axis form an abelian subalgebra of this algebra.  

      A map ψ : L→L΄ from a Lie algebra L to a Lie algebra L΄ is a homomorphism if it 

satisfies the following properties:  

ψ (κa+λb) = κ ψ (a) + λ ψ (b)  (κ, λ∈R) ; 

ψ ( [a, b]  ) = [ψ (a), ψ (b)] . 

If the map ψ is 1-1, it is called an isomorphism. Isomorphic Lie algebras L and L΄ 

have equal dimensions [1]:  dimL=dimL΄.  

      Let {τi  / i =1, 2, ... , n} be a basis of an n-dimensional Lie algebra L. Since the Lie 

bracket of any two basis elements τi and τj is an element of L, it must be a linear com-

bination of the {τk}. That is,  

[ , ] k
i j i j kCτ τ τ=                                                   (1) 

(sum on k from 1 to n). By the antisymmetry of the Lie bracket, k k
i j j iC C= − . The real 

constants k
i jC  are called structure constants of the Lie algebra L.  

      Proposition 1: Let ψ : L→L΄ be a Lie algebra isomorphism. If {τk} (k =1, 2, ... , n) 

is a basis of L, then {ψ (τk)} is a basis of L΄.  

      Proof: Being a basis of L, the {τk} are linearly independent; hence no linear com-

bination of them can be zero (unless, of course, all coefficients are trivially zero). 
Now, by the properties of ψ, a linear combination of the {τk} is mapped onto a linear 
combination of the {ψ (τk)} with the same coefficients. This means that the latter com-
bination cannot vanish, since it can only be zero if the former one is zero as well; that 
is, if all coefficients in the combination are zero. We conclude that the {ψ (τk)} are 
linearly independent and may serve as a basis for L΄.  

      Proposition 2: Isomorphic Lie algebras share common structure constants.  

      Proof : Let ψ : L→L΄ be a Lie algebra isomorphism and let τi , τj   be any two basis 

elements of L. Then, ψ(τi) and ψ(τj) are basis elements of L΄. By (1) and by the prop-

erties of ψ,  
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([ , ]) ( ) [ ( ), ( )] ( )k k
i j i j k i j i j kC Cψ τ τ ψ τ ψ τ ψ τ ψ τ= ⇒ = ;  q.e.d. 

      Roughly speaking, a Lie group is a group G whose elements depend on a number 
of parameters that can be varied in a continuous way. The dimension n of G is the 
number of real parameters parametrizing the elements of G. We assume that dimG=n 
and we let {λ1, λ

2, ... , λn} be the set of n parameters of G. We arrange the parameteriza-
tion of G so that the identity element of G corresponds to  λk=0  for all k=1,2,...,n.  

      An important class of Lie groups consists of groups of (m×m) matrices pa-
rametrized by n parameters λk (k=1,2,...,n). Since an (m×m) matrix produces a linear 
transformation on an m-dimensional Euclidean space, matrix groups are called linear 
groups.  

      Lie groups are closely related to Lie algebras. Let G be an n-dimensional Lie 
group of (m×m) matrices A(λ1, λ2, ... , λn) ≡ A(λ) (where by λ we collectively denote the 
set of the n parameters λk ). We define the n (m×m) matrices τk by  

1 2 0

( )
| nk k

A
λ λ λ

λ
τ

λ = = = =

∂
=

∂ ⋯
                                           (2) 

or, in terms of matrix elements,  

1 2 0
( ) | n

pq
k pq k

A
λ λ λτ

λ = = = =

∂
=
∂ ⋯

 

(k=1,2,...,n ;  p, q=1,2,...,m). The n matrices τk are called infinitesimal operators (or 
generators) of the Lie group G and form the basis of an n-dimensional real Lie algebra 

L [1]. Thus [ , ] k
i j i j kCτ τ τ= , where the k

i jC  are real constants. A general element a of 

L is written as a linear combination of the τk : a=ξ 
k
τk  (sum on k), for real coefficients 

ξ 
k. [Note carefully that the matrix elements (τk)pq themselves are not required to be 

real numbers!]  

      Now, let  a=λk
 τk  be the general element of L . The general element A(λ) of the Lie 

group  G  parametrized by the  λ
k
  can then be written as [1,2]  

A (λ) =   e 
a  =  exp (λk

 τk)                                               (3) 

where  e 
a  is the matrix exponential function  

2

0

exp 1
! 2

l
a

l

a a
e a a

l

∞

=

≡ = = + + +∑ ⋯   

For infinitesimal values of the parameters  λ
k
  we may use the approximate expression  

e 
a ∼ 1+a  

so that  

A (λ) ∼ 1 + λk
  τk  . 

      The simplest example of a Lie group is a one-parameter continuous group, such as 
the group SO(2) of rotations on a plane. A rotation of a vector by an angle λ is repre-
sented by the (2×2) orthogonal matrix  
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cos sin
( ) ( )

sin cos
A R

λ λ
λ λ

λ λ
− 

= ∈ 
 

. 

(Notice that  A 
tA=1  and  detA=1.) Then  

sin cos

cos sin

dA

d

λ λ
λ λλ

− − 
=  − 

 

and, by Eq. (2), the single basis element  τ  of the associated Lie algebra is  

0

0 1
|

1 0

dA

d λτ
λ =

− 
= =  

 
 . 

According to (3),  A(λ)=e 
λτ  and, for infinitesimal λ,  A(λ) ∼1+λτ. Indeed, by setting  

sinλ=λ  and  cosλ=1, we have:  

1 1 0 0 1
( ) 1

1 0 1 1 0
A

λ
λ λ λτ

λ
− −     

= + = +     
     
≃ . 

      Another single-parameter Lie group is the unitary group U(1) with elements {e iλ} 
(λ∈R), which may be regarded as (1×1) matrices. Consider the map φ: U(1)→SO(2) 
defined by  

( ) cos sin

sin cos
ie λ λ λ

ϕ
λ λ

− 
=  
 

 . 

This map is a homomorphism, since  

( ) ( )

( ) ( )

( ) cos( ) sin( )

sin( ) cos( )

cos sin cos sin

sin cos sin cos

.

i i i

i i

e e e

e e

λ λ λ λ

λ λ

λ λ λ λ
ϕ ϕ

λ λ λ λ

λ λ λ λ
λ λ λ λ

ϕ ϕ

′ ′+

′

′ ′+ − + 
⋅ = =  ′ ′+ + 

′ ′− −   
=    ′ ′   

= ⋅

 

Moreover, it can be shown [1] that the map φ is 1-1. Therefore, φ is a Lie-group iso-
morphism.  

      We finally remark that isomorphic Lie groups have isomorphic Lie algebras [1]. 
More generally, under certain restrictions, homomorphic Lie groups may have iso-
morphic Lie algebras, as the case is with the groups SU(2) and SO(3).  
 
 
 
 
 
 
 



TRANSFORMATION LIE GROUPS 
 

 5  

2.  Group operators for a linear Lie group 
 
Let (x1, ... , xm) be a system of coordinates on Rm. Consider an n-dimensional Lie group 
G represented by (m×m) matrices g the elements of which depend on n real parame-
ters (a1, ... , an). We call x

�

 the column vector with components (x1, ... , xm). The action 
of G on this vector is expressed as  
 

,x g x g G→ ∈
� �

                                                  (4) 
 
In effect, Eq. (4) describes a linear coordinate transformation2 on Rm.  

      Let {L1 , ... , Ln} be a basis of the Lie algebra of G, where the {Lγ} are (m×m) ma-

trices.3 Then there exist real structure constants Cγ
αβ  such that the following commu-

tation relations are satisfied:  
 

      [ , ] (sum on )L L C Lγ
α β αβ γ γ=                                        (5) 

 
An element  g∈G  can then be put in the form  g= exp(a 

λLλ) [1,2] so that (4) is written:  

exp( )x a L xλ
λ→

� �

. For infinitesimal values δa 
λ of the group parameters,  

 
exp (δa 

λLλ)  ∼  1 + δa 
λLλ  

 

so that  (1 )x a L x x xλ
λδ δ→ + ≡ +

� � � �

,  where  

    ( )i i k
kx a L x x a L xλ λ

λ λδ δ δ δ= ⇔ =
� �

                                   (6) 

 
      The expression  g= exp(a 

λLλ)  is a representation of G in terms of linear coordinate 
transformations (4) on Rm. We now seek a different realization of G in terms of trans-

formations of functions ( ) , mF x x R∈
� �

. We define the operators  
 

T (g) :  F → T (g) F,   g∈G 
by  

      ( )1[ ( ) ]( )T g F x F g x−=
� �

                                             (7) 

 
      Proposition 1: The operators T (g) constitute an operator representation of G.  

      Proof: Let g1 , g2 ∈G. Then, for an arbitrary function F on Rm,  
 

( ) ( ) { }

{ }

1 1 1
1 2 2 1 2 1 1 2

1 2

[ ( ) ]( ) [ ( ) ] ( )[ ( ) ] ( )

[ ( ) ( )] ( )

T g g F x F g g x T g F g x T g T g F x

T g T g F x

− − −= = =

≡ ⇒

� � � �

�
 

T (g1 g2) = T (g1) T (g2) ,   q.e.d. 

                                                 
2 For definiteness we regard this as an active transformation from a point x∈Rm with coordinates xk to a 
point x΄ with coordinates xk

΄=  (gx) 
k .  

3 Greek indices run from 1 to n while Latin indices run from 1 to m. The summation convention will be 
used throughout.  
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      For  g= exp(a 
λLλ) ∼ 1+δa 

λLλ  we have that  g–1 ∼ 1– δa 
λLλ , and so (7) yields, by 

using Eq. (A.1) in the Appendix:  
 

( )
( )

[ ( ) ]( ) ( ) ( )

1 ( )

T g F x F x a L x F x a L x F x

a L x F x

λ λ
λ λ

λ
λ

δ δ

δ

− − ⋅∇

= − ⋅∇ ⇒

�� � � � � �

≃ ≃

�� �
 

 

       ( ) 1 1T g a L x a Pλ λ
λ λδ δ− ⋅∇ ≡ +
��

≃                                      (8) 

 

where  ( )i
i

P L x L x
x

λ λ λ
∂

= − ⋅∇ = − ⇒
∂

�� �

  

        ( ) ( )i k i k
k k ii

P L x L x
x

λ λ λ
∂

= − ≡ − ∂
∂

                                     (9) 

 
where we have introduced the notation  ∂i ≡ ∂/∂x 

i . For finite values of the group pa-
rameters a 

λ
 , Eq. (8) generalizes to  T (g) = exp (a 

λPλ) [3,4].  

      Proposition 2: The operators {Pλ} are the basis of a Lie algebra isomorphic to the 
Lie algebra of the matrices {Lγ}. Thus, if the commutation relations (5) are valid, then 
also  

        [ , ]P P C Pγ
α β αβ γ=                                                  (10) 

 
      Proof: Consider the linear mapping  
 

       Ψ :  L → P = Ψ(L) =  – Li
k  x k ∂i                                         (11) 

 
where the matrix L is an element of the Lie algebra of G. Let L1 , L2 be two such ele-
ments. Then,  
 

P1 = Ψ(L1) =  – (L1) i
k  x k ∂i  ,    P2 = Ψ(L2) =  – (L2) i

k  x k ∂i  . 

We have:  
 

Ψ ([L1 , L2]) = Ψ(L1L2 – L2L1) = Ψ(L1L2) – Ψ(L2L1)   (since Ψ is linear) 

=  – (L1L2) i
k  x k ∂i + (L2L1) i

k  x k ∂i   

=  – (L1) i
j (L2)

 j
k  x k ∂i + (L2) i

j (L1)
 j
k  x k ∂i . 

 
On the other hand,  

[  Ψ(L1) , Ψ(L2)] = [P1 , P2] = P1P2 – P2 P1  

= (L1) i
j   x j ∂i [(L2) k

l   x l ∂k] – (L2) k
l   x l ∂k [(L1) i

j   x j ∂i] . 
 
After a lengthy but straightforward calculation, and by canceling out second-order 
derivatives, we find:  
 

[  Ψ(L1) , Ψ(L2)] =  – (L1) i
j (L2)

 j
k  x k ∂i + (L2) i

j (L1)
 j
k  x k ∂i . 
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We thus conclude that  

Ψ ( [L1 ,  L2]  ) = [Ψ(L1) , Ψ(L2)] 
 
which is what we needed to prove. Moreover,  
 

( ) ( )[ , ] [ ( ) , ( )] [ , ]

( )

P P L L L L C L

C L C P

γ
α β α β α β αβ γ

γ γ
αβ γ αβ γ

= Ψ Ψ = Ψ = Ψ

= Ψ =
 

which verifies (10).  

      Example: Let G=SO(3), the group of (3×3) real orthogonal matrices with unit de-
terminant. It is a 3-parameter Lie group [1,5] and thus the associated Lie algebra so(3) 
is 3-dimensional. The basis of so(3) consists of the (3×3) antisymmetric matrices  
 

1 2 3

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

L L L

−     
     = − = =     
     −     

 

 
with commutation relations  
 

[  Li ,  Lj ] =  εijk Lk    (sum on k) 
 
where εijk is antisymmetric in all pairs of indices, with ε123 = ε231 = ε312 = 1. [We use 
Latin instead of Greek indices for the basis elements of so(3) since the number of 
these elements matches the dimensions of R3, on which space both the SO(3) and 
so(3) matrices act.] We notice that  

(Li) 
j
k  = – εijk  . 

 
The operator representation of the basis of so(3) is, according to (9),  
 

Pi =   – (Li) 
j
k  x 

k ∂j  =   εijk  x 
k ∂j  

or, analytically,  
 

P1 =  x3 ∂2 – x2 ∂3  ,   P2 =  x1 ∂3 – x3 ∂1  ,   P3 =  x2 ∂1 – x1 ∂2 . 
 
The reader may check that  [Pi ,  Pj  ]  = εijk Pk  .  
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3.  Group operators for general coordinate transformations 
 
The previous results are valid for linear (matrix) groups, in which case g x

�

 represents 

the action of an (m×m) matrix on a vector of Rm. More generally, consider an  
m-dimensional manifold M with coordinates (x1, ... , xm) and let G be an n-dimensional 
local Lie group of coordinate transformations on M (see [6] for rigorous definitions 
and examples). The elements g of G depend on n real parameters (a1, ... , an). We call  
x ≡ (x1, ... , xm) a point on M and we denote by gx a (possibly nonlinear) coordinate 
transformation on this manifold. To the first order in the group parameters a 

λ, i.e., for 
infinitesimal δa 

λ, such a transformation is approximately linear in the δa 
λ. We write:  

     ( ) where  ( )i i i i i kg x x x x a U xλ
λδ δ δ+ =≃                             (12) 

( i  =  1, ... , m ;  λ =  1, ... , n ).  

      Let F (x) be an arbitrary function on M. As before, we define the operators  
 

T (g) :  F → T (g) F,   g∈G 
by  

                  ( )1[ ( ) ]( )T g F x F g x−=                                            (13) 

 
Again, the T (g) constitute an operator representation of G:  
 

T (g1 g2) = T (g1) T (g2) . 
 
[Careful: g1 g2 is no longer a matrix product but a succession of coordinate transfor-
mations! It is still true, however, that (g1 g2) –1 = g2

 –1g1
 –1.]  

      Given that, by (12),  

( ) ( )i i i kg x x a U xλ
λδ+≃  

we have that  

1( ) ( )i i i kg x x a U xλ
λδ− −≃ . 

Let us justify this statement:  

( )( )
( )

1( ) ( )

( )

ki i i

i i k i k k

g g x g x a U g x

x a U x a U x a U

λ
λ

λ λ ρ
λ λ ρ

δ

δ δ δ

− −

+ − +

≃

≃

 

By using Eq. (A.1) in the Appendix we have that, to the first order in the δa 
λ,  

 

( ) ( ) ( )

( )

i k k i k j i k
j

i k

a U x a U a U x a U U x

a U x

λ ρ λ ρ
λ ρ λ ρ λ

λ
λ

δ δ δ δ

δ

 + + ∂ ≃

≃

 

 
Thus, finally,  ( g –1g x) i   = x i  ⇔  g –1g x  ≡  identity transformation.  
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      By using (A.1) once more, the infinitesimal version of (13) is written:  
 

( )
( )

[ ( ) ]( ) ( ) ( )

1 ( )

i i i
i

i
i

T g F x F x a U F x a U F x

a U F x

λ λ
λ λ

λ
λ

δ δ

δ

− − ∂

= − ∂ ⇒

≃ ≃

 

 

        ( ) 1 1i
iT g a U a Pλ λ

λ λδ δ− ∂ ≡ +≃                                      (14) 

where  

               ( )i k
iP U xλ λ= − ∂                                                 (15) 

 
      It can be proven [3] that the operators Pλ (λ =  1, ... , n ) form the basis of an n-
dimensional Lie algebra:  

[ , ]P P C Pγ
α β αβ γ=                                                 (16) 

 
Let us see what this implies: Let  
 

( ) , ( )i k j k
i jP U x P U xα α β β= − ∂ = − ∂  . 

