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Conservation of mechanical energy furnishes a neat way to formally evaluate the 
period of a one-dimensional periodic motion. It is shown that the only such motion 
where the period does not depend on the amplitude of oscillation – thus on the total 
energy of the oscillating body – is simple harmonic motion.  

 
Consider a particle of mass m, moving along the x-axis under the action of a total 
force F(x). The position x(t) of the particle as a function of time is found by 
integrating the second-order differential equation (Newton’s second law)  
 

               m d 2x / dt 2 = F(x)                                                   (1)        
 
for given initial conditions  x(t0)=x0  and  v(t0)=v0 , where  v=dx/dt  is the velocity of the 
particle.  
      Newton’s law (1) may be rewritten as a system of first-order equations:  
 

      dx / dt = v ,     m d v / dt = F(x)                                          (2) 
 
Dividing these equations in order to eliminate dt, we have:  
 

m v dv = F(x) dx = – dU    
where  

0
( ) ( ) ( ) /

x
U x F x dx F x dU dx′ ′= − ⇔ = −∫ . 

 
Thus,   m v dv +  dU = d (m v2 / 2 + U ) = 0  ⇒  
 

       m v2 / 2 + U(x) ≡ T +  U = E = const.                                       (3) 
 
(where T = kinetic energy) which expresses conservation of total mechanical energy.  
      From relation (3) we get  
 

(dx / dt)2 = (2/m) [E–U(x)]  ⇒  dx / dt = ± { (2/m) [E–U(x)]} 1/2 . 
 
Integrating this first-order differential equation and taking into account the initial 
condition  x=x0 for  t=t0 , we have:  
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where the plus sign is chosen for motion in the positive direction (v>0, x>x0) while the 
minus sign applies to motion in the negative direction (v<0, x<x0). The value of the 
constant E in (4) may be determined by applying the initial conditions to (3): 
E=mv0

2/2+U(x0) , or by other physical considerations pertaining to the problem.  
      Let us now assume that the potential energy U(x) has the form of a U-shaped 
potential well (Fig. 1) such that U(0)=0 and U(x)>0 for x≠0 (this arrangement is 
always possible because of the arbitrariness in the definition of the zero-level of the 
potential energy). The graph of U(x) is assumed to be symmetric with respect to the 
axis x=0, which means that U(x) is an even function: U (–x)=U  (x).  
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Fig. 1 

 
      Let E be the total mechanical energy of the particle. Since E=T+U with T ≥0, it 
follows that E ≥U(x) for any physical motion. The motion is thus bounded between 
the points –A and +A of the x-axis (see Fig. 1), these points being turning points at 
which the particle stops momentarily (E=U ⇒ T=0 ⇒ v=0). Now, since E is 
constant, its value at all points equals its value at the turning points; i.e.,  
 

        E = U (± A)                                                         (5) 
 
      The time it takes for a complete journey from –A to +A and back to –A is found by 
using (4) with the appropriate sign for each direction of motion:  
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[Since  E–U(x)  is an even function,  1/ 2 1/ 2

0
( ) 2 ( )

A A

A
E U dx E U dx− −

−
− = −∫ ∫ . ]  

 
      Given that P is fixed for a given A, the motion is periodic about the point x=0, 
with amplitude equal to A and with period P. It follows from (6) that the period P 
depends on A and, therefore, on the total energy E of the particle, according to (5). We 
will now show that an exception where P does not depend on A (thus on E also) is 
simple harmonic motion.  
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      Since U(x) is an even function with U(0)=0, it can be expanded into a Maclaurin 
series of the form  
 

         2

1

( ) l
l
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=

=∑                                                    (7) 

 
where the coefficients al are not necessarily all different from zero. From (5) we have  
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Equation (6) then yields  
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By setting  x/A=u  ⇔  x=Au , we get:  
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      It is obvious that, in general, P depends on A. The only exception where P is not 
dependent on A is the case where the following condition is satisfied: al =0 for l  ≠1. 
That is, the only nonvanishing coefficient al in the series (7) is a1 . By setting  a1 =  k/2 

the potential energy (7) reduces to U(x) = kx2/2 , which corresponds to a restoring 
force of the form  

F (x) =  – dU / dx =  – kx                                                (9) 
 
The periodic motion is then simple harmonic motion (SHM) and the period (8) 
reduces to  

( ) [ ]
1/ 21 11/ 2 2 1/ 2

11

1/ 2

2( / ) 1 2( / ) arcsin

2( / )
2 2

P m k u du m k u

m k
π π

−

−−
= − =

  = − − ⇒    

∫
 

1/ 2
2

2
m

P
k

π
π

ω
 = ≡ 
 

    where    
1/ 2

2 k

P m

π
ω  = =  

 
. 

 
We notice that the period of SHM is amplitude-independent, hence also energy-
independent.  
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      We may obtain the equation of motion x=x(t) for SHM by using (4) with 
U(x)=kx2/2 and E=U(±A)=kA2/2. Let us assume first that the motion is in the positive 
direction, so that x>x0 . Setting ω=(k/m)1/2 , we have:  
 

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = −∫ . 

