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The concepts of active and passive transformations on a vector space are discussed. 
Orthogonal coordinate transformations and matrix representations of linear operators 
are considered in particular.  

 
 

1. Introduction 
 
A physical situation may appear changing for two reasons: the physical system itself 
may pass from one state to another, or, the same state of the system may be viewed 
from two different points of view (e.g., by two different observers, using different 
frames of reference). The former case corresponds to an “active”  view of the situa-
tion, while the latter one to a “passive” view.  
      Given that many physical quantities are vectors, of particular interest in Physics 
are linear transformations on vector spaces. Starting with the prototype transformation 
of rotation on a plane, we study both the active and the passive view of these trans-
formations. In the case of a Euclidean space with Cartesian coordinates, a passive 
transformation corresponding to a change of basis is an orthogonal transformation. On 
the other hand, an active transformation on a vector space is produced by a linear op-
erator, which is represented by a matrix in a given basis. A change of basis, leading to 
a different representation, is a passive transformation on this space.  
 
 

2. Active view of transformations 
 
Consider the xy-plane with Cartesian coordinates (x, y) and basis unit vectors 

ˆ ˆ{ , }x yu u . We call R(θ) the rotation operator on this plane, i.e., the operator which ro-

tates any vector A
�

 on the plane by an angle θ (see Fig. 2.1; by convention, θ>0 for 
counterclockwise rotation while θ<0 for clockwise rotation). This operator is linear, 
given that adding two vectors and then rotating the sum is the same as first rotating 
the vectors and then adding them.  
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Figure 2.1 
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      Imagine, in particular, that we rotate each vector in the basis ̂ ˆ{ , }x yu u  by an angle 

θ to obtain a new set of vectors ̂ ˆ{ , }x yu u′ ′  (Fig. 2.2). The transformation equations 

describing these rotations are  
 

          
ˆ ˆ ˆ ˆ( ) cos sin

ˆ ˆ ˆ ˆ( ) sin cos

x x x y

y y x y

u u u u

u u u u

θ θ θ

θ θ θ

′ = = +

′ = = − +

R

R
                                  (2.1) 

 

θ

θ

x

y

ˆxu

ˆyu
ˆxu ′ˆyu ′

O

 
 

Figure 2.2 
 

      Now, let ˆ ˆx x y yA A u A u= +
�

 be a vector on the xy-plane (see Fig. 2.1). The rotation 

operator R(θ) will transform it into a new vector  
 

ˆ ˆ( ) x x y yA A A u A uθ ′ ′′ = = +R
� �

                                         (2.2) 

 
We want to express the components Ax΄ and Ay΄ in terms of Ax , Ay and θ. By the line-
arity of R(θ) and by using (2.1), we have:  
 

( )
( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆcos sin sin cos

x x y y x x y y

x y x x y y

A A u A u A u A u

A A u A A u

θ θ θ

θ θ θ θ

′ = + = +

= − + +

R R R
�

 

 
By comparing this with (2.2), we get:  
 

        
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ = −

′ = +
                                              (2.3) 

 
      We define the matrix  
 

            
cos sin

sin cos
M

θ θ
θ θ

− 
=  
 

                                                 (2.4) 
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The systems (2.1) and (2.3) are then rewritten in the form of matrix equations as  
 

      
ˆ ˆ

ˆˆ

x xT

yy

u u
M

uu

 ′  
  =  
 ′   

      and      
x x

yy

A A
M

AA

 ′  
  =  
 ′   

                          (2.5) 

 
respectively, where M T is the transpose of M.  

      We note that the vectors A
�

 and ( )A Aθ′ = R
� �

 are different geometrical objects, the 
latter one being a transformation of the former. On the other hand, the components of 
these vectors, connected by (2.3), are referred to the same basis ˆ ˆ{ , }x yu u . This is the 

general idea of the active view of a linear transformation.  
      In a more abstract sense, we consider an n-dimensional vector space Ω with basis 
vectors { } { }1 2ˆ ˆ ˆ ˆ, ,..., n ke e e e≡ , and we let R be a linear operator on Ω. We assume that 

the basis vectors transform under R as follows:  
 

         ˆ ˆ ˆ (sum on )j
i i j ie e e R j′ = =R                                       (2.6) 

 
where the familiar summation convention for repeated upper and lower indices has 
been used. Thus, for each value of i, the right-hand side of (2.6) is actually a sum over 
all values of  j, i.e., from  j= 1  to  j=n . Explicitly,  
 

