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The concepts of active and passive transformationa vector space are discussed.
Orthogonal coordinate transformations and matrmpresentations of linear operators
are considered in particular.

1. Introduction

A physical situation magppearchanging for two reasons: the physical systentfitse
may pass from one state to another, or,sdm@estate of the system may be viewed
from two different points of view (e.g., by two flifent observers, using different
frames of reference). The former case correspomds tactive” view of the situa-
tion, while the latter one to“@assive” view.

Given that many physical quantities are vegtof particular interest in Physics
are linear transformations on vector spaces. 8tawith the prototype transformation
of rotation on a plane, we study both the active tre passive view of these trans-
formations. In the case of a Euclidean space walntgSian coordinates, a passive
transformation corresponding to a change of basaiorthogonal transformation. On
the other hand, an active transformation on a vesgace is produced by a linear op-
erator, which is represented by a matrix in a givasis. A change of basis, leading to
a different representation, is a passive transfooman this space.

2. Active view of transfor mations

Consider thexy-plane with Cartesian coordinates, y) and basis unit vectors
{q,, 4} . We callR(6) the rotation operator on this plane, i.e., therafor which ro-

tates any vectoA on the plane by an angle(see Fig. 2.1; by conventiofiz0 for
counterclockwise rotation whilé<0 for clockwise rotation). This operator is lingar
given that adding two vectors and then rotatingghm is the same as first rotating
the vectors and then adding them.
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Figure 2.1
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Imagine, in particular, that we rotate eaebtwr in the basigl,, 0} by an angle

!

0 to obtain a new set of vectofs,, Gy'} (Fig. 2.2). The transformation equations
describing these rotations are

0, =R(#)0, =cosh U+ sird U
X X X y (2.1)
0, =R(6)0, =-sing i, + coP 1,

y

Figure 2.2

Now, letA= A 0 + A U, be a vector on they-plane (see Fig. 2.1). The rotation
operatorR(¢) will transform it into a new vector

A=R(@O)A= AL+ AT, (2.2)

We want to express the componefgsandA,” in terms ofA,, Ay andé. By the line-
arity of R(d) and by using (2.1), we have:

A=RO)(Al+AlY)= ARO) U+ ARO)Y,
=(Accost— A, sid) & +( A sid+ A cod),

By comparing this with (2.2), we get:

"= A cosf— A, sirg
A=A A (2.3)
A/ = Assing+ A cod
We define the matrix
cosd - sing
_Line c039} ¥



ON ACTIVE AND PASSIVE TRANSFORMATIONS

The systems (2.1) and (2.3) are then rewritteh@férm of matrix equations as

lfj ! lf:l !
T l=MT {X} and A*, =M {A‘} (2.5)
u, Uy A A
respectively, wher® " is the transpose 1.
We note that the vectos and A' = R(0) A aredifferentgeometrical objects, the

latter one being a transformation of the former.t@a other hand, the components of
these vectors, connected by (2.3), are referrébdeteamebasis{t,, 0} . This is the

general idea of thactive viewof a linear transformation.
In a more abstract sense, we considaer-dimensional vector space with basis

vectors{é,s,....&} ={"g}, and we leR be a linear operator a@. We assume that
the basis vectors transform unéeas follows:

§=Reé=%2R (sumonj (2.6)

where the familiar summation convention for repeaipper and lower indices has
been used. Thus, for each valua,dhe right-hand side of (2.6) is actually a surerov
all values ofj, i.e., fromj=1 to j=n. Explicitly,

éL,:AqF‘lﬁA% I:%1+'"+Ar¢ R
%’:’\qFéZ—FA% Ié2+”'+,\le PQ (27)
én’:'qF%n"_A% F%n+"'+A# Rw
Now, let
V=Vg+Ve+ -+ Ve= Vi (2.8)

be a vector in2, and letV' =RV . We have:
V'=R(V!'8)=VIRe=V3eR= V].
Therefore the components of the original and thedfiormed vector are related by
V=R,V (2.9)

or, explicitly,
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VV=RyV'+ R, VPt RV
V¥ =RiVH+ R%, VPt RV

V=R, V+ R, V+...+ RV

Define thenxn matrix

M=[R] with M =R

The basis transformations (2.6) are then written as

Vn! VI']

3. Passive view of transfor mations

(2.10)

(2.11)

12)

12)

Imagine that our previous-y system of axes on the plane, with basis unit vecto
{q,, 4} , is rotated counterclockwise by an angl® obtain a new system of axes

andy’ with corresponding basil,, 0,} (Fig. 3.1). As before, the two bases are re-

lated by the system of equations

~ ! ~ . A
U, =cosdu,+ sind u,

~ ! . ~ A
u, =-sindu, + co u,

Figure 3.1

(3.1)
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A vector A on the plane can be expressed in both these tesstslows:
A=A+ A= AU+ A (3.2)