 
Using the integral formula  
 

( ) 1/ 22 2 arcsin( / )A x dx x A C
−

− = +∫  

 
and making appropriate substitutions for constants, we find an equation of the form1  
 

arcsin(x/A) = ωt+α    ⇒    x =  A sin(ωt+α) . 
 
For motion in the negative direction (x<x0) we choose the minus sign in (4), so that  
 

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = − −∫ . 

 
This yields a result of the form2  
 

arcsin(x/A) = – ωt+β    ⇒    x =  –A sin(ωt–β) . 
 
Since the constant β is arbitrary (being dependent on the arbitrary constants x0 and t0) 
we may set  –β ≡ π+α , so that  x =  A sin(ωt+α), as before.  
      We conclude that the general solution of the differential equation (1) for SHM 
under the action of a force (9), is   
 

x(t) =  A sin(ωt+α) . 
 
Physically, A is the amplitude of oscillation, ω=(k/m)1/2 is the angular frequency and 
α is the initial phase (i.e., the phase  ωt+α  at t=0).  
      It is of interest to examine a one-dimensional periodic motion that follows a 
curved path (where by “one-dimensional” we now mean that a single generalized 
coordinate – such as, e.g., an angle or a distance along the curve – is needed in order 
to specify the location of the particle). A nice example is that of an oscillating 
pendulum, shown in Fig. 2 (see also [1-3]). The position of the mass m is specified by 
the arc length OA=s=lθ or, equivalently, by the angle θ (in rad ). The algebraic value 
of the velocity of m is  v=ds/dt=ldθ/dt ; it may be positive or negative, depending on 
the direction of motion relative to the unit tangent vector ˆTu .  

 

                                                 
1 Explicitly:  α = arcsin(x0/A) – ωt0 .  
2 Explicitly:  β = arcsin(x0/A) + ωt0 .  
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Fig. 2 

 
      The motion is governed by the tangential component wT =  – mg sinθ (algebraic 
value) of the weight w. The tangential equation of motion of m is  
 

       m dv / dt = – mg sinθ    ⇒    dv / dt = – g sinθ                            (10) 
 
We seek a conserved quantity that associates the velocity v with the position θ, in the 
spirit of Eq. (3). We could, of course, work with (10) directly but there is an easier 
way; namely, conservation of mechanical energy. This principle may be applied in 
view of the fact that the mass m is subject to the conservative force of gravity and the 
tension f of the string which, being normal to the velocity, produces no work (cf. Sec. 
4.5 of [1]). The potential energy of m at point A (Fig. 2) is  
 

U(θ) = mg (l – l cosθ) = mgl (1 – cosθ) , 
 
where we have assumed that U(0)=0 (i.e., U is zero at the lowest point O). If α is the 
angular amplitude of oscillation (i.e., the maximum angle of deflection of the string 
from the vertical) then at θ=  ±α the kinetic energy T vanishes and the total mechanical 
energy E is equal to U(±α). Applying conservation of mechanical energy between an 
arbitrary angle θ and the maximum angle  θ=α , we have:  
 

m v2 / 2 + mgl (1 – cosθ) = 0 + mgl (1 – cosα)   ⇒  (after eliminating m) 
 

         v2 = 2gl (cosθ – cosα)                                             (11) 
 
      Exercise: By differentiating (11) with respect to t and by using the fact that 

v=ldθ/dt,  recover the equation of motion (10). Conversely, show that (11) is a direct 
consequence of (10). [Hint: Multiply (10) by v.]  
 
      Setting  v=ldθ/dt  in (11), we get a first-order differential equation:  
 

dθ / dt = ± [(2g/l ) (cosθ – cosα)]1/2 , 
 
which is integrated to give  

0

1/ 2

0
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d t t
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θ
θ α θ

−
 ± − = −  ∫  . 
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The period of oscillation is [cf. Eq. (6)]  
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= −

∫

∫
                                (12) 

 
Obviously, P depends on the angular amplitude α . Let us assume, however, that this 
amplitude is very small: α <<1. We may then make the approximations  
 

cosθ ≈ 1 – θ 
2/2    and    cosα ≈ 1 – α2/2 . 