              

1 2
1 1 1 2 1 1

1 2
2 1 2 2 2 2

1 2
1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

n
n

n
n

n
n n n n n

e e R e R e R

e e R e R e R

e e R e R e R

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                                    (2.7) 

 
      Now, let  
 

           1 2
1 2ˆ ˆ ˆ ˆn i

n iV V e V e V e V e= + + + ≡
�

⋯                                   (2.8) 

 

be a vector in Ω, and let V V′ = R
� �

. We have:  
 

ˆ ˆ ˆ ˆ( )j j j i i
j j i j iV V e V e V e R V e′′ = = = ≡R R

�
 . 

 
Therefore the components of the original and the transformed vector are related by  
 

                       i i j
jV R V′ =                                                    (2.9) 

 
or, explicitly,  
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1 1 1 1 2 1
1 2

2 2 1 2 2 2
1 2

1 2
1 2

n
n

n
n

n n n n n
n

V R V R V R V

V R V R V R V

V R V R V R V

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                               (2.10) 

 
      Define the n×n matrix  

              i
jM R =       with   i

i j jM R=                                     (2.11) 

 
The basis transformations (2.6) are then written as  
 

       
1 1ˆ ˆ

ˆˆ

T

nn

e e

M

ee

 ′  
   =   
   ′    

⋮ ⋮                                                  (2.12) 

 
while the component transformations (2.9) become  
 

                

1 1

nn

V V

M

VV

 ′  
   

=   
   ′    

⋮ ⋮                                                  (2.13) 

 
 

3. Passive view of transformations 
 
Imagine that our previous x-y system of axes on the plane, with basis unit vectors 

ˆ ˆ{ , }x yu u , is rotated counterclockwise by an angle θ to obtain a new system of axes x΄ 

and y΄ with corresponding basis ̂ ˆ{ , }x yu u′ ′  (Fig. 3.1). As before, the two bases are re-

lated by the system of equations  

             
ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

x x y

y x y

u u u

u u u

θ θ

θ θ

′ = +

′ = − +
                                        (3.1) 

 

  

θ

θ

O
x

y

x′

y′

ˆxu

ˆyu

ˆxu ′
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A
�

 Figure 3.1        
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      A vector A
�

 on the plane can be expressed in both these bases, as follows:  
 

                  ˆ ˆ ˆ ˆx x y y x x y yA A u A u A u A u′ ′ ′ ′= + = +
�

                                  (3.2) 

 
Substituting the basis transformations (3.1) into the right-hand side of (3.2), and 
equating coefficients of similar unprimed basis vectors, we find:  
 

            
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ ′= −

′ ′= +
                                          (3.3) 

 
Solving this for the primed components, we get:  
 

          
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ = +

′ = − +
                                          (3.4) 

 
Notice that, in contrast to what we did in the previous section, here we keep the geo-
metrical object A

�
 fixed and simply expand it in two different bases. This is the 

adopted practice in the passive view of a transformation.  
      Introducing the matrix  
 

cos sin

sin cos
M

θ θ
θ θ

− 
=  
 

 

 
we rewrite our previous equations in the matrix forms  
 

          
ˆ ˆ

ˆˆ

x xT

yy

u u
M

uu

 ′  
  =  
 ′   

                                               (3.5) 

and 

       
x x

y y

A A
M

A A

 ′ 
 = 
 ′   

      ⇒      1x x

yy

A A
M

AA

−
 ′  
  =  
 ′   

                           (3.6) 

 
where  

           1 cos sin

sin cos
TM M

θ θ
θ θ

−  
= = − 

                                       (3.7) 

 
Notice that the transformation matrix M is orthogonal. As will be shown below, this is 
related to the fact that the transformation (rotation of axes) relates two Cartesian bases 
in a Euclidean space.  
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      By comparing (2.3) and (3.4) it follows that the transformation equations of the 
passive view reduce to those of the active view upon replacing θ with –θ. Physically 
this means that a passive transformation in which the vector A

�
 is fixed and the basis 

of our space is rotated counterclockwise is equivalent to an active transformation in 
which the basis is fixed and the vector A

�
 is rotated clockwise.  