Then,  

( )[ , ] i j i j
i i jP P U U U Uα β α β β α= ∂ − ∂ ∂ . 

 

A set of real constants Cγ
αβ  must then exist such that  

 

        i j i j j
i iU U U U C Uγ

α β β α αβ γ∂ − ∂ = −                                      (17) 

Then,  

[ , ] j
jP P C U C Pγ γ

α β αβ γ αβ γ= − ∂ =  . 

 
Relations (17) are conditions for closure, under the Lie bracket, of the set of operators 
spanned by the basis {Pλ}; that is, conditions in order that this set constitute a Lie al-
gebra.  
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Appendix:  Multidimensional Taylor expansion 
 
The Taylor series expansion of a function  f (x) about a point x can be written as  
 

0

1 ( )
( ) ( ) ( )

!

n
n

n

d d f x
f x h h f x f x h

n dx dx

∞

=

 + = = + + 
 

∑ ⋯  

We write:  

0

1
( ) ( ) exp ( )

!

n

n

d d
f x h h f x h f x

n dx dx

∞

=

    + = =    
     

∑  . 

 
For infinitesimal  h ≡ δx  we may use the approximate expression  
 

( )
( ) ( )

d f x
f x x f x x

dx
δ δ+ +≃  . 

 

      More generally, consider a function 1 2( , , ) ( )x x rΦ ≡ Φ
�

⋯ . Let 1 2( , , )a a a≡
�

⋯  be 
a constant vector. Then,  
 

0

1
( ) ( ) ( ) ( ) ( )

!
n

n

r a a r r a r
n

∞

=

Φ + = ⋅∇ Φ = Φ + ⋅∇Φ +∑
� �� � � � � � �

⋯  

 

where 1 2( / , / , )x x∇Φ ≡ ∂Φ ∂ ∂Φ ∂
�

⋯ . We write:  
 

0

1
( ) ( ) ( ) exp( ) ( )

!
n

n

r a a r a r
n

∞

=

 
Φ + = ⋅∇ Φ = ⋅∇ Φ 

 
∑

� �� � � � � �

 . 

 
For infinitesimal a rδ≡

� �

,  
 

( ) ( ) ( ) ( ) where

( )
( ) (sum on )k

k

r r r r r r

r
r r x k

x

δ δ δ

δ δ δ

Φ + Φ + ⋅∇Φ ≡ Φ + Φ

∂Φ
Φ = ⋅∇Φ =

∂

�� � � � � �

≃

�
�� �

                   (A.1) 

 
Indeed, notice that, infinitesimally,  
 

wherek k k
k

d dx dx x
x

δ δ
∂Φ

Φ Φ = ≡
∂

≃ . 
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Bäcklund transformations: An introduction 
 

Costas J. Papachristou1 

Hellenic Naval Academy 
 

 

The concept of a Bäcklund transformation (BT) is introduced. Certain applica-
tions of BTs – both older and more recent ones – are discussed.  

 
1.  Introduction 

 

Given a difficult problem in mathematics we always look for some way to transform 
it to another problem that is easier to solve. Thus, for example, we seek an integrating 
factor that might transform a first-order ordinary differential equation into an exact 
one (or would reduce the order of a higher-order differential equation, in the more 
general case).  
      A notoriously difficult problem in the theory of partial differential equations 
(PDEs) is the case of nonlinear PDEs. In contrast to the case of linear PDEs, there is 
no general method for solving nonlinear ones. Thus, given a nonlinear PDE we look 
for ways to associate it with some other PDE (preferably a linear one!) whose solu-
tions are already known. For example, the Burgers equation  ut=uxx+2uux  is a nonlin-
ear PDE for the function u(x,t) (subscripts denote partial derivatives with respect to 
the indicated variables). This PDE can be transformed into the linear heat equation 
vt=vxx  by using the so-called Cole-Hopf transformation  u=vx /v. As can be shown, if 
v(x,t) is a solution of the heat equation then u(x,t) is a solution of the Burgers equation 
(the converse is not true in general).  
      Bäcklund transformations (BTs) were originally devised mainly as a tool for ob-
taining solutions of nonlinear PDEs (see [1] and the references therein). They were 
later also proven useful as recursion operators for constructing infinite sequences of 
nonlocal symmetries and conservation laws of certain types of PDEs [2–6].  
      In simple terms, a BT is a system of PDEs connecting two fields that are required 
to independently satisfy two respective PDEs [call them (a) and (b)] in order for the 
system to be integrable for either field. We say that the PDEs (a) and (b) are inte-
grability conditions for self-consistency of the BT. If a solution of PDE (a) is known, 
then a solution of PDE (b) is obtained simply by integrating the BT, without having to 
actually solve the latter PDE (which, presumably, would be a harder task). In the case 
where the two fields satisfy the same PDE, the auto-BT produces new solutions of 
this PDE from old ones.  
      As described above, a BT is an auxiliary tool for finding solutions of a given (usu-
ally nonlinear) PDE, using known solutions of the same or another PDE. Now, 
suppose the BT itself is the differential system whose solutions we are looking for. As 
will be seen, one possible way to solve this problem is to first seek parameter-
dependent solutions of both integrability conditions of the BT. By properly matching 
the parameters (provided this is possible) a solution of the given differential system is 
obtained.  
      The above method is particularly effective in linear problems, given that paramet-
ric solutions of linear PDEs are generally easier to find. An important paradigm of a 
BT associated with a linear problem is offered by the Maxwell system of equations of 
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electromagnetism [7,8]. As is well known, the consistency of this system demands 
that both the electric and the magnetic field independently satisfy a respective wave 
equation. The wave equations for the two fields have known, parameter-dependent 
solutions; namely, monochromatic plane waves with arbitrary amplitudes, frequencies 
and wave vectors (the “parameters” of the problem). By inserting these solutions into 
the Maxwell system, one may find the appropriate constraints for the parameters in 
order for the plane waves to also be solutions of Maxwell’s equations.  
      In Section 2 we review the classical concept of a BT. The solution-generating 
process by using a BT is demonstrated in a number of examples.  
      In Sec. 3 a different perception of a BT is presented, according to which it is the 
BT itself whose solutions are sought. The concept of parametric conjugate solutions 
is introduced.  
      In Sec. 4 we examine the connection between BTs and recursion operators for 
generating infinite sequences of nonlocal symmetries of PDEs.  
 

2.  Bäcklund transformations and generation of solutions 
 

Let u(x,t) be a function of two variables. For the partial derivatives of u the following 
notation will be used:  

2 2 2

2 2
, , , , ,x x t t xx t t xt

u u u u u
u u u u u u u

x t x tx t

∂ ∂ ∂ ∂ ∂
= ∂ = = ∂ = = = =

∂ ∂ ∂ ∂∂ ∂
 

etc. In general, a subscript will denote partial differentiation with respect to the indi-
cated variable.  
      Let F be a function of x, t, u, as well as of a number of partial derivatives of u. We 
will denote this type of dependence by writing  

( , , , , , , , , ) [ ]x t xx t t xtF x t u u u u u u F u≡⋯  . 

We also write  

/ , / , / ,x x t t u uF F F x F F F t F F F u= ∂ = ∂ ∂ = ∂ = ∂ ∂ = ∂ = ∂ ∂  

etc. Note that in determining  Fx  and  Ft  we must take into account both the explicit 
and the implicit (through u and its partial derivatives) dependence of F on x and t. As 
an example, for  F [u]  =  3xtu2  we have  Fx = 3tu2 + 6xtuux  and  Ft = 3xu2 + 6xtuut .  
      Consider now two partial differential equations (PDEs) P[u]=0 and Q[v]=0 for the 
unknown functions u and v, respectively, where the bracket notation introduced above 
is adopted. Both u and v are functions of two variables x, t. Independently, for the 
moment, consider also a pair of coupled PDEs for u and v:  
 

    1 2[ , ] 0 ( ) [ , ] 0 ( )B u v a B u v b= =                                          (1) 

 
where the expressions Bi [u,v] (i= 1,2) may contain u, v as well as partial derivatives 
of u and v with respect to x and t. We note that u appears in both equations (a) and 
(b). The question then is: if we find an expression for u by integrating (a) for a given 
v, will it match the corresponding expression for u found by integrating (b) for the 
same v? The answer is that, in order that (a) and (b) be consistent with each other for 
solution for u, the function v must be properly chosen so as to satisfy a certain consis-
tency condition (or integrability condition or compatibility condition).  
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      By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for 
solution for v, for some given u, the function u must now itself satisfy a correspond-
ing integrability condition.  
      If it happens that the two consistency conditions for integrability of the system (1) 
are precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a 
Bäcklund transformation (BT) connecting solutions of P[u]=0 with solutions of 
Q[v]=0. In the special case where P≡Q, i.e., when u and v satisfy the same PDE, the 
system (1) is called an auto-Bäcklund transformation (auto-BT) for this PDE.  
      Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able 
to find a BT connecting solutions u of this equation with solutions v of the PDE 
Q[v]=0 (if P≡Q , the auto-BT connects solutions u and v of the same PDE) and let 
v=v0(x,t) be some known solution of Q[v]=0. The BT is then a system of PDEs for the 
unknown u,  
 

0[ , ] 0 , 1,2iB u v i= =                                                (2) 

 
The system (2) is integrable for u, given that the function v0 satisfies a priori the re-
quired integrability condition Q[v]=0. The solution u then of the system satisfies the 
PDE P[u]=0. Thus a solution u(x,t) of the latter PDE is found without actually solving 
the equation itself, simply by integrating the BT (2) with respect to u. Of course, this 
method will be useful provided that integrating the system (2) for u is simpler than 
integrating the PDE P[u]=0 itself. If the transformation (2) is an auto-BT for the PDE 
P[u]=0, then, starting with a known solution v0(x,t) of this equation and integrating 
the system (2), we find another solution u(x,t) of the same equation.  
      Let us see some examples of the use of a BT to generate solutions of a PDE:  
 

      1. The Cauchy-Riemann relations of Complex Analysis,  
 

        ( ) ( )x y y xu v a u v b= = −                                         (3) 

 
(where the variable t has here been renamed y) constitute an auto-BT for the Laplace 
equation,  
 

        [ ] 0xx yyP w w w≡ + =                                                 (4) 

 
Let us explain this: Suppose we want to solve the system (3) for u, for a given choice 
of the function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we 
must compare them in some way. We thus differentiate (a) with respect to y and (b) 
with respect to x, and equate the mixed derivatives of u. That is, we apply the inte-
grability condition (ux)y=  (uy)x . In this way we eliminate the variable u and find the 
condition that must be obeyed by v(x,y):  
 

[ ] 0xx yyP v v v≡ + =  . 

Similarly, by using the integrability condition (vx)y=  (vy)x to eliminate v from the sys-
tem (3), we find the necessary condition in order that this system be integrable for v, 
for a given function u(x,y):  

[ ] 0xx yyP u u u≡ + =  . 
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In conclusion, the integrability of system (3) with respect to either variable u or v re-
quires that the other variable must satisfy the Laplace equation (4).  
      Let now v0(x,y) be a known solution of the Laplace equation (4). Substituting 
v=v0 in the system (3), we can integrate this system with respect to u. As can be 
shown by eliminating v0 from the system, the solution u will also satisfy the Laplace 
equation (4). As an example, by choosing the solution  v0(x,y)=xy  we find a new solu-
tion  u(x,y)=  (x

2 –y2)/2 +C .  
 

      2. The Liouville equation is written  
 

        [ ] 0u u
xt xtP u u e u e≡ − = ⇔ =                                       (5) 

 
Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus 
sought by means of a BT. We consider an auxiliary function v(x,t) and an associated 
PDE,  

        [ ] 0xtQ v v≡ =                                                       (6) 

 
We also consider the system of first-order PDEs,  
 

        ( ) / 2 ( ) /22 ( ) 2 ( )u v u v
x x t tu v e a u v e b− ++ = − =                       (7) 

 
Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and 
eliminating (ut −vt) and (ux+vx) in the ensuing equations with the aid of (a) and (b), 
we find that u and v satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is 
a BT connecting solutions of (5) and (6). Starting with the trivial solution v=0 of (6), 
and integrating the system (7), which reads  
 

/ 2 /22 , 2x t
u uu e u e= =

                                     (7a)
 

 
we find a nontrivial solution of (5):  

( , ) 2 ln
2

x t
u x t C

+ 
=− − 

 
  

(see Appendix).  
 

      3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., 
in the study of crystalline solids, in the transmission of elastic waves, in magnetism, 
in elementary-particle models, etc. The equation (whose name is a pun on the related 
linear Klein-Gordon equation) is written  
 

        [ ] sin 0 sinxt xtP u u u u u≡ − = ⇔ =                                    (8) 

 
The following system of equations is an auto-BT for the nonlinear PDE (8):  
 

        
1 1 1

( ) sin , ( ) sin
2 2 2 2x t

u v u v
u v a u v

a

− +   + = − =   
   

                    (9) 
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where a (≠0) is an arbitrary real constant. [Because of the presence of a, the system 
(9) is called a parametric BT.] When u is a solution of (8) the BT (9) is integrable for 
v, which, in turn, also is a solution of (8): P[v]=0; and vice versa. Starting with the 
trivial solution  v=0  of  vxt=  sin v , and integrating the system (9), which reads  
 

          
2

2 sin , sin
2 2x t
u u

u a u
a

= =                                      (9a) 

 
we obtain a new solution of (8):  

( , ) 4arctan exp
t

u x t C ax
a

  = +  
  

  

(see Appendix).  
 

3.  Method of parametric conjugate solutions 
 

As presented in the previous section, a BT is an auxiliary device for constructing so-
lutions of a (usually nonlinear) PDE from known solutions of the same or another 
PDE. The related problem where solutions of the differential system representing the 
BT itself are sought is also of interest, however, and has been studied in connection 
with the Maxwell equations of electromagnetism [7,8].  
      To be specific, assume that we need to integrate a given system of PDEs connect-
ing two unknown functions u(x,y) and v(x,y):  
 

        [ , ] 0 , 1,2iB u v i= =                                                (10) 

 
Suppose that the integrability of the above system for both functions requires that u 
and v separately satisfy the respective PDEs  
 

        [ ] 0 ( ) [ ] 0 ( )P u a Q v b= =                                        (11) 
 
That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, 
that these PDEs possess known parameter-dependent solutions of the form  
 

        ( , ; , , ) , ( , ; , , )u f x y v g x yα β κ λ= =… …                                (12) 
 
where α, β, κ, λ, etc., are (real or complex) parameters. If values of these parameters 
can be determined for which u and v jointly satisfy the system (10), we say that the 
solutions u and v of the PDEs (11a) and (11b), respectively, are conjugate through the 
BT (10) (or BT-conjugate, for short). By finding a pair of BT-conjugate solutions (12) 
one thus automatically obtains a solution of the system (10).  
      Note that solutions of both integrability conditions (11) of the system (10) must 
now be known in advance! From the practical point of view the method is thus most 
applicable in linear problems, since it is much easier to find parameter-dependent so-
lutions of the PDEs (11) in this case.  
      Let us see an example: Going back to the Cauchy-Riemann relations (3), which is 
an auto-BT connecting solutions of the Laplace equation (4), we try the following pa-
rametric solutions of the latter PDE:  
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2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

α β γ

κ λ µ

= − + +

= + +
 

Substituting these expressions into the BT (3), we find that κ=2α, µ=β and λ= –γ. 
Therefore, the solutions  

2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

α β γ

α γ β

= − + +

= − +
 

of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination of parametric solutions:  

( , ) , ( , ) .u x y xy v x y xyα β= =  

Inserting these into the system (3) and taking into account the independence of x and 
y, we find that the only possible values of the parameters α and β are α=β=0, so that 
u(x,y)= v(x,y)=0. Thus, no non-trivial BT-conjugate solutions exist in this case.  
 

