Amplitude dependence of period in one-dimensional periodic motion

C. J. Papachristou
Department of Physical Sciences, Hellenic Naval Academy
papachristou@hna.gr

Conservation of mechanical energy furnishes a neat way to formally evaluate the period of a one-dimensional periodic motion. It is shown that the only such motion where the period does not depend on the amplitude of oscillation - thus on the total energy of the oscillating body - is simple harmonic motion.

Consider a particle of mass m, moving along the x-axis under the action of a total force $F(x)$. The position $x(t)$ of the particle as a function of time is found by integrating the second-order differential equation (Newton's second law)

$$
\begin{equation*}
m d^{2} x / d t^{2}=F(x) \tag{1}
\end{equation*}
$$

for given initial conditions $x\left(t_{0}\right)=x_{0}$ and $v\left(t_{0}\right)=v_{0}$, where $v=d x / d t$ is the velocity of the particle.

Newton's law (1) may be rewritten as a system of first-order equations:

$$
\begin{equation*}
d x / d t=v, \quad m d v / d t=F(x) \tag{2}
\end{equation*}
$$

Dividing these equations in order to eliminate $d t$, we have:

$$
m v d v=F(x) d x=-d U
$$

where

$$
U(x)=-\int_{0}^{x} F\left(x^{\prime}\right) d x^{\prime} \Leftrightarrow F(x)=-d U / d x
$$

Thus, $\quad m v d v+d U=d\left(m v^{2} / 2+U\right)=0 \Rightarrow$

$$
\begin{equation*}
m v^{2} / 2+U(x) \equiv T+U=E=\text { const } . \tag{3}
\end{equation*}
$$

(where $T=$ kinetic energy) which expresses conservation of total mechanical energy.
From relation (3) we get

$$
(d x / d t)^{2}=(2 / m)[E-U(x)] \Rightarrow d x / d t= \pm\{(2 / m)[E-U(x)]\}^{1 / 2}
$$

Integrating this first-order differential equation and taking into account the initial condition $x=x_{0}$ for $t=t_{0}$, we have:

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{ \pm d x}{\left\{\frac{2}{m}[E-U(x)]\right\}^{1 / 2}}=t-t_{0} \tag{4}
\end{equation*}
$$

where the plus sign is chosen for motion in the positive direction $\left(v>0, x>x_{0}\right)$ while the minus sign applies to motion in the negative direction ($v<0, x<x_{0}$). The value of the constant E in (4) may be determined by applying the initial conditions to (3): $E=m v_{0}^{2} / 2+U\left(x_{0}\right)$, or by other physical considerations pertaining to the problem.

Let us now assume that the potential energy $U(x)$ has the form of a U-shaped potential well (Fig. 1) such that $U(0)=0$ and $U(x)>0$ for $x \neq 0$ (this arrangement is always possible because of the arbitrariness in the definition of the zero-level of the potential energy). The graph of $U(x)$ is assumed to be symmetric with respect to the axis $x=0$, which means that $U(x)$ is an even function: $U(-x)=U(x)$.

Fig. 1
Let E be the total mechanical energy of the particle. Since $E=T+U$ with $T \geq 0$, it follows that $E \geq U(x)$ for any physical motion. The motion is thus bounded between the points $-A$ and $+A$ of the x-axis (see Fig. 1), these points being turning points at which the particle stops momentarily ($E=U \Rightarrow T=0 \Rightarrow v=0$). Now, since E is constant, its value at all points equals its value at the turning points; i.e.,

$$
\begin{equation*}
E=U(\pm A) \tag{5}
\end{equation*}
$$

The time it takes for a complete journey from $-A$ to $+A$ and back to $-A$ is found by using (4) with the appropriate sign for each direction of motion:

$$
\begin{gather*}
P=\int_{-A}^{A} \frac{d x}{\{\cdots\}^{1 / 2}}+\int_{A}^{-A} \frac{-d x}{\{\cdots\}^{1 / 2}} \Rightarrow \\
P=2 \int_{-A}^{A} \frac{d x}{\left\{\frac{2}{m}[E-U(x)]\right\}^{1 / 2}}=(2 m)^{1 / 2} \int_{-A}^{A}[E-U(x)]^{-1 / 2} d x \tag{6}
\end{gather*}
$$

