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PREFACE 
 
 
In the world around us, as well as in the arts, symmetry is a property that enhances 
beauty. In Physics, however, symmetry is not just a matter of aesthetics! Indeed, it is a 
dynamical aspect of most (if not all) physical theories, where it is realized as invari-
ance under certain sets of transformations. In some cases the requirement of symme-
try leads to physical principles such as conservation laws, as Emmy Noether’s beauti-
ful theorem has shown. Also, the covariance (form-invariance) of physical laws upon 
passing from one inertial frame of reference to another opens the gate to high-energy 
physics. The main aspects of this latter kind of symmetry, which is at the heart of 
Special Relativity (SR), is the subject of this short book.  

      Symmetry transformations constitute the most important topic in group theory. So, 
a proper study of SR should include at least an elementary study of the Lorentz group. 
After the basic “philosophical” ideas regarding SR have been briefly discussed in 
Chapter 1, the Lorentz group is presented in Chap. 2 in its own right, as a mathemati-
cal entity not yet directly associated with SR. The connection of this group with rela-
tivistic mechanics is the subject of Chap. 3, while Chap. 4 deals with Lorentz covari-
ance in Maxwell’s theory of electrodynamics.  

      Several special topics are discussed in Chap. 5. Section 5.1 serves as a brief intro-
duction to Lie groups and Lie algebras, some knowledge of which is a prerequisite for 
Chap. 2. Section 5.2 focuses on the Lorentz group and its homomorphism with the 
group SL(2,C), while Sec. 5.3 discusses the concept of the metric in flat and curved 
(Riemannian) spaces. Section 5.4 presents some relatively recently published ideas 
supporting the view that Maxwell’s equations, seen as a Bäcklund transformation, 
form a system of independent equations. This independence is particularly significant 
with regard to the coherence of the covariant formulation of the Maxwell system.  

      To make the book suitable for self-study, all problems at the end of Chaps. 3 and 4 
are accompanied by detailed solutions.  

      The reader is assumed to have some acquaintance with SR at the basic (under-
graduate) level. Knowledge of basic electrodynamics is also necessary at the level, 
e.g., of this author’s textbook “Introduction to Electromagnetic Theory and the Phys-
ics of Conducting Solids” (Springer, 2020). In fact, the present book may be consid-
ered as a supplement to the aforementioned one, albeit at a somewhat more advanced 
level. Finally, some previous knowledge of group theory may be helpful but is not 
required for reading this book, given that, as mentioned above, the necessary ideas 
regarding groups and algebras are presented in Sec. 5.1.  
 

    Costas J. Papachristou  

    July 2025  
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CHAPTER 1 
 

OVERVIEW OF THE BASIC IDEAS 
 
 

1.1  Why Relativity?  
 
Einstein’s Special Theory of Relativity (SR) assumes the existence of an underlying 4-
dimensional flat spacetime – i.e., a spacetime admitting a globally constant (albeit 
non-Euclidean) metric – which has a preferred class of frames of reference, namely, 
inertial frames. (This is analogous to the existence of global Cartesian systems of co-
ordinates in a standard Euclidean space.) According to the special (or restricted) prin-
ciple of relativity, all inertial frames are equivalent to each other with regard to 
describing physical phenomena. This suggests that all physical laws must be 
expressed in covariant forms, i.e., in forms that are invariant upon passing from one 
inertial frame to another. We are thus in search of two things:  

      (a) the proper coordinate transformations that relate inertial frames to one another;  

      (b) the proper mathematical statements of physical laws so that these laws be 
form-invariant under the aforementioned transformations.  

      In classical mechanics, invariance of mechanical laws is established by means of 
the Galilean transformation (GT). The GT, however, fails to satisfy the invariance 
requirement for Maxwell’s equations of electromagnetism. In particular, the value of 
the speed of light, which is a direct consequence of these equations, is not an invariant 
quantity under the GT. It is found experimentally, however, that the speed of light is 
an invariant, the same for all inertial observers. This suggests that either Maxwell’s 
equations are not correct – thus need to be corrected in order to comply with the GT – 
or the GT itself is not correct and a new transformation is needed that makes the 
Maxwell equations frame-invariant and, in particular, treats the speed of light as a 
constant of the theory, independent of any particular frame of reference.  

      Einstein chose to accept the second possibility, which eventually leads to the re-
placement of the GT with the Lorentz transformation (LT) and to the requirement that 
all physical laws be expressible in Lorentz-invariant (or covariant) forms. The Max-
well equations are already consistent with this requirement, by construction of the LT. 
The laws of mechanics, however, which are Galilean-invariant, need to be re-
formulated in order to comply with the LT. For example, a redefinition of momentum 
in relativistic form is required in order for the law of conservation of momentum to be 
Lorentz-invariant.  

      As for the LT itself, it is defined as a linear transformation that preserves the 
value of the elementary spacetime interval  

ds 
2

 = c 
2 dt 2 – dx 

2 – dy 
2 – dz 

2  

where (x, y, z, t) are the spacetime coordinates and where c is the (Lorentz-invariant) 
speed of light in empty space. In particular, for  ds 

2
 =  0, the invariance of  ds 

2 under a 
LT is equivalent to the invariance of the speed of light. Moreover, the invariant space-
time interval ds 

2 endows the spacetime of SR with a metric, represented by the diago-
nal (4×4) matrix  g =  [  gµν]  =  diag (1, –1, –1, –1) , where  µ, ν =  0,1,2,3.  
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      Since the metric elements gµν are constant quantities having the same values at all 
spacetime points, the underlying spacetime is flat (see Sec. 5.3). This is true as long as 
gravity may be ignored. In the presence of gravity the flat spacetime of SR must be 
replaced by the curved spacetime of General Relativity (GR). In GR the notion of a 
global inertial frame of reference has no meaning and the general principle of relativ-
ity requires invariance of physical laws under all spacetime transformations (not just a 
restricted class such as the LTs, which are specifically associated with the inertial 
frames of SR).  

 

1.2  Inertial Frames of Reference  

In SR, as in classical mechanics, an inertial frame of reference is any system of coor-
dinates or axes – say, (x, y, z) – relative to which a free particle (i.e., a particle subject 
to no interactions) remains at rest or moves uniformly (that is, with constant velocity 
and hence with no acceleration). An observer using an inertial frame (relative to 
which she is at rest) is called an inertial observer and is herself subject to no net ex-
ternal interaction.  

      Let us look at this last statement in more detail: Consider two observers O1 and O2 
located at the corresponding origins of two inertial frames. Consider also a free parti-
cle P. Then P will move with constant velocity relative to both O1 and O2 . It follows 
that O1 and O2 will move uniformly relative to each other. In particular, since the ob-
server O2 is moving with constant velocity relative to an inertial frame, she must be a 
free “particle”. By the same token, observer O1 will also be a free “particle” given that 
he moves uniformly relative to the frame of O2 . As a corollary, two free particles 
move with constant velocities (are not accelerating) relative to each other. Classically, 
this is one way to express Newton’s first law of mechanics [1].  

      Time in Galilean relativity has a universal meaning, independent of any particular 
observer. On the contrary, in SR time is relative and depends on the motion of one 
observer relative to another. Thus the space (x, y, z) of classical mechanics is enhanced 
to a 4-dimensional spacetime with coordinates (x, y, z, t) or, for the purpose of dimen-
sional homogeneity, (x, y, z, ct). The coordinates (x, y, z) correspond to the spatial axes 
of the frame of reference used by an inertial observer, while t is the time of occurrence 
of events as determined by that observer.  

      The trajectory of a particle in spacetime is called the worldline of the particle. This 
line describes the position of the particle as a function of time and is mathematically 
expressed by the functions  x(t), y(t), z(t). Geometrically, a worldline is the plot of po-
sition versus time in a coordinate system (x, y, z, ct). The graph of the system of equa-
tions {x=x(t), y=y(t), z=z(t)} in a system of axes (x, y, z, ct) is a curve in 4-dimensional 
spacetime.  

      A free particle moves with constant velocity in any inertial frame. The coordinates 
(x, y, z) of the particle are therefore linear functions of t and the particle’s worldline is 
a straight line. An inertial frame may thus be defined as a system of spacetime coor-
dinates (or axes) in which the worldlines of free particles are straight lines.  

      The Lorentz transformation (LT), which transforms both space and time coordi-
nates of a particle, ensures that uniform motion in one inertial frame transforms into 
uniform motion in any other inertial frame. Since uniform motions are described 
geometrically by straight worldlines, it follows that a LT transforms straight worldli-
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nes in a spacetime coordinate system (x, y, z, ct) into straight lines in some other coor-
dinate system (x΄, y΄, ź , ct́  ). This requires the LT connecting the two systems of co-
ordinates to be a linear transformation [2].  

 

x
O

0x ct=

θ

/ 4π/ 4π

free particle

light raylight ray

 
Fig. 1.1. Worldlines of two light rays and a free particle; the former define a 2-dimensional light cone. 

 
      The spacetime diagram in Fig. 1.1 shows the worldlines of two light rays and a 
free particle. We set  x0=ct  and we assume that both the particle and the light rays are 
traveling along the x-axis (the two rays in opposite directions), so that y and z are con-
stant. By making this choice we effectively reduce the spacetime dimensions from 4 
to 2.  

      The velocity v=dx/dt of a free particle is constant, where v may be positive or 
negative in accordance with the direction of motion. For a light ray, v=dx/dt= ± c. In 
either case,  

0
cot

( )

dx dx v

d ct cdx
θ = = =   

where θ is the angle formed by the worldline and the x-axis. For a light ray, cotθ=  ±1 
⇒  θ=π/4  or  θ=3π/4 . For a free particle,  |v|< c  ⇒  |cotθ| < 1  ⇒  π/4 < θ < 3π/4 .  

      The latter result, which follows from the well-known fact that no speed in Nature 
can exceed the speed of light, has the following geometrical interpretation: The world-
line of a free particle – and, indeed, the worldline of any massive particle – must lie in 
the interior of the light cone formed by the possible worldlines of a light ray (see Fig. 
1.1). Of course, for an accelerating (thus non-free) particle the angle θ is not constant 
(since v is not constant) and the associated worldline cannot be a straight line (it is 
generally curved). At all points of the worldline, however, the tangent line must be 
such that its angle θ with the x-axis conforms to the condition π/4 < θ < 3π/4 . This re-
sult can be generalized for light cones in higher spacetime dimensions.  

 

References 
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CHAPTER 2 
 

THE LORENTZ GROUP 
 
 
2.1  The Group SO(3,1)↑  
 
In this chapter we discuss the Lorentz group in its own right, independently of its role 
in Relativity. Before we proceed, let us note that the reader who is not familiar with 
group theory – and, in particular, with Lie groups and Lie algebras – may find it use-
ful to consult Sec. 5.1. Additional material on the Lorentz group can be found in Sec. 
5.2.  

      Let  a  be a vector in R 
4, with components a 

µ (µ=1,2,3,4). This vector may be rep-
resented by a (4×1) matrix (column vector)  

1

2

3

4

[ ]

a

a
a a

a

a

µ

 
 
 

≡ =  
 
 
 

 . 

Then  a 
t
  (transpose of a) is the row vector  

1 2 3 4ta a a a a =    . 

      We introduce the symmetric (4×4) matrix  

   

1 0 0 0

0 1 0 0
[ ] (1,1,1, 1)

0 0 1 0

0 0 0 1

g g diagµν

 
 
 ≡ = = −
 
 

− 

                            (2.1) 

where  µ, ν=1,2,3,4  and where we have used a standard notation for diagonal matrices. 
Given two vectors a and b in R 

4, we define the scalar product (a, b) of a and b by the 
relation  

       (a, b) = a 
tg b                                                   (2.2) 

In terms of components, and by using the familiar summation convention of summing 
from 1 to 4 over repeated up and down indices, we rewrite (2.2) as  

         (a, b) = a µgµν b 
ν = gµν a µ

 b 
ν = a1

 b1 + a 
2

 b 
2 + a 

3
 b 

3 – a 
4

 b4                  (2.3) 

As a consequence of the symmetry of  g , i.e., since  g 
t=g ⇔ gµν= gνµ , the scalar prod-

uct is symmetric: (a, b) =  (b, a) , as is obvious from the right-hand-side of (2.3).  
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     Now, let Λ ≡ [Λµν ] be a constant (4×4) matrix with real elements Λµν (µ, ν=1,2,3,4). 
For any vector  a ≡ [a 

µ]∈R 
4  we consider the homogeneous linear transformation  

    a → a΄=  Λ a    ⇔    a µ
΄ =  Λµν  a 

ν                                    (2.4) 

We assume that Λ is such that, for any vectors a, b∈R 
4, the transformation (2.4) 

leaves the scalar product (a, b) invariant. That is, by (2.2) and (2.4),  

(a΄, b΄ ) =  (Λ a, Λ b) =  (a, b)  ⇒  a 
t (ΛtgΛ) b =  a 

tg b . 

For this to be true for all a, b we must have  

     Λt
 g Λ = g    ⇔    Λµλ  gµν Λ

ν
ρ  = gλρ                                     (2.5) 

with the understanding that  Λµλ =  (Λt ) λ 
µ
 .  

      We notice that  det (Λt
 g Λ) =  det g  ⇒  (det Λ)2 =1 . This can be satisfied in two 

ways:  

      det Λ = +1  ⇒  the transformation (2.4) is a proper transformation; or  

      det Λ = –1  ⇒  the transformation (2.4) is an improper transformation.  

Now, assume that all transformation matrices Λ can be obtained from the identity 
transformation Λ=1 ⇔ Λµν =  δµν  by continuously varying a certain set of parameters 
on which these matrices depend. Clearly, only proper transformations can be con-
nected to the identity in this fashion. These transformations form a group [1,2] named 
SO(3,1), in accordance with the number of plus and minus signs in the diagonal ele-
ments of the matrix g in (2.1).  

      To verify the group property of SO(3,1), let us note the following:  

      1. The set of SO(3,1) matrices is closed under the operation of matrix multiplica-
tion. Indeed, let Λ1 , Λ2 ∈SO(3,1) and call Λ=Λ1Λ2 . Both Λ1 and Λ2 satisfy the condi-
tion (2.5) and we must show that the same is true for Λ. We have:  

Λ
t

 g Λ = (Λ1Λ2) t g (Λ1Λ2) =  (Λ2) 
t [(Λ1) t g Λ1]  Λ2 =  (Λ2) 

t g Λ2 = g . 

Moreover,  det Λ=  det (Λ1Λ2) = (det Λ1) (det Λ2) =  (+1) (+1) = +1 .  

      2. If Λ∈SO(3,1), then Λ–1∈SO(3,1) also. Indeed, by using (2.5) and the fact that 
g–1=  g , we have:  

(Λt
 g Λ) –1 = g  ⇒  Λ–1g (Λ–1) t = g  ⇒  g (Λ–1) t = Λ g  ⇒ 

(Λ–1) t = g Λ g  ⇒  (Λ–1) t
 g = g Λ  ⇒  (Λ–1) t

 g Λ–1 = g  .  

Moreover,  det (Λ–1) =  (det Λ) –1
 =  1 .  

      However, not all elements of the group SO(3,1) can be connected to the identity 
Λ=1 in a continuous way. Indeed, an additional condition must be satisfied. Setting 
λ=ρ=4  in (2.5), we have:  

Λ
µ
4  gµν Λ

ν
4  = g44 = –1     
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from which we get  

( ) ( )
32 24

4 4
1

1 i

i=

Λ = + Λ∑  

(show this). This suggests that  

|Λ4
4 | ≥ 1   ⇒   Λ4

4  ≥ 1  or  Λ4
4  ≤ – 1 .  

Since  Λ4
4 =  1  for the identity transformation, connectivity with the identity requires 

that all proper transformations have  Λ
4
4  ≥ 1 .  

      It can be shown [2] that the set of proper transformations Λ having the additional 
property Λ4

4  ≥ 1 is a subgroup of SO(3,1), called the restricted Lorentz group and de-
noted SO(3,1)↑. For the purpose of notational simplicity, in what follows we will de-
note this group by L.  

 

2.2  The Lie Algebra of the Lorentz Group  
 
The restricted Lorentz group L is a Lie group, the elements of which depend on 6 real 
parameters. The associated Lie algebra, named so(3,1), is thus 6-dimensional. An 
element  Λ∈L can be written as  

     Λ =  e ω ≡ exp ω                                               (2.6)   

for some (4×4) matrix  ω∈so(3,1), where  

2

0

exp 1
! 2

n

n n

ω ω
ω ω

∞

=

≡ = + + +∑ ⋯  . 

      By (2.6) the matrix ω inherits certain properties from Λ:  

      1. From the fact that  det Λ=1, and by using the matrix property  det (e ω) =  e tr  
ω , we 

have that  det Λ=  det (e ω) =  e tr  
ω =  1  ⇒ 

tr  ω = 0                                                     (2.7) 

That is, the matrix ω∈so(3,1) is traceless.  