4.  BTs as recursion operators for symmetries of PDEs 
 

The concept of symmetries of PDEs has been extensively discussed in [1] and [9]. Let 
us review the main ideas:  
      Consider a PDE F[u]=0, where u=u(x,t). A transformation u (x,t) → u΄ (x,t) from 
the function u to a new function u΄ represents a symmetry of this PDE if the following 
condition is satisfied:  u΄(x,t) is a solution of F[u]=0  if   u(x,t) is a solution. That is,  
 

    [ ] 0 when [ ] 0F u F u′ = =                                          (13) 
 
      An infinitesimal symmetry transformation is written  
 

    [ ]u u u u Q uδ α′ = + = +                                              (14) 
 
where α is an infinitesimal parameter. The function Q[u]≡Q(x, t, u, ux , ut ,...) is called 
the symmetry characteristic of the transformation (14).  
      In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it 
must satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We 
write, symbolically,  
 

   ( ; ) 0 when [ ] 0S Q u F u= =                                         (15) 
 
where the expression S depends linearly on Q and its partial derivatives. Thus, (15) is 
a linear PDE for Q, in which equation the variable u enters as a sort of parametric 
function that is required to satisfy the PDE F[u]=0.  
      A recursion operator R̂  [10] is a linear operator which, acting on any symmetry 

characteristic Q, produces a new symmetry characteristic ˆQ RQ′ = . That is,  
 

  ˆ( ; ) 0 when ( ; ) 0S RQ u S Q u= =                                     (16) 
 
It is easy to show that any power of a recursion operator also is a recursion operator. 
This means that, starting with any symmetry characteristic Q, one may in principle 



BÄCKLUND TRANSFORMATIONS: AN INTRODUCTION 
 

 7  

obtain an infinite set of characteristics (thus, an infinite number of symmetries) by 
repeated application of the recursion operator.  
      A new approach to recursion operators was suggested in the early 1990s [2,3] (see 
also [4-6] and [11-13]). According to this view, a recursion operator for the PDE 
F[u]=0 is an auto-BT for the linear PDE (15) that expresses the symmetry condition 
of F[u]=0; that is, a BT producing new solutions Q΄ of (15) from old ones, Q. Typi-
cally, this type of BT produces nonlocal symmetries, i.e., symmetry characteristics 
depending on integrals (rather than derivatives) of u.  
      As an example, consider the chiral field equation  
 

   1 1[ ] ( ) ( ) 0x x t tF g g g g g− −≡ + =                                        (17) 

 
(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued func-
tion of x and t (i.e., an invertible complex n×n matrix, differentiable for all x, t).  
      Let Q[g] be a symmetry characteristic of the PDE (17). It is convenient to put  
 

Q [g] = g Φ[g] 
 
and write the corresponding infinitesimal symmetry transformation in the form  
 

    [ ]g g g g g gδ α′ = + = + Φ                                          (18) 
 
The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in Φ also. 
As can be shown [9] this PDE is  
 

  1 1( ; ) [ , ] [ , ] 0xx t t x x t tS g g g g g− −Φ ≡ Φ + Φ + Φ + Φ =                      (19) 

 
which must be valid when F[g]=0  (where, in general,  [A, B]  ≡ AB–BA  denotes the 
commutator of two matrices A and B).  
      For a given g satisfying F[g]=0, consider now the following system of PDEs for 
the matrix functions Φ and Φ΄:  
 

     
1

1

[ , ]

[ , ]

x t t

t x x

g g

g g

−

−

′Φ = Φ + Φ

′− Φ = Φ + Φ
                                              (20) 

 
The integrability condition ( ) ( )x t t x′ ′Φ = Φ , together with the equation F[g]=0, require 

that Φ be a solution of (19):  S (Φ ; g) = 0.  Similarly, by the integrability condition 
( ) ( )t x x tΦ = Φ  one finds, after a lengthy calculation:  S (Φ΄; g) = 0.  

      In conclusion, for any g satisfying the PDE (17), the system (20) is a BT relating 
solutions Φ and Φ΄ of the symmetry condition (19) of this PDE; that is, relating dif-
ferent symmetries of the chiral field equation (17). Thus, if a symmetry characteristic 
Q=gΦ of (17) is known, a new characteristic Q΄=gΦ΄ may be found by integrating the 
BT (20); the converse is also true. Since the BT (20) produces new symmetries from 
old ones, it may be regarded as a recursion operator for the PDE (17).  
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      As an example, for any constant matrix M the choice Φ=M  clearly satisfies the 
symmetry condition (19). This corresponds to the symmetry characteristic Q=gM. By 
integrating the BT (20) for Φ΄, we get Φ΄=[X, M] and Q΄=g[X, M], where X is the “po-
tential” of the PDE (17), defined by the system of PDEs  
 

1 1,x t t xX g g X g g− −= − =                                           (21) 

 
Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of 
the potential X. Indeed, as seen from (21), in order to find X one has to integrate the 
chiral field g with respect to the independent variables x and t. The above process can 
be continued indefinitely by repeated application of the recursion operator (20), lead-
ing to an infinite sequence of increasingly nonlocal symmetries.  
 
 

Appendix 
 

We describe the process of integrating the BTs (7a) and (9a) for the Liouville equa-
tion and the sine-Gordon equation, respectively.  
 
      1. The system (7a) reads  

      / 22x
uu e=                                                   (A.1) 

     / 22t
uu e=                                                   (A.2) 

 
We integrate (A.1) for  x, treating  t  as constant:  
 

/ 2 / 2/ 22 2 ( )
2

u uudu x
e e du dx e h t

dx
− −= ⇒ = ⇒ = − +∫ ∫  

 
[where h(t) is a function to be determined], from which we have that  
 

2 ln ( )
2

x
u h t

 
= − − + 

 
    and therefore    

2 ( )

( )
2

t
h t

u
x

h t

′−
=

− +
  . 

Substituting the above results into (A.2), we get:  
 

1
( ) ( )

2 2

t
h t h t C′ = − ⇒ = − +  . 

Thus we finally have:  

( , ) 2 ln
2

x t
u x t C

+ 
=− − 

 
 . 
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      2. The system (9a) reads  

       2 sin
2x
u

u a=                                                    (A.3) 

       
2

sin
2t
u

u
a

=                                                     (A.4) 

  
Integrating (A.3) for  x  and using the integral formula  
 

1
ln tan

sin 2

du ku

ku k
 =  
 ∫  

we have:  

2 sin 2
2 sin ( / 2)

du u du
a a dx

dx u
= ⇒ = ⇒∫ ∫  

 

       ln tan ( )
4

u
ax g t

  = + 
 

                                           (A.5) 

 
Similarly, integrating (A.4) for  t  we find:  
 

      ln tan ( )
4

u t
h x

a
  = + 
 

                                             (A.6) 

 
By comparing (A.5) and (A.6) we have that  
 

( ) ( ) ( ) ( )
t t

ax g t h x h x ax g t
a a

+ = + ⇒ − = −  . 

 
But, a function of  x  cannot be identically equal to a function of  t  unless both are 
equal to the same constant C:   h(x) – ax = g(t) – t /a = C   ⇒  
 

( ) , ( )
t

h x ax C g t C
a

= + = +  . 

 
From (A.5) and (A.6) we then get  
 

ln tan
4

u t
ax C

a
  = + + ⇒ 
 

   ( by putting C in place of eC ) 

( , ) 4arctan exp
t

u x t C ax
a

  = +  
  

 . 
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    Abstract. The study of symmetries of partial differential equations (PDEs) has been 
traditionally treated as a geometrical problem. Although geometrical methods have 
been proven effective with regard to finding infinitesimal symmetry transformations, 
they present certain conceptual difficulties in the case of matrix-valued PDEs; for  
example, the usual differential-operator representation of the symmetry-generating  
vector fields is not possible in this case. In this article an algebraic approach to the 
symmetry problem of PDEs – both scalar and matrix-valued – is described, based on 
abstract operators (characteristic derivatives) that admit a standard differential-operator 
representation in the case of scalar-valued PDEs. A number of examples are given.  
 
    Keywords: Matrix-valued differential equations, symmetry transformations, Lie algebras, 
recursion operators  
 

1.  Introduction 
 
The problem of symmetries of a system of partial differential equations (PDEs) has 
been traditionally treated as a geometrical problem in the jet space of the independent 
and the dependent variables (including a sufficient number of partial derivatives of the 
latter variables with respect to the former ones). Two more or less equivalent ap-
proaches have been adopted: (a) invariance of the system of PDEs itself, under infini-
tesimal transformations generated by corresponding vector fields in the jet space [1]; 
(b) invariance of a differential ideal of differential forms representing the system of 
PDEs, under the Lie derivative with respect to the vector fields representing the sym-
metry transformations [2-6].  
      Although effective with regard to calculating symmetries, these geometrical ap-
proaches suffer from a certain drawback of conceptual nature when it comes to ma-
trix-valued PDEs. The problem is related to the inevitably mixed nature of the coordi-
nates in the jet space (scalar independent variables versus matrix-valued dependent 
ones) and the need for a differential-operator representation of the symmetry vector 
fields. How does one define differentiation with respect to matrix-valued variables? 
Moreover, how does one calculate the Lie bracket of two differential operators in 
which some (or all) of the variables, as well as the coefficients of partial derivatives 
with respect to these variables, are matrices?  
      Although these difficulties were handled in some way in [4-6], it was eventually 
realized that an alternative, purely algebraic approach to the symmetry problem would 
be more appropriate in the case of matrix-valued PDEs. Elements of this approach 
were presented in [7] and later applied in particular problems [8-10]; no formal theo-
retical framework was fully developed, however.  
      An attempt to develop such a framework is made in this article. In Sections 2 and 
3 we introduce the concept of characteristic derivatives – an abstract generalization of 
vector fields in differential-operator form – and we demonstrate the Lie-algebraic 
character of the set of these derivatives.  
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      The general symmetry problem for both scalar and matrix-valued PDEs is pre-
sented in Sec. 4, and the Lie-algebraic property of symmetries of a PDE is proven in 
Sec. 5. In Sec. 6 we discuss the concept of a recursion operator [1,8-14] by which an 
infinite set of symmetries may in principle be produced from any known symmetry. 
An application of these ideas is made in Sec. 7 by using the chiral field equation as an 
example.  
      A symmetry of a PDE amounts to the invariance of this equation under the action 
of a corresponding characteristic derivative. Given the latter operator an infinitesimal 
symmetry of the PDE may be defined. Section 8 discusses the use of symmetry opera-
tors to construct finite one-parameter symmetry transformations of PDEs. As a peda-
gogical example, a number of point-symmetry transformations for the two-
dimensional Laplace equation are derived in Sec. 9.  
      To simplify our formalism we will restrict our analysis to the case of a single PDE 
in one dependent variable. For systems of scalar-valued PDEs in several dependent 
variables see, e.g., [1].  
 
 

2.  The fundamental operators 
 
A PDE for the unknown function u=u(x1, x2, ... ) ≡ u(xk) [where by (xk) we collectively 
denote the independent variables x1, x2, ...] is an expression of the form F[u]=0, where 
F[u]  ≡ F(xk, u, uk , ukl , ...) is a function in the jet space [1] of the independent variables 
(xk), the dependent variable u, and the partial derivatives of various orders of u with 
respect to the xk, which derivatives will be denoted by using subscripts: uk , ukl , uklm , 
etc.  A solution of the PDE is any function u=φ(xk) for which the relation F[u]=0 is 
satisfied.  
      The dependent variable u, as well as all functions F[u] in the jet space, will gener-
ally be assumed to be square-matrix-valued of fixed (but otherwise unspecified) ma-
trix dimensions. In particular, we require that, in its most general form, a function 
F[u] in the jet space is expressible as a finite or an infinite sum of products of alternat-
ing x-dependent and u-dependent terms, of the form  
 

  [ ] ( ) [ ] ( ) [ ] ( )k k kF u a x u b x u c x′= Π Π∑ ⋯                           (2.1) 

 
where the a(xk), b(xk), c(xk), etc., are (generally) matrix-valued and where the matrices 
Π[u], Π΄[u], etc., are products of variables u, uk , ukl , etc., of the “fiber” space (or, 
more generally, products of powers of these variables). The set of all functions (2.1) is 
thus a (generally) non-commutative algebra.  
      If u is a scalar quantity, a total derivative operator can be defined in the usual dif-
ferential-operator form  
 

           i i i j i j ki
j j k

D u u u
u u ux

∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂∂
⋯                          (2.2) 

 
where the summation convention over repeated up-and-down indices (such as j and k 
in this equation) has been adopted and will be used throughout. If, however, u is ma-
trix-valued, the above expression is obviously not valid. A generalization of the defi-
nition of the total derivative is thus necessary for matrix-valued PDEs.  
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      Definition 2.1. The total derivative operator with respect to the variable xi is a lin-
ear operator Di acting on functions F[u] of the form (2.1) in the jet space and having 
the following properties:  

      1. On functions f (x
k) in the base space,  Di  f (x

k) = ∂f / ∂xi ≡ ∂i  f (x
k) .  

      2. For F[u]=u , ui , uij , etc., we have:  Di u =  ui ,  Di uj = D j ui =  uij =  uji ,  etc.  

      3. The operator Di is a derivation on the algebra of all matrix-valued functions of 
the form (2.1) in the jet space; i.e., the Leibniz rule is satisfied:  
 

      Di (F [u]G [u]) = (Di F [u]) G [u] + F [u]  Di  G [u]                          (2.3) 
 
      Higher-order total derivatives Dij=D iDj may similarly be defined but they no 
longer possess the derivation property. Given that  ∂i∂j=∂j∂i  and that uij=uji , it follows 
that DiDj =  DjDi ⇔ Dij =  Dji ; that is, total derivatives commute. We write: [Di , Dj]=0, 
where, in general, [A, B]  ≡ AB–BA will denote the commutator of two operators or two 
matrices, as the case may be.  
      If  u

–1 is the inverse of u, such that  uu–1=  u
–1u =  1111, then we can define  

 

          ( ) ( )1 1 1
i iD u u D u u− − −≡ −                                           (2.4) 

 
Moreover, for any functions A[u] and B[u] in the jet space it can be shown that  
 

             Di [A, B] = [Di A, B]  +  [A, Di B]                                        (2.5) 
 
      As an example, let (x1, x2) ≡ (x, t) and let F[u]=xtux

2, where u is matrix-valued. 
Writing F[u]=xtuxux , we have: Dt F[u]=xux

2 + xt (uxt ux +  ux uxt ).  

      Let now Q[u]  ≡ Q (xk, u, uk , ukl , ...) be a function in the jet space. We will call this 
a characteristic function (or simply a characteristic) of a certain derivative, defined as 
follows:  

      Definition 2.2. The characteristic derivative with respect to Q[u] is a linear opera-
tor ∆Q acting on functions F[u] in the jet space and having the following properties:  

      1. On functions f (x
k) in the base space,   

 
∆ Q  f (x

k ) =  0                                                  (2.6) 
 
(that is, ∆Q  acts only in the fiber space).  

      2. For  F[u]=u ,  

             ∆ Q u =  Q[u]                                                   (2.7) 
 
      3. ∆Q  commutes with total derivatives:  
 

             ∆ Q Di =  Di ∆ Q   ⇔   [∆ Q , Di ] =  0   (all i)                               (2.8) 
 
      4. The operator ∆Q is a derivation on the algebra of all matrix-valued functions of 
the form (2.1) in the jet space (the Leibniz rule is satisfied):  
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      ∆Q (F [u]G [u]) = (∆Q F [u]) G [u] + F [u]  ∆Q G [u]                         (2.9) 
 
      Corollary: By (2.7) and (2.8) we have:  
 

    ∆ Q ui =  ∆ Q Di u =  Di  Q[u]                                         (2.10) 
 
      We note that the operator ∆Q is a well-defined quantity, in the sense that the action 
of ∆Q on u uniquely determines the action of ∆Q on any function F[u] of the form 
(2.1) in the jet space. Moreover, since, by assumption, u and Q[u] are matrices of 
equal dimensions, it follows from (2.7) that ∆Q preserves the matrix character of u, as 
well as of any function F[u] on which this operator acts.  
      We also remark that we have imposed conditions (2.6) and (2.8) having a certain 
property of symmetries of PDEs in mind; namely, every symmetry of a PDE can be 
represented by a transformation of the dependent variable u alone, i.e., can be ex-
pressed as a transformation in the fiber space (see [1], Chap. 5).  
      The following formulas, analogous to (2.4) and (2.5), may be written:  
 

              ( ) ( )1 1 1
Q Qu u u u− − −∆ ≡ − ∆                                        (2.11) 

             ∆Q [A, B] = [∆Q A, B]  +  [A, ∆Q B]                                    (2.12) 
 
      As an example, let (x1, x

2) ≡ (x, t) and let F[u]=a(x,t)u2b(x,t)+[ux , ut] , where a, b 
and u are matrices of equal dimensions. Writing u2=uu and using properties (2.7), 
(2.9), (2.10) and (2.12), we find:  ∆Q F[u]=a(x,t)(Qu+uQ)b(x,t)+[Dx Q, ut]+[ux , Dt Q].  

      In the case where u is scalar-valued (thus so is Q[u]) the characteristic derivative 
∆Q admits a differential-operator representation of the form  
 

    ( ) ( )[ ] [ ] [ ]Q i i j
i i j

Q u D Q u D D Q u
u u u

∂ ∂ ∂
∆ = + + +

∂ ∂ ∂
⋯                   (2.13) 

 
[See [1], Chap. 5, for an analytic proof of property (2.8) in this case.]  
 
 

3.  The Lie algebra of characteristic derivatives 
 
The characteristic derivatives ∆Q acting on functions F[u] of the form (2.1) in the jet 
space constitute a Lie algebra of derivations on the algebra of the F[u]. The proof of 
this statement is contained in the following three Propositions.  

