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Conservation of mechanical energy furnishes a nest to formally evaluate the
period of a one-dimensional periodic motion. Isfown that the only such motion
where the period does not depend on the amplitbidsallation — thus on the total
energy of the oscillating body — is simple harmanution.

Consider a particle of masgs, moving along thex-axis under the action of a total

force F(x). The positionx(t) of the particle as a function of time is found by
integrating the second-order differential equafidawton’s second law)

md?x/ dt? = F(x) 1)
for given initial conditions(tg)=xo and v(to)=vo, wherev=dx/dt is the velocity of the

particle.
Newton’s law (1) may be rewritten as a systéiirst-order equations:

dx/dt=v, mdv/dt=F(x) (2)
Dividing these equations in order to elimindtewe have:

mvdv = F(x) dx = - dU
where

U(x):—jOXF(X)dX o HR=-dU d
Thus, mvdv+dU =d (m?/2+U)=0 =
mv?/2 +U(X) =T+ U = E = const. (3)

(whereT =kinetic energy) which expresses conservation @il toechanical energy.
From relation (3) we get

(dx/ dt)? = (2/m) [E-U(¥)] = dx/dt = +{(2/m) [E-Ux)]} 2.

Integrating this first-order differential equati@nd taking into account the initial
conditionx=x, for t=ty, we have:

=t—t, (4)
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where the plus sign is chosen for motion inghbsitivedirection (>0, X>X) while the
minus sign applies to motion in tmegativedirection <0, X<X). The value of the
constantE in (4) may be determined by applying the initi@nditions to (3):
E=mw*/2+U (xo) , or by other physical considerations pertaininth®problem.

Let us now assume that the potential enéify has the form of a U-shaped
potential well (Fig. 1) such thdd(0)=0 andU(x)>0 for x=0 (this arrangement is
always possible because of the arbitrariness ird#ifimition of the zero-level of the
potential energy). The graph bf(x) is assumed to be symmetric with respect to the
axisx=0, which means thai(x) is anevenfunction:U (—X)=U (X).

U

O +A
Fig. 1

LetE be the total mechanical energy of the particlac€E=T+U with T >0, it
follows thatE >U(x) for any physical motion. The motion is thibsundedbetween
the points—A and+A of the x-axis (see Fig. 1), these points betngning pointsat
which the particle stops momentarifeU = T=0 = v=0). Now, sinceE is
constant, its value at all points equals its valughe turning points; i.e.,

E=U(®A) (5)

The time it takes for a complete journey frefito +A and back te-Ais found by
using (4) with the appropriate sign for each dimtbf motion:

d -A —d
P:IAA{..})i/Z * IA:: 3 1)/(2

p=2[" X = (2 [E- U (6)

A{;[E—U(x)]}

[SinceE-U(x) is an even function,J'_AA(E—U)‘”de: ZJ'OA( E- U)y "2 dx]

Given thatP is fixed for a giverA, the motion is periodic about the potO,
with amplitude equal t& and with periodP. It follows from (6) that the perio&
depends o\ and, therefore, on the total enekgpf the particle, according to (5). We
will now show that an exception wheRedoesnot depend orA (thus onE also) is
simple harmonic motion
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SinceU(x) is an even function witkl(0)=0, it can be expanded into a Maclaurin
series of the form

U= 4 x (7)
=1
where the coefficients are not necessarily all different from zero. Fr@nwe have

E=U(iA)=iar A
=1
so that

E—U(x):iq(&'—i-‘).
1=1

Equation (6) then yields

By setting X/A=u < x=Au, we get:

P= (2m)1/2A'[11Lé a R (1- G‘)T/z du (8)

It is obvious that, in generd, depends oi\. The only exception where is not
dependent o is the case where the following condition is desiis a =0 for | #1.
That is, the only nonvanishing coefficieatin the series (7) ia;. By settinga; = k/2

the potential energy (7) reduces Wgx) = kx?/2 , which corresponds to a restoring
force of the form

F(X) = — dU/dx = —kx 9)

The periodic motion is thesimple harmonic motiofSHM) and the period (8)
reduces to

P=2(m/ k)2 j_ll(l- uz)_ll2 du= 2(n/ B arcsin i,

_ (T [ 7
=2(m/K) {2 ( ZH =

1/2 1/2
P= ZW(EJ = 2z where o _2r _ (Ej _
k w P m

We notice that the period of SHM mmplitude-independenthence alsenergy-
independent
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We may obtain the equation of motiamx(t) for SHM by using (4) with
U(X)=kx?/2 andE=U(+A)=kA?%/2. Let us assume first that the motion is in thsitpce
direction, so thax>xo . Settingw=(k/m)*?, we have:

[ (=) " dx=w(t- p).