      2. From (2.5) and (2.6) we have:  
11 1( )

t tt g g te g e e g e g e g e g e g gω ω ω ω ω ω ω ω ω
−− − − −≡ = ⇒ = ≡ ⇒ = − ⇒  

                      ω 
t g +  g ω = 0                                                 (2.8) 

Note that, since  g 
t =  g , the above relation is written  

(g ω) 
t
 +  g ω = 0   ⇔   (g ω) 

t
 = – g ω                                (2.9) 

That is, the matrix  g ω  is antisymmetric.  
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      Matrices ω satisfying the properties (2.7) - (2.9) can be expressed in the following 
parametric form:  

     

3 2 1

3 1 2

2 1 3

1 2 3

0

0

0

0

α α β

α α β
ω

α α β

β β β

− 
 − =
 −
 
  

                                       (2.10) 

where αi , βi  (i= 1,2,3) are 6 real parameters. The matrix ω can be written as a linear 
combination  

       
3

1

( )i i i i
i

A Bω α β
=

= +∑                                               (2.11) 

where the 6 matrices Ai , Bi  (i= 1,2,3) form the basis of the Lie algebra so(3,1) of the 
group L. These matrices can be read-off from (2.10), by using (2.11). For example,  

1

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

A

 
 − =
 
 
 

 ,  etc. ;     1

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

B

 
 
 =
 
 
 

 ,  etc. 

      Exercise: Write the remaining 4 matrices A2 , A3 , B2 , B3..  

      The commutation relations of the algebra so(3,1) are  

        
3

1

[ , ]i j i j k k
k

A A Aε
=

= ∑                                           (2.12a) 

        
3

1

[ , ]i j i j k k
k

B B Aε
=

= − ∑                                          (2.12b) 

         
3

1

[ , ]i j i j k k
k

A B Bε
=

= − ∑                                          (2.12c) 

where  ε123 =  ε231 =  ε312 =  1 ,  ε213 =  ε132 =  ε321 =   –1 ,  and  εilk =  0  in all other cases. By 
[M, N]=MN–NM  we denote the commutator of two matrices M, N.  

      In the context of Relativity (to be studied in the next chapter) the generators Ai , Bi 
of transformations Λ∈L admit a certain geometrical interpretation. The {Ai} generate 
rotations of the system of spatial axes. (Careful: by “rotation” we mean redefinition of 
orientation of the system in space, not any kind of rotational motion!) The {Bi} gener-
ate boosts, which physically represent uniform motions (without change of orienta-
tion) of the system of spatial axes, along the corresponding three axes. We note the 
following:  

      1. According to (2.12a), rotations are closed and form a subgroup [namely, SO(3)] 
of the Lorentz group  L=SO(3,1)↑.  
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      2. According to (2.12b), boosts are not closed and do not form a subgroup of L 
(except for boosts along the same axis, which do form a 1-parameter subgroup of L).  

      3. According to (2.12c), the rotation group SO(3) is not an invariant subgroup of L 
since the Lie algebra so(3), with basis {Ai}, is not an invariant subalgebra (or ideal; 
cf. Sec. 5.1) of so(3,1). This is related to the fact that the commutators [Ai  , Bj] are not 
linear combinations of the basis vectors {Ak}. Technically speaking, the absence of an 
ideal suggests that the Lie algebra so(3,1) is simple [1].  

      Finally, we note that, for infinitesimal values of the parameters  αi , βi  appearing in 

(2.10), the matrix ω is infinitesimal and  e ω
 ∼ 1+ω . Then, by using (2.11), relation 

(2.6) reduces to the infinitesimal Lorentz transformation  

3

1

1 1 ( )i i i i
i

A Bω α β
=

Λ + = + +∑≃  . 
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CHAPTER 3 
 

RELATIVISTIC TRANSFORMATIONS 
 
 

3.1  Lorentz Transformations in Relativistic Spacetime  
 
The group-theoretical ideas presented in the previous chapter will now be applied to 
Special Relativity (SR), albeit with some notational revision regarding the numbering 
of vector components.  

      In Chapter 1 we defined an inertial frame of reference as a system of coordinates 
(or axes) relative to which a free particle moves with constant velocity (thus no accel-
eration). This reference frame is chosen to be a 3-dimensional Cartesian system of 
axes (x, y, z). An observer using this frame (relative to which she/he is at rest) is called 
an inertial observer.  

      An event is something that occurs at a certain point (x, y, z) at a certain time t, as 
measured by an inertial observer in her/his own frame. The set of all possible events 
constitutes 4-dimensional spacetime with coordinates (x, y, z, t) or (x, y, z, ct), the latter 
choice being made for the purpose of dimensional homogeneity (the constant c is, of 
course, the speed of light in empty space, the value of which speed is independent of 
any particular frame of reference).  

      Vectors in spacetime are 4-component objects. In SR it is customary to rename the 
fourth component of a vector  a  as “zero” component and write  

     0 1 2 3 0( , , , ) ( , )a a a a a a aµ ≡ ≡
�

                                      (3.1) 

where  µ=0,1,2,3  and where ( , , )x y za a a a≡
�

 is a vector in R3. As for the spacetime 

coordinates, we write  

       x µ  ≡ (x0, x1, x2, x3) ≡ (ct, x, y, z)                                      (3.2) 

The a µ and, likewise, the  x µ may be regarded as elements of column vectors a ≡ [a µ] 
and X ≡ [x µ]  , respectively. Then a t and X t are the corresponding row vectors.  

      The matrix g introduced in Chapter 2, which in SR plays the role of a metric ten-
sor (cf. Sec. 5.3), will be rewritten here as  

            

1 0 0 0

0 1 0 0
[ ] (1, 1, 1, 1)

0 0 1 0

0 0 0 1

g g diagµν

 
 − ≡ = = − − −
 −
 

− 

                      (3.3) 

( µ, ν=0,1,2,3) . For any two vectors  a ≡ [a µ] and b ≡ [b µ] we define the scalar product  

    (a, b) = a 
tg b = gµν a µ

 b 
ν = a 

0
 b 

0 – a 
1

 b 
1 – a 

2
 b 

2 – a 
3

 b 
3                      (3.4) 

(note the use of the summation convention in µ and ν). In particular, for the infini-
tesimal vector  dX ≡ [dx 

µ]   with  dx µ  ≡ (cdt, dx, dy, dz)  we define the spacetime interval  
ds 

2
 =  (dX, dX) :  
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   ds 
2
 = gµν dx µ

 dx 
ν
 = (dx 0

 ) 
2 – (dx 1

 ) 
2 – (dx 2

 ) 
2 – (dx 3

 ) 
2          

             = c 
2 dt 2 – dx 

2 – dy 
2 – dz 

2                                   (3.5) 

Note that ds 
2 may be positive, negative or zero. The sign of the spacetime interval has 

profound significance for causality (see Problem 3).  

      As in Chapter 2, given two vectors a and b we consider the transformation  

      a → a΄=  Λ a    ⇔    a µ
΄ =  Λµν  a 

ν                                    (3.6) 

and similarly for b, where  Λ ≡ [Λµν] is a real (4×4) matrix such that  

(a΄, b΄ ) =  (Λ a, Λ b) =  (a, b)  ⇒  a 
t (ΛtgΛ) b =  a 

tg b . 

This will be true for all a and b if  

      Λt
 g Λ = g    ⇔    Λµλ  gµν Λ

ν
ρ  = gλρ                                    (3.7) 

where  Λµλ =  (Λt ) λ 
µ . It follows from (3.7) that  (det Λ)2 =1 ⇒ det Λ= ±1 . Moreover, 

by setting  λ=ρ=0  we have that  

( ) ( )
32 20

0 0
1

1 i

i=

Λ = + Λ∑  

(explain this) so that  |Λ0
0 | ≥ 1 ⇒ Λ0

0  ≥ 1  or  Λ0
0  ≤ – 1 . As argued in Chap. 2, 

connectivity with the identity transformation (Λ=1) dictates that we choose  

        det Λ= +1 ,   Λ0
0  ≥ 1                                              (3.8) 

Notice that, by (3.7), the transformation matrix Λ is unaffected if we choose our met-
ric to be  –g  instead of g.  

      The transformation (3.6) that leaves the scalar product (a, b) invariant for all vec-
tors a, b, and which satisfies the matrix relation (3.7) with the additional constraints 
(3.8), is called a proper orthochronous Lorentz transformation (LT) and, as we saw in 
the previous chapter, is represented by the matrix group SO(3,1)↑. Four-component 
objects  a µ  ≡ (a0, a1, a2, a3) or, equivalently, column vectors  a ≡ [a µ]  , transforming ac-
cording to (3.6), are called 4-vectors. The “magnitude” of a 4-vector:  

       (a, a) =  a 
tg a =  gµν a µ

 a 
ν = (a 0

 ) 
2 – (a 1

 ) 
2 – (a 2

 ) 
2 – (a 3

 ) 
2                   (3.9) 

is invariant under a LT:  (a΄, a΄ ) =  (Λ a, Λ a) =  (a, a) . Thus,  gµν a
 µ
΄a ν
΄=  gµν a µ

 a 
ν ⇒  

         (a 0
΄ ) 

2 – (a 1
΄ ) 

2 – (a 2
΄ ) 

2 – (a 3
΄ ) 

2 =  (a 0
 ) 

2 – (a 1
 ) 

2 – (a 2
 ) 

2 – (a 3
 ) 

2          (3.10) 

In particular, for the vector dX ≡ [dx 
µ] the invariant magnitude is the spacetime interval 

ds 
2

 =  (dX, dX) , given in explicit form by Eq. (3.5). We thus have that, under a LT,   
gµν dx µ

΄dx ν
΄=  gµν dx µ

 dx 
ν ⇒  

 
        c 

2 (dt́  ) 
2 – (dx́  ) 

2 – (dý  ) 
2 – (dź  ) 

2 =   c 
2 dt 2 – dx 

2 – dy 
2 – dz 

2              (3.11) 
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3.2  Rotations and Boosts  
 
Special types of LTs are rotations and boosts. Spatial rotations redefine the orienta-
tion of the 3-dimensional Cartesian system of axes of an inertial frame (no physical 
motion of the axes is implied!) and, in group-theoretical terms, are represented by 
(3×3) orthogonal matrices [R 

i
j] with unit determinant, which belong to the 3-

parameter subgroup SO(3) of the Lorentz group (see, e.g., [1]). The LT matrix for ro-
tations is of the form  

1 0 0 0

0
[ ]

0 [ ]

0

i
jR

µ
ν

 
 
 Λ = Λ =
 
 
  

    where  [R 
i
j]∈SO(3)                    (3.12) 

      Given a 4-vector  a µ  ≡ (a0, a1, a2, a3) ≡ (a0, ak
 )  (k=1,2,3) its transformation under Λ 

is, according to (3.6),  a µ
΄ =  Λ

µ
ν  a 

ν. For µ=0 we have:  

a 0
΄ =  Λ0

ν  a 
ν = δ  

0
ν  a 

ν = a 0 . 

Thus a rotation of spatial axes does not affect the zero-component of a 4-vector. For 
µ=k  (k=1,2,3) we have:  

a k
΄ =  Λk

ν  a 
ν =  Λk

0  a 
0 + Λk

l   a 
l = 0 + Λk

l   a 
l = R 

k
l   a 

l . 

Thus the k-components (k=1,2,3) of a 4-vector transform according to the SO(3) ma-
trix [R 

i
j]  . Finally, the LT (3.12) leaves the magnitude (3.9) of a 4-vector invariant, 

i.e., guarantees that (3.10) is satisfied. This follows from the invariance of  a0, as well 
as the invariance of  (a 1

 ) 
2

 +(a 2
 ) 

2
 +(a 3

 ) 
2

  under SO(3) transformations  a k
΄ =  R 

k
l   a 

l.  
 

x

y

O
O′

x′

y′

z′

v
�

z  

Fig. 3.1. An x-boost. The origins O and O΄ coincide for t=t΄=0. 

 
      The SO(3) matrix [R 

i
j]  , which constitutes the essential part of the LT matrix Λ in 

(3.12), contains 3 of the total 6 parameters [1] that parametrize a general LT. Three 
more parameters come from the 3 boosts along the 3 spatial axes. Consider two iner-
tial observers using inertial frames S and Ś  with Cartesian systems of axes (x, y, z) and 
(x΄, y΄, ź  ), respectively, as shown in Fig. 3.1. The frame Ś  is moving with velocity v 
relative to S, along the common x-axis of the two frames. (Note that v is an algebraic 
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value that may be positive or negative, depending on the direction of motion of Ś .) At 
the moment when the origins O and O΄ of the frames coincide, the two observers ar-
range their clocks so that they show the same time, namely, t=t΄=0. The LT (3.6) 
from the system (x, y, z) to the system (x΄, y΄, ź  ) is called an x-boost. It is a one-
parameter transformation parametrized by the velocity v of Ś  in a direction parallel to 
the x-axis. Similar boosts along the y- and z-directions will introduce two more veloci-
ties, hence two more parameters.  

      We introduce the constants  

      β =  v/c  ,     γ =  (1–β 2 ) 
–1/2 = (1–v2/c2

 ) 
–1/2                           (3.13) 

(note that | β | ≤ 1 ). Consider a 4-vector with components  a µ  ≡ (a0, a1, a2, a3) in the in-
ertial frame S. In the case of an x-boost, the matrix of the LT a µ

΄=  Λ
µ
ν  a 

ν of  this vec-
tor  from the frame S to the frame Ś  is [2]  

       

0 0

0 0
[ ]

0 0 1 0

0 0 0 1

µ
ν

γ γβ
γβ γ

− 
 − Λ = Λ =
 
 
 

                                   (3.14) 

and the transformation equations are  

      

0 1
0 0 1

2 2 1/ 2

1 0
1 1 0

2 2 1/ 2

2 2 3 3

( / )
( )

(1 / )

( / )
( )

(1 / )

,

a v c a
a a a

v c

a v c a
a a a

v c

a a a a

γ β

γ β

−′ = − =
−

−′ = − =
−

′ ′= =

                                    (3.15) 

      Exercise: Check the invariance of the magnitude  (a, a) =  gµν a µa 
ν  of a 4-vector, 

under the transformation (3.15); i.e., show that (3.10) is satisfied. [Hint: Take into ac-
count (3.13).]  

      In particular, the 4-vector  x µ ≡ (x0, x1, x2, x3) ≡ (ct, x, y, z)  transforms under an x-
boost as follows:  

          
2

2 2 1/ 2 2 2 1/ 2

( / )
, , ,

(1 / ) (1 / )

t v c x x vt
t x y y z z

v c v c

− −′ ′ ′ ′= = = =
− −

                   (3.16) 

      Now, since the matrix Λ in (3.14), representing a certain type of LT, is an element 
of a group (namely, the Lorentz group), its inverse Λ–1 must also be in the group, thus 
it must also be a LT. Obviously, Λ–1  takes us from the frame Ś   back to the frame S. 
So, let  a µ

΄ =  Λµν  a 
ν  be the LT of a 4-vector, produced by the matrix Λ in (3.14). In 

matrix form,  a΄=  Λ a , where  a ≡ [a µ]  and  a΄≡ [a µ
΄ ] are column vectors. Then,   

a =  Λ
–1

 a΄   ⇔   a µ
 =  (Λ–1) µν  a

 ν
΄. 
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      An easy way to construct the matrix Λ
–1 is to think as follows: If the frame Ś   

moves with velocity v relative to the frame S, the latter frame moves with velocity  –v  

relative to the former. Thus all we have to do is replace v and β by –v and –β, respec-
tively, in Eqs. (3-14) - (3.16). We then have:  

       1 1

0 0

0 0
[( ) ]

0 0 1 0

0 0 0 1

µ
ν

γ γβ
γβ γ− −

 
 
 Λ = Λ =
 
 
 

                               (3.17) 

      

0 1
0 0 1

2 2 1/ 2

1 0
1 1 0

2 2 1/ 2

2 2 3 3

( / )
( )

(1 / )

( / )
( )

(1 / )

,

a v c a
a a a

v c

a v c a
a a a

v c

a a a a

γ β

γ β

′ ′+′ ′= + =
−

′ ′+′ ′= + =
−

′ ′= =

                                 (3.18) 

       
2

2 2 1/ 2 2 2 1/ 2

( / )
, , ,

(1 / ) (1 / )

t v c x x vt
t x y y z z

v c v c

′ ′ ′ ′+ + ′ ′= = = =
− −

                  (3.19) 

      Exercise: Verify that the matrix Λ–1 in (3.17) is indeed the inverse of the matrix Λ 
in (3.14); i.e., that Λ–1

Λ=1. [Hint: Take into account (3.13).]  