 
Furthermore, we set  θ/α=u ⇔ θ=αu . It is then a straightforward exercise to show that 
(12) reduces to  
 

( ) [ ]
1/ 21 11/ 2 2 1/ 2
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P = 2 π (l /g )1/2 , 

 
which is the familiar expression for the period of oscillation of a pendulum executing 
simple harmonic motion for small angles of deflection from the vertical. Once again, 
the SHM is seen to be the only one-dimensional periodic motion in which the period 
does not depend on the amplitude of oscillation.  
      As another example, consider a body of mass m, which is moving back and forth 
on a U-shaped, frictionless roller-coaster track on the vertical xy-plane, where the x-
axis is horizontal while the y-axis is vertical (Fig. 3). The shape of the track, which is 
symmetric with respect to the y-axis, is described mathematically by an equation of 
the form y=f (x), where f (x) is an even function and where f (0)=0. We want to 
determine the period of the oscillatory motion, given the total mechanical energy E of 
m (equivalently, the maximum height h reached by the body).  
 

x

E

OA− A+

y

h h

 
 

Fig. 3 
 
      Let us first take a look at the physics of the problem. The body m is sliding 
without friction on the roller-coaster track, moving back and forth between two 
extreme points at height h above the x-axis (Fig. 3). The projections of these points on 
this axis are  –A and +A. The body is subject to the gravitational force mg and the 
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normal force from the track. The latter force produces no work, hence does not affect 
the conservation of mechanical energy (see Sec. 4.5 of [1]). The gravitational 
potential energy of m is U(y)=mgy.  Along the track, where y=f (x), the values of U 
may be expressed in terms of x:  
 

U (x) = mg f (x)                                                   (13) 
 
      Let E be the total mechanical energy of m. Since E is constant along the path, its 
value will be equal to the value of the potential energy at the extreme positions 
corresponding to x= –A and x=+A (at which positions the kinetic energy of m 
vanishes). That is,  
 

E = U (± A) = mg f (± A) = mgh                                       (14) 
 
The kinetic energy of the body is  
 

( )2 2 21 1

2 2
T mv m x y= = +ɺ ɺ  

 
(dots indicate differentiation with respect to t) where, for y=f (x),  
 

( )
( ) ( )

d d f x dx
y f x x f x

dt dx dt
′= = =ɺ ɺ                                       (15) 

Hence,  

     { }2 21
1 [ ( )]

2
T mx f x′= +ɺ                                              (16) 

 
The total mechanical energy E=T+U is constant along the path. By (13), (14) and (16) 
we have:  

{ }2 21
1 [ ( )] ( )

2
mx f x mg f x mgh′+ + =ɺ                                     (17) 

 
      The position of m on the track is specified by a single coordinate x, which plays 
the role of a generalized coordinate in the sense of Lagrangian dynamics. The 
Lagrangian function is  

      { }2 21
( , ) 1 [ ( )] ( )

2
L x x T U mx f x mg f x′= − = + −ɺ ɺ                             (18) 

 
The Lagrange equation for x(t) is  
 

      0
d L L

dt x x

∂ ∂  − = ∂ ∂ ɺ
                                                   (19) 

 
We note that the time-derivative of any function of x is defined by the rule used in 
(15) for  f (x). With this in mind, it is a somewhat long but straightforward exercise to 
show that (18) and (19) yield the differential equation  
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      { }2 21 [ ( )] ( ) ( ) ( ) 0x f x x f x f x g f x′ ′ ′′ ′+ + + =ɺɺ ɺ                              (20) 

 
      Presumably, the first-order differential equation (17) for x, expressing 
conservation of mechanical energy, is a first integral of the second-order differential 
equation (20). (In general, a first integral of a differential equation is a lower-order 
differential equation – or an algebraic relation, in the case of a first-order equation – 
that gives us the information that some mathematical quantity retains a constant value 
as a consequence of the original differential equation; see, e.g., [4].) To prove the 
validity of the above statement, we need to integrate (20) once with respect to t in 
order to derive (17). It is easier, however, to work in reverse order. We thus take the 
time-derivative of (17), keeping the rule (15) in mind. Not surprisingly, the result is 
again the differential equation (20) (show this)!  
      The equation of motion of m on the track is a function x(t) that satisfies the 
differential equation (20). In principle, this second-order equation has “already” been 
integrated once to obtain the first-order equation (17) [which is a first integral of (20), 
expressing conservation of mechanical energy]. From (17) we have:  
 

2
2

2 [ ( )]

1 [ ( )]

g h f x
x

f x

−
=

′+
ɺ  . 

 
This yields a first-order differential equation for x(t):  
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x h
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By assuming the initial condition x=x0 for t=t0 , the differential equation (21) is 
integrated to give  

       
0

0( ; )

x

x

dx
t t

x h

±
= −

Λ∫                                                 (22) 

 
where the plus sign is chosen for motion in the positive direction (x>x0), while the 
minus sign applies to motion in the negative direction (x<x0). This formally solves the 
problem of determining the position of m on the track as a function of time.  
      The period P of the oscillatory motion of m is the time it takes for a complete 
journey from the extreme position with x= –A to the extreme position with x= +A and 
back to the original position x= –A. To find P we use (22) with the appropriate sign 
for each direction of motion:  
 

2
( ; ) ( ; ) ( ; )

A A A

A A A

dx dx dx
P

x h x h x h

−

− −

−
= + =

Λ Λ Λ∫ ∫ ∫  . 

  
We observe that P depends on the maximum height h, thus on the total energy E of 
the body (notice that both the integrand and the limits of integration depend on h). 
However, P is independent of the mass of the body, as expected for a motion 
governed by the sole action of gravity.  
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