Xo

Using the integral formula
2 2 -1/2 .
J'(A - X ) dx= arcsin(x/A)+ C

and making appropriate substitutions for constamésfind an equation of the form
arcsink/A) = ot+a = x=Asin(wt+a) .

For motion in the negative directiox<{g) we choose the minus sign in (4), so that
-1/2
j (A2-x) " dx=-a(t- ).

This yields a result of the form
arcsing/A) = —ot+f = x=-Asin(@t-p) .

Since the constautis arbitrary (being dependent on the arbitrarystamtsx, andt)
we may set-f=r+a, SO thatx= Asin(wt+a), as before.

We conclude that the general solution of difeerential equation (1) for SHM
under the action of a force (9), is

X(t) = Asin(wt+a) .
Physically,A is theamplitudeof oscillation,w=(k/m)*/
a is theinitial phase(i.e., thephase wt+a att=0).

It is of interest to examine a one-dimensigoeriodic motion that follows a
curved path (where by “one-dimensional” we now mean thatingle generalized
coordinate — such as, e.g., an angle or a dist@oog the curve — is needed in order
to specify the location of the particle). A niceaexple is that of an oscillating
pendulum, shown in Fig. 2 (see also [1-3]). Thatmmsof the massn is specified by
the arc lengttODA=s=l6 or, equivalently, by the angte(in rad). The algebraic value
of the velocity ofm is v=dg/dt=Idd/dt; it may be positive or negative, depending on
the direction of motion relative to the unit tangeector U, .

is theangular frequencynd

L Explicitly: a = arcsinky/A) —oto.
2 Explicitly: £ = arcsingy/A) + wt,.
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Fig. 2

The motion is governed by the tangential congmtw; = —mgsind (algebraic
value) of the weightv. The tangential equation of motionrofis

mdv/dt = —-mgsind = dv/dt=—gsind (10)

We seek a conserved quantity that associates theityes with the positiord, in the
spirit of Eq. (3). We could, of course, work withOj directly but there is an easier
way; namely, conservation of mechanical energys Tgrinciple may be applied in
view of the fact that the massis subject to the conservative force of gravity éme
tensionf of the string which, being normal to the velocpypduces no work (cf. Sec.
4.5 of [1]). The potential energy of at pointA (Fig. 2) is

U@ =mg(l — I cog)) =mgl(1-co9) ,
where we have assumed thHD)=0 (i.e.,U is zero at the lowest poi@). If a is the
angular amplitude of oscillation (i.e., the maximamgle of deflection of the string
from the vertical) then d&= +a the kinetic energy¥ vanishes and the total mechanical

energyE is equal toU(xa). Applying conservation of mechanical energy bemean
arbitrary angleg and the maximum anglé=o , we have:

mv?/2 +mgl (1—co¥) = 0 +mgl(1—cosx) = (after eliminatingm)
V2 = 2g| (co¥ — cosy) (11)
Exercise: By differentiating (11) with respect tb and by using the fact that
v=Idé/dt, recover the equation of motion (10). Converselpvsithat (11) is a direct
consequence of (10H[nt: Multiply (10) byv.]
Settingv=Idé/dt in (11), we get a first-order differential equation

do/ dt = +[(2g/1 ) (cos — cosn)] V2,

which is integrated to give

0 2 -1/2
jg i[l—g(cosﬁ— cosx i do=t-t, .

0
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The period of oscillation is [cf. Eq. (6)]

-1/2
P= ZJ'a {E (cosf — cost } do
L (12)

= (2 1g)¥? jf‘ (cosd— cos )26

Obviously,P depends on the angular amplitudelLet us assume, however, that this
amplitude is very smalkz <<1. We may then make the approximations

co¥)~1-6%2 and cas~1-—d/2.

Furthermore, we seél/a=u < f=qu. It is then a straightforward exercise to show tha
(12) reduces to

-1/2
P=2( /g)l’zj_ll(l— u?) du= 2(1/ g} arcsind’,

_ 1207 [ 7
or{3(5)) -

P=2x(/g)"?,

which is the familiar expression for the periodostillation of a pendulum executing
simple harmonic motion for small angles of deflestirom the vertical. Once again,
the SHM is seen to be the only one-dimensionalbperimotion in which the period
does not depend on the amplitude of oscillation.