      Exercise: Show that, in the limit of very small velocities (v << c ⇒ v/c→0) the LT 
(3.16) reduces to the Galilean transformation of classical mechanics:  

x΄= x – v t ,    y΄= y ,    ź = z ,    t΄= t . 

 
3.3  Physical 4-Vectors  
 
Let us now see some of the most common 4-vectors appearing in relativistic mechan-
ics.  

      1. The spacetime coordinate 4-vector  

      In the previous section we treated the spacetime coordinate vector  x µ ≡ (ct, x, y, z) 
as a 4-vector, i.e., an object transforming according to the LT (3.6): x µ

΄ =  Λ
µ
ν  x 

ν, with 
matrix Λ belonging to the Lorentz group. But, how is this assumed property of the x µ  
justified?  

      Consider two infinitesimally separated points P and Q in 3-space. Assume that a 
light ray proceeds from P to Q. From the point of view of an observer using an inertial 
frame S, the passage of the ray from P and Q at definite times constitutes two separate 
spacetime events (x 

µ
 ) and (x 

µ
 +dx 

µ
 ). If the ray traveled a distance  

d l  =  (dx2 +dy2 +dz2
 )1/2  
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within a time interval dt, then, according to this observer, the speed of light is  

c = d l  /dt =  (dx2 +dy2 +dz2
 )1/2 / dt . 

For a different inertial observer, using a frame Ś , the corresponding events associated 
with the passage of the light ray from P and Q are (x µ

΄ ) and (x µ
΄+dx µ

΄ ), respectively, 
while the speed of light is  

c΄ = [(dx́  ) 
2

 +  (dý  ) 
2

 +  (dź  ) 
2

 ]1/2  / dt́  . 

It is an experimental fact, however, that the speed of light in empty space is the same 
in all inertial frames. Thus  c=c΄, and hence  

c 
2 dt 2 – dx 

2 – dy 
2 – dz 

2 = c 
2 (dt́  ) 

2 – (dx́  ) 
2 – (dý  ) 

2 – (dź  ) 
2 = 0 . 

That is,  for the propagation of a light ray we must have  

gµν dx µ
 dx 

ν = gµν dx µ΄ dx 
ν
΄
 = 0                                      (3.20) 

where [gµν] is the matrix g =  diag (1, –1, –1, –1) . Four-dimensional spacetime endowed 
with a metric equal to g ≡ [gµν] is known as Minkowski space.  

      We now demand that, more generally, the spacetime interval between any two in-
finitesimally separated events (x µ ) and (x µ +dx µ ), given by (3.5):  

ds 
2
 ≡ gµν dx µ

 dx 
ν = c 

2 dt 2 – dx 
2 – dy 

2 – dz 
2 , 

is the same for all inertial observers. Consider two such observers that are using iner-
tial frames S and Ś  with spacetime coordinates (x µ ) and (x µ΄ ), respectively. Assume 
that the two coordinate systems are related by  x µ

΄ =  Λ
µ
ν  x 

ν
 , for some (yet unspecified) 

constant matrix Λ ≡ [Λµν ]  . Then,  dx µ
΄ =  Λ

µ
ν  dx 

ν
 . If  dX ≡ [dx 

µ] (column vector) and  
(dX) 

t
 ≡ [dx µ]  t (row vector), we can write:  ds 

2
 =  (dX) 

t
 g dX  and express the invariance 

of  ds 
2 

 under the coordinate change (x µ ) → (x µ΄ ) as follows:  

(dX ΄ ) 
t
 g dX ΄ = (dX) 

t
 g dX  ⇒  (ΛdX) 

t g ΛdX = (dX) 
t
 g dX  ⇒ 

(dX) 
t (Λt

 gΛ) dX = (dX) 
t
 g dX . 

For this to be satisfied for any dX, we must have:  Λ
t

 gΛ =  g , which suggests that Λ is 
in fact a matrix belonging to the Lorentz group. Then, from  

x µ
΄ =  Λµν  x 

ν   ⇔   [x µ
΄ ]  =  Λ [x µ

 ] 

we infer that the 4-component object [x µ
 ] is indeed a 4-vector.  

      Note that spacetime coordinate transformations (x µ ) → (x µ΄ ) are linear transforma-
tions of the form  x µ

΄ =  Λ
µ
ν  x 
ν

 . This must be assumed a priori [2] in order that inertial 
(thus uniform) motions transform into inertial motions under a LT. In other words, the 
LT must guarantee that a free particle, subject to no net interaction, moves with con-
stant velocity relative to all inertial observers.  
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      As we have said, the spacetime interval ds 
2 is invariant under LT, i.e., is a Lorentz 

scalar :  

        ds 
2
 =  gµν dx µ

 dx 
ν = gµν dx µ΄ dx 

ν
΄                                   (3.21) 

In particular, by (3.20) the invariance of  ds 
2

 =0  is equivalent to the invariance of the 
speed c of light upon passing from one inertial reference frame to another. From the 
Lorentz scalars  c  and  ds 

2  we can now construct a new scalar:  

         dτ 
2  ≡ ds 

2
 / c2 = (1/c2) gµν dx µ

 dx 
ν                                  (3.22) 

If   ds 
2  is a timelike interval (see Problem 3), i.e., if  ds 

2
 > 0 , then we may write  

ds = + (ds 
2

 )1/2  ,    dτ = + (dτ 
2

 )1/2 

and define proper time  dτ  by  

       dτ = ds / c   ⇔   ds = c dτ                                        (3.23) 

Clearly, dτ  is a Lorentz-invariant quantity, its value being the same for all inertial ob-
servers.  

      Assume now that  ds 
2
 > 0 is an element of spacetime distance along the worldline 

(spacetime trajectory; see Sec. 1.2) of a particle, as viewed by an inertial observer us-
ing a frame S. The speed of the particle is, according to S,  

u = d l  /dt =  (dx2 +dy2 +dz2
 )1/2 / dt .  

Given that  d l  =  u dt  and that  

ds 
2
 = c 

2 dt 2 – dx 
2 – dy 

2 – dz 
2 = c 

2 dt 2 – d l  2 = (c 
2 – u2

 ) dt 2 ,  

by (3.23) we have  

         

1/ 2 1/ 22 2

2 2
1 1 ( )

u u
d dt dt d u d

c c
τ τ γ τ

−
   

= − ⇔ = − ≡   
   

                  (3.24) 

where  γ (u) =  (1 – u2/c2
 ) –1/2

 . In particular, for a frame Ś  momentarily at rest relative to 
the particle, u΄=0, γ (u΄ )=1 and, by (3.24), dt́ =  γ (u΄ ) dτ =  dτ . So, according to Ś , dτ is 
a purely time interval.1 For any other frame S, relative to which u≠0, we have that  
γ (u)>1 and so dt >dτ, hence dt > dt́ . This result expresses the familiar relativistic ef-
fect of time dilation. (The analogous effect of length contraction will be studied in 
Problem 2.)  

      2. Four-velocity  

      Consider the spacetime coordinate 4-vector  x µ ≡ (x0, x1, x2, x3) ≡ (ct, x, y, z). Under 
a general LT with (constant) matrix Λ, the differential dx 

µ transforms as a 4-vector 
(dx 

µ
΄=  Λ

µ
ν dx 

ν) while dτ is invariant. Hence,  dx 
µ/dτ  must transform as a 4-vector. This 

suggests defining 4-velocity U 
µ  by  

                                                 
1 In general, a proper time interval is the time interval between two events occurring at a point of space 
that is at rest relative to an observer.  



 CHAPTER 3 

 16 

         
0

, ( 1,2,3)
kdx dx dx

U k
d d d

µ
µ

τ τ τ

 
= ≡ = 

 
                               (3.25) 

Let  x k  ≡ (x1, x2, x3) = (x, y, z)  be the spatial coordinates of a particle at time t, relative 
to some frame S. Then,  xk=xk(t). The 3-velocity of the particle in S is  

( ), , , ,
k

x y z
dx dx dy dz

u u u u
dt dt dt dt

   
= = =   

  

�
. 

According to (3.24),  dt =  γ (u) dτ , where  γ (u) =  (1 – u2/c2
 ) –1/2

  and where u is the speed 

of the particle:  u=(ux
2+uy

2+uz
2)1/2.  In terms of derivatives,  

( )
d dt d d

u
d d dt dt

γ
τ τ

= =  . 

We then have:  

U 0 = dx0/dτ = γ (u) c ,   U 1 = dx1/dτ = γ (u) ux ,    

U 2 = dx2/dτ = γ (u) uy ,   U
 3 = dx3/dτ = γ (u) uz .     

Therefore,  

           ( ) ( )( ) , ( ) , ( ) , ( ) ( ) ,x y zU u c u u u u u u u c uµ γ γ γ γ γ≡ =
�

                   (3.26) 

The Lorentz-invariant magnitude of the 4-velocity is  

         gµν U µ
 U  
ν = (U 0

 ) 
2 – (U 1

 ) 
2 – (U 2

 ) 
2 – (U 3

 ) 
2 = c 

2                       (3.27) 

      Exercise: Prove Eq. (3.27).  

      Under an x-boost the 4-vector U µ transforms according to Eqs. (3.15). We thus 
have:  

U 0
΄ =  γ (v) [U 0 – (v/c) U 1]   where   γ (v) = (1 – v2/c2

 ) –1/2 . 

By setting  U 0 = γ (u) c , U 0
΄ = γ (u΄ ) c , U 1

 = γ (u) ux ,  we get:  

             γ (u΄ ) = γ (v) γ (u) [1 – (v/c2
 ) ux ]                                       (3.28) 

We also have:  

U 1
΄ =  γ (v) [U 1 – (v/c) U 0] ,   U 2

΄ =  U 2 ,   U 3
΄ =  U 3 . 

By using (3.26) in primed and unprimed forms [U 1
 = γ (u) ux , U 1

΄ = γ (u΄ ) ux΄, etc.] and 
by taking into account (3.28), we find:  

     
2 2 2

, ,
1 / ( ) (1 / ) ( )(1 / )

yx z
x y z

x x x

uu v u
u u u

vu c v vu c v vu cγ γ
−′ ′ ′= = =

− − −
       (3.29) 

      Exercise: Prove Eqs. (3.29) and show that they are consistent with the Lorentz in-
variance of the speed of light. (Consider a light ray propagating in the x-direction.)  
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      Equations (3.29) express the LT for velocity. An alternative way to derive these 
relations is to use the LT of dx 

µ directly. We have that  

dx́ = γ (v) (dx – vdt) = γ (v) (ux – v) dt ,   dý = dy ,   dź = dz , 

dt́ = γ (v) [dt – (v/c2
 ) dx] = γ (v) [1 – (v/c2

 ) ux]  dt . 

By using the fact that  ux =  dx/dt ,  ux΄ =  dx́  /dt́ , etc., relations (3.29) follow.  

      3. Four-acceleration  

      We define 4-acceleration by  

       A 
µ = d U µ / dτ                                                  (3.30) 

where U µ is the 4-velocity. Clearly, A 
µ is a 4-vector. Then, by (3.27),  

gµν U µ
 U  
ν = c 

2  ⇒  d (gµν U µ
 U  
ν ) / dτ = 0  ⇒  gµν U µ

 A 
ν
 + gµν U 

 ν
 A  
µ
 =  0 . 

But,  
gµν U 

 ν
 A  
µ
 = gνµ U µ

 A  
ν
 = gµν U µ

 A 
ν
   (explain!) . 

Therefore,  2 gµν U µ
 A 
ν
 = 0  ⇒   

        (U, A) ≡ gµν U µ
 A 
ν
 = 0                                             (3.31) 

This result generalizes the familiar 3-dimensional principle of mechanics, according 
to which, if the magnitude of the velocity is constant then the acceleration is normal to 
the velocity (see, e.g., [3]).  

      More on the issue of acceleration in SR will be said in Problem 5.  

      4. Energy-momentum 4-vector  

      Consider a particle of rest mass m. By definition, m is the mass measured by an 
inertial observer relative to whom the particle is (momentarily) at rest. Like the speed 
c  of light and like proper time  τ, the rest mass m is a Lorentz scalar.  

      We define the 4-momentum of the particle m by  

        ( )( ) , ( )P mU u mc u muµ µ γ γ= ≡
�

                                  (3.32) 

where  γ (u) =  (1 – u2/c2
 ) –1/2  and where ( , , )x y zu u u u≡

�
 is the 3-velocity of m. It can be 

shown (see Problem 8) that the total relativistic energy of a particle (excluding exter-
nal potential energy) is given by  

           E =  γ (u) m c2                                                  (3.33) 

(the most famous equation in Relativity and, probably, in Physics!). Moreover, the 
proper relativistic expression for 3-momentum, required by the Lorentz-invariance of 
the principle of conservation of momentum, is [2,4]  

        ( )p u muγ=
� �

                                                  (3.34) 
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In view of (3.33) and (3.34), Eq. (3.32) is written:  

            ,
E

P p
c

µ  ≡  
 

�
                                                 (3.35) 

      The invariant magnitude of P µ is  

     gµν P µ
 P ν = (E/c) 

2 – p2 = m2
 c2                                      (3.36) 

[Exercise: Prove (3.36).] From (3.36) we get the familiar energy-momentum relation  

                   E 
2 = m2

 c4 + c2 p2                                                 (3.37) 

      Consider now a free particle, subject to no net interaction. Its energy and momen-
tum must be constant in any inertial frame, which suggests that the principle of con-
servation of energy and momentum (see Problem 7) must be a Lorentz-invariant con-
cept. That is,  

if / 0 and / 0 (inertial frame ) ,dE dt d p dt S= =
�

 

then / 0 and / 0 (inertial frame )dE dt d p dt S′ ′ ′ ′ ′= =
�

. 

Now, E and p
�

 form the energy-momentum 4-vector P µ, defined in (3.35). We can 
thus write:  

d P µ /dt = 0   ⇔   d P µ΄ /dt́  = 0   ( µ=0,1,2,3) . 

In other words, the relation  d P µ /dt = 0  is Lorentz-invariant. The truth of this state-
ment can be proven as follows:  

      Let τ be proper time, i.e., time as measured by a clock in an inertial frame attached 
to the free particle. According to (3.24), time intervals in the frames S and Ś  are re-
lated to dτ by  dt =  γ (u) dτ  and  dt́  =  γ (u΄ ) dτ  (remember that dτ is Lorentz-invariant). 
We have:  

d P µ /dt = γ (u) –1 d P µ /dτ ,    d P µ΄ /dt́  = γ (u΄ ) –1 d P µ΄ /dτ . 

Under a LT,  d P µ
΄ =  Λµν  d P ν. Therefore,  

d P µ΄ /dt́  = γ (u΄ ) –1 
Λ
µ
ν  d P ν /dτ = γ (u) γ (u΄ ) –1 

Λ
µ
ν  d P ν /dt . 

So, if  d P µ /dt =  0  in the S-frame, then  d P µ΄ /dt́  =  0  in the Ś -frame, and vice versa. 
This result can be generalized [2,4] for any isolated system of particles, subject to no 
net external interaction.  

      Note that, in contrast to the situation in classical mechanics, conservation of en-
ergy and conservation of momentum are not separate matters in Relativity! The rea-
son for this will become clear in Problem 7.  
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3.4  Transformation of Derivatives  
 
As we know, the spacetime coordinates x µ  ≡ (x0, x1, x2, x3) transform like components 
of a 4-vector under a LT. We now want to see the manner in which partial derivatives 
with respect to the  x µ, denoted  ∂µ  ≡ ∂ / ∂x µ, transform.  

      As we did before, we consider the column vector X ≡ [x µ]  . Under a LT represented 
by a matrix Λ,  

X ΄=Λ X   ⇔   x µ
΄ =  Λ

µ
ν  x 
ν . 

The inverse transformation is  

X =  Λ
–1

 X ΄   ⇔   x µ
 = (Λ–1) 

µ
ν x

 ν
΄ . 

We notice that  

     Λµν = ∂x µ
΄ / ∂x ν ,    (Λ–1) 

µ
ν =  ∂x µ

 / ∂x 
ν
΄                               (3.38) 

Then, by the chain rule of differentiation,  

∂µ΄ =  ∂ / ∂x µ
΄ =  (∂x λ

 / ∂x 
µ
΄ ) ∂ / ∂x λ  ⇒ 

          ∂µ΄ =  (Λ–1) 
λ
µ ∂λ                                                (3.39) 

Therefore, partial derivatives with respect to the spacetime coordinates transform ac-
cording to the inverse LT.  

 
3.5  Transformation of Covariant Vectors  
 
Let a µ and b µ be 4-vectors, represented by the column vectors a ≡ [a µ]  , b ≡ [b µ]  . Their 
scalar product is  

(a, b) = a 
tg b = gµν a µ

 b 
ν   

where  a 
t
 ≡ [a µ]  

t  is a  row vector. We define the quantities  aµ  and  bµ  by  

              aµ = gµν a ν ,    bµ = gµν b ν                                         (3.40) 

Then, by taking into account that  gµν =  gνµ , we have:  

          (a, b) =  (b, a) = aµ b µ = a µ bµ                                       (3.41) 

From (3.40) we have that  

a0 =  a 
0 ,    ak = – a 

k  (k=1,2,3) 

and similarly for bµ .  