[Since $E-U(x)$ is an even function, $\int_{-A}^{A}(E-U)^{-1 / 2} d x=2 \int_{0}^{A}(E-U)^{-1 / 2} d x$.]
Given that P is fixed for a given A, the motion is periodic about the point $x=0$, with amplitude equal to A and with period P. It follows from (6) that the period P depends on A and, therefore, on the total energy E of the particle, according to (5). We will now show that an exception where P does not depend on A (thus on E also) is simple harmonic motion.

Since $U(x)$ is an even function with $U(0)=0$, it can be expanded into a Maclaurin series of the form

$$
\begin{equation*}
U(x)=\sum_{l=1}^{\infty} a_{l} x^{2 l} \tag{7}
\end{equation*}
$$

where the coefficients a_{l} are not necessarily all different from zero. From (5) we have

$$
E=U(\pm A)=\sum_{l=1}^{\infty} a_{l} A^{2 l}
$$

so that

$$
E-U(x)=\sum_{l=1}^{\infty} a_{l}\left(A^{2 l}-x^{2 l}\right) .
$$

Equation (6) then yields

$$
P=(2 m)^{1 / 2} \int_{-A}^{A}\left[\sum_{l=1}^{\infty} a_{l}\left(A^{2 l}-x^{2 l}\right)\right]^{-1 / 2} d x
$$

By setting $x / A=u \Leftrightarrow x=A u$, we get:

$$
\begin{equation*}
P=(2 m)^{1 / 2} A \int_{-1}^{1}\left[\sum_{l=1}^{\infty} a_{l} A^{2 l}\left(1-u^{2 l}\right)\right]^{-1 / 2} d u \tag{8}
\end{equation*}
$$

It is obvious that, in general, P depends on A. The only exception where P is not dependent on A is the case where the following condition is satisfied: $a_{l}=0$ for $l \neq 1$. That is, the only nonvanishing coefficient a_{l} in the series (7) is a_{1}. By setting $a_{1}=k / 2$ the potential energy (7) reduces to $U(x)=k x^{2} / 2$, which corresponds to a restoring force of the form

$$
\begin{equation*}
F(x)=-d U / d x=-k x \tag{9}
\end{equation*}
$$

The periodic motion is then simple harmonic motion (SHM) and the period (8) reduces to

$$
\begin{aligned}
P & =2(m / k)^{1 / 2} \int_{-1}^{1}\left(1-u^{2}\right)^{-1 / 2} d u=2(m / k)^{1 / 2}[\arcsin u]_{-1}^{1} \\
& =2(m / k)^{1 / 2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right] \Rightarrow \\
& P=2 \pi\left(\frac{m}{k}\right)^{1 / 2} \equiv \frac{2 \pi}{\omega} \quad \text { where } \quad \omega=\frac{2 \pi}{P}=\left(\frac{k}{m}\right)^{1 / 2} .
\end{aligned}
$$

We notice that the period of SHM is amplitude-independent, hence also energyindependent.

We may obtain the equation of motion $x=x(t)$ for SHM by using (4) with $U(x)=k x^{2} / 2$ and $E=U(\pm A)=k A^{2} / 2$. Let us assume first that the motion is in the positive direction, so that $x>x_{0}$. Setting $\omega=(k / m)^{1 / 2}$, we have:

$$
\int_{x_{0}}^{x}\left(A^{2}-x^{2}\right)^{-1 / 2} d x=\omega\left(t-t_{0}\right) .
$$

Using the integral formula

$$
\int\left(A^{2}-x^{2}\right)^{-1 / 2} d x=\arcsin (x / A)+C
$$

and making appropriate substitutions for constants, we find an equation of the form ${ }^{1}$

$$
\arcsin (x / A)=\omega t+\alpha \quad \Rightarrow \quad x=A \sin (\omega t+\alpha)
$$

For motion in the negative direction $\left(x<x_{0}\right)$ we choose the minus sign in (4), so that

$$
\int_{x_{0}}^{x}\left(A^{2}-x^{2}\right)^{-1 / 2} d x=-\omega\left(t-t_{0}\right)
$$

This yields a result of the form ${ }^{2}$

$$
\arcsin (x / A)=-\omega t+\beta \quad \Rightarrow \quad x=-A \sin (\omega t-\beta)
$$

Since the constant β is arbitrary (being dependent on the arbitrary constants x_{0} and t_{0}) we may set $-\beta \equiv \pi+\alpha$, so that $x=A \sin (\omega t+\alpha)$, as before.