      Let us generalize to the case of an n-dimensional vector space Ω with basis 

{ } { }1 2ˆ ˆ ˆ ˆ, ,..., n ke e e e≡ . Let ˆ{ }ke ′  be another basis related to the former one by  

 

                ̂ ˆ j
i j ie e ′
′ = Λ                                                       (3.8) 

 

(note sum on j ). A vector V
�

 in Ω may be expressed in both these bases, as follows:  
 

ˆ ˆ ˆi j j i
i j i jV V e V e V e ′

′ ′ ′= = = Λ
�

 

 
where use has been made of (3.8). This yields  
 

              i i j
jV V′ ′= Λ                                                     (3.9) 

      Introducing the n×n matrix  

 

         i
jM ′ = Λ      with   i

i j jM ′= Λ                                      (3.10) 

we write  

          
1 1ˆ ˆ

ˆˆ

T

nn

e e

M

ee

 ′  
   =   
   ′    

⋮ ⋮                                                     (3.11) 

and  

          

1 1

n n

V V

M

V V

 ′ 
  

=   
   ′    

⋮ ⋮      ⇒     

1 1

1

nn

V V

M

VV

−

 ′  
   

=   
   ′    

⋮ ⋮                         (3.12) 

 
 

4. Orthogonal transformations in a Euclidean space 
 
In this section the passive view of transformations will be adopted. Let Ω be an n-
dimensional Euclidean space with Cartesian1 coordinates (x1, x2,...,xn) ≡ (xk) and cor-
responding Cartesian basis { }ˆke . Let (xk

΄) be another Cartesian coordinate system for 

                                                 
1 Cartesian systems of coordinates exist only in Euclidean spaces. For example, you can define a sys-
tem of Cartesian coordinates on a plane but you cannot define such coordinates on the surface of a 
sphere, which is a non-Euclidean space.  
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Ω, with corresponding basis ̂{ }ke ′ . We assume that the two coordinate systems have a 

common origin O≡(0,0,...,0). Both Cartesian bases are orthonormal, in the sense that  
 

          ˆ ˆ ˆ ˆi j i j i je e e e δ′ ′⋅ = ⋅ =                                               (4.1) 

 
Assuming that the handedness of the two coordinate systems is the same (e.g., for 
n=3, both coordinate systems are right-handed) it is apparent that a linear transforma-
tion from one basis to the other is a “rotation” in Ω. Let us explore this in more detail.  
 
      Definition: A linear transformation from a Cartesian basis to another is said to be 
an orthogonal transformation.  
 
      Proposition 4.1: An orthogonal transformation is represented by an orthogonal 
matrix M:  
 

           1 T T TM M M M MM− = ⇔ = = 1                                  (4.2) 
 

      Proof: Assume a linear basis transformation of the form (3.8): ˆ ˆ j
i j ie e ′
′ = Λ . Also, 

let M be the transformation matrix defined in (3.10). We have:  
 

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆk l k l k k
i j k i l j k l i j i j

k

T T
k i k j k ji k i j

k k

e e e e

M M M M M M

δ′ ′ ′ ′ ′ ′
′ ′⋅ = Λ ⋅ Λ = Λ Λ = Λ Λ

= = =

∑

∑ ∑
 

 
where we have taken into account that the original (unprimed) basis is orthonormal. 
Given that the same is true for the transformed (primed) basis, we have:  
 

( )T T
i ji j

M M M Mδ= ⇔ = 1 . 

 

      The magnitude of a vector V
�

 is a non-negative quantity whose square is ex-
pressed in a Cartesian basis in terms of the scalar (dot) product, as follows:  
 

             ( ) ( )2
ˆ ˆ ˆ ˆi j i j i j
i j i j i jV V V V e V e V V e e V Vδ= ⋅ = ⋅ = ⋅ =

� � �
                      (4.3) 

 

[Obviously, the last term in (4.3) is the sum of the squares of the components of V
�

.]  
 
      Proposition 4.2: An orthogonal transformation preserves the Cartesian form (4.3) 
of the magnitude of a vector.  
 
      Proof: By using the transformation formula (3.9) for components of vectors, de-
rived in the previous section, we have:  
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( )( )

( )

( )

i j i k j l i i k l
i j i j k l k l

i

k l T k l
ik il i lk i

i i

T k l k l
k lk l

V V V V V V

M M V V M M V V

M M V V V V

δ δ

δ

′ ′ ′ ′
 ′ ′ ′ ′= Λ Λ = Λ Λ 
 

   ′ ′ ′ ′= =   
   

′ ′ ′ ′= =

∑

∑ ∑  

 
For a more compact proof, define the matrices  
 

1

k

n

V

V

V

 
   ≡   
 
 

⋮      and     1Tk nV V V   ≡   ⋯  

 
and similarly for the corresponding primed quantities. Then, in the unprimed basis,  
 

2 Tk kV V V   =    
�

. 