Substituting the basis transformations (3.1) irtte tight-hand side of (3.2), and
equating coefficients of similar unprimed basistoes, we find:

A = Acosd— A sirg

(3.3)
A = A/sind+ A cod
Solving this for the primed components, we get:
"= A cosd+ A, sird
A=A g (3.4)

A =—Asing+ A, cod

Notice that, in contrast to what we did in the poeg section, here we keep the geo-

metrical object A fixed and simply expand it in twdlifferent bases. This is the
adopted practice in theassive vievof a transformation.
Introducing the matrix

cosd - sinY
sind co9¥

we rewrite our previous equations in the matrafer

0, =MT {ux} (.5
Oy' Uy

and
A Al A/ a| A
=M =M 3.6
M M M M o
where
3 {cos@ sirﬂ} .
M= =M (3.7)
-sind coy

Notice that the transformation matik is orthogonal As will be shown below, this is
related to the fact that the transformation (rotaf axes) relates two Cartesian bases
in a Euclidean space.
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By comparing (2.3) and (3.4) it follows thtae transformation equations of the
passive view reduce to those of the active viewnugplacingd with —4. Physically

this means that a passive transformation in wHiehviectorA is fixed and the basis
of our space is rotatecbunterclockwises equivalent to an active transformation in

which the basis is fixed and the vect@ris rotatecclockwise
Let us generalize to the case of radimensional vector spac€ with basis

{6.8,...8) ={"g}. Let{§} be another basis related to the former one by
& =8 Al (3.8)

(note sum orj). A vectorV in Q may be expressed in both these bases, as follows:

V=Ve=V'¢=V"e\,

where use has been made of (3.8). This yields
Vi=AL WV (3.9

Introducing thexn matrix

M=[A'} ] with My =A') (3.10)
we write
Al ’Q
=MT|: (3.11)
&) L&
and
V2 Vl'_ VY Vi
=M = Cl=M7 (3.12)
Vl’l Vnr Vnr Vn

4. Orthogonal transformationsin a Euclidean space

In this section theassiveview of transformations will be adopted. L@tbe ann-
dimensional Euclidean space with Cartebiemordinates¢, x2,...x") = (<) and cor-
responding Cartesian bas{i@} . Let ') be another Cartesian coordinate system for

! Cartesian systems of coordinates exist only inlile@an spaces. For example, you can define a sys-
tem of Cartesian coordinates on a plane but gagmnotdefine such coordinates on the surface of a
sphere, which is aon-Euclidearspace.
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Q, with corresponding bas{g,} . We assume that the two coordinate systems have a
common origin0=(0,0,...,0). Both Cartesian bases artonormal in the sense that

A A

§§=F%

Al

£ =4q; (4.1)
Assuming that thénandednes®f the two coordinate systems is the same (eog., f
n=3, both coordinate systems are right-handed)apgarent that a linear transforma-
tion from one basis to the other is a “rotation¥dnLet us explore this in more detail.

Definition: A linear transformation from a Cartesian basiarother is said to be
anorthogonal transformation

Proposition 4.1:An orthogonal transformation is represented byogthogonal
matrix M:

M2=MT &« MTM=MM"=1 (4.2)

Proof: Assume a linear basis transformation of the foBB) &' = %;Aji' . Also,
let M be the transformation matrix defined in (3.10). Wéee:

A

Y :(@Aki,).( pA'j,):aKl Aki,A'j,:Zk:A'?,Akj,
:Zk:MkiMkj :zk:(MT)ik M, =(MTM)”_

where we have taken into account that the originaprimed) basis is orthonormal.
Given that the same is true for the transformein@al) basis, we have:

(M™™). =6, = MM =1.

Themagnitudeof a vectorV is a non-negative quantity whose square is ex-
pressed in a Cartesian basis in terms of the s@érproduct, as follows:

V" =V.V=(Ve) (V)= V Vieje g VA (4.3)
[Obviously, the last term in (4.3) is the sum o 8quares of the components\bf]

Proposition 4.2:An orthogonal transformation preserves the Catetrm (4.3)
of the magnitude of a vector.

Proof: By using the transformation formula (3.9) for campnts of vectors, de-
rived in the previous section, we have:
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5V 5, (Aik,\/k')(Ajl,\/')z(ZAik,Ail,J\7'\'/'

— kry g1l T K\ 17
_(ZM”‘M” jv Vv _(Z( M )ki M, jv Vv
=(MT™ )klvk'v" = 5y V'V
For a more compact proof, define the matrices
Vl
VI']
and similarly for the corresponding primed quaestiThen, in the unprimed basis,
512 kT K
M =[] v

Using the fact that, by (3.12@\/"] =M [VK’J , we have:

T CT\T T
T ) v L] g v
T
=[ve] [v]
CommentThe above proof suggests an alternate definiti@nmrthogonal trans-
formation as a linear transformation in a Euclidspace that preserves the Cartesian
form of the magnitude of vectors. In fact, thighe way orthogonal transformations

are usually defined in textbooks.