We conclude that the general solution of the differential equation (1) for SHM under the action of a force (9), is

$$
x(t)=A \sin (\omega t+\alpha) .
$$

Physically, A is the amplitude of oscillation, $\omega=(k / m)^{1 / 2}$ is the angular frequency and α is the initial phase (i.e., the phase $\omega t+\alpha$ at $t=0$).

It is of interest to examine a one-dimensional periodic motion that follows a curved path (where by "one-dimensional" we now mean that a single generalized coordinate - such as, e.g., an angle or a distance along the curve - is needed in order to specify the location of the particle). A nice example is that of an oscillating pendulum, shown in Fig. 2 (see also [1-3]). The position of the mass m is specified by the arc length $O A=s=l \theta$ or, equivalently, by the angle θ (in rad). The algebraic value of the velocity of m is $v=d s / d t=l d \theta / d t$; it may be positive or negative, depending on the direction of motion relative to the unit tangent vector \hat{u}_{T}.

[^0]

Fig. 2
The motion is governed by the tangential component $w_{T}=-m g \sin \theta$ (algebraic value) of the weight w. The tangential equation of motion of m is

$$
\begin{equation*}
m d v / d t=-m g \sin \theta \Rightarrow d v / d t=-g \sin \theta \tag{10}
\end{equation*}
$$

We seek a conserved quantity that associates the velocity v with the position θ, in the spirit of Eq. (3). We could, of course, work with (10) directly but there is an easier way; namely, conservation of mechanical energy. This principle may be applied in view of the fact that the mass m is subject to the conservative force of gravity and the tension f of the string which, being normal to the velocity, produces no work (cf. Sec. 4.5 of [1]). The potential energy of m at point A (Fig. 2) is

$$
U(\theta)=m g(l-l \cos \theta)=m g l(1-\cos \theta),
$$

where we have assumed that $U(0)=0$ (i.e., U is zero at the lowest point O). If α is the angular amplitude of oscillation (i.e., the maximum angle of deflection of the string from the vertical) then at $\theta= \pm \alpha$ the kinetic energy T vanishes and the total mechanical energy E is equal to $U(\pm \alpha)$. Applying conservation of mechanical energy between an arbitrary angle θ and the maximum angle $\theta=\alpha$, we have:

$$
\begin{gather*}
m v^{2} / 2+m g l(1-\cos \theta)=0+m g l(1-\cos \alpha) \Rightarrow(\text { after eliminating } m) \\
v^{2}=2 g l(\cos \theta-\cos \alpha) \tag{11}
\end{gather*}
$$

Exercise: By differentiating (11) with respect to t and by using the fact that $v=l d \theta / d t$, recover the equation of motion (10). Conversely, show that (11) is a direct consequence of (10). [Hint: Multiply (10) by v.]

Setting $v=l d \theta / d t$ in (11), we get a first-order differential equation:

$$
d \theta / d t= \pm[(2 g / l)(\cos \theta-\cos \alpha)]^{1 / 2}
$$

which is integrated to give

$$
\int_{\theta_{0}}^{\theta} \pm\left[\frac{2 g}{l}(\cos \theta-\cos \alpha)\right]^{-1 / 2} d \theta=t-t_{0} .
$$

The period of oscillation is [cf. Eq. (6)]

$$
\begin{align*}
P & =2 \int_{-\alpha}^{\alpha}\left[\frac{2 g}{l}(\cos \theta-\cos \alpha)\right]^{-1 / 2} d \theta \tag{12}\\
& =(2 l / g)^{1 / 2} \int_{-\alpha}^{\alpha}(\cos \theta-\cos \alpha)^{-1 / 2} d \theta
\end{align*}
$$