As another example, consider a body of nrmgsshich is moving back and forth
on a U-shaped, frictionless roller-coaster tracklom verticalxyplane, where the-
axis is horizontal while thg-axis is vertical (Fig. 3). The shape of the traghijch is
symmetric with respect to theaxis, is described mathematically by an equation of
the formy=f (x), wheref (x) is anevenfunction and wherd (0)=0. We want to
determine the period of the oscillatory motion,egivthe total mechanical energyof
m (equivalently, the maximum heighteached by the body).

-A O +A
Fig. 3

Let us first take a look at the physics oé throblem. The bodyn is sliding
without friction on the roller-coaster track, mogirback and forth between two
extreme points at heightabove the-axis (Fig. 3). The projections of these points on
this axis are—A and+A. The body is subject to the gravitational forog and the
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normal force from the track. The latter force proglsino work, hence does not affect
the conservation of mechanical energy (see Sec.oft.fl]). The gravitational
potential energy om is U(y)=mgy. Along the track, wherg=f (x), the values ol
may be expressed in termsxof

U (X) = mg f(x) (13)
LetE be the total mechanical energyrof SinceE is constant along the path, its
value will be equal to the value of the potentiakmgy at the extreme positions
corresponding tox= —A and x=+A (at which positions the kinetic energy of
vanishes). That is,
E=U(@A) =mg f(xA) = mgh (14

The kinetic energy of the body is
1 1 .o .
TW:Ernf::Erd %+ ﬁ)

(dots indicate differentiation with respecttjahere, fory=f (x),

df(® dx_ .,
ax gt Xf'(% (15)

d,
y=3 19 =

Hence,
T :% m {1+ F(3]°) (16)

The total mechanical ener@#T+U is constant along the path. By (13), (14) and (16)
we have:

%mx2 {1+[ f'( >¢]2}+ mg{ X= mgl (17)

The position ofn on the track is specified by a single coordingtevhich plays
the role of a generalized coordinate in the serfséagrangian dynamics. The
Lagrangian function is

L(x %)= T— U:% m# {1+ [ £( 32— mg¢ X (18)

The Lagrange equation fat) is

&S -o (19)
dt\ox) o0x

We note that the time-derivative ahy function ofx is defined by the rule used in
(15) for f (x). With this in mind, it is a somewhat long butasghtforward exercise to
show that (18) and (19) yield the differential etipra
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{1+ [FOO1°}+ 2 () (3 + gf( =0 (20)

Presumably, the first-order differential etma (17) for X, expressing
conservation of mechanical energy, ifirat integral of the second-order differential
equation (20). (In general, a first integral of ifedlential equation is a lower-order
differential equation — or an algebraic relatiamthe case of a first-order equation —
that gives us the information that some mathematigantity retains a constant value
as a consequence of the original differential eqoatsee, e.g., [4].) To prove the
validity of the above statement, we need to intieg(20) once with respect toin
order to derive (17). It is easier, however, to kvior reverse order. We thus take the
time-derivative of (17), keeping the rule (15) innch Not surprisingly, the result is
again the differential equation (20) (show this)!

The equation of motion oh on the track is a functior(t) that satisfies the
differential equation (20). In principle, this sedsorder equation has “already” been
integrated once to obtain the first-order equabf) [which is a first integral of (20),
expressing conservation of mechanical energy]. Rt we have:

(2 _ 291h- f(]
LR

This yields a first-order differential equation #gt):

1/2
%:i{%} =+ A(X; h) (21)

By assuming the initial condition=xo for t=ty , the differential equation (21) is
integrated to give

IX + dx _
% A(X; h)

where the plus sign is chosen for motion in theitp@sdirection &>xg), while the
minus sign applies to motion in the negative dicec{x<xp). This formally solves the
problem of determining the position mwfon the track as a function of time.

The periodP of the oscillatory motion o is the time it takes for a complete
journey from the extreme position wixs —A to the extreme position witk= +A and
back to the original positior= —A. To find P we use (22) with the appropriate sign
for each direction of motion:

P_IA dx +J-*A —dx —ZIA dx
ClAAGGh) YA A T AA(x B

We observe thaP depends on the maximum heidghtthus on the total enerdy of
the body (notice that both the integrasad the limits of integration depend du).
However, P is independent of the mass of the body, as exgeftie a motion
governed by the sole action of gravity.
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