 

Using the fact that, by (3.12), k kV M V ′  =   
, we have:  

 

( )T TTk k k k k T k

T
k k

V V M V M V V M M V

V V

       ′ ′ ′ ′    = =           

   ′ ′=
   

 

      
      Comment: The above proof suggests an alternate definition of an orthogonal trans-
formation as a linear transformation in a Euclidean space that preserves the Cartesian 
form of the magnitude of vectors. In fact, this is the way orthogonal transformations 
are usually defined in textbooks.  
 
      Now, let P be a point in Ω, with Cartesian coordinates (x1, x2,...,xn) ≡ (xk). In this 

system of coordinates the position vector of P can be written as ˆi
ir x e=

�
. Since this 

vector is a geometrical object independent of the system of coordinates, we can write:  
 

ˆ ˆi j
i jr x e x e′ ′= =

�
. 

 
By using (3.8) we find, as in Sec. 3,  
 

i i j
jx x′ ′= Λ                                                     (4.4) 

 
which is the analog of (3.9). If M is the matrix defined in (3.10), and if [xk] is the col-
umn vector of the xk, then by the general matrix relation (3.12) we have:  
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        1k k k k T kx M x x M x M x−   ′ ′     = ⇒ = =        
                     (4.5) 

 
where the orthogonality condition (4.2) has been used. Let us call  
 

               withT j
i j j i iM L L M ′≡ = = Λ                                     (4.6) 

 
Then the matrix relation (4.5) can be written as a system of n linear equations of the 
form  
 

              

1 1 2
11 12 1

2 1 2
21 22 2

1 2
1 2

n
n

n
n

n n
n n nn

x L x L x L x

x L x L x L x

x L x L x L x

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                                      (4.7) 

 
which equations represent an orthogonal coordinate transformation in Ω.  
      As an example for n=2, let Ω be a plane with Cartesian coordinates (x1, x2) ≡ (x, y). 
A position vector in Ω is written: ˆ ˆx yr xu yu= +

�
. As seen in Sec. 3, the transformation 

matrix M for a rotation of the basis vectors by an angle θ is  
 

cos sin cos sin

sin cos sin cos
TM L M

θ θ θ θ
θ θ θ θ

−   
= ⇒ = =   −   

. 

 
The coordinate transformation equations (4.7) are written here as  
 

cos sin

sin cos

x x y

y x y

θ θ

θ θ

′ = +

′ = − +
 

 

      Exercise: By using the relations ˆj
jV V e=

�
 and ˆ ˆ l

j l je e ′
′ = Λ , together with (3.10) 

and (4.1), show the following:  
 

ˆi
iV e V= ⋅
�

, 

ˆ ˆi j i jM e e′= ⋅ . 

 
      Under an orthogonal transformation from one Cartesian system of coordinates to 
another, the components V k of a vector transform like the coordinates xk themselves. 
That is,  

i j
i jV L V′ = . 

From (4.7) we have that  
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i

i j j

x
L

x

′∂
=
∂

. 

Therefore,  

          and, conversely,
i i

i j i j
j j

x x
V V V V

x x

′∂ ∂′ ′= =
′∂ ∂

                        (4.8) 

 
 

5. Active and passive view combined 
 
Let Ω be an n-dimensional vector space with basis ˆ{ } ( 1,2, , )ke k n= … . Let A be a lin-

ear operator on Ω. The action of A on the basis vectors is given by  
 

           ˆ ˆ ˆj i i j i i j
i

e e A e A= ≡∑A                                           (5.1) 

 
(Note a slight change in the summation convention; in this section subscripts only will 
be used.) The n×n matrix A=[Aij] is the matrix representation of the operator A in the 
basis ˆ{ }ke .  