Now, letP be a point in2, with Cartesian coordinates'(3?,...x") = (). In this
system of coordinates the position vectoPofan be written ag =x'&. Since this
vector is a geometrical object independent of ffs¢esn of coordinates, we can write:

Fr=xé-= xj'?;'.
By using (3.8) we find, as in Sec. 3,
X =A X' (4.4)

which is the analog of (3.9). M is the matrix defined in (3.10), and ¥ is the col-
umn vector of thet, then by the general matrix relation (3.12) weehav
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(4.5)
where the orthogonality condition (4.2) has beerduget us call
MT=L withL; =M, =A", (4.6)

Then the matrix relation (4.5) can be written as/stem ofn linear equations of the
form

X" =Ly X+ L, X4+ L, X

which equations represent an orthogonal coordimnatesformation ir2

As an example far=2, letQ be a plane with Cartesian coordinatesx¢) = (x, y).

A position vector in2 is written: 7' = xU, + y{,. As seen in Sec. 3, the transformation
matrix M for a rotation of the basis vectors by an argke

cosf - sing - cog  siA
= . = L=M = _ .
sind co9y — sig  co8

The coordinate transformation equations (4.7) artem here as

X = Xcosf+ ysirg

y =—-xsind+ ycod

Exercise:By using the relationgzvjé and éj' = éA'j , together with (3.10)
and (4.1), show the following:

Vi=g.V

D>
D’

Under an orthogonal transformation from orat€sian system of coordinates to
another, the component&* of a vector transform like the coordinatéshemselves.
That is,

V=1,V
From (4.7) we have that
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X'
-
Therefore,
Vil Xy and, conversely, V :a—x_I v (4.8)
ox! ox’

5. Active and passive view combined

Let Q be ann-dimensional vector space with bagég ( k=12, ..., ). LetA be a lin-
ear operator o®. The action oA on the basis vectors is given by

AE =38 A=A (5.1)

(Note a slight change in the summation conveniiothis section subscripts only will
be used.) Thexn matrix A=[A;] is thematrix representation of the operatarin the
basis{g} .

A vector inQ is written:

X (®.2

X=2.%¢&

Let y=AX. If y=y &, then, by the linearity oA and by using (5.1) and (5.2) we
find that

Yi=A; % (sumonj (5.3)
which represents a systemrolinear equations fae 1,...n. In matrix form,
[Vid = Al %] 5.4)

where k] and jy] are column vectors.
Now, letA andB be linear operators ad. We define their product=AB by

CX=(AB)X=A(BX), VXeQ (5.5)

Then, in the basi§g} ,

Céj :A(BQ)ZA(A? B)= ﬁi(Afe)= iIAIjBiAeEiA gC
where
C;=AB or inmatrix form,C= AB (5.6)

10
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That is, in any basis @,

the matrix of the product of two operators is theduct of the matrices of
these operators.

Consider now a change of basis (passiveftranation) with transformation ma-
trix T=[Tj]:

The inverse transformation is

& =¥(TY), (58)

The same vector may be expressed in both theses laase= x & = ){A@', from
which we get, by using (5.7) and (5.8),

x=T; % and ¥=(T7) x (5.9)

]

In matrix form,

[xJ=T[x] and [x]=T7" ¥ (5.10)
How do the matrix elements of a linear opmrédt transform under a change of
basis of the form (5.7)? In other words, how ddesratrix of an active transforma-

tion transform under a passive transformation? {fetA X. By combining (5.10)
with (5.4), we have:

VI=THW=T"AX=T'AT{=R§k =
A =TT (5.11)
For an alternative proof, note that
Aéj’ =AT)=TAe= T eA= ;i A ré( -F)m
=(T ’1AT)k_ =% A => A T'AT
J
as before. A transformation of the form (5.11)afled asimilarity transformation
By applying the properties of the trace amel determinant of a matrix to (5.11) it
is not hard to show that, under basis transformatibe trace and the determinant of
the matrix representation of an operator remain hanoged:trA=trA’, deA=detA".

This means that the trace and the determinantamis-independent quantities that are
properties of the operator itself, rather than praps of its representation.

11
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Definition: A vector X = 0 is said to be arigenvectowof the linear operatok if a
constant exists such that

AR =A% (5.12)

The constani is aneigenvalueof A, to which eigenvalue this eigenvector belongs.
Note that, in general, more than one eigenvectyrhetong to the same eigenvalue.