      Proposition 3.1. Let ∆Q be a characteristic derivative with respect to the character-
istic Q[u]; i.e., ∆Q u=Q[u]  [cf. Eq. (2.7)]. Let λ be a constant (real or complex). We 
define the operator λ∆Q by the relation  
 

(λ∆Q) F[u] ≡ λ (∆Q F[u]  ) . 
 
Then, λ∆Q is a characteristic derivative with characteristic λQ[u]. That is,  
 

         Q Qλλ ∆ = ∆                                                     (3.1) 
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      Proof. (a) The operator λ∆Q is linear, since so is ∆Q .  

(b)  For F[u]=u,  (λ∆Q)u= λ(∆Q u)=λQ[u] .  

(c)  λ∆Q commutes with total derivatives Di , since so does ∆Q .  

(d)  Given that ∆Q satisfies the Leibniz rule (2.9), it is easily shown that so does λ∆Q .  
 
      Comment: Condition (c) would not be satisfied if we allowed λ to be a function of 
the xk instead of being a constant, since λ(xk) generally does not commute with the Di. 
Therefore, relation (3.1) is not valid for a non-constant λ.  

      Proposition 3.2. Let ∆1 and ∆2 be characteristic derivatives with respect to the 
characteristics Q1[u] and Q2[u], respectively; i.e., ∆1u=Q1[u], ∆2u=Q2[u]. We define 
the operator ∆1+∆2 by  
 

(∆1+∆2) F[u] ≡ ∆1 F[u]  + ∆2 F[u] . 
 
Then, ∆1+∆2 is a characteristic derivative with characteristic Q1[u]+Q2[u]. That is,  
 

       1 2 1 2with [ ] [ ] [ ]Q Q u Q u Q u∆ + ∆ = ∆ = +                               (3.2) 

 
      Proof. (a) The operator ∆1+∆2 is linear, as a sum of linear operators.  

(b)  For F[u]=u,  (∆1+∆2)u =  ∆1u +∆2u =  Q1[u]+Q2[u] .  

(c)  ∆1+∆2 commutes with total derivatives Di , since so do ∆1 and ∆2 .  

(d)  Given that each of ∆1 and ∆2 satisfies the Leibniz rule (2.9), it is not hard to show 
that the same is true for ∆1+∆2 .  

      Proposition 3.3. Let ∆1 and ∆2 be characteristic derivatives with respect to the 
characteristics Q1[u] and Q2[u], respectively; i.e., ∆1u=Q1[u], ∆2u=Q2[u]. We define 
the operator [∆1 , ∆2] (Lie bracket of ∆1 and ∆2) by  
 

[∆1 , ∆2]  F[u] ≡ ∆1 (∆2 F[u]) – ∆2 (∆1 F[u]) . 
 
Then, [∆1 , ∆2] is a characteristic derivative with characteristic ∆1Q2[u]–∆2Q1[u]. That 
is,  
 

    1 2 1 2 2 1 1,2[ , ] with [ ] [ ] [ ] [ ]Q Q u Q u Q u Q u∆ ∆ = ∆ = ∆ − ∆ ≡                     (3.3) 

 
      Proof. (a) The linearity of [∆1 , ∆2] follows from the linearity of ∆1 and ∆2 .  

(b)  For F[u]=u,  [∆1 , ∆2]u =  ∆1 (∆2u) – ∆2 (∆1u) = ∆1Q2[u]–∆2Q1[u] ≡ Q1,2[u] .  

(c)  [∆1 , ∆2] commutes with total derivatives Di , since so do ∆1 and ∆2 .  

(d)  Given that each of ∆1 and ∆2 satisfies the Leibniz rule (2.9), one can show (after 
some algebra and cancellation of terms) that the same is true for [∆1 , ∆2].  

      In the case where u (thus the Q’s also) is scalar-valued, the Lie bracket admits a 
standard differential-operator representation:  
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      ( ) ( )1 2 1,2 1,2 1,2[ , ] [ ] i i j
i i j

Q u D Q D D Q
u u u

∂ ∂ ∂
∆ ∆ = + + +

∂ ∂ ∂
⋯                (3.4) 

 
where   Q1,2[u] = [∆1 , ∆2]  u = ∆1Q2[u]  – ∆2Q1[u] .  
 
      The Lie bracket [∆1 , ∆2] has the following properties:  
 

1. [∆1 , a∆2+b∆3] = a [∆1 , ∆2]  + b [∆1 , ∆3] ;  

[a∆1+b∆2 , ∆3] = a [∆1 , ∆3]  + b [∆2 , ∆3]        (a, b = const.)  

2. [∆1 , ∆2] = – [∆2 , ∆1]      (antisymmetry)  

3. [∆1 , [∆2 , ∆3]] + [∆2 , [∆3 , ∆1]] + [∆3 , [∆1 , ∆2]] = 0 ;  

[[∆1 , ∆2]  , ∆3] + [[∆2 , ∆3]  , ∆1] + [[∆3 , ∆1]  , ∆2] = 0        (Jacobi identity)  

 
 

4.  Infinitesimal symmetry transformations of a PDE 
 
Let F[u]=0 be a PDE in the independent variables xk ≡ x

1, x2, ... , and the (generally) 
matrix-valued dependent variable u. A transformation u(xk)→u΄(xk) from the function 
u to a new function u΄ represents a symmetry of the PDE if the following condition is 
satisfied: u΄(xk) is a solution of F[u]=0 when u(xk) is a solution; that is, F[u΄]=0 when 
F[u]=0.  
      We will restrict our attention to continuous symmetries and, for the moment, to 
infinitesimal transformations. Although such symmetries may involve transformations 
of the independent variables (xk), they may equivalently be expressed as transforma-
tions of u alone (see [1], Chap. 5), i.e., as transformations in the fiber space.  
      An infinitesimal symmetry transformation is written symbolically as  
 

u → u΄= u+δu 
 
where δu is an infinitesimal quantity, in the sense that all powers (δu)n with n>1 may 
be neglected. The symmetry condition is thus written  
 

            F[u+δu]  = 0   when   F[u]  = 0                                        (4.1) 
 
      An infinitesimal change δu of u induces a change δF[u] of F[u], where  
 

δF[u] = F[u+δu] – F[u]   ⇔   F[u+δu] = F[u] + δF[u]                     (4.2) 
 
Now, if δu is an infinitesimal symmetry and if u is a solution of F[u]=0, then u+δu 
also is a solution; that is, F[u+δu]=0. This means that δF[u]=0 when F[u]=0. The 
symmetry condition (4.1) is thus written as follows:  
 

δF[u]  = 0   mod   F[u]                                              (4.3) 
 
      A finite symmetry transformation (we denote it M) of the PDE F[u]=0 produces a 
one-parameter family of solutions of the PDE from any given solution u(xk). We ex-
press this by writing  
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    : ( ) ( ; ) with   ( ;0) ( )k k k kM u x u x u x u xα→ =                             (4.4) 
 
For infinitesimal values of the parameter α,  
 

    
0

( ; ) ( ) [ ] where [ ]k k du
u x u x Q u Q u

d α

α α
α =

+ =≃                      (4.5) 

 
The function Q[u]  ≡ Q(xk, u, uk , ukl , ...) in the jet space is called the characteristic of 
the symmetry (or, the symmetry characteristic). Putting  
 

( ; ) ( )k ku u x u xδ α= −                                             (4.6) 
 
we write, for infinitesimal α,  
 

        δu = α Q[u]                                                      (4.7) 
 
      We notice that the infinitesimal operator δ has the following properties:  

1. According to its definition (4.2), δ is a linear operator :  
 

δ(F[u]+G[u]) =  (F[u+δu]+ G[u+δu]) – (F[u]+G[u]) = δF[u]+δG[u] . 
 
2. By the nature of our symmetry transformations, δ produces changes in the fiber 
space while it doesn’t affect functions f (x

k) in the base space [this is implicitly stated 
in (4.6)].  

3. Since δ represents a difference, it commutes with all total derivatives Di :  
 

δ (Di A[u]) = Di (δA[u]) . 

In particular, for A[u]=u,  
 

δui =  δ (Di u) =  Di (δu) =  α Di Q[u]  , 
 
where we have used (4.7).  

4. Since δ expresses an infinitesimal change, it may be approximated to a differential; 
in particular, it satisfies the Leibniz rule:  
 

δ (A[u]B[u]) =  (δA[u])  B[u]  +  A[u]  δB[u] . 
 
For example,  δ(u2) =  δ(uu) =  (δu)u+uδu =  α (Qu+uQ) .  

      Now, consider the characteristic derivative ∆Q with respect to the symmetry char-
acteristic Q[u]. According to (2.7),  
 

∆Q u =  Q[u]                                                       (4.8) 
 
We observe that the infinitesimal operator δ and the characteristic derivative ∆Q share 
common properties. From (4.7) and (4.8) it follows that the two linear operators are 
related by  



 Costas J. Papachristou 

 8 

     δu = α ∆Q u                                                        (4.9) 
 
and, by extension,   
 

δui =  α Di Q[u]  =  α ∆Q ui ,  etc. 
 
[see (2.10)]. Moreover, for scalar-valued u and by the infinitesimal character of the 
operator δ, we may write:  
 

[ ] [ ] [ ] [ ]i i i j
i i i j

F F F F F
F u u u Q u D Q u D D Q u

u u u u u
δ δ δ α

 ∂ ∂ ∂ ∂ ∂
= + + = + + +  ∂ ∂ ∂ ∂ ∂ 

⋯ ⋯  

 
while, by (2.13),  
 

    [ ] [ ] [ ] [ ]Q i i j
i i j

F F F
F u Q u D Q u D D Q u

u u u

∂ ∂ ∂
∆ = + + +

∂ ∂ ∂
⋯                 (4.10) 

 
      The above observations lead us to the conclusion that, in general, the following 
relation is true:  
 

      δF[u]  =  α ∆Q F[u]                                             (4.11) 
 
The symmetry condition (4.3) is thus written:  
 

    ∆Q F[u]  = 0   mod   F[u]                                          (4.12) 
 
In particular, if u is scalar-valued, the above condition is written  
 

    [ ] [ ] [ ] 0 mod [ ]i i j
i i j

F F F
Q u D Q u D D Q u F u

u u u

∂ ∂ ∂
+ + + =

∂ ∂ ∂
⋯               (4.13) 

 
which is a linear PDE for Q[u]. More generally, for matrix-valued u and for a function 
F[u] of the form (2.1), the symmetry condition for the PDE F[u]=0 is a linear PDE for 
the symmetry characteristic Q[u]. We write this PDE symbolically as  
 

        S (Q ; u) ≡ ∆Q F[u]  = 0   mod   F[u]                                   (4.14) 
 
where the function S (Q ; u) is linear in Q and all total derivatives of Q. (The linearity 
of S in Q follows from the Leibniz rule and the specific form (2.1) of F[u].)  
      Below is a list of formulas that may be useful in calculations:  
 

• ∆Q ui =  Di Q[u] ,   ∆Q uij =  Di Dj Q[u] ,   etc.  

• ∆Q u
2 =  ∆Q (uu) =  Q[u]u+uQ[u]   (etc.)  

• ∆Q (u
–1) = – u–1 (∆Q u) u

–1 = – u–1 Q[u]  u
–1   

• ∆Q [A[u]  , B[u]] = [∆Q A , B] + [A , ∆Q B]   
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      Comment: According to (4.12), ∆Q F[u] vanishes if F[u] vanishes. Given that ∆Q is 
a linear operator, the reader may wonder whether this condition is identically satisfied 
(a linear operator acting on a zero function always produces a zero function!). Note, 
however, that the function F[u] is not identically zero; it becomes zero only for solu-
tions of the given PDE. What we need to do, therefore, is to first evaluate ∆Q F[u] for 
arbitrary u and then demand that the result vanish when u is a solution of the PDE 
F[u]=0.  
      An alternative – and perhaps more transparent – version of the symmetry condi-
tion (4.12) is the requirement that the following relation be satisfied:  
 

     ˆ[ ] [ ]QF u L F u∆ =                                               (4.15) 

 
where L̂  is a linear operator acting on functions in the jet space (see, e.g., [1], Chap. 2 
and 5, for a rigorous justification of this condition in the case of scalar-valued PDEs). 
For example, one may have  
 

,

[ ] ( ) [ ] ( ) [ ] ( ) [ ] [ ] ( )k k k k
Q i i i j i j

i i j

F u x D F u x D D F u A x F u F u B xβ γ∆ = + + +∑ ∑  

where the βi and γij are scalar-valued while A and B are matrix-valued. Let us see 
some examples, restricting for the moment our attention to scalar PDEs.  

      Example 4.1. The sine-Gordon (s-G) equation is written  
 

F [u]  ≡  uxt − sin u= 0 . 
 
Here, (x1, x2) ≡ (x, t). Since sinu can be expanded into an infinite series in powers of u, 
we see that F[u] has the required form (2.1). Moreover, since u is a scalar function, we 
can write the symmetry condition by using (4.13):  
 

S (Q ; u) ≡ Qxt  –  (cosu) Q =  0   mod   F [u]  
 
where S(Q; u)=  ∆Q F[u] and where by subscripts we denote total differentiations with 
respect to the indicated variables. Let us verify the solution Q[u]  = ux . As will be 
shown in Sec. 9, this characteristic produces the finite symmetry transformation  
 

   : ( , ) ( , ; ) ( , )M u x t u x t u x tα α→ = +                                (4.16) 
 
which implies that, if  u(x,t) is a solution of the s-G equation, then ( , ) ( , )u x t u x tα= +   
also is a solution. We have:  
 

Qxt  – (cosu) Q = (ux) xt  – (cosu) ux = (uxt − sin u) x = Dx F [u]  =  0   mod   F [u] . 
 

Notice that ∆QF[u]  is of the form (4.15), with ̂ xL D≡ . Similarly, the characteristic 

Q[u]  = ut  corresponds to the symmetry  
 

         : ( , ) ( , ; ) ( , )M u x t u x t u x tα α→ = +                                 (4.17) 
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That is, if  u(x,t) is a solution of the s-G equation, then so is ( , ) ( , )u x t u x t α= + . The 
symmetries (4.16) and (4.17) reflect the fact that the s-G equation does not contain the 
variables x and t explicitly. (Of course, this equation has many more symmetries that 
are not displayed here; see, e.g., [1].)  

      Example 4.2. The heat equation is written  
 

F [u]  ≡  ut − uxx=  0 . 
 
The symmetry condition (4.13) reads  
 

S (Q ; u) ≡ Qt  – Qxx =  0   mod   F [u]  
 
where S(Q; u)=  ∆Q F[u]. As is easy to show, the symmetries (4.16) and (4.17) are valid 
here, too. Let us now try the solution Q[u]  = u .  We have:  
 

Qt − Qxx =  ut − uxx =   F [u] =  0   mod   F [u] . 
 
As will be shown in Sec. 9, this symmetry corresponds to the transformation  
 

      : ( , ) ( , ; ) ( , )M u x t u x t e u x tαα→ =                                (4.18) 
 

and is a consequence of the linearity of the heat equation.  

      Example 4.3. One form of the Burgers equation is  
 

F [u]  ≡  ut − uxx− ux
2 =  0 . 

 
The symmetry condition (4.13) is written  
 

S (Q ; u) ≡ Qt − Qxx – 2uxQx =  0   mod   F [u]  
 
where, as always, S(Q; u)=∆Q F[u]. Putting Q= ux and Q= ut , we verify the symme-
tries (4.16) and (4.17):  
 

Qt − Qxx – 2uxQx = uxt – uxxx – 2uxuxx = Dx F [u]  = 0   mod   F [u] 

Qt − Qxx – 2uxQx = utt – uxxt – 2uxuxt = D t F [u]  = 0   mod   F [u] 
 

Note again that ∆QF[u] is of the form (4.15), with ̂ xL D≡  and ˆ tL D≡ .  Another sym-

metry is Q [u]=1, which corresponds to the transformation (see Sec. 9)  
 

       : ( , ) ( , ; ) ( , )M u x t u x t u x tα α→ = +                               (4.19) 
 
and is a consequence of the fact that  u enters F [u] only through its derivatives.  

      Example 4.4. The wave equation is written  
 

F [u]  ≡  utt − c2
 uxx =  0    ( c =  const.) 
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and its symmetry condition reads  
 

S (Q ; u) ≡ Qtt −  c
2 Qxx = 0   mod   F [u] . 

 
The solution Q[u]  = x ux+  t ut  corresponds to the symmetry transformation (Sec. 9)  
 

          : ( , ) ( , ; ) ( , )M u x t u x t u e x e tα αα→ =                                (4.20) 
 
expressing the invariance of the wave equation under a scale change of  x and  t . [The 
reader may show that the transformations (4.16) – (4.19) also express symmetries of 
the wave equation.]  