      The quantities a 
µ (µ=0,1,2,3) are called the contravariant components of the 4-

vector  a , while the aµ are called the covariant components of  a . The symmetric scalar 
product (3.41) is, of course, invariant under a LT, i.e., is a Lorentz scalar.  
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      Under a LT with matrix Λ ≡ [Λµν] the contravariant components  a µ transform as  

           a µ
΄ =  Λ

µ
ν  a 

ν
 = (∂x µ

΄ / ∂x ν ) a 
ν                                       (3.42) 

where we have used (3.38). We now want to see how the covariant components aµ 
transform under this LT.  

      Consider the column vectors  a ≡ [a µ]  ,  a΄ ≡ [a µ΄ ]  . In matrix form the LT is written 
as  a΄ =  Λ a . The Lorentz-invariant magnitude of  a  is  

                       (a, a) = a 
tg a = aµ a µ                                              (3.43) 

Since a is a column vector with components a µ, the product a 
tg must be a row vector 

with components aµ . We write: a 
tg ≡ [aµ]R , where R stands for “row”. Under a LT,  

a 
tg ≡ [aµ]R  →  (a΄ ) 

tg ≡ [aµ΄ ]R . 

We have:  

(a΄ ) 
tg = (Λ a) 

tg = a 
t Λ

t g . 

But, since Λ belongs to the Lorentz group,  

Λ
t g Λ=  g  ⇒ Λt g =  gΛ–1  

and so  

(a΄ ) 
tg = a 

t
 gΛ–1   ⇔   [aµ΄ ]R =  [aµ]R Λ

–1 . 

In terms of components,  

         aµ΄ =   aλ (Λ
–1) λ

µ = (∂x λ
 / ∂x 

µ
΄ ) aλ                                   (3.44) 

where again we have used (3.38). By comparing (3.39) and (3.44) we notice that the 
derivatives ∂µ  ≡ ∂ / ∂x µ with respect to the spacetime coordinates transform like co-
variant components of a 4-vector.  

      Exercise: By using Eqs. (3.42) and (3.44) demonstrate the Lorentz invariance of 
the magnitude (a, a) of a 4-vector  a, defined in (3.43).  

      Exercise: By using Eqs. (3.42) and (3.39) show the Lorentz invariance of the 4-
divergence ∂µ a µ of a 4-vector a. Note that this property rests critically on the con-
stancy (coordinate-independence) of the Λ

µ
ν , which reflects the flatness of spacetime 

in SR. It is no longer true that ∂µ a µ is an invariant quantity under the more general co-
ordinate transformations in the curved spacetime of General Relativity. In this latter 
case, ordinary derivatives must be replaced by covariant ones [2,5,6].  

      Exercise: By using (3.17) for the matrix inverse Λ–1 show that, in an x-boost, the 
transformation equations for the covariant components aµ of a 4-vector are given by  

            a0΄ = γ (a0 + βa1) ,    a1΄ = γ (a1 + βa0) ,    a2΄ = a2 ,    a3΄ = a3               (3.45) 

where  β =  v/c ,  γ =  (1–β 2 ) 
–1/2 = (1–v2/c2

 ) 
–1/2 .  
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3.6  Transformation of Antisymmetric Tensors  
 
An antisymmetric tensor T µν = – T νµ has only 6 independent components. In matrix 
form,  

           

01 02 03

01 12 13

02 12 23

03 13 23

0

0
[ ]

0

0

T T T

T T T
T

T T T

T T T

µν

 
 
− 

=  
− − 

 − − − 

                                (3.46) 

Under a LT,  T µν
  follows the general tensor transformation law [5,6]  

        T µν
΄=  Λ

µ
λ Λ

ν
ρ T

 λρ                                                (3.47) 

The transformed tensor T µν
΄ also is an antisymmetric tensor. Indeed,  

T νµ
΄=  Λ

ν
λ Λ

µ
ρ T

 λρ = – Λµρ Λ
ν
λ T

 ρλ = – T µν
΄ . 

In particular, if the LT is an x-boost with matrix Λ given by (3.14), then  

T 01
΄= T 01 ,      T 02

΄= γ (T 02 – β T 12 ) ,      T 03
΄= γ (T 03 – β T 13 ) , 

T 23
΄= T 23 ,      T 13

΄= γ (T 13 – β T 03 ) ,      T 12
΄= γ (T 12 – β T 02 )            (3.48) 

where, as always,  β =  v/c ,  γ =  (1–β 2 ) 
–1/2 = (1–v2/c2

 ) 
–1/2 .  

      Given two 4-vectors  a 
µ

 , b 
µ

  we may construct an antisymmetric tensor by the ex-
pression  

              T µν = a 
µ

 b 
ν  –  a 

ν
 b 
µ = – T νµ                                     (3.49) 

Then,  

T µν
΄= a 

µ
΄ b 
ν
΄  –  a 

ν
΄ b 
µ
΄= (Λµλ a 

λ
 ) (Λνρ b 

ρ
 ) – (Λνρ a 

ρ
 ) (Λµλ b 

λ
 ) 

                                                         = Λ
µ
λ Λ

ν
ρ (a 

λ
 b 
ρ  –  a 

ρ
 b 
λ ) = Λ

µ
λ Λ

ν
ρ T

 λρ .  

 

3.7  The d’Alembert Operator  
 
Given the spacetime coordinates  x µ  ≡ (x0, x1, x2, x3) ≡ (ct, x, y, z), the partial derivatives 
with respect to the  x µ  are given by  

1
/ , , ,x

c t x y z
µ

µ
 ∂ ∂ ∂ ∂

∂ ≡ ∂ ∂ ≡  ∂ ∂ ∂ ∂ 
 . 

As shown in Sec. 3.4, these derivatives transform like the covariant components of a 
4-vector under a LT  Λ = [Λµν ]  :  

                      ∂µ΄ =  (Λ–1) 
λ
µ ∂λ                                                (3.50) 
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      We now define the quantities  

                 ∂ µ =  g µν ∂ν                                                    (3.51) 

where  

             [g µν ]  =  [  gµν]  = diag (1, –1, –1, –1)                                  (3.52) 

(Clearly,  g µν= g νµ
 .) We thus have:  ∂ 0 =  ∂0  ,  ∂

 k = – ∂k  (k =1,2,3)  ⇒   

      
1

, , ,
c t x y z

µ  ∂ ∂ ∂ ∂
∂ ≡ − − − ∂ ∂ ∂ ∂ 

                                   (3.53) 

      Let us call  g 
µ
ν ≡ g 

µλ gλν . Then,  g 
µ
ν = δ µ

ν  (Kronecker delta). (Exercise: Prove this.) 

From (3.51) we have:  

gλµ ∂ µ =  gλµ g µν ∂ν = g νµ gµλ ∂ν = g 
ν
λ ∂ν = δ 

ν
λ ∂ν  ⇒   

gλµ ∂ µ =  ∂λ                                                    (3.54) 

By comparing (3.54) with (3.40) and by taking into account that the ∂λ transform like 
covariant components, we come to the conclusion that the operators  ∂ µ  transform like 
the contravariant components of a 4-vector:  

            ∂ µ
΄
 =  Λµν ∂ ν                                                   (3.55) 

It follows that the second-order differential operator ∂µ ∂ 
µ is a scalar operator. To 

show this we consider a scalar function Φ (x 
µ ), the value (but not necessarily the func-

tional form) of which is invariant under a LT: Φ΄ (x 
µ
΄ ) = Φ (x 

µ ) . Then, by using (3.50) 
and (3.55) we have:  

∂µ΄ ∂
 µ
΄ Φ΄ (x 

ρ
΄ ) =  (Λ–1) 

λ
µ ∂λ [Λ

µ
ν ∂ ν Φ (x 

ρ )]  

= δ λ
ν ∂λ ∂ ν

 Φ (x 
ρ ) = ∂λ ∂ λ

 Φ (x 
ρ ) . 

The operator  ∂µ ∂ µ  is called the d’Alembert operator :  

             
2

2 2
2 2

1

c t
µ

µ
∂

≡ ∂ ∂ = − ∇
∂

□                                          (3.56) 

      The wave equation for a scalar function Φ (x 
µ ) is written as  

       
2

2 2
2 2

1
( ) 0x

c t
µ ∂ Φ

Φ ≡ − ∇ Φ =
∂

□                                      (3.57) 

Since both the d’Alembert operator and the function Φ are Lorentz scalars, Eq. (3.57) 
is covariant under LTs. That is, if Φ(x 

µ ) satisfies the wave equation in the “unprimed” 
frame, then Φ΄ (x 

µ
΄ ) satisfies the wave equation in the “primed” frame.  
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      Let now A 
µ (x λ ) be a 4-vector field, which transforms as  

A 
µ
΄ (x λ΄ ) = Λ

µ
ν A 

ν (x λ ) . 

Assume that each component of this field satisfies the wave equation:  

2 ( ) 0 ( 0,1,2,3)A xµ λ µ= =□ . 

Then the above equation is covariant under LTs. Indeed, notice that  

2 2 2( ) ( ) ( ) 0A x A x A xµ λ µ ν λ µ ν λ
ν ν

′ ′  = Λ = Λ = □ □ □ . 

We emphasize once more that this property rests critically on the constancy (coordi-
nate-independence) of the LT matrix elements Λ

µ
ν , i.e., on the flatness of Minkowski 

spacetime.  

      Another example of Lorentz covariance is the following. Consider a tensor field  
T µν (xλ) . Under a LT this field transforms as T µν (xλ) → T µν

΄
 (xλ΄ ) , with  

T µν
΄=  Λ

µ
λ Λ

ν
ρ T

 λρ.  

      Proposition: The expression  ∂µ T
 µν

  (sum on µ !) transforms like a (contravariant) 
component of a 4-vector.  

      Proof: Set  ∂µ T
 µν ≡ Aν. We must show that Aν transforms like a 4-vector compo-

nent under a LT. We have:  

Aν΄= ∂µ΄ T
 µν
΄ = (Λ–1) 

σ
µ ∂σ [Λ

µ
λ Λ

ν
ρ T

 λρ] = [(Λ–1) 
σ
µ Λ

µ
λ]  Λ

ν
ρ ∂σ T

 λρ 

= δ 
σ
λ Λ

ν
ρ ∂σ T

 λρ =  Λ
ν
ρ ∂λ T

 λρ  ≡ Λνρ A 
ρ

                                (3.58)   

which is what we needed to prove.  

      Now, let us assume that, in the “unprimed” frame of reference, the following set 
of differential equations is valid:  

∂µ T
 µν (xλ) = 0    (ν=0,1,2,3)                                       (3.59) 

It then follows from (3.58) that, in the “primed” frame,  

∂µ΄ T
 µν
΄
 (xλ΄ ) = 0 , 

which is of the same form as (3.59). Therefore, the differential system (3.59) is co-
variant (invariant in form) under LTs.  

      Generally speaking, with regard to their mathematical structure, all properly for-
mulated physical laws must exhibit covariance under LTs. This will guarantee that the 
validity of these laws is independent of the inertial frame of reference in which they 
are being tested.  
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Problems 
 
1. Show that the necessary and sufficient condition in order for two events to be si-
multaneous in any inertial frame is that these events occur at the same point in space, 
relative to any inertial frame.   

      Solution: Consider two infinitesimally separated spacetime events (x, y, z, t) and 
(x+dx, y+dy, z+dz, t+dt). Consider also two inertial frames S and Ś , assuming that 
the LT from S to Ś  is an x-boost:  

dx́ = γ (dx – vdt) ,  dý = dy ,  dź = dz ,  dt́ = γ [dt – (v/c2
 ) dx] 

where  γ (v) = (1– v2/c2
 ) 

–1/2 .  

      (a) Assume that the two events are simultaneous relative to both frames S and Ś . 
Then, dt =  dt́ =  0 and, by the LT, dx =  dx́ =  0. By considering boosts in the y- and z-
directions we find, by similar reasoning, that dy =  dý =  0 and dz =  dź =  0. Thus the 
events must occur at the same spatial point relative to both S and Ś .  

      (b) Conversely, assume that the two events occur at the same point relative to both 
S and Ś . Then, dx =  dx́ =  0,  dy =  dý =  0,  dz =  dź =  0  and, by the LT, dt =  dt́ =  0. That 
is, the events are simultaneous relative to both S and Ś .  

 
2. Show that a linear object appears shortened to an observer moving parallel to the 
object. This is the familiar length contraction effect of SR.  

      Solution: Assume that the object is at rest on the x΄-axis of an inertial frame Ś  
used by an observer O΄. The ends of the object are at points  x΄ and  x΄+dx΄. Hence the 
length of the object is  d l΄=  dx́  ; it is called the proper length of the stationary object.  

      Let O be another inertial observer whose frame S has axes (x, y, z) parallel to the 
corresponding axes of Ś , and assume that O΄ is moving in the x direction with veloc-
ity v relative to O. To measure the length of the object in her own frame S, observer O 
must record the two ends of the object simultaneously. Thus, if (x, t) and (x+dx, t+dt) 
represent the events of assigning positions to the ends of the object at times t and t+dt, 
respectively, we must demand that dt=0. (The observer O΄, however, may record x΄ 
and  x΄+dx΄ at any times, given that the object is stationary in the Ś  frame!)  

      Now, the LT from S to Ś  is an x-boost, so that  

dx́ = γ (dx – vdt) = γ dx    where    γ (v) = (1– v2/c2
 ) 

–1/2 . 

Putting  dx=d l  and  dx́ =d  l΄, we have that  d l΄= γ d l  ⇒  

d l = γ –1
 d l΄ = (1– v2/c2

 ) 
1/2 d l΄. 

Clearly, dl < dl΄, which means that the moving object will appear shorter to O. Equiva-
lently, since O is moving with respect to the object with velocity  –v, this observer will 
again measure a shorter length. In conclusion: Relative motion “shortens” the length 
of objects in the direction parallel to the motion, by a factor equal to  γ (v) –1

 .  
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3. Show that, along the worldline (spacetime trajectory) of a massive particle the 
spacetime interval must be timelike, while along the worldline of a light signal the in-
terval is lightlike. How are these observations related to the principle of causality?  

      Solution: Let (x, y, z, t) and (x+dx, y+dy, z+dz, t+dt) be two infinitesimally sepa-
rated points on a worldline, representing two infinitesimally separated events in 
spacetime. The spacetime interval between these events is  

ds 
2
 =  gµν dx µdx ν = c 

2 dt 2 – dx 
2 – dy 

2 – dz 
2 , 

which is a Lorentz invariant quantity. In particular, ds 
2 retains its sign under a LT. For 

example, if  ds 
2
 > 0  in some inertial frame, then  ds 

2
 > 0  in all frames. There are three 

classes of spacetime intervals:  

• timelike intervals where  ds 
2
 > 0 ;  

• spacelike intervals where  ds 
2
 < 0 ;  and  

• lightlike intervals where  ds 
2
 = 0 .  

      Suppose now a massive particle is at point (x, y, z) at time t, and at point (x+dx, 
y+dy, z+dz) at time t+dt. The particle’s speed at time t is  

u = d l  /dt =  (dx2 +dy2 +dz2
 )1/2 / dt . 

Given that  u < c, we have:  

(dx2 +dy2 +dz2
 ) / dt 2 < c 2  ⇒  ds 

2
 = c 

2 dt 2 – dx 
2 – dy 

2 – dz 
2 > 0 . 

That is, the spacetime interval between two infinitesimally separated points on the 
particle’s worldline is timelike.  

      Next, suppose a light signal has reached points (x, y, z) and (x+dx, y+dy, z+dz) at 
respective times  t and  t+dt. Here  u=c,  so that  

(dx2 +dy2 +dz2
 ) / dt 2 = c 2  ⇒  ds 

2
 =  0 . 

That is, the spacetime interval along the signal’s worldline is lightlike.  

      In geometrical terms, the worldline of a massive particle must lie in the interior of 
the light cone (see Sec. 1.2 and Fig. 1.1), while the worldline of a light ray lies on the 
cone. No particle or photon worldline may lie in the exterior of the light cone, since 
along such a line the spacetime interval would be spacelike. In such a case we would 
have  ds 

2
 < 0  and, therefore, u > c, which is impossible given that no matter or energy 

can travel faster than light!  