In a given basi§&} , the linear system (5.3) corresponding to the reigkie
equation (5.12) takes on the form

Ajx =A% or  Rj=4dij)x =0 (5.13)

where B;j]=A is the matrix of the operatdy in the given basis. This is a homogene-
ous linear system of equations, which has a naatrsolution for the eigenvector
components iff

defA;—26;1=0 or detd—i1)=0 (5.14)

where 1 here is the-dimensional unit matrix. This polynomial equatiogetefmines
the eigenvalueg (not necessarily all different from each otherjhaf operatoA.
Now, in general, for any value of the constathe matrix 4—11) is the represen-

tation of the operatorA—11) in the considered bas{€} . Under a basis transforma-

tion to{&} this matrix transforms according to (5.11):

(A4=1)" =T U1 T=T AT -11=4"-)1.
On the other hand, by the invariance of the deteantiunder this transformation,
det(4'— A1) = det(4—41) .

In particular, ifA is an eigenvalue of the operaty the right-hand side of the above
equation vanishes in view of (5.14) and, thereftre,same must be true for the left-
hand siddor the same value af That is, the polynomial equation (5.14) determine
the eigenvalues oA uniquely, regardless of the chosen representaii conclude
that

the eigenvalues of an operator are a property efdperator itself and do not
depend on the choice of basis of the spgace

If we can findn linearly independent eigenvectof&} of A, belonging to the

corresponding eigenvalugg(not necessarily all different) we can use theseors to
define a basis of2. The matrix representation &f in this basis is given by (5.1):

AX; =X A . On the other hand, if= 1", then AX, = 1'% = '3, X. Therefore, since

the X, are linearly independent, we must h#@ye1'd; . We conclude that, in the ei-
genvector basis the matrix representation of tlezaiprA has thediagonalform

A= diag(/ll,/lz, ,in) .

12
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Moreover, by the above formula and by the fact thatquantities &, detA andiy are
basis-independent (i.e., invariant under basissfcamations) it follows that, imny
basis ofQ,

WA =Jq+ o+ . +0n ,  deB =1 ds ..l (5.15)

Proposition 5.1:Let A andB be two linear operator a3. We assume tha& and
B have a common set oflinearly independent eigenvectdrg} . Then the operators

A andB commute
AB=BA < [A,B]=AB-BA=0

where A, B] denotes theommutatorof A andB.

Proof: Since then vectors{ X} are linearly independent, they define a basi€.of
By assumption, for each value lothe vectorX, is an eigenvector of both andB,
with corresponding eigenvalues, sayndg. Then,

(AB)X =A(BX)=A(B%)=L(AX)=faX
and similarly, BA X, =af%_ . Thus,
(AB)% =(BA)% < [A,B]% =0,
for allk=1,...n. Now, let'¥ =& X be an arbitrary vector i@2. Then,
[AB]Y=[ABI(5%) =§[AB % =0, V¥eQ.
This means tha#y, B]=0.

Definition: An operatorA is said to benonsingularif detA=0 (note that this is a
basis-independergroperty). A nonsingular operatorirs/ertible, in the sense that an
inverse linear operatak™" on Q exists such thaAA™ =A™A =1,,, wherel,, is the
unit operator. This allows us to write

J=AX < X=A1lYy.

By (5.4) it follows that, iA is the matrix representation of the nonsingulasrap
tor A in some basis, thethe matrix of the inverse operatar is the inverse A& of A
As is well known, the matrid may have an inverse iff d&t0, whence the definition
of a nonsingular operator. In view of the secondti@n in (5.15),

all eigenvalues of a nonsingular operator are nonze

Indeed, if even one eigenvalue vanishes, theA=d®in anyrepresentation.

13
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6. Comments

Both the active and the passive view are of impaeain Physics. Let us see some
examples:

1. TheGalilean transformatiorof Classical Mechanics and therentz transfor-
mation of Relativity’ arepassivetransformations connecting different inertial fiesn
of reference. When expressed in terms of mathealatguations, all physical laws
are required to be invariant in form upon passiogifone inertial frame to another.

2. The operators of Quantum Mechaha®active transformations from a quan-
tum state to a new state. On the other hand, latbssand operators may be repre-
sented by matrices in different bases, the tranmsdtion from one basis to another be-
ing apassivetransformation. Typically, the basis vectors & tfjuantum-mechanical
space are chosen to be eigenvectors of linear mpengepresenting physical quanti-
ties such as energy, angular momentum, etc. In auishsis the related operator is
represented by diagonal matrix, the diagonal elements being thgenvaluef the
operator. Physically, these eigenvalues give tissipte values that a measurement of
the associated physical quantity may yield in goeexnent.

2 H. GoldsteinClassical Mechanic2nd Ed. (Addison-Wesley, 1980).
% E. MerzbacherQuantum Mechani¢8rd Ed. (Wiley, 1998).
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