Obviously, P depends on the angular amplitude α. Let us assume, however, that this amplitude is very small: $\alpha \ll 1$. We may then make the approximations

$$
\cos \theta \approx 1-\theta^{2} / 2 \quad \text { and } \quad \cos \alpha \approx 1-\alpha^{2} / 2 .
$$

Furthermore, we set $\theta / \alpha=u \Leftrightarrow \theta=\alpha u$. It is then a straightforward exercise to show that (12) reduces to

$$
\begin{gathered}
P=2(l / g)^{1 / 2} \int_{-1}^{1}\left(1-u^{2}\right)^{-1 / 2} d u=2(l / g)^{1 / 2}[\arcsin u]_{-1}^{1} \\
=2(l / g)^{1 / 2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right] \Rightarrow \\
P=2 \pi(l / g)^{1 / 2}
\end{gathered}
$$

which is the familiar expression for the period of oscillation of a pendulum executing simple harmonic motion for small angles of deflection from the vertical. Once again, the SHM is seen to be the only one-dimensional periodic motion in which the period does not depend on the amplitude of oscillation.

As another example, consider a body of mass m, which is moving back and forth on a U-shaped, frictionless roller-coaster track on the vertical $x y$-plane, where the x axis is horizontal while the y-axis is vertical (Fig. 3). The shape of the track, which is symmetric with respect to the y-axis, is described mathematically by an equation of the form $y=f(x)$, where $f(x)$ is an even function and where $f(0)=0$. We want to determine the period of the oscillatory motion, given the total mechanical energy E of m (equivalently, the maximum height h reached by the body).

Fig. 3
Let us first take a look at the physics of the problem. The body m is sliding without friction on the roller-coaster track, moving back and forth between two extreme points at height h above the x-axis (Fig. 3). The projections of these points on this axis are $-A$ and $+A$. The body is subject to the gravitational force $m g$ and the
normal force from the track. The latter force produces no work, hence does not affect the conservation of mechanical energy (see Sec. 4.5 of [1]). The gravitational potential energy of m is $U(y)=m g y$. Along the track, where $y=f(x)$, the values of U may be expressed in terms of x :

$$
\begin{equation*}
U(x)=m g f(x) \tag{13}
\end{equation*}
$$

Let E be the total mechanical energy of m. Since E is constant along the path, its value will be equal to the value of the potential energy at the extreme positions corresponding to $x=-A$ and $x=+A$ (at which positions the kinetic energy of m vanishes). That is,

$$
\begin{equation*}
E=U(\pm A)=m g f(\pm A)=m g h \tag{14}
\end{equation*}
$$

The kinetic energy of the body is

$$
T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)
$$

(dots indicate differentiation with respect to t) where, for $y=f(x)$,

$$
\begin{equation*}
\dot{y}=\frac{d}{d t} f(x)=\frac{d f(x)}{d x} \frac{d x}{d t}=\dot{x} f^{\prime}(x) \tag{15}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
T=\frac{1}{2} m \dot{x}^{2}\left\{1+\left[f^{\prime}(x)\right]^{2}\right\} \tag{16}
\end{equation*}
$$

The total mechanical energy $E=T+U$ is constant along the path. By (13), (14) and (16) we have:

$$
\begin{equation*}
\frac{1}{2} m \dot{x}^{2}\left\{1+\left[f^{\prime}(x)\right]^{2}\right\}+m g f(x)=m g h \tag{17}
\end{equation*}
$$

The position of m on the track is specified by a single coordinate x, which plays the role of a generalized coordinate in the sense of Lagrangian dynamics. The Lagrangian function is

$$
\begin{equation*}
L(x, \dot{x})=T-U=\frac{1}{2} m \dot{x}^{2}\left\{1+\left[f^{\prime}(x)\right]^{2}\right\}-m g f(x) \tag{18}
\end{equation*}
$$

The Lagrange equation for $x(t)$ is

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0 \tag{19}
\end{equation*}
$$