      It is remarkable that each of the above PDEs admits an infinite set of symmetry 
transformations [1]. An effective method for finding such infinite sets is the use of a 
recursion operator, which produces a new symmetry characteristic every time it acts 
on a known characteristic. More on recursion operators will be said in Sec. 6.  
 
 

5.  The Lie algebra of symmetries 
 
As is well known [1] the set of symmetries of a PDE F[u]=0 has the structure of a Lie 
algebra. Let us demonstrate this property in the context of our formalism.  

      Proposition 5.1. Let L be the set of characteristic derivatives ∆Q with respect to 

the symmetry characteristics Q[u] of the PDE F[u]=0. The set L is a (finite or infinite-

dimensional) Lie subalgebra of the Lie algebra of characteristic derivatives acting on 
functions F[u] in the jet space (cf. Sec. 3).  

      Proof. (a) Let ∆Q∈L ⇔ ∆Q F[u]=0 (mod F[u]). If λ is a constant (real or complex, 

depending on the nature of the problem) then (λ∆Q)F[u]  ≡ λ∆Q F[u]=0, which means 
that  λ∆Q∈L. Given that  λ∆Q = ∆λQ [see Eq. (3.1)] we conclude that, if Q[u] is a sym-

metry characteristic of F[u]=0, then so is λQ[u].  

(b) Let ∆1∈L and ∆2∈L be characteristic derivatives with respect to the symmetry 

characteristics Q1[u] and Q2[u], respectively. Then, ∆1F[u]=0, ∆2F[u]=0, and hence 
(∆1+∆2)F[u]  ≡ ∆1F[u]+∆2F[u]=0; therefore, (∆1+∆2)∈L. It also follows from Eq. (3.2) 

that, if Q1[u] and Q2[u] are symmetry characteristics of F[u]=0, then so is their sum 
Q1[u]+Q2[u].  

(c) Let ∆1∈L and ∆2∈L, as above. Then, by (4.15),  

1 1
ˆ[ ] [ ]F u L F u∆ = ,   2 2

ˆ[ ] [ ]F u L F u∆ = . 

Now, by the definition of the Lie bracket and the linearity of both ∆i and ˆ
iL  (i= 1,2) 

we have:  

1 2 1 2 2 1 1 2 2 1

1 2 2 1

ˆ ˆ[ , ] [ ] ( [ ]) ( [ ]) ( [ ]) ( [ ])

ˆ ˆ( ) [ ] 0 mod [ ]

F u F u F u L F u L F u

L L F u F u

∆ ∆ = ∆ ∆ − ∆ ∆ = ∆ − ∆

≡ ∆ − ∆ =
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We thus conclude that [∆1 , ∆2]∈L. Moreover, it follows from Eq. (3.3) that, if Q1[u] 

and Q2[u] are symmetry characteristics of F[u]=0, then so is the function  
 

Q1,2 [u] = ∆1 Q2[u] – ∆2 Q1[u] . 
 
      Assume now that the PDE F[u]=0 has an n-dimensional symmetry algebra L 

(which may be a finite subalgebra of an infinite-dimensional symmetry Lie algebra). 
Let {∆1 , ∆2 , ... , ∆n} ≡{∆k}, with corresponding symmetry characteristics {Qk}, be a set 
of n linearly independent operators that constitute a basis of L, and let ∆i , ∆j be any 

two elements of this basis. Given that [∆i , ∆j]∈L, this Lie bracket must be expressible 

as a linear combination of the {∆k}, with constant coefficients. We write  
 

       
1

[ , ]
n

k
i j i j k

k

c
=

∆ ∆ = ∆∑                                               (5.1) 

 
where the coefficients of the ∆k  in the sum are the antisymmetric structure constants 
of the Lie algebra L in the basis {∆k}.  

      The operator relation (5.1) can be expressed in an equivalent, characteristic form 
by allowing the operators on both sides to act on u and by using the fact that 
∆ku=Qk[u]:  

1 1

[ , ] ( )
n n

k k
i j i j k i j k

k k

u c u c u
= =

 
∆ ∆ = ∆ = ∆ ⇒ 

 
∑ ∑  

 

1

[ ] [ ] [ ]
n

k
i j j i i j k

k

Q u Q u c Q u
=

∆ − ∆ = ∑                                     (5.2) 

 
      Example 5.1. One of the several forms of the Korteweg-de Vries (KdV) equation is  
 

F [u]  ≡  ut +  uux +  uxxx
 =  0 . 

 
The symmetry condition (4.14) is written  
 

         S (Q ; u) ≡ Qt +  Q ux +   u Qx + Qxxx = 0   mod   F [u]                        (5.3) 
 
where S(Q; u)=  ∆Q F[u]. The KdV equation admits a symmetry Lie algebra of infinite 
dimensions [1]. This algebra has a finite, 4-dimensional subalgebra L of point trans-

formations. A symmetry operator (characteristic derivative) ∆Q is determined by its 
corresponding characteristic Q[u]=∆Q u . Thus, a basis {∆1 ,..., ∆4} of L corresponds to 

a set of four independent characteristics {Q1 ,..., Q4}. Such a basis of characteristics is 
the following:  
 

Q1[u]=  ux ,   Q2[u]=  ut ,   Q3[u]=  tux – 1 ,   Q4[u]=  xux +3tut +  2u 
 
The Q1 ,..., Q4  satisfy the PDE (5.3), since, as we can show,  
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S (Q1 ; u) =  Dx F [u] ,    S (Q2 ; u) =  Dt F [u] ,    S (Q3 ; u) =  t Dx F [u] , 

S (Q4 ; u) =  (5 + x Dx +  3t Dt ) F [u] 
 
[Note once more that ∆QF[u] is of the form (4.15) in each case.] Let us now see two 
examples of calculating the structure constants of L by application of (5.2). We have:  

 

1 2 2 1 1 2 1 2 1 2

4

12
1

∆ ∆ ∆ ∆ (∆ ) (∆ ) ( ) ( ) ( ) ( ) 0t x t x t x x t t x

k
k

k

Q Q u u u u Q Q u u

c Q
=

− = − = − = − = − =

≡ ∑
 

 
Since the Qk are linearly independent, we must necessarily have  12 0 , 1,2,3,4kc k= = . 

Also,  
 

2 3 3 2 2 3 2 3 2 3

4

1 23
1

∆ ∆ ∆ ( 1) ∆ (∆ ) (∆ ) ( ) ( )

( )

x t x t x t

k
t x x xt x k

k

Q Q t u u t u u t Q Q

t u u t u u Q c Q
=

− = − − = − = −

= − + = − = − ≡ ∑
 

 
Therefore,  1 2 3 4

23 23 23 231 , 0c c c c=− = = = .  
 
 

6.  Recursion operators 
 
Let δu=αQ[u] be an infinitesimal symmetry of the PDE F[u]=0, where Q[u] is the 
symmetry characteristic. For any solution u(xk) of this PDE, the function Q[u] satisfies 
the linear PDE  
 

        S (Q ; u) ≡ ∆Q F[u]  = 0                                            (6.1) 
 
Because of the linearity of (6.1) in Q, the sum Q1[u]+Q2[u] of two solutions of this 
PDE, as well as the multiple λQ[u] of any solution by a constant, also are solutions of 
(6.1) for a given u. Thus, for any solution u of F[u]=0, the solutions {Q[u]} of the 
PDE (6.1) form a linear space, which we call Su .  
      A recursion operator R̂  is a linear operator that maps the space Su into itself. 
Thus, if Q[u] is a symmetry characteristic of F[u]=0 (i.e., a solution of (6.1) for a 

given u) then so is ̂ [ ]RQ u :  
 

          ˆ( ; ) 0 when ( ; ) 0S RQ u S Q u= =                                    (6.2) 
 
Obviously, any power of a recursion operator also is a recursion operator. Thus, start-
ing with any symmetry characteristic Q[u], one may in principle obtain an infinite set 
of such characteristics by repeated application of the recursion operator.  
      A new approach to recursion operators was suggested in the early 1990s [11,15-
17] (see also [8-10]) according to which a recursion operator may be viewed as an 
auto-Bäcklund transformation (BT) [18] for the symmetry condition (6.1) of the PDE 
F[u]=0. By integrating the BT, one obtains new solutions Q΄[u] of the linear PDE 
(6.1) from known ones, Q[u]. Typically, this type of recursion operator produces 
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nonlocal symmetries in which the symmetry characteristic depends on integrals 
(rather than derivatives) of u. This approach proved to be particularly effective for 
matrix-valued PDEs such as the nonlinear self-dual Yang-Mills equation, of which 
new infinite-dimensional sets of “potential symmetries” were discovered [9,11,15].  
 
 

7.  An example: The chiral field equation 
 
Let us consider the chiral field equation  
 

   1 1[ ] ( ) ( ) 0x x t tF g g g g g− −≡ + =                                      (7.1) 

 
where, in general, subscripts x and t denote total derivatives Dx and Dt , respectively, 
and where g is a GL(n,C)-valued function of x and t, i.e., a complex, non-singular 
(n×n) matrix function, differentiable for all x and t. Let δg=αQ[g] be an infinitesimal 
symmetry transformation for the PDE (7.1), with symmetry characteristic Q[g]=∆Q g . 
It is convenient to put  
 

Q[g]  =  g Φ[g]   ⇔   Φ[g]  =  g
–1Q[g] . 

 
The symmetry condition for (7.1) is  
 

∆Q F[g]  =  0   mod   F[g] . 
 
This condition will yield a linear PDE for Q or, equivalently, a linear PDE for Φ. By 
using the properties of the characteristic derivative we find the latter PDE to be  
 

  ( ) ( )1 1( ; ) [ , ] [ , ] 0 mod [ ]x x x t t tS g D g g D g g F g− −Φ ≡ Φ + Φ + Φ + Φ =          (7.2) 

 
where the square brackets denote commutators of matrices.  
      A useful identity that will be needed in the sequel is the following:  
 

  1 1 1 1( ) ( ) [ , ] 0t x x t x tg g g g g g g g− − − −− + =                                 (7.3) 

 
      Let us first consider symmetry transformations in the base space, i.e., coordinate 
transformations of x, t. An obvious symmetry is x-translation, x΄=x+α, given that the 
PDE (7.1) does not contain the independent variable x explicitly. For infinitesimal 
values of the parameter α, we write δx=α. The symmetry characteristic is Q[g]=gx , so 
that  Φ[g]=g–1gx . By substituting this expression for Φ into the symmetry condition 
(7.2) and by using the identity (7.3), we can verify that (7.2) is indeed satisfied:  
 

S (Φ ; g) =  Dx F[g] = 0   mod   F[g] . 
 
Similarly, for t-translation, t΄=t+ α (infinitesimally, δt=α) with Q[g]=gt , we find  
 

S (Φ ; g) =  Dt F[g] = 0   mod   F[g] . 
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Another obvious symmetry of (7.1) is a scale change of both x and t :  x΄=λx,  t΄=λt. 
Setting λ=1+α, where α is infinitesimal, we write δx=αx, δt=αt. The symmetry char-
acteristic is Q[g]=xgx+tgt , so that Φ[g]=xg–1gx+tg–1gt . Substituting for Φ into the 
symmetry condition (7.2) and using the identity (7.3) where necessary, we find that  
 

S (Φ ; g) =  (2 + x Dx +  t Dt ) F[g] = 0   mod   F[g] . 
 
      Let us call Q1[g]=gx , Q2[g]=gt , Q3[g]=xgx+tgt , and let us consider the corre-
sponding characteristic derivative operators ∆i defined by ∆i g=Qi   (i= 1,2,3). It is then 
straightforward to verify the following commutation relations:  
 

[∆1 , ∆2]  g = ∆1 Q2  – ∆2 Q1 = 0   ⇔   [∆1 , ∆2] = 0 ; 
 

[∆1 , ∆3]  g = ∆1 Q3  – ∆3 Q1 = – gx = – Q1 = – ∆1 g   ⇔   [∆1 , ∆3] = – ∆1 ; 
 

[∆2 , ∆3]  g = ∆2 Q3  – ∆3 Q2 = – gt = – Q2 = – ∆2 g   ⇔   [∆2 , ∆3] = – ∆2 . 
 
      Next, we consider the “internal” transformation (i.e., transformation in the fiber 
space)  g΄=gΛ, where Λ is a non-singular constant matrix. Then,  
 

F[g΄ ]  = Λ–1 F[g]  Λ = 0   mod   F[g] , 
 
which indicates that this transformation is a symmetry of (7.1). Setting Λ=1+αM, 
where α is an infinitesimal parameter while M is a constant matrix, we write, in infini-
tesimal form, δg=αgM. The symmetry characteristic is Q[g]=gM, so that Φ[g]=M . 
Substituting for Φ into the symmetry condition (7.2), we find:  
 

S (Φ ; g) =  [F[g]  , M ] = 0   mod   F[g] . 
 
      Given a matrix function g(x,t) satisfying the PDE (7.1), consider the following 
system of PDEs for two functions Φ[g] and Φ΄[g]:  
 

     
1

1

[ , ]

[ , ]

x t t

t x x

g g

g g

−

−

′Φ = Φ + Φ

′− Φ = Φ + Φ
                                           (7.4) 

 
The integrability condition (or consistency condition) ( ) ( )x t t x′ ′Φ = Φ  of this system 

requires that Φ satisfy the symmetry condition (7.2); i.e., S (Φ ; g)=0. Conversely, by 
applying the integrability condition ( ) ( )t x x tΦ = Φ  and by using the fact that g is a so-

lution of F[g]=0, one finds that Φ΄ must also satisfy (7.2); i.e.,  S (Φ΄; g) = 0.  
      We conclude that, for any function g(x,t) satisfying the PDE (7.1), the system 
(7.4) is an auto-Bäcklund transformation (BT) [18] relating solutions Φ and Φ΄ of the 
symmetry condition (7.2) of this PDE; that is, relating different symmetries of the 
chiral field equation. Thus, if a symmetry characteristic Q=gΦ of the PDE (7.1) is 
known, a new characteristic Q΄=gΦ΄ may be found by integrating the BT (7.4); the 
converse is also true. Since the BT (7.4) produces new symmetries from old ones, it 
may be regarded as a recursion operator for the PDE (7.1) [8-11,15-17].  
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      As an example, consider the internal-symmetry characteristic Q[g]=gM (where M 
is a constant matrix) corresponding to Φ[g]=M . By integrating the BT (7.4) for Φ΄, we 
get  Φ΄=[X, M]   and thus  Q΄=g[X, M], where X is the “potential” of the PDE (7.1), de-
fined by the system of PDEs  
 

1 1,x t t xX g g X g g− −= − =                                           (7.5) 

 
Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of 
the potential X. Indeed, as seen from (7.5), in order to find X one has to integrate the 
chiral field g with respect to the independent variables x and t. The above process can 
be continued indefinitely by repeated application of the recursion operator (7.4), lead-
ing to an infinite sequence of increasingly nonlocal symmetries.  
      Unfortunately, as the reader may check, no new information is furnished by the 
BT (7.4) in the case of coordinate symmetries (for example, by applying the BT for 
Q=gx we get the known symmetry Q΄=gt ). A recursion operator of the form (7.4), 
however, does produce new nonlocal symmetries from coordinate symmetries in re-
lated problems with more than two independent variables, such as the self-dual Yang-
Mills equation [8-11,15].  
 
 

8.  Generation of finite symmetry transformations 
 
As we saw in Sec. 4, given a symmetry operator ∆Q one may immediately define an 
infinitesimal symmetry of a PDE. Our starting point, however, was the idea of using a 
finite symmetry transformation to generate a one-parameter family of solutions of the 
PDE. We thus need to generalize the discussion of Sec. 4 by allowing the parameter α 
to assume finite values.  
      According to (2.7), the characteristic derivative ∆Q with respect to the characteris-
tic function Q[u] satisfies the relation  
 

∆ Q [u]   u =  Q[u]                                                   (8.1) 
 
By (8.1) and the properties of ∆Q one may determine the action of ∆Q on any function 
F[u] of the form (2.1), thus construct a new function  ∆Q[u]F[u].  
      Obviously, a change of u will induce a corresponding change on any function 
F[u]. Given a function u(xk), a continuous change of u may be expressed as a one-
parameter family of transformations  
 

    : ( ) ( ; ) with   ( ; 0) ( )k k k kM u x u x u x u xα→ =                           (8.2) 
 
where α ≥0. We suppress the independent variables xk, which are unaffected by the 
transformation M, and write, simply,  
 

: ( ) with   (0)M u u u uα→ = . 
 