      The foregoing discussion can be related to the principle of causality. Consider two 
spacetime events  (x µ)  and  (x µ+dx µ)  and let  ds 

2
 =  gµν dx µdx ν  be the spacetime interval 

separating them. The fact that no speed in Nature can exceed the speed c of light sug-
gests that, if  ds 

2
 > 0, it is possible to connect these events by a material signal such as 

a massive particle or a massless photon, while such a connection is impossible if  
ds 

2
 < 0  (the speed of the signal would have to be greater than c). This means that two 

spacelike-related events may not have influenced each other, i.e., may not be causally 
related.  
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      The fact that causality cannot be violated for timelike-separated events also fol-
lows from the observation that, as can be proven [4], the time ordering (“before” and 
“after”) for such events is absolute, i.e., Lorentz-invariant. On the contrary, the time 
ordering of spacelike-separated events is frame-dependent and can be reversed by a 
LT. Thus such events may not be causally related.  

 
4. A moving clock describes a (generally curved) worldline in an inertial frame S with 
coordinates  x µ ≡ (ct, x, y, z). Show that the time interval measured by this clock is given 
by  

( ) ( )
1/ 21/ 2 2 2 2 2 21 1

dx dx c dt dx dy dz
c c

µ
µτ = = − − −∫ ∫ . 

      Solution: If the clock describes a curved worldline in flat spacetime, it executes 
non-inertial (accelerated) motion. We may assume, however, that the worldline can 
be divided into an infinite number of infinitesimal linear segments, along each of 
which the motion of the clock may be considered inertial. Moreover, being a part of 
the worldline of a massive particle, each segment must be timelike (cf. Prob. 3). 
Hence, the spacetime interval along a segment is  

ds 
2
 = c 

2 dt 2 – dx 
2 – dy 

2 – dz 
2 > 0   ⇒   ds = + (ds 

2 )1/2 ∈R . 

Now,  ds = c dτ ⇒ dτ =  ds / c , where  dτ  is the proper time of the segment, equal to the 
time measured by a local inertial frame relative to which the clock is momentarily at 
rest (obviously, an infinite number of such frames are needed, one for each momen-
tary position of the clock). So, the time interval dτ in the instantaneous inertial frame 
moving with the clock is equal to the spacetime interval  ds / c  measured in the frame S 
with coordinates  x µ  or  (x, y, z, t) , relative to which frame the clock is moving. The to-
tal time measured by the clock is, therefore,  

τ  =  ∫ dτ  =  (1/c) ∫ ds  =  (1/c) ∫ (c 
2 dt 2 – dx 

2 – dy 
2 – dz 

2
 )1/2  

or  
τ  =  (1/c) ∫ (gµν dx µdx ν )1/2

  =  (1/c) ∫ (dx µdxµ )1/2  

where  dxµ =  gµν dx ν. Notice that, if the clock traveled at the speed of light, then we 
would have  ds 

2
 =  0  (Prob. 3) and  dτ=0 :  the clock would measure no time at all!  

 
5. As is well known, acceleration is Galilean-invariant in Newtonian mechanics. Is it 
Lorentz-invariant in SR? For simplicity, consider one-dimensional motion of a parti-
cle in the x direction, and a LT in the form of an x-boost.   

      Solution: Consider a particle viewed by two inertial observers O and O΄ using 
spacetime coordinates (x, y, z, t) and (x΄, y΄, ź , t΄ ), respectively. As usual, O΄ moves 
along the common x-axis of the two frames of reference, with velocity v. We call  

(ux , uy , uz ) = (dx/dt , dy/dt , dz/dt)  and  (ux΄, uy΄, uź  ) = (dx́ /dt́  , dý /dt́  , dź /dt́  ) . 
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As we have shown (Sec. 3.3), the LT for velocities is  

2 2 2
, ,

1 / ( ) (1 / ) ( )(1 / )
yx z

x y z
x x x

uu v u
u u u

vu c v vu c v vu cγ γ
−′ ′ ′= = =

− − −
 

where  γ (v) = (1– v2/c2
 ) 

–1/2
 . For motion of the particle along the x-axis, we set  ux = u , 

uy = uz = 0 ,  so that  

          
2

, 0
1 /

x y z
u v

u u u u
vu c

−′ ′ ′′= = = =
−

                                    (1) 

We want to find the LT for acceleration, for motion along the x-axis. We have that  
a =  du/dt ,  a΄ =  dú /dt́ .  Now, from (1) ⇒  

2 2

2 2 2

1 /

1 / (1 / )

d u v v c
du du du

du vu c vu c

 − −
′ = = 

− − 
. 

Moreover,  

2 2

2 2 1/ 2 2 2 1/ 2

( / ) 1 /

(1 / ) (1 / )

dt v c dx vu c
dt dt

v c v c

− −′ = =
− −

   (since  dx =  udt ) . 

Therefore,  

        
2 2 3/ 2

2 3

(1 / )

(1 / )

a v c
a

vu c

−′ =
−

                                                (2) 

To find the inverse transformation we simply exchange a with a΄ and put u΄ in place 
of  u  and  –v  in place of  v.  

      We note the following:  

      1. Equation (1) reduces to the Galilean transformation for velocities,  u΄=  u – v ,  if  
v << c  (small relative velocity of the two inertial frames) or/and  u << c  (small particle 
velocity).  

      2. We recall that the relativistic momentum of a particle of mass m moving with 
velocity u

�
 is  

2 2 1/ 2
( )

(1 / )

mu
p u mu

u c
γ= =

−

�
� �

 . 

In the case of a massless particle (m=0), such as a photon, a non-vanishing momen-
tum requires that  u=c, which expresses the well-known fact that a massless particle 
travels at the speed of light in any inertial frame. Let us check this last assertion: Ac-
cording to an observer O, a photon’s velocity is  u=c. Then, by Eq. (1), the velocity of 
the photon according to another observer O΄ is, again,  u΄=  c , in accordance with the 
relativistic principle of frame-independence of the speed of light.  

      3. For  v << c  ⇔  v/c → 0 , Eq. (2) reduces to the Newtonian result  a΄=  a . That is, 
according to Galilean relativity all inertial observers must measure the same accelera-
tion of a moving particle. According to (2) this is not the case with SR. It is still true, 
however, that  a΄=  0  if  a=0 . This reflects the fact that inertial motions transform into 
inertial motions under LTs.  
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6. Show that, according to SR, the force on a particle is not necessarily proportional to 
the acceleration of the particle, although it is still true that the vanishing of the accel-
eration implies the vanishing of the force. Find the relationship between force and ac-
celeration in the cases of rectilinear motion and general uniform motion. What do you 
observe?  

      Solution: Consider a particle of mass m, moving with velocity u
�

 and acceleration 
/a du dt=

� �
 relative to some inertial observer. The relativistic momentum of the parti-

cle is ( )p u muγ=
� �

, where | |u u=
�

 and  γ (u) = (1– u2/c2
 ) 

–1/2 . We define the total force 

on the particle at time t  by /F d p dt=
� �

. We then have:  

( ) ( / )
d

F mu m d dt u ma
dt

γ γ γ= = +
� � � �

. 

As we can show,  
3

2
( )

d u du
u

dt dtc

γ
γ= . 

Therefore,  

       3
2

( ) ( )
mu du

F u u u ma
dtc

γ γ= +
� � �

                                          (1) 

Clearly, in the general case, force is not proportional to acceleration.  

      As is well known, the velocity is a vector tangent to the trajectory of the particle 
and can be expressed as ˆu uτ=

�
, where ̂τ  is the unit tangent vector in the direction of 

motion and where, as defined previously, u >0 is the speed of the particle. Let us now 
concentrate on two special cases of motion:  

      (a) In the case of rectilinear motion the direction of the unit vector τ̂  is constant 
and so ˆ/a du dt aτ= =

� �
, where / | |a du dt a= = ±

�
 (algebraic value!). Moreover, the 

total force on the particle cannot have a centripetal component since a normal compo-

nent would produce curvilinear motion. Thus F
�

 is directed along the line of motion 

and can be expressed as ˆF Fτ=
�

, where | |F F= ±
�

. From (1) we have, after eliminat-
ing the common factor ̂τ  and by putting  du/dt=a :  

F = γ (u) m a [1+ (u2/c2 ) γ (u)2 ] . 

But,  u2/c2 = 1 – γ (u) –2
 ,  so that, finally,  F = γ (u) 

3
 m a . In rectilinear motion, total force 

is proportional to acceleration.  

      (b) In uniform (generally curvilinear) motion the speed u is constant and hence 

du/dt=0.  Equation (1) then reduces to ( )F u maγ=
� �

. As in the previous example, the 
total force is proportional to the acceleration.  

      Back to the general case (1) we note that  F→∞  as  u→c  (explain). This means 
that an infinite force would be needed to accelerate a massive particle up to the speed 
of light (this is not a problem, however, for a massless particle such as a photon, 
which, as seen in Prob. 5, always travels at speed c). We also notice that, if 0a =

�
 

(thus .u const=
�

 and so | | .u u const= =
�

) then 0F =
�

, in accordance with the require-
ment that a free particle should move with constant velocity.  
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7. Derive the LT (x-boost) for energy and momentum. Are conservation of energy and 
conservation of momentum independent issues in SR, like in classical mechanics?  

      Solution: The energy-momentum 4-vector for a particle of mass m and velocity u
�

 
is  

P µ = (E/c , px , py , pz ) ≡ (P 0, P 1, P 2, P 3) 

where  E =  γ (u) m c2  and ( )p u muγ=
� �

, with  γ (u) = (1– u2/c2
 ) 

–1/2. The LT of  P µ is  

0 1 1 0
0 1 2 2 3 3

2 2 1/ 2 2 2 1/ 2

( / ) ( / )
, , ,

(1 / ) (1 / )

P v c P P v c P
P P P P P P

v c v c

− −′ ′ ′ ′= = = =
− −

. 

Substituting for the P µ and P µ΄ we have:  

2

2 2 1/ 2 2 2 1/ 2

/
, , ,

(1 / ) (1 / )
x x

x y y z z
E vp p vE c

E p p p p p
v c v c

− −′ ′ ′′ = = = =
− −

 . 

For the inverse transformation we set –v in place of v.  

      We notice that the LT mixes energy and momentum, so that the separation of 
these physical quantities is frame-dependent (what appears as energy to one inertial 
observer may appear as momentum to another, and vice versa). Therefore, as dis-
cussed in Sec. 3.3, conservation of energy and conservation of momentum are not 
separate matters in SR (both energy and momentum must be conserved).  

 
8. By using the work-energy theorem, justify the expression  E =  γ (u) m c 

2
  for the total 

relativistic energy of a particle of mass m moving with speed u. Does external poten-
tial energy contribute to the energy E ? How about internal potential energy in the 
case of a composite body?  

      Solution: As found in Prob. 6, the total force on the particle at time t is given by  

          3
2

( ) ( )
mu du du

F u u u m
dt dtc

γ γ= +
�

� �
                                      (1) 

where  γ (u) = (1– u2/c2
 ) 

–1/2.  The work of this force on the particle along the spatial 
path from A to B is given by the line integral  

                
B B

A A
W F dl F u dt= ⋅ = ⋅∫ ∫

���� � �
                                            (2) 

where, by (1),  

3
2

( ) ( )
mu du du

F u u u u u mu
dt dtc

γ γ⋅ = ⋅ + ⋅
�

� � � � �
 . 

But,  
2u u u⋅ =

� �
   and   

du du
u u

dt dt
⋅ =
�

�
  (prove!) 

so that  
2

2 3
2

( ) 1 ( ) ( )
u du du

F u u mu u u mu
dt dtc

γ γ γ
 

⋅ = + = 
 

� �
 . 
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Now, as found in Prob. 6,  

3 3 2
2

( ) ( )
d u du du d

u u u c
dt dt dt dtc

γ γ
γ γ= ⇒ =  . 

So,  

( )2 2d d
F u mc mc

dt dt

γ
γ⋅ = =

� �
 , 

where the mass m is assumed constant. We set  

                  E = γ (u) m c 
2                                                       (3) 

Then /F u dE dt⋅ =
� �

, and therefore (2) yields  

          W = EB  – EA                                                         (4) 

The quantity E defined in (3) is called the total relativistic energy of the particle. For a 
particle at rest,  u =  0 ⇒ γ (u) = 1  and so  Erest = m c 

2  (rest energy). It is thus reasonable 
to call the difference  E – Erest  the kinetic energy of the particle, and define  

T = E – m c 
2  ⇔  E = m c 

2 + T . 

Then from (4) we get  
W = TB  – TA  

which formally expresses the work-energy theorem in SR. We note that, even if F
�

 is 
a conservative force, the corresponding potential energy is not included in E, hence 
does not contribute to the total relativistic energy.  

      A composite body may be considered as a system of particles (e.g., the molecules 
of the body) of masses  m1 , m2 , m3 , ... The relativistic internal energy of the body is  

Eint = ∑ mi c
2 + (T+U) int  

where Tint and Uint are the internal kinetic energy and the internal potential energy, 
respectively, where the latter energy is associated with internal forces. The energy Eint 
is the total energy of the body in the body’s rest frame (or C-frame), which is the 
unique frame in which the center of mass of the system is at rest and the system’s total 
momentum is zero.  

      The system as a whole may also be viewed as a single “particle” of mass M and 
rest energy Mc2 equal to Eint :  

M c2 = ∑ mi c
2 + (T+U) int   ⇒   M = ∑ mi + (1/c2) (T+U) int . 

To eliminate the usual arbitrariness in the definition of the potential energy U to 
within an additive constant, we rewrite the last relation in terms of differences of 
physical quantities within a time interval  ∆ t :  

          ∆ M = (1/c2) (∆T+∆U) int                                             (5) 

where we have taken into account that the masses mi are constant (∆ mi = 0).  
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      Now, for a free body, subject to no external forces, the total relativistic energy E 
must be constant in any inertial frame and, in particular, in the body’s C-frame where 
E=Eint =Mc2.  Thus  ∆ E=0 ⇒ ∆ M=0  and, by Eq. (5),  ∆ Tint + ∆ Uint = 0 . This could not 
be satisfied if we did not include the potential energy Uint in the total energy E, given 
that, in general, kinetic energy alone is not conserved. We conclude that internal po-
tential energy has to be included in the energy of the body and, therefore, it contrib-
utes to the body’s mass, which is not the case with potential energy associated with 
external forces.  
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CHAPTER 4 
 

COVARIANCE IN ELECTRODYNAMICS 
 
 

4.1  The Maxwell Equations  
 
As we know, the Maxwell equations describe the behavior (that is, the laws of change 
in space and time) of the electromagnetic (e/m) field. This field is represented by the 

pair ( , )E B
� �

, where E
�

 and B
�

 are the electric and the magnetic field, respectively.  

      The Maxwell equations are a system of four partial differential equations that is 
self-consistent, in the sense that these equations are compatible with one another. The 
self-consistency of the system also implies the satisfaction of two important condi-
tions that are physically meaningful:  
 

• the equation of continuity, related to conservation of charge; and  

• the e/m wave equation in its various forms.  

We stress that the above conditions are necessary but not sufficient for the validity of 

the Maxwell system. Thus, although every solution ( , )E B
� �

 of this system obeys a 
wave equation separately for the electric and the magnetic field, an arbitrary pair of 

fields ( , )E B
� �

, each field satisfying the corresponding wave equation, does not neces-
sarily satisfy the Maxwell system itself. Also, the principle of conservation of charge 
cannot replace any one of Maxwell’s equations. These remarks are justified by the 
fact that the aforementioned two necessary conditions are derived by differentiating 
the Maxwell system and, in this process, part of the information carried by this system 
is lost. [Recall, similarly, that cross-differentiation of the Cauchy-Riemann relations 
of complex analysis yields the Laplace equation, by which, however, we cannot re-
cover the Cauchy-Riemann relations.]  

      We adopt the following differential form of Maxwell’s equations [1,2]:  

      0

0 0 0

( ) ( )

( ) 0 ( )

B
a E c E

t

E
b B d B J

t

ρ
ε

µ ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�
� � � �

�
� � � � �

                    (4.1) 

where , Jρ
�

 are the charge and current densities, respectively (the “sources” of the 
e/m field). Both the fields and the sources are functions of the spacetime variables 
(x,y,z,t). Equations (4.1a) and (4.1b), which describe the div of the e/m field at any 
moment, constitute Gauss’ law for the electric and the magnetic field, respectively. In 
terms of physical content, (4.1a) expresses the Coulomb law of electricity, while 
(4.1b) rules out the possibility of existence of magnetic poles analogous to electric 
charges. Equation (4.1c) expresses the Faraday-Henry law (law of e/m induction) and 
Eq. (4.1d) expresses the Ampère-Maxwell law. Equations (4.1a) and (4.1d), which 
contain the sources of the e/m field, constitute the non-homogeneous Maxwell equa-
tions, while Eqs. (4.1b) and (4.1c) are the homogeneous equations of the system.  
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      By taking the div of (4.1d) and by using (4.1a) we obtain an equation of continuity 
that physically expresses the principle of conservation of charge:  

        0J
t

ρ∂
∇ ⋅ + =

∂

� �

                                                   (4.2) 

A different kind of differentiation of the Maxwell system (4.1), by taking the rot of (c) 
and (d), leads to separate wave equations for the electric and the magnetic field:  

              
2

2
0 0 02

0

1E J
E

t t
ε µ ρ µ

ε
∂ ∂

∇ − = ∇ +
∂ ∂

� �
� �

                                    (4.3) 

             
2

2
0 0 02

B
B J

t
ε µ µ

∂
∇ − = − ∇×

∂

�
� � �

                                        (4.4) 

      The point was made recently [3-5] that the Maxwell equations may be viewed as a 
Bäcklund transformation (BT) relating fields and sources. The conservation of charge 
and the electromagnetic wave equations then simply express the integrability (consis-
tency) conditions of the BT. The BT property of the Maxwell system further supports 
the view according to which the four equations (4.1) constitute a set of independent 
equations [6]. This will be analytically discussed in Sec. 5.4.  