      A vector in Ω is written:  
 

                 ˆ ˆi i i i
i

x x e x e= ≡∑�                                                (5.2) 

 
Let y x= A
� �

. If ˆi iy y e=
�

, then, by the linearity of A and by using (5.1) and (5.2) we 

find that  
 

               (sum on )i i j jy A x j=                                           (5.3) 

 
which represents a system of n linear equations for i= 1,...,n. In matrix form,  
 

                [ ] [ ]k ky A x=                                                   (5.4) 

 
where [xk] and [yk] are column vectors.  
      Now, let A and B be linear operators on Ω. We define their product C=AB by  
 

           ( ) ( ) ,x x x x= ≡ ∀ ∈ΩC AB A B
� � � �

                                    (5.5) 
 
Then, in the basis ̂{ }ke ,  

 
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )j j l l j l j l i l l j i i i je e e B B e A B e e C= = = = ≡C A B A A  

where  

                 or, in matrix form,i j i l l jC A B C AB= =                              (5.6) 
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That is, in any basis of Ω,  
 

the matrix of the product of two operators is the product of the matrices of 
these operators.  

 
      Consider now a change of basis (passive transformation) with transformation ma-
trix T=[Tij]:  
 

                   ̂ ˆj i i je e T′ =                                                       (5.7) 

 
The inverse transformation is  
 

         ( )1ˆ ˆj i i j
e e T−′=                                                    (5.8) 

 

The same vector may be expressed in both these bases as ˆ ˆi i j jx x e x e′ ′= =
�

, from 

which we get, by using (5.7) and (5.8),  
 

       ( )1andi i j j i ji j
x T x x T x−′ ′= =                                     (5.9) 

 
In matrix form,  
 

          1[ ] [ ] and [ ] [ ]k k k kx T x x T x−′ ′= =                                 (5.10) 

 
      How do the matrix elements of a linear operator A transform under a change of 
basis of the form (5.7)? In other words, how does the matrix of an active transforma-
tion transform under a passive transformation? Let y x= A

� �
. By combining (5.10) 

with (5.4), we have:  
 

1 1 1[ ] [ ] [ ] [ ] [ ]k k k k ky T y T A x T AT x A x− − −′ ′ ′′= = = ≡ ⇒  

 
       A΄ = Τ  –1

Α Τ                                                    (5.11) 
 
For an alternative proof, note that  
 

( )
( )

1

1 1

ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ

j i i j i j i i j l li li i j k k l

k k k jk j

e e T T e T e A A T e T

T AT e e A A T AT

−

− −

′ ′= = = =

′ ′ ′ ′= ≡ ⇒ =

A A A
 

as before. A transformation of the form (5.11) is called a similarity transformation.  
      By applying the properties of the trace and the determinant of a matrix to (5.11) it 
is not hard to show that, under basis transformations, the trace and the determinant of 
the matrix representation of an operator remain unchanged: trA=trA΄, detA=detA΄. 
This means that the trace and the determinant are basis-independent quantities that are 
properties of the operator itself, rather than properties of its representation.  
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      Definition: A vector 0x ≠
�

 is said to be an eigenvector of the linear operator A if a 
constant λ exists such that  
 

                 x xλ=A
� �

                                                    (5.12) 
 
The constant λ is an eigenvalue of A, to which eigenvalue this eigenvector belongs. 
Note that, in general, more than one eigenvector may belong to the same eigenvalue.  
 
      In a given basis ̂{ }ke , the linear system (5.3) corresponding to the eigenvalue 

equation (5.12) takes on the form  
 

       Ai  j  xj = λ xi      or      (Ai  j  – λ δi  j ) xj  = 0                              (5.13) 
 
where [Aij]=A is the matrix of the operator A in the given basis. This is a homogene-
ous linear system of equations, which has a nontrivial solution for the eigenvector 
components iff  
 

          det [Ai  j   – λ δi  j ] = 0     or     det (Α – λ1) = 0                            (5.14) 
 
where 1 here is the n-dimensional unit matrix. This polynomial equation determines 
the eigenvalues λi (not necessarily all different from each other) of the operator A.  
      Now, in general, for any value of the constant λ the matrix (Α–λ1) is the represen-
tation of the operator (A–λ1) in the considered basis ̂{ }ke . Under a basis transforma-

tion to ˆ{ }ke ′  this matrix transforms according to (5.11):  

 
(Α–λ1)́  = Τ  –1 (Α–λ1) Τ = Τ  –1A T – λ1 ≡ Α΄– λ1 . 

 
On the other hand, by the invariance of the determinant under this transformation,  
 

det (Α΄– λ1) = det (Α – λ1) . 
 
In particular, if λ is an eigenvalue of the operator A, the right-hand side of the above 
equation vanishes in view of (5.14) and, therefore, the same must be true for the left-
hand side for the same value of λ. That is, the polynomial equation (5.14) determines 
the eigenvalues of A uniquely, regardless of the chosen representation. We conclude 
that  

the eigenvalues of an operator are a property of the operator itself and do not 
depend on the choice of basis of the space Ω.  