Expanding ( )u α  in powers of α, we have:  
 

( ) [ ] higher-order terms in u u Q uα α α= + +                            (8.3) 
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where Q[u] is given by  

[ ]0
( ) [ ] Q u

d
u Q u u

d α
α

α =
= = ∆                                       (8.4) 

 
      Now, we assume that, for finite values of the parameter α,  
 

       [ ] [ ( )]( ) ( ) ( )Q u
d

u Q u u
d αα α α

α
= = ∆                                   (8.5) 

 
which is obviously consistent with (8.4). By the properties of the characteristic de-
rivative it then follows that, for any function F[u] of the form (2.1),  
 

[ ] [ ][ ( )]( ) ( )Q u
d

F u F u
d αα α

α
= ∆                                     (8.6) 

 

As an example, let 2[ ] [ ( )] ( ) ( )F u u F u u uα α α= ⇒ = . Then, by (8.5) and by using 
the Leibniz rule,  
 

{ }
( ) [ ]

[ ( )] [ ( )]

[ ( )] [ ( )]

( ) ( )
[ ( )] ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

Q u Q u

Q u Q u

d du du
F u u u

d d d

u u u u

u u F u

α α

α α

α α
α α α

α α α
α α α α

α α α

= +

= ∆ + ∆

= ∆ = ∆

 

 
      Equation (8.5), together with the initial condition (0)u u= , is an initial-value 
problem that, upon integration, yields a one-parameter transformation of the form 
(8.2). We say that the operator ∆Q is the generator of this transformation. As regards 
its action on functions, the operator ∆Q is seen to be equivalent to the Lie derivative of 
differential geometry (see, e.g., Chap. 5 of [19]). And, the latter derivative plays a key 
role in the differential-geometric methods for studying invariance properties of PDEs 
[2-4]. We now revisit the symmetry problem for PDEs in the context of our present, 
more abstract algebraic formalism.  
      The transformation M of Eq. (8.2) is a symmetry transformation for the PDE 
F[u]=0 if it leaves this PDE invariant, in the sense that [ ( )] 0 [ ] 0F u if F uα = = . We 
write:  

       [ ( )] 0 mod [ ]F u F uα =                                           (8.7) 
 

So, if ( ;0) ( )k ku x u x=  is a solution of F[u]=0, then so is ( ; )ku x α  for all values of 
the parameter  α >0. This means that [ ( )]F u α , viewed as a function of α, retains a 
constant (zero) value under continuous changes of  α. In mathematical terms,  
 

[ ] [ ]( ) 0 mod ( )
d

F u F u
d

α α
α

=  

or, in view of (8.6),  

[ ] [ ][ ( )] ( ) 0 mod ( )Q u F u F uα α α∆ =  . 
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Since this must be valid for any value of  α, the above relation will still be true if we 
replace α by a new parameter β=α+c, where c is any constant such that β ≥0. In par-
ticular, by choosing  c= – α ⇒ β=0, we rewrite the above equation in the simpler form  
 

∆ Q [u] F [u]  = 0   mod   F [u]                                           (8.8) 
 
which is the condition for invariance of the PDE F[u]=0. As we have seen, this condi-
tion yields a linear PDE for the symmetry characteristic Q[u], of the form  
 

S (Q ; u) ≡ ∆ Q [u] F [u]  = 0   mod   F [u]                                    (8.9) 
 
where the expression S (Q ; u) is linear in Q and all total derivatives of Q. In particular, 
for scalar-valued u (thus scalar Q[u] also) the operator ∆Q has the form (2.13) and the 
symmetry condition (8.9) takes on the form  
 

[ ] [ ] [ ] 0 mod [ ]i i j
i i j

F F F
Q u D Q u D D Q u F u

u u u

∂ ∂ ∂
+ + + =

∂ ∂ ∂
⋯                 (8.10) 

 
      An important class of symmetries is local (point) symmetries. As discussed in [1], 
the symmetry characteristic Q[u] of a local symmetry cannot depend on second or 
higher-order derivatives of u with respect to the xk, while the dependence of Q on the 
first-order derivatives uk is also subject to certain restrictions. Once a local symmetry 
characteristic Q[u] is found by solving (8.9) or (8.10), a one-parameter family of 
symmetry transformations of the PDE F[u]=0,  of the form  
 

      : ( ) ( ; ) ;    ( ; 0) ( )k k k kM u x u x u x u xα→ =                                (8.11) 
 
is obtained by solving the initial-value problem [cf. Eq. (8.5)]  
 

           
[ ]( ; )

( ; 0) ( )

k

k k

d
u x Q u

d

u x u x

α
α

=

=

                                                 (8.12) 

 
 

9.  Example: The two-dimensional Laplace equation 
 
As an example for illustrating the process of finding one-parameter symmetry trans-
formations of a PDE, we choose the two-dimensional Laplace equation for a scalar 
function u(x,t):  

       F [u]  ≡  uxx + utt =  0                                                    (9.1) 
 
Here, (x1, x2) ≡ (x, t). The symmetry condition (8.9) or (8.10) yields the linear PDE  
 

       S (Q ; u) ≡ Qxx +
 Qtt = 0   mod   F [u]                                     (9.2) 

 
where subscripts indicate total differentiations. Each symmetry of the PDE (9.1) cor-
responds to a solution Q[u] of (9.2) and leads to a one-parameter family of symmetry 
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transformations (8.11) by solving the initial-value problem (8.12). Let us see some 
examples:  

      1.  Q[u]=1  is a solution of (9.2), hence a symmetry characteristic of (9.1). The ini-
tial-value problem (8.12) is written  

( ) 1 ; (0)
d

u u u
d

α
α

= =  

which is easily integrated to give ( , ; ) ( , )u x t u x tα α= + . Thus, if u(x,t) is a solution of 
(9.1), then so is  u(x,t)+α . This symmetry reflects the fact that u enters the PDE (9.1) 
only through its derivatives (i.e., F[u] does not contain u itself).  

      2. For the symmetry characteristic  Q[u]=u  we have  

( ) ; (0)
d

u u u u
d

α
α

= =  

with solution ( , ; ) ( , )u x t e u x tαα = . Thus, if u(x,t) is a solution of (9.1), then so is  
λu(x,t) for any constant λ. This symmetry reflects the fact that the PDE (9.1) is homo-
geneous linear in u.  

      3. Q[u]=ux is another symmetry characteristic; indeed, note that S(Q;u)=DxF[u]=0 
when F[u]=0. The initial-value problem is written  

( , ; ) ; ( , ;0) ( , )x
d

u x t u u x t u x t
d

α
α

= = . 

A way to solve this is to consider the parameter α as a variable of equal footing with x 
and t. The above ordinary differential equation then becomes a homogeneous linear 
first-order PDE that can be integrated by standard methods (see, e.g., Chap. 4 of [19]):  
 

        0xu uα− =                                                      (9.3) 

We form the characteristic system  

1 0 1 0

dx dt d duα
= = =

−
 

and seek 3 first integrals of this system. These are 1 2 3, ,u C t C x Cα= = + = . The 

general solution of (9.3) is then  Φ(C1 , C2 , C3)=0 , where the function Φ is arbitrary. 
That is,  

( , , ) 0 ( , ; ) ( , )u t x u x t x tα α ω αΦ + = ⇒ = + . 

By the initial condition ( , ;0) ( , )u x t u x t=  we have that ω(x,t)=u(x,t), and hence 
ω(x+α, t)=u(x+α, t). Thus, finally, ( , ; ) ( , )u x t u x tα α= + .  
      In a similar manner, from the symmetry characteristic  Q[u]=ut  we get the trans-
formation ( , ; ) ( , )u x t u x tα α= + . The two symmetries found above reflect the fact 
that the PDE (9.1) does not contain the independent variables x and t explicitly.  
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      4. For the symmetry characteristic  Q[u]=  xux+tut  we have  

( , ; ) ; ( , ;0) ( , )x t
d

u x t xu t u u x t u x t
d

α
α

= + = . 

Working as in the previous example, we form the first-order PDE  
 

           0x txu t u uα+ − =                                                 (9.4) 

with characteristic system  

1 0

dx dt d du

x t

α
= = =

−
 . 

Three first integrals are  1 2 3, ln , lnu C x C t Cα α= + = + = . The general solution of 

the PDE (9.4) is  Φ(C1 , C2 , C3)=0 , with Φ arbitrary. That is,  

( ) ( )
( , ln , ln ) 0

( , ; ) (ln , ln ) ln , ln

u x t

u x t x t e x e tα α

α α

α ω α α ω

Φ + + = ⇒

 = + + =  
 

By the initial condition ( , ;0) ( , )u x t u x t=  we have that ω(ln x, ln t)=u(x,t), and hence 

ω[ln(eαx), ln(eαt)]=u(eαx, eαt). Thus, finally, ( , ; ) ( , )u x t u e x e tα αα = . This transforma-

tion expresses the invariance of the PDE (9.1) under a scale change  x→λx,  t→λt  of  x  

and  t.  

      5. Q[u]=  tux – xut  is a symmetry characteristic since S(Q;u)=(tDx – xDt)F[u]=0 
when F[u]=0. We write  

( , ; ) ; ( , ;0) ( , )x t
d

u x t tu xu u x t u x t
d

α
α

= − =  

and form the PDE  
        0x tt u xu uα− − =                                                 (9.5) 

with characteristic system  

                   
1 0

dx dt d du

t x

α
= = =

− −
                                              (9.6) 

One first integral is 1u C= . Another one is found from  dx/t = – dt/x ⇒ d (x2+t2)=0 ⇒ 

x2+  t 
2 =  C2 . A third integral is  

α + arctan (x/t) = C3 .  

Let us prove this. Setting  x/t=z, we have:  

2 2 2
( arctan )

1

dz tdx xdt
d z d d

z x t
α α α

−
+ = + = +

+ +
. 

But, by the system (9.6),  dx= –tdα  and  dt=xdα ,  so that  

[ ]
2 2

2 2

( )
arctan( / ) 0

x t d
d x t d

x t

α
α α

+
+ = − =

+
,   q.e.d. 

The general solution of the PDE (9.5) is Φ(C1 , C2 , C3)=0 , with Φ arbitrary. That is,  
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2 2, , arctan( / ) 0u x t x tα Φ + + = ⇒   

       2 2( , ; ) , arctan( / )u x t x t x tα ω α = + +                                 (9.7) 

By the initial condition ( , ;0) ( , )u x t u x t=  we have that  ω[x2+t  
2, arctan(x/t)]=u(x,t). 

Putting  x cosα+t  sinα  and  t cosα – x sinα  in place of x and t, respectively, we find:  

    2 2 cos sin
( cos sin , cos sin ) , arctan

cos sin

x t
u x t t x x t

t x

α α
α α α α ω

α α
+ + − = + − 

     (9.8) 

On the other hand, we can show that  

[ ] cos sin
tan arctan( / )

cos sin

x t
x t

t x

α α
α

α α
+

+ = ⇒
−

 

      
cos sin

arctan( / ) arctan
cos sin

x t
x t

t x

α α
α

α α
+

+ =
−

                               (9.9) 

From (9.8) and (9.9) we have that  

u (x cosα+t  sinα ,  t cosα – x sinα) = ω [  x2+t  
2,  α+arctan(x/t)] . 

Thus (9.7) assumes the final form  

       ( , ; ) ( cos sin , sin cos )u x t u x t x tα α α α α= + − +                         (9.10) 

The transformation (9.10) admits a certain geometrical interpretation that becomes 
evident if we define the new variables  x΄=  x cosα+t  sinα  and  t΄=  –x sinα+t  cosα . In 
matrix form,  

cos sin

sin cos

x x

t t

α α
α α

′     
=     ′ −     

 . 

This relation describes a rotation of the vector (x, t) on the  xt-plane by an angle α. The 
PDE F[u]=0 is thus invariant under such a rotation on the plane of the independent 
variables. 
 
 

10.  Concluding remarks 
 
The algebraic approach to the symmetry problem of PDEs, presented in this article, is, 
in a sense, an extension to matrix-valued problems of the ideas contained in [1], in 
much the same way as [4] and [5] constitute a generalization of the Harrison-
Estabrook geometrical approach [2] to matrix-valued (as well as vector-valued and 
Lie-algebra-valued) PDEs.  
      The symmetry transformations we have considered involve only the change of the 
dependent variable u of the PDE, while leaving the independent variables xk un-
changed. Indeed, as Olver [1] has shown, every symmetry of a PDE may be expressed 
as a transformation of the dependent variable alone, i.e., as a transformation in the fi-
ber space. The symmetry-generating characteristic derivative ∆Q corresponds to 
Olver’s evolutionary vector field with characteristic Q[u].  
      In local (point) symmetries of the PDE F[u]=0 the symmetry characteristics Q[u] 
contain at most first-order derivatives of u with respect to the xk (a number of such 
symmetries were considered in the last section in connection with the Laplace equa-
tion). The case of generalized (non-local) symmetries is more complex; a formal solu-
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tion to the problem of obtaining one-parameter families of generalized symmetry 
transformations of PDEs is given in Sec. 5.1 of [1].  
      Admittedly, the abstract algebraic formalism we have presented does not exhibit 
significant advantages over the standard geometrical methods (in particular, those de-
scribed in [4]) with regard to finding symmetries of PDEs. However, by employing 
the concept of the characteristic derivative one is able to bypass the difficulty of hav-
ing to represent symmetry-generating operators as vector fields in the form of differ-
ential operators when matrix-valued variables are involved, which situation can only 
be handled by making certain ad hoc assumptions regarding the action of such “un-
natural” operators. The algebraic view offers a more rigorous framework for identify-
ing symmetry operators and finding infinitesimal symmetry transformations of ma-
trix-valued PDEs, as well as for studying the Lie-algebraic structure of the set of 
symmetry generators (see, e.g., [9]).  
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I.  Introduction  

Recursion operators are powerful tools for the study of symmetries of partial differen-

tial equations (PDEs). Roughly speaking, a recursion operator is a linear operator 

which produces a new symmetry characteristic of a PDE whenever it acts on an “old” 

characteristic (see Appendix). The concept was first introduced by Olver [1, 2] and 

subsequently used by many authors (see, e.g., [2, 3] and the references therein). An 

alternative view, based on the concept of a Bäcklund transformation (BT), was devel-

oped in a series of papers by the present authors [4-6] who studied the symmetry 

problem for the self-dual Yang-Mills equation (SDYM). The general idea is that a re-

cursion operator can be viewed as an auto-BT for the “linearization equation” (or 

symmetry condition) of a (generally nonlinear) PDE. This idea was later further de-

veloped and put into formal mathematical perspective by Marvan [7].  

    It has been known for some time (see, e.g., Section 7.4 of [3] and the references 

therein) that, when two nonlinear PDEs are connected by a non-auto-BT, symmetries 

of either PDE may yield symmetries of the other. This can be achieved by using the 

original BT to construct another non-auto-BT which relates solutions of the lineariza-

tion equations of the two PDEs. In the particular case of the SDYM equation, the 

original BT associates this PDE with the “potential SDYM equation” (PSDYM). The 

symmetries of the latter PDE can then be used to construct the “potential symmetries” 

of SDYM [5, 8]. We now attempt to go one step further: Can we find a BT which re-

lates recursion operators of two PDEs? Given that, as said above, a recursion operator 
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is itself an auto-BT, what we are after is a BT connecting two auto-BTs, each of 

which produces solutions of a respective linear PDE (symmetry condition). Thus, we 

are looking for “a transformation of transformations” rather than a transformation of 

functions.  

    Our “laboratory” model will again be SDYM, for good reasons. First, it possesses a 

rich symmetry structure; second, this PDE has been shown to constitute a sort of pro-

totype equation from which several other integrable PDEs are derived by reduction 

(see, e.g., [9, 10]). By employing a non-auto-BT that connects SDYM with PSDYM, 

we will show how symmetries and recursion operators of either system can be associ-

ated with symmetries and recursion operators, respectively, of the other system. 

Moreover, we will prove that the symmetry Lie algebras of these two PDEs are iso-

morphic to each other. This conclusion is more than of academic importance, since it 

allows us to investigate the symmetry structure of the SDYM problem by studying the 

relatively easier PSDYM problem. As an example, we will recover the known infi-

nite-dimensional symmetry algebras of SDYM [11-13] from the symmetry structure 

of PSDYM [8] and show how these algebras are related to potential symmetries.  

II.  The Symmetry Problem for the SDYM-PSDYM System  

We write the SDYM equation in the form  

                                      1 1[ ] ( ) ( ) 0y y z zF J D J J D J J� �� � �         (1) 

We denote by , , , ( 1, ,4)x y z y z� �� � �  the independent variables, and by yD , zD , 

etc., the total derivatives with respect to these variables. We will also use the notation 

y yD F F� , etc., for any function F. We assume that J is SL(N,C)-valued (i.e.,  

det J=1).  