 
4.2  The Electromagnetic Field Tensor  
 
It can be shown by physical arguments (see, e.g., [2,7]) that, under a Lorentz boost in 
the x direction the fields E

�

 and B
�

 transform as follows:  

         
, ( ) , ( )

, ( ) , ( )

x x y y z z z y

x x y y z z z y

E E E E c B E E c B

B B B B E B B E
c c

γ β γ β

β β
γ γ

′ ′ ′= = − = +

′ ′ ′= = + = −
                      (4.5) 

where  β (v) =  v/c ,  γ (v) =  (1–β 2 ) 
–1/2 = (1–v2/c2

 ) 
–1/2

 . Moreover, if the densities , Jρ
�

 

are related by J uρ=
� �

, where u
�

 is the local velocity of the moving charge (cf. [1], 
Chap. 6), and if ρ0 is the charge density in the rest frame of the charge, then  

        2 2 1/ 2
0 0 0(1 / ) ( ) , ( )u c u J u u uρ ρ γ ρ ρ ρ γ−= − ≡ = =

� � �
                       (4.6) 

[Careful:  γ (v) refers to the relative motion of two inertial frames (say, S and Ś  ) while 
γ (u) refers to the motion of the charge system in the S-frame!] Both the electric charge 
and the density ρ0 will be considered Lorentz scalars.  

      We notice that  
0

0 0

0 0

( ) ,

( ) , 1,2,3k
k k

c u c U

J u u U k

ρ ρ γ ρ

ρ γ ρ

= =

= = =
 

where  

( ) ( )( ) , ( ) ( ) , ( ) , ( ) , ( )x y zU u c u u u c u u u u u uµ γ γ γ γ γ γ≡ ≡
�
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is the 4-velocity of the moving charge. Given that (U 0, U k
 ) (k=1,2,3) is a 4-vector 

while ρ0 is a scalar, it follows that  ρ0 (U 0, U k
 ) = ( ρ0 U 0, ρ0 U k

 ) is a 4-vector. This 
means that  (cρ , Jk )  must be a 4-vector. We thus define a 4-current density by  

         ( )0 ,J U c Jµ µρ ρ= ≡
�

                                             (4.7) 

      Regarding the e/m field ( , )E B
� �

, we notice that it has 3+3=6 independent compo-
nents, namely, the set of Cartesian components of the electric and the magnetic field. 
We now ask the question whether these components might be the 6 independent com-
ponents of some antisymmetric tensor F µν = –F νµ. In matrix form,  

         

01 02 03

01 12 13

02 12 23

03 13 23

0

0
[ ]

0

0

F F F

F F F
F

F F F

F F F

µν

 
 
− 

=  
− − 

 − − − 

                                  (4.8) 

As mentioned in Sec. 3.6, under an x-boost the tensor components transform as fol-
lows:  

F 01
΄= F  01 ,    F 02

΄= γ (F 02 – β F 12 ) ,    F 03
΄= γ (F 03 + β F 31 ) , 

  F 23
΄= F  23 ,    F 31

΄= γ (F 31 + β F 03 ) ,    F 12
΄= γ (F 12 – β F 02 )               (4.9) 

[In case you are worried about an apparent discrepancy with Eq. (3.48) regarding the 
terms for F 03

΄ and F 31
΄, remember that F 13= – F 31 and F 13

΄= – F 31
΄.] On the other 

hand, the e/m-field transformation relations (4.5) can be rewritten as follows:  

, ,

, ,

y yx x z z
z y

yz
x x y y z z

E EE E E E
B B

c c c c c c

EE
B B B B B B

c c

γ β γ β

γ β γ β

′′ ′        = = − = +        
        

  ′ ′ ′= = + = −  
   

 

Comparison with (4.9) suggests trying the following identification of the F µν :  

F 01 = – Ex /c  ,    F 02 = – Ey /c  ,    F 03 = – Ez /c  , 

F 12 = – Bz  ,    F
 31 = – F 13 = – By  ,    F 23 = – Bx                      (4.10) 

Then,  F 01
΄ = – Ex΄ /c ,  F 23

΄ = – Bx΄ ,  etc. The antisymmetric tensor (4.8) then reads  

         

0 / / /

/ 0
[ ]

/ 0

/ 0

x y z

x z y

y z x

z y x

E c E c E c

E c B B
F

E c B B

E c B B

µν

− − − 
 − =
 −
 

−  

                             (4.11) 
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      An alternative comparison of (4.5) and (4.9), leading to a different identification 
of the antisymmetric-tensor components, yields the following result (by renaming F µν 
as G µν ) :  

G 01 = – Bx  ,    G 02 = – By  ,    G 03 = – Bz  , 

       G 12 = Ez /c  ,    G 13 = – Ey /c  ,    G 23 = Ex /c                        (4.12) 

(Check this!) The antisymmetric tensor G µν  then reads  

            

0

0 / /
[ ]

/ 0 /

/ / 0

x y z

x z y

y z x

z y x

B B B

B E c E c
G

B E c E c

B E c E c

µν

− − − 
 − =
 −
 

−  

                            (4.13) 

and is called the dual tensor (explicitly, the tensor dual to F µν). Note that G µν can be 

obtained directly from F µν by the substitutions / , /E c B B E c→ → −
� � � �

, which opera-
tion leaves the transformation relations (4.5) unchanged.  

      The tensor G µν, also denoted *F µν, is related to F µν as follows:  

              G µν ≡ *F µν
  = (1/2) ε µνλρ Fλρ                                        (4.14) 

where  
Fλρ = gλµ gρν F

 µν                                                (4.15) 

and where  ε µνλρ is the Levi-Civita symbol in 4 dimensions, equal to 1 or –1 according 
to whether (µνλρ) is an even or odd permutation of (0,1,2,3), respectively. In particu-
lar,  ε 0123 =1  [thus  ε 0123

 = –1 , since an odd number of spatial indices are lowered by 
using the metric tensor in a manner similar to (4.15)]. The symbol ε µνλρ is antisym-
metric in every pair of indices (i.e., changes sign when any two indices are inter-
changed) and vanishes if any two indices are the same. As an example of applying 
(4.14), let us check the component G 01 :  

                    G 01 = *F 01
  =  (1/2) ε 01λρ Fλρ =  (1/2) (ε 0123 F23 + ε 0132 F32 )   

                                        =  (1/2) [F23 – (– F23)] =  F23  =  g2µ g3ν F
 µν    

                                        =  g22 g33 F 23 =  F 23  =  – Bx .   

 

4.3  Covariant Form of Maxwell’s Equations  
 
We now wish to express the Maxwell equations (4.1) in covariant form; that is, as re-
lations involving 4-vectors and/or tensors in such a way that these relations be mani-
festly invariant in form under LTs. Examples of such covariant relations were given in 
Sec. 3.7.  

      Before we begin, let us recall that the speed c of light in empty space, which is the 
speed of propagation of any form of e/m radiation in general, is a direct prediction of 
Maxwell’s equations and is equal to [1]  
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         c 2
 =  (ε0 µ0)

 –1                                                  (4.16) 

      Proposition: (a) The inhomogeneous Maxwell equations (4.1a) and (4.1d ) are 
represented in covariant form by the set of differential relations  

        ∂µ F
 µν 

 = µ0 J
 ν   (ν =  0, 1, 2, 3)                                       (4.17) 

where ( ),J c Jν ρ≡
�

.   

      (b) The homogeneous (source-free) Maxwell equations (4.1b) and (4.1c) are rep-
resented in covariant form by the set of relations  

       ∂µ G
 µν ≡ ∂µ *F µν

  = 0    (ν =  0, 1, 2, 3)                                  (4.18) 

where  G µν ≡ *F µν
  = (1/2) ε µνλρ Fλρ  and where  Fλρ = gλµ gρν F

 µν .  

      (c) The homogeneous system (4.18) is equivalent to the set of relations  

          ∂λ Fµν 
 + ∂µ Fνλ 

 + ∂ν Fλµ 
 = 0                                           (4.19) 

      Proof: (a) Note first that, according to Eqs. (3.58) and (3.59), the differential 
equations (4.17) obey a 4-vector transformation law under LTs. For ν=0 the system 
(4.17) reads:  ∂µ F

 µ0 
 = µ0 J

 0  ⇒   

00 10 20 30

0 0 1 2 3

1
0 yx z

EE EF F F F
c

c x y zx x x x
µ ρ

∂ ∂ ∂∂ ∂ ∂ ∂
= + + + = + + + ⇒ ∂ ∂ ∂∂ ∂ ∂ ∂  

 

2
0 0

0 0 0

1
E c

ρ
µ ρ µ ρ

ε µ ε
∇ ⋅ = = =
� �

 

where in the last step we have used (4.16). For  ν=1  we have:  ∂µ F
 µ1 

 = µ0 J
 1  ⇒  

01 11 21 31

0 0 1 2 3 2

2

1
0

1

yx z
x

x

BE BF F F F
J

t y zx x x x c

E
B

tc

µ
∂∂ ∂∂ ∂ ∂ ∂

= + + + = − + + −
∂ ∂ ∂∂ ∂ ∂ ∂

 ∂
= − + ∇× 

∂ 

�
� �

 

and similarly for  ν=2  and  ν=3. Therefore, in vector form and by using (4.16),  

0 0 0 02

1 E E
B J J

t tc
µ µ ε µ

∂ ∂
∇× = + = +

∂ ∂

� �
� � � �

 . 

      (b) We leave the proof of (4.18) to the reader as an exercise.  

      (c) Assume that  ∂λ Fµν 
 + ∂µ Fνλ 

 + ∂ν Fλµ 
 = 0  is valid for all choices of  λ, µ, ν. We 

show that this also implies  ∂µ G
 µν ≡ ∂µ *F µν

  = 0 .  We have:  
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∂λ G
 ρλ = (1/2) ε ρλµν ∂λ

 Fµν = (1/2) ε ρµνλ ∂µ
 Fνλ = (1/2) ε ρνλµ ∂ν

 Fλµ 
 
(all we did was to change the names of repeated “up” and “down” indices). But,  
 

ε
 ρλµν = ε ρµνλ = ε ρνλµ 

 
(even number of permutations leading from one symbol to another). So,  
 

∂λ G
 ρλ = (1/2) ε ρλµν ∂λ

 Fµν = (1/2) ε ρλµν ∂µ
 Fνλ = (1/2) ε ρλµν ∂ν

 Fλµ 

= (1/6) ε ρλµν (∂λ
 Fµν + ∂µ

 Fνλ + ∂ν
 Fλµ) = 0  (by assumption)  ⇒ 

 
∂λ G

 λρ = – ∂λ G
 ρλ = 0 . 

 
      Example:  For  λ=1, µ=2, ν=3  we have:  
 

23 31 12
1 23 2 31 3 12 1 2 30 (explain this!)

yx z

F F F F F F

BB B
B

x y z

= ∂ + ∂ + ∂ = ∂ + ∂ + ∂

∂∂ ∂
= − − − = − ∇ ⋅

∂ ∂ ∂

� �  

from which we recover the “no-free-magnetic-poles” equation 0B∇ ⋅ =
� �

.  

      Let us return to the inhomogeneous Maxwell equations (4.17):  ∂µ F
 µν

 = µ0 J
 ν.  

Taking the divergence of both sides, we have:  

µ0 ∂ν J
 ν = ∂µ ∂ν F

 µν . 

But, by the antisymmetry of  F µν ,  

∂µ ∂ν F
 µν = ∂ν ∂µ F

 νµ = – ∂µ ∂ν F
 µν  ⇒  ∂µ ∂ν F

 µν = 0 . 

Hence,  

           ∂ν J
 ν ≡ ∂ J

 ν
 / ∂ x 

ν = 0                                           (4.20) 

Setting  

( ) ( ), , , ,x y zJ c J c J J Jν ρ ρ≡ =
�

 

we get:  

             0J
t

ρ∂
+ ∇ ⋅ =

∂

� �

                                               (4.21) 

(Show this.) Equation (4.21) is, of course, the equation of continuity for electric 
charge, expressing conservation of charge [1,2].  
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4.4  Relativistic Potentials  
 
As we have seen, the spacetime coordinates  x µ ≡ (ct, x, y, z)  transform as contravariant 
components of a 4-vector under LTs. We now introduce the covariant coordinate  
vector 1  

          xµ = gµν x
ν ≡ (ct, –x, –y, –z)                                       (4.22) 

To express the x µ in terms of the xµ , we write:  

xλ = gλρ x ρ  ⇒  gνλ xλ = gνλ gλρ x ρ = gνρ x ρ  

where, as mentioned in Sec. 3.7,  gνρ = δ ν
ρ . Therefore,  

          xν =  gνλ xλ                                                   (4.23) 

      We also define the derivatives  

∂ µ = ∂ / ∂xµ                                                   (4.24) 

By the chain rule of differentiation,   

∂ / ∂xµ = (∂xν / ∂xµ ) ∂ / ∂xν 

where, by (4.23),  

∂xν / ∂xµ = gνλ (∂xλ
 / ∂xµ ) = gνλ δ µ

λ = gνµ = g µν . 

Hence,  

                  ∂ / ∂xµ = g µν ∂ / ∂xν   or    ∂ µ = g µν ∂ν                                  (4.25) 

in accordance with the definition (3.51) of  ∂ µ given in Sec. 3.7. The latter definition is 
thus consistent with the definition (4.24) of  ∂ µ given here.  

      As we know from electrodynamics [1,2], the electric and the magnetic field can be 
expressed as  

        ,
A

E V B A
t

∂
= − ∇ − = ∇×

∂

�
�� � � �

                                     (4.26) 

where ( , )V r t
�

 and ( , )A r t
� �

 are the e/m potentials (scalar and vector, respectively). By 
these expressions the two homogeneous (source-free) Maxwell equations,  

          0 , /B E B t∇ ⋅ = ∇× = − ∂ ∂
� � � � �

                                      (4.27) 

are satisfied automatically.  

 

 

 
                                                 
1 Note that, then,  ds2 =  gµν dx 

µ
 dxν = dx 

µ dxµ .  
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      We construct the 4-component object (not yet claimed to be a 4-vector!)  

         ,
V

A A
c

µ  ≡  
 

�

                                                 (4.28) 

Then the e/m field tensor F µν 
 is written in terms of  A 

µ as follows:  

        F µν 
 =  ∂ µ

 A 
ν
 – ∂ ν A µ  ≡  ∂ A 

ν / ∂xµ  –  ∂A µ / ∂xν                          (4.29) 

(Notice that we differentiate with respect to the covariant components of the coordi-
nate vector!) Let us see some examples of using (4.29) to recover the classical rela-
tions (4.26):  

      For  µ=0, ν=1, we have:  

F 01 
 = ∂ A 

1 / ∂x0  –  ∂A 0 / ∂x1 = ∂ A 
1 / ∂x0

  + ∂A 0 / ∂x1  (explain!) 

from which we find  

x
x

x

AV A
E V

x t t

∂  ∂ ∂
= − − = −∇ − 

∂ ∂ ∂ 

�
�

 

and similarly for  F 02  and  F 03. In vector form,   

A
E V

t

∂
= − ∇ −

∂

�
� �

 . 

      For  µ=1, ν=2, we have:  

F 12 
 = ∂ A 

2 / ∂x1  –  ∂A 1 / ∂x2 = – ∂ A 
2 / ∂x1

  + ∂A 1 / ∂x2  (explain!) 

from which we find  

( )xy
z z

AA
B A

x y

∂∂
= − = ∇×

∂ ∂

��

 

and similarly for  F 13  and  F 23. In vector form,  

B A= ∇×
�� �

 . 

      Thus F µν as defined in (4.29) is indeed the e/m field tensor. According to the dis-
cussion in Sec. 3.6 [see Eq. (3.49)], by the fact that the ∂ µ transform as (contravariant) 
components of a 4-vector under LTs, while F µν is an antisymmetric tensor, it follows 
that  A µ  must be a 4-vector.  