We note that the time-derivative of any function of x is defined by the rule used in (15) for $f(x)$. With this in mind, it is a somewhat long but straightforward exercise to show that (18) and (19) yield the differential equation

$$
\begin{equation*}
\ddot{x}\left\{1+\left[f^{\prime}(x)\right]^{2}\right\}+\dot{x}^{2} f^{\prime}(x) f^{\prime \prime}(x)+g f^{\prime}(x)=0 \tag{20}
\end{equation*}
$$

Presumably, the first-order differential equation (17) for x, expressing conservation of mechanical energy, is a first integral of the second-order differential equation (20). (In general, a first integral of a differential equation is a lower-order differential equation - or an algebraic relation, in the case of a first-order equation that gives us the information that some mathematical quantity retains a constant value as a consequence of the original differential equation; see, e.g., [4].) To prove the validity of the above statement, we need to integrate (20) once with respect to t in order to derive (17). It is easier, however, to work in reverse order. We thus take the time-derivative of (17), keeping the rule (15) in mind. Not surprisingly, the result is again the differential equation (20) (show this)!

The equation of motion of m on the track is a function $x(t)$ that satisfies the differential equation (20). In principle, this second-order equation has "already" been integrated once to obtain the first-order equation (17) [which is a first integral of (20), expressing conservation of mechanical energy]. From (17) we have:

$$
\dot{x}^{2}=\frac{2 g[h-f(x)]}{1+\left[f^{\prime}(x)\right]^{2}} .
$$

This yields a first-order differential equation for $x(t)$:

$$
\begin{equation*}
\frac{d x}{d t}= \pm\left\{\frac{2 g[h-f(x)]}{1+\left[f^{\prime}(x)\right]^{2}}\right\}^{1 / 2} \equiv \pm \Lambda(x ; h) \tag{21}
\end{equation*}
$$

By assuming the initial condition $x=x_{0}$ for $t=t_{0}$, the differential equation (21) is integrated to give

$$
\begin{equation*}
\int_{x_{0}}^{x} \frac{ \pm d x}{\Lambda(x ; h)}=t-t_{0} \tag{22}
\end{equation*}
$$

where the plus sign is chosen for motion in the positive direction $\left(x>x_{0}\right)$, while the minus sign applies to motion in the negative direction $\left(x<x_{0}\right)$. This formally solves the problem of determining the position of m on the track as a function of time.

The period P of the oscillatory motion of m is the time it takes for a complete journey from the extreme position with $x=-A$ to the extreme position with $x=+A$ and back to the original position $x=-A$. To find P we use (22) with the appropriate sign for each direction of motion:

$$
P=\int_{-A}^{A} \frac{d x}{\Lambda(x ; h)}+\int_{A}^{-A} \frac{-d x}{\Lambda(x ; h)}=2 \int_{-A}^{A} \frac{d x}{\Lambda(x ; h)} .
$$

We observe that P depends on the maximum height h, thus on the total energy E of the body (notice that both the integrand and the limits of integration depend on h). However, P is independent of the mass of the body, as expected for a motion governed by the sole action of gravity.

References

1. C. J. Papachristou, Introduction to Mechanics of Particles and Systems (Springer, 2020). ${ }^{3}$
2. J. B. Marion, S. T. Thornton, Classical Dynamics of Particles and Systems, $4^{\text {th }}$ Edition (Saunders College, 1995).
3. H. Goldstein, Classical Mechanics, $2^{\text {nd }}$ Edition (Addison-Wesley, 1980).
4. C. J. Papachristou, Aspects of Integrability of Differential Systems and Fields: A Mathematical Primer for Physicists (Springer, 2019). ${ }^{4}$
[^1]
[^0]: ${ }^{1}$ Explicitly: $\alpha=\arcsin \left(x_{0} / A\right)-\omega t_{0}$.
 ${ }^{2}$ Explicitly: $\beta=\arcsin \left(x_{0} / A\right)+\omega t_{0}$.

[^1]: ${ }^{3}$ See http://metapublishing.org/index.php/MP/catalog/book/68
 ${ }^{4}$ See https://arxiv.org/abs/1511.01788