    We consider the non-auto-BT  

                                            1 1,y z z yJ J X J J X� �� � �        (2) 

The integrability condition ( ) ( )y z z yX X�  yields the SDYM equation (1). The inte-

grability condition ( ) ( )y z z yJ J� , which is equivalent to  

                             1 1 1 1( ) ( ) [ , ] 0y z z y y zD J J D J J J J J J� � � �� � � ,   

yields a nonlinear PDE for the “potential” X of (1), called the “potential SDYM equa-

tion” or PSDYM:  

                                       [ ] [ , ] 0y y z z y zG X X X X X� � � �       (3) 

Noting that, according to (2), ( ) [ (ln )] [ln (det )]z y ytrX tr J J� � , etc., we see that the 

condition det J=1 can be satisfied by requiring that trX=0 [this requirement is com-

patible with the PSDYM equation (3)]. Hence, SL(N,C) SDYM solutions correspond 

to sl(N,C) PSDYM solutions.  
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    Let �J=�Q and �X=�� be an infinitesimal symmetry of system (2) (� is an infini-

tesimal parameter). This means that (J+�J, X+�X) is a solution to the system when  

(J, X) is a solution. This suggests that the integrability conditions F[J+�J]=0 and  

G[X+�X]=0 are satisfied when the integrability conditions F[J]=0 and  

G[X]=0 are satisfied; that is, J+�J and X+�X are solutions of (1) and (3), respectively. 

The functions Q and � are symmetry characteristics for the above PDEs. Geometri-

cally, the symmetries of system (2) are realized as transformations in the jet-like space 

of the variables {x
�
, J, X} and the various derivatives of J and X with respect to the x

�
. 

These transformations are generated by vector fields which, without loss of generality, 

may be considered “vertical”, i.e., with vanishing projections on the base space of the 

x
�
 [2]. We formally represent these vectors by differential operators of the form  

                              ( )V Q prolongation terms
J X

�
� �

� � �
� �

     (4) 

    Consider a function M(J, X). Denote by �M(J, X) the Fréchet derivative [2] of M

with respect to V (which in this context is locally the same as the Lie derivative). The 

infinitesimal variation of M in the “direction” of V is then �M=��M. The linear opera-

tor � is a derivation on the algebra of all gl(N,C)-valued functions. The Leibniz rule is 

written  

                                            ( ) ( )M N M N M N� � �� �         (5) 

In particular, for the Lie algebra of sl(N,C)-valued functions, the Leibniz rule may 

also be written as  

                                         [ , ] [ , ] [ , ]M N M N M N� � �� �           (6) 

By definition, the Fréchet derivatives of the fundamental variables J and X are given 

by  

                                                ,J Q X� � �� �               (7) 

We also note that the Fréchet derivative with respect to a vertical vector field com-

mutes with all total derivative operators [2]. Finally, for an invertible matrix M,  

                                            1 1 1( ) ( )M M M M� �� � �� �         (8) 

(For a discussion of the general symmetry problem for matrix-valued PDEs, see [14].)  

    We introduce the covariant derivative operators  

                                  

1

1

ˆ [ , ] [ , ]

ˆ [ , ] [ , ]

y y y y z

z z z z y

A D J J D X

A D J J D X

�

�

� � � �

� � � �
       (9) 

where the BT (2) has been taken into account. By using (3) and the Jacobi identity, 

the zero-curvature condition ˆ ˆ[ , ] 0y zA A �  is shown to be satisfied, as expected in view 
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of the fact that the “connections” 1
yJ J�  and 1

zJ J�  are pure gauges. Moreover, the 

linear operators of (9) are derivations on the Lie algebra of sl(N,C)-valued functions, 

satisfying a Leibniz rule of the form (6):  

                                    

ˆ ˆ ˆ[ , ] [ , ] [ , ]

ˆ ˆ ˆ[ , ] [ , ] [ , ]

y y y

z z z

A M N A M N M A N

A M N A M N M A N

� �

� �
       (10) 

    If Eqs. (1)-(3) are satisfied, then so must be their Fréchet derivatives with respect to 

the symmetry vector field V of (4). We now derive the symmetry condition for each of 

the above three systems. For SDYM (1), the symmetry condition is �F [J]= 0, or  

                                     1 1( ) ( ) 0y y z zD J J D J J� �� �� �          (11) 

(since the Fréchet derivative � commutes with total derivatives). By using (5), (7), (8) 

and (9), it can be shown that  

                      1 1 1 1ˆ ˆ( ) ( ) , ( ) ( )y y z zJ J A J Q J J A J Q� �� � � �� �       (12) 

The SDYM symmetry condition (11) then becomes  

                                        1ˆ ˆ( ) ( ) 0y y z zD A D A J Q�� �        (13) 

    The symmetry condition for PSDYM (3) is �G [X]= 0, or, by using (6), (7) and (9),    

                             ˆ ˆ ˆ ˆ( ) 0y y z z y y z zA A A D A D� � �� � � �       (14) 

We note the operator identity  

                                    ˆ ˆ ˆ ˆ
y y z z y y z zA D A D D A D A� � �          (15) 

which is easily verified by letting the right-hand side act on an arbitrary function M. 

Then, (14) is written in the alternate form,  

                                           ˆ ˆ( ) 0y y z zD A D A �� �           (16) 

    Comparing (13) and (16), we observe that the symmetry characteristic � of 

PSDYM, and the function 1J Q� , where Q is an SDYM symmetry characteristic, sat-

isfy the same symmetry condition. We thus conclude the following (see also [5]):  

	
 If Q is an SDYM characteristic, then �= 1J Q�  is a PSDYM characteristic.  

Conversely,  

	
 if � is a PSDYM characteristic, then Q=J� is an SDYM characteristic.  
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    Finally, the Fréchet derivative with respect to V also leaves the system of PDEs (2) 

invariant: 1 1( ) ( ) , ( ) ( )y z z yJ J X J J X� � � �� �� � � . With the aid of (12) and (7) we 

are thus led to a pair of PDEs,  

                                 1 1ˆ ˆ( ) , ( )y z z yA J Q A J Q� �� �� � �         (17) 

Equation (17) is a BT connecting the symmetry characteristic � of PSDYM with the 

symmetry characteristic Q of SDYM. Indeed, the integrability condition 

( ) ( )z y y z� ��  yields the symmetry condition (13) for SDYM. So, when Q is an 

SDYM symmetry characteristic, the BT (17) is integrable for �. Conversely, the inte-

grability condition 1ˆ ˆ[ , ]( ) 0z yA A J Q� � , valid in view of the zero-curvature condition, 

yields the PSDYM symmetry condition (14) for � and guarantees integrability for Q.  

    We note that, for a given Q, the solution of the BT (17) for � is not unique, and 

vice versa. To achieve uniqueness we thus need to make some additional assumptions: 

(a) If � is a solution for a given Q, then so is �+M(y, z), where M is an arbitrary ma-

trix function. We make the agreement that any arbitrary additive term of the form 

M(y, z) will be ignored when it appears in the solution for �. (b) If Q is a solution for 

a given �, then so is ( , )Q y z J�� , where ( , )y z�  is an arbitrary matrix function. We 

agree that any arbitrary additive term of the form ( , )y z J�  will be ignored when it 

appears in the solution for Q.  

    With the above conventions, the BT (17) establishes a 1-1 correspondence between 

the symmetries of SDYM and those of PSDYM. In particular, the SDYM characteris-

tic Q=0 corresponds to the PSDYM characteristic �=0. It will be shown below that 

this correspondence between the two symmetry sets is a Lie algebra isomorphism.  

III.  Recursion Operators and Lie-Algebra Isomorphism  

Since the two PDEs in (17) are consistent with each other and solvable for � when Q

is an SDYM symmetry characteristic, we may use, say, the first equation to formally 

express � in terms of Q :  

                                       1 1 1ˆ ˆ( ) ( )z yD A J Q R J Q� � � �� �          (18) 

where we have introduced the linear operator  

                                                      1 ˆˆ
z yR D A��            (19) 

    Proposition 1: The operator (19) is a recursion operator for PSDYM.  

    Proof : Let � be a symmetry characteristic for PSDYM. Then, � satisfies the 

symmetry conditions (14) or (16). We will show that R̂� �� �  also is a symmetry 

characteristic. Indeed,   
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              1

1

ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ( ) [ , ] 0 ,

y y z z y y z z

y z y y z y

y z y y z z z y

A D A D A D A D R

A D D A A A

A D D A D A A A

� �

� �

� �

�

�

�� � �

� �

� � � �

       

in view of (16) and the zero-curvature condition ˆ ˆ[ , ] 0y zA A � .   �  

    For sl(N,C) PSDYM solutions, the symmetry characteristic � must be traceless. 

Then, so is the characteristic R̂� �� � . That is, the recursion operator (19) preserves 

the sl(N,C) character of PSDYM.  

    Is there a systematic process by which one could derive the recursion operator (19)? 

To this end, we seek an auto-BT relating solutions of the PSDYM symmetry condi-

tion (14). As shown in [5], such a BT is  

                                          ˆ ˆ,y z z yA A� � � �� �� � �           (19a) 

The first of these equations can then be re-expressed as R̂� �� � , with R̂  given by 

(19).  

    Consider now a symmetry characteristic Q of SDYM, i.e., a solution of the symme-

try condition (13). Also, consider the transformation  

                                               1ˆ ˆ( )Q J R J Q TQ�� � �          (20) 

where we have introduced the linear operator  

                                                        1ˆ ˆT J R J ��            (21) 

    Proposition 2: The operator (21) is a recursion operator for SDYM.  

    Proof : By assumption, Q is an SDYM symmetry characteristic. Then, as shown 

above, �= 1J Q�  is a PSDYM characteristic. Since R̂  is a PSDYM recursion operator, 

1ˆ ˆ ( )R R J Q� � �� � �  also is a PSDYM characteristic. Then, finally, Q J�� �� , given 

by (20), is an SDYM characteristic.   �   

    For SL(N,C) SDYM solutions, the symmetry characteristic Q must satisfy the con-

dition 1( ) 0tr J Q� � . As can be seen, this condition is preserved by the recursion op-

erator (21). [Note, in this connection, that the BT (17) or (18) properly associates 

SL(N,C) SDYM characteristics Q with sl(N,C) PSDYM characteristics �.]  

    The recursion operator (21) also can be derived from an auto-BT for the SDYM 

symmetry condition (13). This BT was constructed in [6] by using a properly chosen 

Lax pair for SDYM (we refer the reader to this paper for details). We may thus con-

clude that recursion operators such as (19) or (21) in effect represent auto-BTs for 

symmetry conditions of respective nonlinear PDEs (see also [7]).  
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    Lemma: The Fréchet derivative � with respect to the vector V of (4), and the recur-

sion operator R̂  of (19), satisfy the commutation relation  

                                              1ˆ[ , ] [ , ]z zR D� ���           (22) 

where �=�X , according to (7).  

    Proof : Introducing an auxiliary function F, and using the derivation property (6) of 

� and the commutativity of � with all total derivatives (as well as all powers of such 

derivatives), we have:  

                  

1 1

1

1 1

ˆˆ ( [ , ])

( [( ) , ] [ , ])

ˆ ˆ( [ , ]) [ , ] ,

z y z y z

z y z z

z y z z z

RF D A F D D F X F

D D F X F X F

D A F F R F D F

� � �

� � �

� � � �

� �

�

� �

� � �

� � �

� � � �

       

from which there follows (22).   �  

    Proposition 3: The BT (17), or equivalently, its solution (18), establishes an iso-

morphism between the symmetry Lie algebras of SDYM and PSDYM.  

    Proof : Let V be a vector field of the form (4), generating a symmetry of the BT (2). 

As explained previously, since this BT is invariant under V, the same will be true with 

regard to its integrability conditions. Hence, V also represents a symmetry of the 

SDYM-PSDYM system of equations (1) and (3). The SDYM and PSDYM character-

istics are Q=�J and �=�X, respectively, where � denotes the Fréchet derivative with 

respect to V. Consider the linear map I defined by (18):  

                                             1ˆ: { }I I Q R J Q� �� �         (23) 

or  

                                        1ˆ: { }I X I J R J J� � ��� �         (24) 

Consider also a pair of symmetries of system (2), indexed by i and j. These are gener-

ated by vector fields ( )rV , where ,r i j� . The Fréchet derivatives with respect to the 

( )rV  will be denoted ( )r� . The SDYM and PSDYM symmetry characteristics are 
( ) ( )r rQ J��  and ( ) ( )r r X� �� , respectively. According to (24),  

                     ( ) ( ) 1 ( ) 1 ( )ˆ ˆ{ } ; ,r r r rX I J R J J R J Q r i j� � �� �� � � �        (25) 

By the Lie-algebraic property of symmetries of PDEs, the functions ( ) ( )[ , ]i j J� �  and 

( ) ( )[ , ]i j X� �  also represent symmetry characteristics for SDYM and PSDYM, re-

spectively, where we have put   

             

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ , ] ,

[ , ] .

i j i j j i i j j i

i j i j j i i j j i

J J J Q Q

X X X

� � � � � � � �

� � � � � � � � � �

� � � �

� � � �
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We must now verify that  

                  ( ) ( ) ( ) ( ) 1 ( ) ( )ˆ[ , ] {[ , ] } [ , ]i j i j i jX I J R J J� � � � � ��� �     (26) 

Putting r=j into (25), and applying the Fréchet derivative ( )i� , we have:  

             

( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( )

1 ( ) 1 ( ) ( ) 1 ( )

ˆ ˆ ˆ[ , ]

ˆ[ , ] ,

i j i j i j i j

i j i j
z z

X R J Q R J Q R J Q

D J Q R J Q

� � � � �

� �

� � �

� � �

� � �

� �
      

where we have used the commutation relation (22). By (23) and (19),  

                                   ( ) 1 ( ) 1 ( )ˆˆi i i
z z yD R J Q A J Q� � �� � .        

Moreover, by properties (5) and (8) of the Fréchet derivative,  

                       

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) ( )

1 ( ) 1 ( ) 1 ( ) ( )

( )

.

i j i j i j

i j i j

J Q J J J Q J Q

J Q J Q J Q

� � �

�

� � � �

� � �

� � �

� � �
      

So,  

    ( ) ( ) 1 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) ( )ˆ ˆ ˆ[ , ]i j i j i j i j
z yX D A J Q J Q R J Q J Q R J Q� � �� � � � � �� � � .    

Subtracting from this the analogous expression for ( ) ( )j i X� � , we have:  

       


 �

( ) ( ) ( ) ( ) ( ) ( )

1 1 ( ) 1 ( ) 1 ( ) 1 ( )

1 ( ) 1 ( ) 1 ( ) ( ) ( ) ( )

1 1 ( ) 1 ( ) 1 ( ) 1 ( )

1 ( ) ( ) ( ) ( )

[ , ]

ˆ ˆ[ , ] [ , ]

ˆ ˆ[ , ] ( )

ˆ ˆ[ , ] [ , ]

ˆ ( )

ˆ

i j i j j i

i j i j
z y y

i j i j j i

i j i j
z y

i j j i

X X X

D A J Q J Q J Q A J Q

R J Q J Q R J Q Q

D A J Q J Q R J Q J Q

R J J J

R J

� � � � � �

� �

� � � �

� � � � �

� � �

� � � � �

�

�

� �

� �

� � �

� �

� �

� 1 ( ) ( )[ , ]i j J� �

      

where we have used the derivation property (10) of ˆ
yA  and we have taken (19) into 

account. Thus, (26) has been proven.   �  

    Now, suppose P̂  is a recursion operator for SDYM, while Ŝ  is a recursion opera-

tor for PSDYM. Thus, if Q and � are symmetry characteristics for SDYM and 

PSDYM, respectively, then ˆQ PQ� �  and Ŝ� �� �  also are symmetry characteristics.  

    Definition: The linear operators P̂  and Ŝ  will be called equivalent with respect to 

the isomorphism I (or I-equivalent) if the following condition is satisfied:  

                                      ˆ ˆ{ } { }S I PQ when I Q� �� �         (27) 



Bäcklund-Transformation-Related Recursion Operators  9

    By using (23), the above condition is written  

           1 1ˆ ˆ ˆ ˆS R J PQ when R J Q� �� �� � �    1 1ˆ ˆ ˆ ˆS R J Q R J PQ� ��  .          

Thus, in order that P̂  and Ŝ  be I-equivalent recursion operators, the following opera-

tor equation must be satisfied on the infinite-dimensional linear space of all SDYM 

symmetry characteristics:  

                                                  1 1ˆ ˆ ˆ ˆS R J R J P� ��          (28) 

    Having already found a PSDYM recursion operator ˆ ˆS R� , we now want to evaluate 

the I-equivalent SDYM recursion operator P̂ . To this end, we put ˆ ˆS R�  in (28) and 

write  

                                              1 1ˆ ˆ ˆ( ) 0R R J J P� �� �  .    

As is easy to see, this is satisfied for ˆ ˆP T� , in view of (21). We thus conclude that  

	
 the recursion operators R̂  and T̂ , defined by (19) and (21), are I-equivalent.  

    We note that (28) is a sort of BT relating recursion operators of different PDEs, 

rather than solutions or symmetries of these PDEs. Thus, if a recursion operator is 

known for either PDE, this BT will yield a corresponding operator for the other PDE. 