      We must now show that the expression (4.29) for F 
µν satisfies the homogeneous 

Maxwell equations (4.18) automatically. To this end it is easier to use the equivalent 
form (4.19) of these equations. Before we begin, however, let us recall that we have 
used the metric tensor gµν or g 

µν to “lower” or “raise” indices, respectively, of 4-
vectors. We can do the same, of course, for indices of tensors of any kind. Regarding 
(4.29) we write:  
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gλµ gρν F 
µν

 = gλµ gρν (∂
 µ

 A 
ν
 – ∂ ν A µ ) = gλµ ∂

 µ ( gρν A 
ν

 ) – gρν ∂ ν ( gλµ A 
µ

 )  ⇒ 

Fλρ
 
 =  ∂ 

λ 
 A 
ρ – ∂ 

ρ 
 A 
λ

  =  ∂ A 
ρ 

 / ∂x 
λ

  –  ∂A 
λ 

 / ∂x 
ρ                           (4.30) 

which is equivalent to (4.29). By using (4.30) we find, after some straightforward al-
gebra:  

∂λ Fµν 
 + ∂µ Fνλ 

 + ∂ν Fλµ 
 = 0 . 

      Exercise: Prove this result.  

      We now come to gauge transformations; that is, transformations of the potentials 

V, A
�

 (or, in 4-vector form, A µ ) which do not affect the fields ,E B
� �

 (or F 
µν

 ). Classi-
cally, a gauge transformation is of the form [1,2]  

          ,A A V V
t

λ
λ

∂
′ ′= + ∇ = −

∂

� � �

                                      (4.31) 

where ( , )r tλ
�

 is an arbitrary function. Under this transformation,  

,
A A

E V V
t t

B A A

′∂ ∂
′= − ∇ − = − ∇ −

∂ ∂

′= ∇× = ∇×

� �
� � �

� �� � �

 

      We consider the transformation  

               A 
µ
΄ = A 

µ
 – ∂λ / ∂xµ = A 

µ
 – ∂ µ

 λ                                       (4.32) 

for arbitrary  λ ≡ λ(x 
ρ) . Explicitly,  

A 
0
΄ = A 

0 – ∂λ / ∂x0 = A 
0
 – ∂λ / ∂x0 , 

A 
k
΄ = A 

k – ∂λ / ∂xk = A 
k
 +  ∂λ / ∂xk  (k=1,2,3) . 

By using the fact that ( )/ ,A V c Aµ ≡
�

, it can be shown that the transformation (4.32) 

yields the gauge transformation equations (4.31).  

      Exercise: Show this.  

      We must now show that the transformation (4.32) leaves the e/m field tensor F 
µν 

invariant. Let  F µν = ∂ µ
 A 
ν
 – ∂ ν A µ and  F µν΄ = ∂ µ

 A 
ν
΄ – ∂ ν A µ΄, where  A 

µ
΄ =  A 

µ
 – ∂ µ

 λ . We 
have:  

F µν΄
 = ∂ µ (A 

ν
 – ∂ ν

 λ) – ∂ ν (A 
µ
 – ∂ µ

 λ) = ∂ µ
 A 
ν
 – ∂ ν A µ  = F µν . 

      The transformation (4.32) gives us the freedom to choose the A µ so that the fol-
lowing relation, called the Lorentz condition, be satisfied:  

                 ∂ 
µ 

 A µ ≡  ∂ A 
µ / ∂x µ =  0                                            (4.33) 

or, explicitly,  
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2

1
0

V
A

tc

∂
∇ ⋅ + =

∂

��

. 

      Let us now consider the inhomogeneous Maxwell equations  

∂µ F µν 
 = µ0 J

 ν   where  ( ),J c Jν ρ≡
�

 . 

For  F µν = ∂ µ
 A 
ν
 – ∂ ν A µ ,  we have:  

µ0 J
 ν = ∂µ (∂

 µ
 A 
ν
 – ∂ ν A µ ) = ∂µ ∂

 µ
 A 
ν
 – ∂ ν (∂µ  A µ ) 

 . 

By assuming that the Lorentz condition (4.33) is satisfied, the above relation acquires 
a simpler form:  

            2
0A A Jν µ ν ν

µ µ≡ ∂ ∂ =□                                        (4.34) 

where  
2

2 2
2 2

1

c t
µ

µ
∂

= ∂ ∂ = − ∇
∂

□  

is the d’Alembert operator. For ν=0, and by using the fact that  c 
2

 =  (ε0 µ0)
 –1, Eq. (4.34) 

yields:  

2
2 2

2 2
0

1 V
V V

c t

ρ
ε

∂
≡ − ∇ =

∂
□                                       (4.35) 

while for  ν =  1, 2, 3  we get, in vector form,  

2
2 2

02 2

1 A
A A J

c t
µ

∂
≡ − ∇ =

∂

�
� � �

□                                     (4.36) 

      Exercise: Prove Eqs. (4.35) and (4.36).  
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Problems 
 
1. Derive the LT (x-boost) for the electromagnetic 4-current J  

µ .  

      Solution: The 4-vector for the e/m current is  

J  
µ = (c ρ , Jx , Jy , Jz ) ≡ (J  

0, J  
1, J  

2, J  
3) 

and the LT is  

0 1 1 0
0 1 2 2 3 3

2 2 1/ 2 2 2 1/ 2

( / ) ( / )
, , ,

(1 / ) (1 / )

J v c J J v c J
J J J J J J

v c v c

− −′ ′ ′ ′= = = =
− −

. 

Substituting for J  
µ  and  J  

µ
΄ we get  

2

2 2 1/ 2 2 2 1/ 2

( / )
, , ,

(1 / ) (1 / )
x x

x y y z z
v c J J v

J J J J J
v c v c

ρ ρ
ρ

− −′ ′ ′′ = = = =
− −

 . 

As always, for the inverse transformation we set –v in place of v.  

 
2. Derive the LT (x-boost) for the electromagnetic 4-potential  A µ.  

      Solution: The 4-vector for the e/m potential is  

A µ = (V/c , Ax , Ay , Az ) ≡ (A 0, A 1, A 2, A 3) 

and the LT is  

0 1 1 0
0 1 2 2 3 3

2 2 1/ 2 2 2 1/ 2

( / ) ( / )
, , ,

(1 / ) (1 / )

A v c A A v c A
A A A A A A

v c v c

− −′ ′ ′ ′= = = =
− −

. 

This yields  

2

2 2 1/ 2 2 2 1/ 2

/
, , ,

(1 / ) (1 / )
x x

x y y z z
V vA A vV c

V A A A A A
v c v c

− −′ ′ ′′ = = = =
− −

 . 

 
3. Show that, in the non-relativistic limit, the LT of the electric field reduces to  

       ( )E E v B′ = + ×
� � ��

                                                   (1) 

where v
�

 is the velocity of the inertial observer O΄ relative to the inertial observer O. 
Justify the above result by physical reasoning.  

      Solution: With no loss of generality, we assume that the LT relating O with O΄ is 
an x-boost, so that  

( , , ) ( , 0, 0)x y zv v v v v= ≡
�

. 

The LT for the electric field is given by Eq. (4.5), which we write in the form  

             Ex΄ =  Ex  ,   Ey΄ =  γ (Ey – v Bz ) ,   Eź  =  γ (Ez +  v By )                          (2) 
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where  γ (v) = (1– v2/c2
 ) 

–1/2.  In the non-relativistic limit,  v/c → 0 ⇒ γ=1, and thus rela-
tions (2) reduce to  

              Ex΄ =  Ex  ,   Ey΄ =  Ey – v Bz  ,   Eź  =  Ez +  v By                              (3) 

On the other hand, by noting that  

( , , )

(0, , )

y z z y z x x z x y y x

z y

v B v B v B v B v B v B v B

vB vB

× ≡ − − −

= −

��

 

and by taking the  x, y  and  z  components of (1), we find again the result (3). We con-
clude that relation (1) represents the non-relativistic limit of the LT for the electric 
field.  

      To see the physics of the situation, we consider an electric charge q that is mo-
mentarily at rest relative to O΄, thus moves with velocity v

�
 relative to O. According 

to O, this charge is subject to a Lorentz force [ ( )]F q E v B= + ×
� � ��

 by the e/m field. Ac-
cording to O΄, however, the charge is stationary and thus subject only to an electric 

force F qE′ ′=
� �

. Now, in the non-relativistic limit the force on a particle is frame-

independent; that is, F F ′=
� �

. Thus, by eliminating q we have that ( )E E v B′ = + ×
� � ��

.  

 
4. It is given that the electric and the magnetic field produced by a charge q moving 
with velocity v

�
 relative to an inertial observer are related by   

           
2

1
( )B E

c
υ= ×

� ��
                                                    (1) 

By using (1) compare the strengths of the electric and the magnetic interaction be-
tween two charges. Comment on the relative strength of the two interactions as we 
approach the limit of very high speeds of the charges.  

      Solution: We consider two charges q and q΄ moving with corresponding velocities 
υ
�

 and υ ′
�

 relative to an inertial observer. We regard q΄ as the source of an e/m field 
and q as a test charge within this field. We are interested in the force on q due to the 
e/m field produced by q΄. Let ( , )E B′ ′

� �

 be the value of this field at the location of q. 

The electric force on q is eF q E′=
� �

 or, in magnitudes, eF q E′= , while the magnetic 

force on q is ( )mF q Bυ ′= ×
� ��

, where, according to (1),  

                                                       
2

1
( )B E

c
υ′ ′ ′= ×

� ��
        

Therefore,  

2
[ ( )]m

q
F E

c
υ υ′ ′= × ×

� �� �
 

and, in terms of orders of magnitudes,  

2 2 2
m

m e
e

Fq
F E F

c c F c

υυ υυ
υυ

′ ′
′ ′≈ = ⇒ ≈  . 

We notice that, in the region of low velocities compared to the speed of light (i.e., for 
υ << c  and  υ΄ << c) we have that Fm << Fe , while Fm ~ Fe when  υ ~ c  and  υ΄ ~ c. This 
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means that, while in the world of low energies (or low speeds) that we experience in 
our everyday lives the electric interaction between charged particles appears to be 
much stronger than their magnetic interaction, in the high-energy domain the two in-
teractions become comparable to each other. This is natural in view of the fact that, 
after all, these interactions are the two “faces” of a single electromagnetic interaction. 
However, the unification of these interactions is truly revealed in high-energy proc-
esses and in the framework of a high-energy theory such as SR!  

 
5. Consider a charge q in uniform rectilinear motion relative to an inertial observer O. 
By using relativistic arguments, explain why this charge cannot emit e/m radiation.  

      Solution: Since q moves with constant velocity relative to the inertial observer O, 
it itself defines the origin of an inertial frame of reference. With respect to an observer 
O΄ in this frame, q is at rest. Thus the only thing recorded by O΄ is a static electric 
field, with no presence of any e/m wave (i.e., with no emission of e/m radiation). Let 
us now assume that, according to O, the charge q emits e/m radiation. This means that 
O records the existence of an e/m wave traveling at speed c. But, since the propaga-
tion speed of an e/m wave is the same in all inertial frames, it follows that the wave 
observed by O also propagates at speed c relative to O΄. This, however, contradicts the 
fact that O΄ perceives no e/m wave! We conclude that neither O may perceive an 
emission of e/m radiation from q.  

      In the case of an accelerating charge q the above rationale breaks down since q no 
longer defines the origin of an inertial frame of reference. Thus an observer O΄ mov-
ing with q is not an inertial observer and her measurements should not be relativisti-
cally correlated with those of the inertial observer O. The latter observer records 
emission of e/m radiation and correctly attributes it to the accelerated motion of q, in 
accordance with Maxwell’s theory [1]. For the non-inertial observer O΄, however, a 
seemingly stationary charge appears to emit e/m radiation, contrary to the predictions 
of electrodynamics. Observer O΄ thus reaches an erroneous conclusion in an attempt 
to interpret electromagnetic phenomena in an unsuitable (i.e., non-inertial) frame of 
reference!  
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CHAPTER 5 
 

SPECIAL TOPICS 
 
 

5.1  Lie Groups and Lie Algebras  
 
This section serves as an elementary introduction to Lie groups and Lie algebras. 
These concepts were introduced in an informal way in Chap. 2, in connection with the 
Lorentz group. We now present them in more general terms.  

      A group is a set G={ a,b,c,...} equipped with an internal “multiplication” operation 
with the following properties:  

      1. Closure:        ab∈G,  ∀ a, b∈G .   

      2. Associativity:        a (bc) = (ab) c . 

      3. Identity element:    ∃ e∈G:  ae=ea,  ∀ a∈G .   

      4. Inverse element:    ∀ a∈G,  ∃ a–1∈G:  aa–1 = a–1a = e .  

A group is abelian (or commutative) if  ab=ba,  ∀ a, b∈G .  

      A subgroup of G is a subset H⊆G that is itself a group under the group operation 
of G. Obviously, H must contain the identity element e of G as well as the inverse of 
any element of H.  

      A map φ : G→G΄ from a group G to a group G΄ is called a homomorphism if it 
preserves group multiplication. That is, for any a, b∈G, the images φ(a)∈G΄ and 
φ(b)∈G΄ satisfy the relation  

φ (a) φ (b) = φ (ab) . 

If the homomorphism φ is 1-1, it is called an isomorphism.  

      A real Lie algebra L of dimension n is an n-dimensional real vector space 

equipped with an internal Lie bracket operation [ , ] that satisfies the following prop-
erties:  

      1. Closure:      [a, b]∈L,  ∀ a, b∈L .   

      2. Linearity:             [κa+λb, c] = κ [a, c]  + λ [b, c]  (κ, λ∈R) .  

      3. Antisymmetry:     [a, b]  = – [b, a] .   Corollary:  [a, a]  = 0 .  

      4. Jacobi identity:    [a, [b, c]] + [b, [c, a]] + [c, [a, b]]  = 0 .  

A Lie algebra is abelian (or commutative) if  [a, b]  = 0 , ∀ a, b∈L .  

      A subalgebra S of L is a subspace of L that itself is a Lie algebra. The algebra S is 

an invariant subalgebra or ideal of L if [a, b]∈S,  ∀ a∈S, b∈L . A Lie algebra L is 

said to be simple if it contains no ideals other than itself; L is semisimple if it contains 

no Abelian ideals.  
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      Examples of Lie algebras:  

      1. The algebra of (m×m) matrices, with  [A, B]  = AB – BA  (commutator). Diagonal 
matrices constitute an Abelian subalgebra of this algebra.  

      2. The algebra of all vectors in 3-dimensional space, with [ , ]V W V W= ×
� � � �

(vector 
product). Vectors parallel to a given axis form an Abelian subalgebra of this algebra.  

      A map ψ : L→L΄ from a Lie algebra L to a Lie algebra L΄ is a homomorphism if it 

satisfies the following properties:  

ψ (κa+λb) = κ ψ (a) + λ ψ (b)  (κ, λ∈R) ; 

ψ ( [a, b]  ) = [ψ (a), ψ (b)] . 

If the map ψ is 1-1, it is called an isomorphism. Isomorphic Lie algebras L and L΄ 

have equal dimensions [1]:  dimL=dimL΄.  

      Let {τi  / i =1, 2, ... , n} be a basis of an n-dimensional Lie algebra L. Since the Lie 

bracket of any two basis elements τi and τj is an element of L, it must be a linear com-

bination of the {τk}. That is,  

[ , ] k
i j i j kCτ τ τ=                                                  (5.1) 

(sum on k from 1 to n). By the antisymmetry of the Lie bracket, k k
i j j iC C= − . The real 

constants k
i jC  are called structure constants of the Lie algebra L.  

      Proposition: Let ψ : L→L΄ be a Lie algebra isomorphism. If {τk} (k =1, 2, ... , n) is 

a basis of L, then {ψ (τk)} is a basis of L΄.  

      Proof: Being a basis of L, the {τk} are linearly independent; hence no linear com-

bination of them can be zero (unless, of course, all coefficients are trivially zero). 
Now, by the properties of ψ, a linear combination of the {τk} is mapped onto a linear 
combination of the {ψ (τk)} with the same coefficients. This means that the latter com-
bination cannot vanish, since it can only be zero if the former one is zero as well; that 
is, if all coefficients in the combination are zero. We conclude that the {ψ (τk)} are 
linearly independent and may serve as a basis for L΄.  

      Proposition: Isomorphic Lie algebras share common structure constants.  

      Proof : Let ψ : L→L΄ be a Lie algebra isomorphism and let τi , τj   be any two basis 

elements of L. Then, ψ(τi) and ψ(τj) are basis elements of L΄. By the properties of ψ,  

([ , ]) ( ) [ ( ), ( )] ( )k k
i j i j k i j i j kC Cψ τ τ ψ τ ψ τ ψ τ ψ τ= ⇒ = ;  q.e.d. 