 
      If we can find n linearly independent eigenvectors { }kx

�
 of A, belonging to the 

corresponding eigenvalues λk (not necessarily all different) we can use these vectors to 
define a basis of Ω. The matrix representation of A in this basis is given by (5.1): 

j i i jx x A=A
� �

. On the other hand, if λj ≡ λ΄, then j j i j ix x xλ λ δ′ ′= =A
� � �

. Therefore, since 

the kx
�

 are linearly independent, we must have Aij=λ΄δij . We conclude that, in the ei-

genvector basis the matrix representation of the operator A has the diagonal form  
 

A = diag (λ1 , λ2 , ... , λn ) . 
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Moreover, by the above formula and by the fact that the quantities trA, detA and λk are 
basis-independent (i.e., invariant under basis transformations) it follows that, in any 
basis of Ω,  

       tr A = λ1 + λ2 + ... + λn   ,      det A = λ1 λ2 ... λn                       (5.15) 
 
      Proposition 5.1: Let A and B be two linear operator on Ω. We assume that A and 
B have a common set of n linearly independent eigenvectors { }kx

�
. Then the operators 

A and B commute:  

AB = BA    ⇔    [A, B] ≡ AB – BA = 0 
 
where [A, B] denotes the commutator of A and B.  
 
      Proof: Since the n vectors { }kx

�
 are linearly independent, they define a basis of Ω. 

By assumption, for each value of k the vector kx
�

 is an eigenvector of both A and B, 

with corresponding eigenvalues, say, α and β. Then,  
 

( ) ( ) ( ) ( )k k k k kx x x x xβ β βα≡ = = =AB A B A A
� � � � �

 

 
and similarly, ( ) k kx xαβ=BA

� �
. Thus,  

 
( ) ( ) [ , ] 0k k kx x x= ⇔ =AB BA A B

� � �
, 

 

for all k=1,...,n. Now, let i ixξΨ =
� �

 be an arbitrary vector in Ω. Then,  

 

[ , ] [ , ]( ) [ , ] 0,i i i ix xξ ξΨ = = = ∀Ψ∈ΩA B A B A B
� �� �

. 

 
This means that [A, B]=0.  
 
      Definition: An operator A is said to be nonsingular if detA≠0 (note that this is a 
basis-independent property). A nonsingular operator is invertible, in the sense that an 
inverse linear operator A–1 on Ω exists such that AA–1 =A–1A =1op , where 1op is the 
unit operator. This allows us to write  
 

1y x x y−= ⇔ =A A
� � � �

. 
 
      By (5.4) it follows that, if A is the matrix representation of the nonsingular opera-
tor A in some basis, then the matrix of the inverse operator A–1 is the inverse A–1 of A. 
As is well known, the matrix A may have an inverse iff detA≠0, whence the definition 
of a nonsingular operator. In view of the second relation in (5.15),  
 

all eigenvalues of a nonsingular operator are nonzero.  
 
Indeed, if even one eigenvalue vanishes, then detA=0 in any representation.  
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6. Comments 
 
Both the active and the passive view are of importance in Physics. Let us see some 
examples:  
      1. The Galilean transformation of Classical Mechanics and the Lorentz transfor-
mation of Relativity2 are passive transformations connecting different inertial frames 
of reference. When expressed in terms of mathematical equations, all physical laws 
are required to be invariant in form upon passing from one inertial frame to another.  
      2. The operators of Quantum Mechanics3 are active transformations from a quan-
tum state to a new state. On the other hand, both states and operators may be repre-
sented by matrices in different bases, the transformation from one basis to another be-
ing a passive transformation. Typically, the basis vectors of the quantum-mechanical 
space are chosen to be eigenvectors of linear operators representing physical quanti-
ties such as energy, angular momentum, etc. In such a basis the related operator is 
represented by a diagonal matrix, the diagonal elements being the eigenvalues of the 
operator. Physically, these eigenvalues give the possible values that a measurement of 
the associated physical quantity may yield in an experiment.  
 
 
 

                                                 
2 H. Goldstein, Classical Mechanics, 2nd Ed. (Addison-Wesley, 1980).  
3 E. Merzbacher, Quantum Mechanics, 3rd Ed. (Wiley, 1998).  