Note that we have encountered BTs at various levels: (a) The non-auto-BT (2), relat-

ing solutions of two different nonlinear PDEs (1) and (3); (b) the BT (17), or equiva-

lently (18), relating symmetry characteristics of these PDEs; (c) the recursion opera-

tors (19) and (21), which can be re-expressed as auto-BTs for the symmetry condi-

tions (14) and (13), respectively; and (d) the BT (28), relating recursion operators for 

the original, nonlinear PDEs. (We make the technical observation that the first three 

BTs are “strong”, while the last one is “weak”; see Appendix.)  

    Example: Consider the PSDYM symmetry characteristic zX� �  (z-translation). 

To find the I-related SDYM characteristic Q , we use (23):  

                 

(2)
1 1 1 1

1 1 1 1

ˆ ˆˆ ( ) ( )

( ) [ , ] ( ) ,

z y z y z z

y y y z

R J Q D A J Q X A J Q X

J Q J J J Q J J

�� � � �

� � � �

� � � � � �

� �

     

which is satisfied for zQ J� . By applying the recursion operator T̂  on Q ,  

      
� �1 1 1 1 1 1 1

(2)
1 1 1

ˆˆ ˆ ( ) ( ) [ , ]

( ) .

z y z z z y y z

z y z z z z z

Q T Q J R J Q J D A J J J D J J J J J J

J D J J J D X J X

� � � � � � �

� � �

� � � � � �

� � �

   

To find the I-related PSDYM characteristic ��, we use (23) once more:  

                                            1ˆ ˆ ˆ
zR J Q R X R� ��� �� � �  .      
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We notice that ˆ ˆ{ }R I T Q� �  when { }I Q� � , as expected by the fact that R̂  and T̂

are I-equivalent recursion operators.   �  

    Now, let (0)Q  be some SDYM symmetry characteristic. By repeated application of 

the recursion operator T̂ , we obtain an infinite sequence of such characteristics:  

        (1) (0) (2) (1) 2 (0) ( ) ( 1) (0)ˆ ˆ ˆ ˆ ˆ, , , ,n n nQ T Q Q T Q T Q Q T Q T Q�� � � � �� �        

(we note that any power of a recursion operator also is a recursion operator). Also, let  

                                          (0) (0) 1 (0)ˆ{ }I Q R J Q� �� �         (29) 

be the PSDYM characteristic which is I-related to (0)Q . Repeated application of the 

PSDYM recursion operator R̂  will now yield an infinite sequence of PSDYM charac-

teristics. Taking into account that R̂  and T̂  are I-equivalent recursion operators, we 

can write this sequence as follows:  

              

(1) (0) (0) (2) 2 (0) 2 (0)

( ) (0) (0)

ˆ ˆ ˆ ˆ{ } , { } , ,

ˆ ˆ{ } ,n n n

R I T Q R I T Q

R I T Q

� � � �

� �

� � � �

� �

�

�

       

Assume now that the infinite set of SDYM symmetries represented by the characteris-

tics ( ){ } ( 0,1,2, )nQ n � �  has the structure of a Lie algebra. This set then constitutes a 

symmetry subalgebra of SDYM. Given that the set ( ){ }n�  is I-related to ( ){ }nQ  and 

that I is a Lie-algebra isomorphism, we conclude that the infinite set of characteristics 
( ){ }n�  corresponds to a symmetry subalgebra of PSDYM which is isomorphic to the 

associated subalgebra ( ){ }nQ  of SDYM.   

    More generally, let (0){ / 1,2, , }kQ k p� �  be a finite set of SDYM symmetry char-

acteristics, and let (0){ / 1,2, , }k k p� � �  be the I-related set of PSDYM characteris-

tics, where  

                              (0) (0) 1 (0)ˆ{ } ; 1,2, ,k k kI Q R J Q k p� �� � � �       (30) 

Assume that the infinite set of characteristics  

                            ( ) (0)ˆ{ / 0,1,2, ; 1,2, , }n n
k kQ T Q n k p� � �� �        (31) 

corresponds to a Lie subalgebra of SDYM symmetries. Then, the I-related set of char-

acteristics  

                            ( ) (0)ˆ{ / 0,1,2, ; 1,2, , }n n
k kR n k p� �� � �� �        (32) 

corresponds to a PSDYM symmetry subalgebra which is isomorphic to that of (31).  
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    Let us summarize our main conclusions:  

	
 The infinite-dimensional symmetry Lie algebras of SDYM and PSDYM are 

isomorphic, the isomorphism I being defined by (23) or (24).  

	
 The recursion operators T̂ and R̂ , defined in (21) and (19), when applied to I-

related symmetry characteristics [such as those in (29) or (30)], may generate 

isomorphic, infinite-dimensional symmetry subalgebras of SDYM and 

PSDYM, respectively.  

	
 Since the structures of the symmetry Lie algebras of SDYM and PSDYM are 

similar, all results regarding the latter structure are also applicable to the 

SDYM case.  

    Comment: At this point the reader may wonder whether it is really necessary to go 

through the PSDYM symmetry problem in order to solve the corresponding SDYM 

problem. In principle, of course, the SDYM case can be treated on its own. In prac-

tice, however, it is easier to study the symmetry structure of PSDYM first and then 

take advantage of the isomorphism between this structure and that of SDYM. This 

statement is justified by the fact that the PSDYM recursion operator is considerably 

easier to handle compared to the corresponding SDYM operator. This property of the 

former operator is of great value in the interest of computational simplicity (in 

particular, for the purpose of deriving various commutation relations; cf. [8]).  

IV.  Potential Symmetries and Current Algebras  

We recall that every SDYM symmetry characteristic can be expressed as Q=J�, 

where � is a PSDYM characteristic (we note that � is not I-related to Q). Let � be a 

characteristic which depends locally or nonlocally on X and/or various derivatives of 

X. By the BT (2), X must be an integral of J and its derivatives, and so it and its de-

rivatives Xy and Xz are nonlocal in J. On the other hand, according to (2), the quanti-

ties yX  and zX  depend locally on J. Thus, in general, � can be local or nonlocal in 

J. In the case where � is nonlocal in J, we say that the characteristic Q=J� expresses 

a potential symmetry of SDYM [3, 5]. (See Appendix for a general definition of local-

ity and nonlocality of symmetries.)  

    A. Internal Symmetries. The PSDYM equation is generally invariant under a trans-

formation of the form  

                                               (0) (0) [ , ]X X M� �� �            (33) 

where M is any constant sl(N,C) matrix. Since the characteristic (0)�  is nonlocal in J, 

the transformation  

                                               (0) [ , ]Q J J X M�� �      

is a genuine potential symmetry of SDYM. Note that the SDYM characteristic which 

is I-related to (0)�  is not Q , but rather (0)Q JM� , since we then have  
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                         1 (0) 1 (0)ˆ ˆ [ , ] [ , ]z zR J Q RM D X M X M �� �� � � � .    

    Let { }k�  be a basis for sl(N,C) :  

                                                      [ , ] k
i j i j kC� � ��  .    

Then M is expanded as k
kM � �� , and (33) is resolved into a set of independent basis 

transformations  

                                              (0) (0) [ , ]k k kX X� � �� �             

corresponding to the SDYM potential symmetries  

                                             (0) [ , ]k k kQ J J X� �� �  .           

These are not the same as the I-related characteristics  

                                                 (0) (0)
k k kJ Q J� �� �  .    

Consider now the infinite set of transformations  

                    ( ) ( ) (0)ˆ ˆ [ , ] ( 0,1, 2, )n n n n
k k k kX R R X n� � � �� � � � �      (34) 

As can be shown, they satisfy the commutation relations of a Kac-Moody algebra:  

                                        ( ) ( ) ( )[ , ]m n k m n
i j i j kX C X� � � ��  .         

In view of the isomorphism I, this structure is also present in SDYM. Indeed, this is 

precisely the familiar hidden symmetry of SDYM [11, 12]. The SDYM transforma-

tions which are I-related to those in (34) are given by  

                        ( ) ( ) (0)ˆ ˆ ( 0,1, 2, )n n n n
k k k kJ Q T Q T J n� �� � � � �  .    

They constitute an infinite set of potential symmetries (note, for example, that 
(1) (0)[ , ]k k kJ J X J� � �� � ) and they satisfy the commutation relations  

                                          ( ) ( ) ( )[ , ]m n k m n
i j i j kJ C J� � � ��  .       

    B. Symmetries in the Base Space. A number of local PSDYM symmetries corre-

sponding to coordinate transformations are nonlocal in J, hence lead to potential 

symmetries of SDYM. By using isovector methods [4, 15], nine such PSDYM sym-

metries can be found. They can be expressed as follows:  
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                                  (0) (0) ˆ ( 1,2, , 9)k k kX L X k� �� � � �           (35) 

where the ˆ
kL  are nine linear operators which are explicitly given by  

                   

1 2 3 4

5 6

7 8 6

9 6

ˆ ˆ ˆ ˆ, , , ,

ˆ ˆ, 1 ,

ˆ ˆ ˆ1 , ( ) ,

ˆ ˆ ( ) .

y z y z z y

y z y z y z

y z z y

y z

L D L D L zD y D L yD z D

L yD zD y D z D L yD zD

L y D z D L yL z yD zD

L zL y zD yD

� � � � � �

� � � � � � �

� � � � � �

� � �

     

The 1 2
ˆ ˆ,L L  represent translations of y and z, respectively, while the 3 4

ˆ ˆ,L L  represent 

rotational symmetries. The 5 6 7
ˆ ˆ ˆ, ,L L L  express scale transformations, while 8L̂  and 

9L̂  represent nonlinear coordinate transformations which presumably reflect the spe-

cial conformal invariance of the SDYM equations in their original, covariant form.  

    The first five operators 1 5
ˆ ˆ, ,L L�  form the basis of a Lie algebra, the commutation 

relations of which we write in the form  

                                      ˆ ˆ ˆ[ , ] ( 1, ,5)k
i j i j kL L f L k� � � �  .      

Consider now the infinite set of transformations  

                        ( ) ( ) (0)ˆ ˆ ˆ ( 1, , 5)n n n n
k k k kX R R L X k� � �� � � � �           (36) 

As can be shown [8], these form a Kac-Moody algebra:  

                                         ( ) ( ) ( )[ , ]m n k m n
i j i j kX f X� � � ��  .      

Consider also the infinite sets of transformations 

                             ( )
6

ˆ ˆn nX R L X� �     and    ( )
7

ˆ ˆn nX R L X� �          (37) 

As can be proven [8], each set forms a Virasoro algebra (apart from a sign):  

                                   ( ) ( ) ( )[ , ] ( )m n m nX m n X� � � �� � �  .     

    Taking the isomorphism I into account, we conclude that the SDYM symmetry al-

gebra possesses both Kac-Moody and Virasoro subalgebras (“current algebras” [16]), 

both of which are associated with infinite sets of potential symmetries. The former 

subalgebras are associated with both internal and coordinate transformations, while 

the latter ones are related to coordinate transformations only. These conclusions are in 

agreement with those of [13], although the mathematical approach there is different 

from ours.    
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V.  Summary  

By using the SDYM-PSDYM system as a model, we have studied a process for asso-

ciating symmetries and recursion operators of two nonlinear PDEs related to each 

other by a non-auto-BT. The concept of a BT itself enters our analysis at various lev-

els: (a) The non-auto BT (2) relates solutions of the nonlinear PDEs (1) and (3);  

(b) the non-auto-BT (17) or (18) relates symmetry characteristics of these PDEs;  

(c) the auto-BTs for the symmetry conditions (14) and (13) lead to the recursion op-

erators (19) and (21), respectively; and (d) the transformation (28) may be perceived 

as a BT associating recursion operators for the original, nonlinear PDEs. We have 

proven the isomorphism between the infinite-dimensional symmetry Lie algebras of 

SDYM and PSDYM, and we have used this property to draw several conclusions re-

garding the Lie-algebraic structure of the potential symmetries of SDYM.  

    For further reading on recursion operators, the reader is referred to [17-22]. A nice 

discussion of the SDYM symmetry structure and its connection to the existence of 

infinitely many conservation laws can be found in the paper by Adam et al. [23].  

VI.  Appendix: Some Basic Definitions 

To make the paper as self-contained as possible, basic definitions of some key con-

cepts that are being used are given below:  

    A. Recursion Operators.  Consider a PDE F [u]=0, in the dependent variable u and 

the independent variables x
�
 (�=1,2,...). Let �u=�Q [u] be an infinitesimal symmetry 

transformation of the PDE, where Q [u] is the symmetry characteristic. The symmetry 

is generated by the (formal) vector field  

   [ ]V Q u prolongation Q Q Q
u u u u

� ��

� ��

� � � �
� � � � � �

� � � �
�      (A.1) 

(where the Q � � D� Q, etc., denote total derivatives of Q). The symmetry condition is 

expressed by a PDE, linear in Q :                                    
                                

   ( ; ) [ ] 0 mod [ ]S Q u F u F u�� �           (A.2) 

where � denotes the Fréchet derivative with respect to V. If u is a scalar quantity, then 

(�.2) takes the form  

         ( ; ) [ ] 0 mod [ ]
F F F

S Q u V F u Q Q Q F u
u u u

� ��

� ��

� � �
� � � � � �

� � �
�    (A.3) 

    Since the PDE (�.2) is linear in Q, the sum of two solutions (for the same u) also is 

a solution. Thus, for any given u, the solutions {Q [u]} of (�.2) form a linear space Su. 

A recursion operator R̂  is a linear operator which maps the space Su into itself. Thus, 

if Q is a symmetry characteristic of F [u]=0 [i.e., a solution of (�.2)], then so is R̂Q :  

                                       ˆ( ; ) 0 ( ; ) 0S RQ u when S Q u� �         (A.4) 

We note that 2 3ˆ ˆ ˆ, , , nR Q R Q R Q�  also are symmetry characteristics. This means that  
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 any power ˆ nR  of a recursion operator also is a recursion operator.  

Thus, starting with any symmetry characteristic Q, we can obtain an infinite set of 

such characteristics by repeated application of the recursion operator.  

    A symmetry operator L̂  is a linear operator, independent of u, which produces a 

symmetry characteristic Q [u] when it acts on u. Thus, ˆ [ ]Lu Q u� . We note that ˆ ˆRLu

is a symmetry characteristic, which means that  

	
 the product ˆ ˆRL  of a recursion operator and a symmetry operator is a symme-

try operator.    

Thus, given that ˆ nR  is a recursion operator, we conclude that ˆ ˆnR Lu  is a member of 

Su. Examples of symmetry operators are the nine operators ˆ
kL  that appear in (35), as 

well as the operator ˆ [ , ]L M�  which is implicitly defined in (33).  

    B. “Strong” and “Weak” Bäcklund Transformations.  In the most general sense, a 

BT is a set of relations (typically differential, although in certain cases algebraic ones 

are also considered) which connect solutions of two different PDEs (non-auto-BT) or 

of the same PDE (auto-BT). The technical distinction between “strong” and “weak” 

BTs [24, 25] can be roughly described as follows: In a strong BT connecting, say, the 

variables u and v, integrability of the differential system for either variable demands

that the other variable satisfy a certain PDE. A weak BT, on the other hand, is much 

like a symmetry transformation: u and v are not, a priori, required to satisfy any par-

ticular PDEs for integrability. If, however, u satisfies some specific PDE, then v satis-

fies some related PDE. (An example is the Cole-Hopf transformation, connecting so-

lutions of Burgers' equation to solutions of the heat equation.)  

    The BT (2) is strong, since its integrability conditions force the functions J and X to 

satisfy the PDEs (1) and (3), respectively. Similar remarks apply to the BTs (17) and 

(19a). On the other hand, transformation (28) does not a priori impose any specific 

properties on the operators P̂  and Ŝ . If, however, P̂  is an SDYM recursion operator, 

then Ŝ  is the I-equivalent PSDYM recursion operator. Thus, equation (28) is a Bäck-

lund-like transformation of the weak type, although this particular transformation re-

lates operators rather than functions.  

    C. Local and Nonlocal Symmetries.  Let F [u]=0 be a PDE in the dependent vari-

able u and the independent variables x
�
 (�=1,2,...). A symmetry characteristic Q [u] 

represents a local symmetry of the PDE if Q depends, at most, on x
�
, u, and deriva-

tives of u with respect to the x
�
. A symmetry is nonlocal if the corresponding charac-

teristic Q contains additional variables expressed as integrals of u with respect to the 

x
�
 (or, more generally, integrals of local functions of u). As an example, the PSDYM 

characteristic [ , ]X M� �  (where M is a constant matrix) represents a local symme-

try of this PDE (since it depends locally on the PSDYM variable X ), whereas the 

SDYM characteristic [ , ]Q J X M�  represents a nonlocal symmetry of that PDE 

since it contains an additional variable X which is expressed as an integral of a local 

function of the principal SDYM variable J  [this follows from the BT (2)]. The infinite 

symmetries (34), (36) and (37) are increasingly nonlocal in X for n>0, since they are 

produced by repeated application of the integro-differential recursion operator R̂ .  
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