      Roughly speaking, a Lie group is a group G whose elements depend on a number 
of parameters that can be varied in a continuous way. The dimension n of G is the 
number of real parameters parametrizing the elements of G. We assume that dimG=n 
and we let {λ1, λ

2, ... , λn} be the set of n parameters of G. We arrange the parameteriza-
tion of G so that the identity element of G corresponds to  λk=0  for all k=1,2,...,n.  
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      An important class of Lie groups consists of groups of (m×m) matrices pa-
rametrized by n parameters λk (k=1,2,...,n). Since an (m×m) matrix produces a linear 
transformation on an m-dimensional Euclidean space, matrix groups are called linear 
groups.  

      Lie groups are closely related to Lie algebras. Let G be an n-dimensional Lie 
group of (m×m) matrices A(λ1, λ2, ... , λn) ≡ A(λ) (where by λ we collectively denote the 
set of the n parameters λk ). We define the n (m×m) matrices τk by  

1 2 0

( )
| nk k

A
λ λ λ

λ
τ

λ = = = =

∂
=

∂ ⋯
                                         (5.2) 

or, in terms of matrix elements,  

1 2 0
( ) | n

pq
k pq k

A
λ λ λτ

λ = = = =

∂
=
∂ ⋯

 

(k=1,2,...,n ;  p, q=1,2,...,m). The n matrices τk are called infinitesimal operators (or 
generators) of the Lie group G and form the basis of an n-dimensional real Lie algebra 

L [1]. Thus [ , ] k
i j i j kCτ τ τ= , where the k

i jC  are real constants. A general element a of 

L is written as a linear combination of the τk : a=ξ 
k
τk  (sum on k), for real coefficients 

ξ 
k. [Note carefully that the matrix elements (τk)pq themselves are not required to be 

real numbers!]  

      Now, let  a=λk
 τk  be the general element of L . The general element A(λ) of the Lie 

group  G  parametrized by the  λ
k
  can then be written as [1]  

A (λ) =   e 
a  =  exp (λk

 τk)                                             (5.3) 

where  e 
a  is the matrix exponential function  

2

0

exp 1
! 2

l
a

l

a a
e a a

l

∞

=

≡ = = + + +∑ ⋯   

For infinitesimal values of the parameters  λ
k
  we may use the approximate expression  

e 
a ∼ 1+a  

so that  

        A (λ) ∼ 1 + λk
  τk                                                   (5.4) 

      The simplest example of a Lie group is a one-parameter continuous group, such as 
the group SO(2) of rotations on a plane. A rotation of a vector by an angle λ is repre-
sented by the (2×2) orthogonal matrix  

cos sin
( ) ( )

sin cos
A R

λ λ
λ λ

λ λ
− 

= ∈ 
 

. 

(Notice that  A 
tA=1  and  detA=1.) Then  



 CHAPTER 5 

 48 

sin cos

cos sin

dA

d

λ λ
λ λλ

− − 
=  − 

 

and, by Eq. (5.2), the single basis element  τ  of the associated Lie algebra is  

0

0 1
|

1 0

dA

d λτ
λ =

− 
= =  

 
 . 

According to (5.3),  A(λ)=e 
λτ  and, for infinitesimal λ,  A(λ) ∼1+λτ. Indeed, by setting  

sinλ=λ  and  cosλ=1, we have:  

1 1 0 0 1
( ) 1

1 0 1 1 0
A

λ
λ λ λτ

λ
− −     

= + = +     
     
≃ . 

      Another single-parameter Lie group is the unitary group U(1) with elements {e iλ} 
(λ∈R), which may be regarded as (1×1) matrices. Consider the map φ: U(1)→SO(2) 
defined by  

( ) cos sin

sin cos
ie λ λ λ

ϕ
λ λ

− 
=  
 

 . 

This map is a homomorphism, since  

( ) ( )

( ) ( )

( ) cos( ) sin( )

sin( ) cos( )

cos sin cos sin

sin cos sin cos

.

i i i

i i

e e e

e e

λ λ λ λ

λ λ

λ λ λ λ
ϕ ϕ

λ λ λ λ

λ λ λ λ
λ λ λ λ

ϕ ϕ

′ ′+

′

′ ′+ − + 
⋅ = =  ′ ′+ + 

′ ′− −   
=    ′ ′   

= ⋅

 

Moreover, it can be shown that the map φ is 1-1. Therefore, φ is a Lie-group isomor-
phism.  

      We finally remark that isomorphic Lie groups have isomorphic Lie algebras [1]. 
More generally, under certain restrictions, homomorphic Lie groups may have iso-
morphic Lie algebras. An example of homomorphic Lie groups (with isomorphic Lie 
algebras) is treated in Sec. 5.2.  

 

5.2  Homomorphism of the Lorentz Group with SL(2,C )  
 
Let L=SO(3,1)↑ be the restricted Lorentz group, which is represented by (4×4) real 
matrices Λ= [Λµν] with  detΛ=1  and  Λ

0
0 ≥ 1  (this group is also called the proper ortho-

chronous Lorentz group). Also, let SL(2,C) be the group of complex (2×2) matrices 
with unit determinant. Both L and SL(2,C) are six-parameter Lie groups (that is, the 
elements of each group depend on 6 real parameters). It is thus natural to ask whether 
a homomorphic relation between these two groups exists.  

 



 SPECIAL TOPICS 

 49  

      Both L and SL(2,C) are matrix transformation groups. We seek a correspondence  

A ∈ SL(2,C )  →  Λ(A) ∈ L 

such that Λ(AB)=Λ(A)Λ(B) for any A, B ∈ SL(2,C). We thus seek a homomorphic 
mapping associating a transformation produced by an SL(2,C) element A with a corre-
sponding Lorentz transformation (LT) produced by an element Λ(A)  of L. The latter 
transformation is of the form  

[x µ
΄ ]  =  Λ [x µ

 ]    ⇔    x µ
΄ =  Λµν  x 

ν
                                    (5.5) 

(µ=  0,1,2,3) and is such that  x µ
΄ xµ΄ = x µ

 xµ , where  xµ=gµν x 
ν
  and  x µ

 xµ =  gµν x
 µ

 x 
ν. 

With the standard metric  

g = [  gµν] = diag (1, –1, –1, –1)    (µ, ν =  0,1,2,3) 

we have:  

   (x 0
΄ ) 

2 – (x 1
΄ ) 

2 – (x 2
΄ ) 

2 – (x 3
΄ ) 

2 =  (x 0
 ) 

2 – (x 1
 ) 

2 – (x 2
 ) 

2 – (x 3
 ) 

2             (5.6) 

      Here is the plan: We seek a class of complex (2×2) matrices X, depending on 4 
real parameters – namely, the spacetime coordinates x 

µ – and a properly defined ac-
tion of  A ∈ SL(2,C) on X to produce a new matrix X ΄, the parameters x µ

΄ of which are 
such that the Lorentz invariance condition (5.6) is satisfied. By this process an 
SL(2,C) transformation will be related to a LT.  

      A candidate class of 4-parameter complex matrices X is the set of (2×2) hermitian 
(self-adjoint) matrices. These form a linear space with 4-dimensional basis {σµ}, 
where  σ0=1 (unit matrix) and where  σi  (i= 1,2,3) are the Pauli matrices:  

1 2 3

0 1 0 1 0
, ,

1 0 0 0 1

i

i
σ σ σ

−     
= = =     −     

 . 

A general hermitian matrix X can be written as  

0 3 1 2
0 1 2 3

1 2 3 1 2 0 3
1

x x x i x
X x x x x x

x i x x x

µ
µσ σ σ σ

 + −
= = + + + =  

+ −  
              (5.7) 

[Notice that †X X= , where † *( )tX X= .] The determinant of X is  

det X = (x 0
 ) 

2 – (x 1
 ) 

2 – (x 2
 ) 

2 – (x 3
 ) 

2 =   x µ
 xµ                          (5.8) 

      For a given  A ∈ SL(2,C), consider now the matrix transformation  

         †X AXA′ =                                                     (5.9) 

The matrix X ΄ is again hermitian: †( )X X′ ′= . (Exercise: Show this by using the gen-

eral matrix property † † † †
1 2 3 3 2 1( )M M M M M M= .) Thus X ΄ will be of the form (5.7):  
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X ΄ = x µ
΄ σµ                                                    (5.10) 

and, according to (5.8),  

det X ΄ = (x 0
΄ ) 

2 – (x 1
΄ ) 

2 – (x 2
΄ ) 

2 – (x 3
΄ ) 

2 =   x µ
΄ xµ΄ . 

But, by (5.9),  det X ΄=  det X,  given that  det A=1. This means that  x µ
΄ xµ΄ = x µ

 xµ , 
which implies that the transformation from the  x 

µ  to the  x µ
΄  is a LT.  

      In conclusion: The matrix transformation (5.9) induces a transformation on the 
coefficients  x 

µ of the  σµ  in (5.7), which is equivalent to a LT (5.5):  [x µ
΄ ]  =  Λ(A) [x µ

 ], 
where the transformation matrix Λ depends on the particular SL(2,C) matrix A.  

      From (5.9) and by using (5.7), (5.10) and (5.5), we have:  

† †x Ax A x Ax Aµ µ µ ν ν
µ µ ν µ νσ σ σ σ′ = ⇒ Λ = . 

In order for this to be valid independently of the values of the xν, the following matrix 
relation must be satisfied:  

      †A Aµ
ν µ νσ σΛ =     or    †[ ( )]A A Aµ

ν µ νσ σΛ =                        (5.11) 

where we have emphasized that the (4×4) matrix Λ= [Λµν] is dependent upon the 
choice of the (2×2) matrix A.  

      Let us now show that the matrices Λ of the Lorentz group L are a representation of 
the group SL(2,C), i.e., that the correspondence  SL(2,C) → L is a homomorphism. In-
deed, let  A1 , A2 ∈ SL(2,C) ⇒ A1 A2 ∈ SL(2,C) . Then, by using (5.11),  

( )
( )

† † †
1 2 1 2 1 2 1 2 2 1

†
1 2 1 2 1

1 2

[ ( )] ( ) ( )

[ ( )] [ ( )] [ ( )]

[ ( ) ( )]

A A A A A A A A A A

A A A A A

A A

µ
ν µ ν ν

ρ ρ µ
ν ρ ν ρ µ

µ
ν µ

σ σ σ

σ σ

σ

Λ = =

= Λ = Λ Λ

= Λ Λ

 

and, given that the matrices  σµ  are linearly independent,  

1 2 1 2 1 2 1 2[ ( )] [ ( ) ( )] ( ) ( ) ( )A A A A A A A Aµ µ
ν νΛ = Λ Λ ⇒ Λ = Λ Λ  ,   q.e.d. 

      We now seek an explicit expression for  [Λ(A)]  
µ
ν . We have:  

( ) ( )

† †

†( ) .

A A A A

tr tr tr A A

µ µ
ν µ ν ν λ µ λ ν

µ µ
ν λ µ ν λ µ λ ν

σ σ σ σ σ σ

σ σ σ σ σ σ

Λ = ⇒ Λ = ⇒

Λ =Λ =
 

By the properties of the Pauli matrices,  tr  (σλ σµ)=2δλµ . So,  

Λ
µ
ν tr  (σλ σµ) =  2 Λ

µ
ν δλµ =  2 Λ

λ
ν  

and hence  

( )†2 tr A Aλ
ν λ νσ σΛ =    or   ( )†1

2
tr A Aµ

ν µ νσ σΛ = . 
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To make this expression covariant-looking, we introduce the matrices µ µσ σ≡ɶ  and 

write, finally,  

           ( )†1
[ ( )]

2
A tr A Aµ µ

ν νσ σΛ = ɶ                                      (5.12)     

We notice that  Λ(A)=Λ(–A), which means that the relation SL(2,C) → L is a two-to-
one homomorphism. We say that SL(2,C) constitutes a two-valued, 2-dimensional rep-
resentation of the restricted Lorentz group L. Both groups are 6-parameter Lie groups 
and have isomorphic 6-dimensional real Lie algebras [1].  

      An analogous homomorphism exists between the subgroups SU(2) and SO(3) of 
SL(2,C) and L, respectively, where SU(2) is the group of (2×2) unitary matrices with 
unit determinant, while SO(3) is the group of (3×3) real orthogonal matrices with unit 
determinant [1]. Both SU(2) and SO(3) are 3-parameter Lie groups and their respec-
tive Lie algebras are 3-dimensional and isomorphic to each other.  

 

5.3  Flat and Curved Spaces  
 
Consider an n-dimensional space S with coordinates (x1, ... , xn) ≡ (xk

 ). Let (xi
 ) and 

(xi+dxi
 ) be two neighboring points P and P΄ of S, and let ds denote the distance be-

tween these points as measured on S. Since the path connecting P and P΄ is infinitesi-
mal, we may approximately regard this path as an infinitesimal straight-line segment. 
Moreover, we assume that the value of ds is invariant under any change of coordinates 
(xi

 )→ (xi
΄ ) on S. Finally, we assume that an n2- component field  gij  (x) can be defined 

on S (where by x we collectively denote the xk
 ) such that  

      (a)  det g ≠ 0  at all points  P≡ (xk
 ) of S , where  g ≡ [gij  (x)] is an (n×n) matrix;  

      (b)  the squared distance  ds2 (infinitesimal metric form) can be expressed as  

ds2
 = gij  (x) dxi  dx 

j                                             (5.13) 

The space S is then said to be a Riemannian space. If a global coordinate system (xk
 ) 

exists on S such that all matrix elements gij are constants (i.e., independent of the xk
 ), 

the Riemannian space S is a flat space; if no such coordinate system exists, the space S 
is curved.  

      In tensor analysis [2,3] the field gij  (x) is called the metric tensor. Without loss of 
generality this tensor may be assumed symmetric:  gij  (x)=gji  (x). Indeed, assume that  

ds2
 = hij  (x) dxi  dx 

j 

where the  hij  (x) have no particular symmetry. Then,  

ds2
 = (hij  dxi  dx 

j + hji  dx 
j  dx 

i ) / 2 = [(hij
 + hji) / 2] dxi  dx 

j ≡ gij  dxi  dx 
j  

where  
gij  = gji  =  (hij

 + hji) / 2 . 
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      If  gij  (x)=0  for  i≠j  , i.e., if the matrix g is diagonal, the coordinate system (xk
 ) is an 

orthogonal coordinate system. In particular, if  gij  (x)=δij   so that g is the (n×n) unit ma-
trix, the coordinate system (xk

 ) is a Cartesian system and the flat space S is a Euclid-
ean space. Equation (5.13) then takes the form  

ds2
 = (dx1)2 + (dx2)2 + … + (dxn)2                                   (5.14) 

and expresses the generalized Pythagorean theorem in n dimensions.  

      Given that ds2 >0, an obvious requirement for the matrix g of the metric of S is 
that gij >0 for all i, j. This condition is relaxed in Special Relativity, however, where 
the metric of 4-dimensional flat spacetime (Minkowski space) is represented by the 
(4×4) diagonal matrix  

g = diag (1, –1, –1, –1) . 

Note that ds2
 may be positive, negative or zero in this case.  

      Let us see some examples of metric structures:  

      1. Consider a 2-dimensional space S with coordinates (r,θ) and infinitesimal met-
ric form  

ds2
 = dr2 + r2 dθ 2 . 

Define new coordinates (x, y) by  

x =  r  cos θ  ,    y =  r  sin θ . 

Then,  dx =  cosθ dr – r   sinθ dθ ,  dy =  sinθ dr +  r  cosθ dθ ,  and  

(dx)2 + (dy)2 = dr2 + r2 dθ 2   (show this). 

Therefore  
ds2

 = (dx)2 + (dy)2 , 

which is of the Euclidean form (5.14). A coordinate transformation thus exists that 
reduces the given metric to that of a plane surface, which surface is a 2-dimensional 
flat space. In fact, (r,θ) are polar coordinates on the plane while (x, y) are the usual 
Cartesian coordinates.  

      2. Let S be a spherical surface of radius a , which is again a 2-dimensional space. 
In spherical coordinates (r, θ, φ) and for constant  r=a  , the metric form on S is  

ds2
 = a2

 (dθ 2 + sin2
θ

 dφ 2 ) . 

The matrix g representing the metric on S is  

2

2 2

0
[ ( , )]

0 sin
ij

a
g g

a
θ ϕ

θ

 
= =  

  
 . 

As can be shown [3] no coordinate transformation (θ, φ)→(x1, x2) on S can reduce ds2 
to the form (5.13) with all  gij   constant. Thus S is a curved space.  
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      3. Let S be a cylindrical surface of radius a , which is another example of a 2-
dimensional space. The axis of the cylinder coincides with the z-axis of a cylindrical 
system of coordinates (ρ, φ, z) and, for constant  ρ=a  , the metric form on S is  

ds2
 = a2

 dφ 2 + dz 2  

so that  
2 0

[ ( , )]
0 1

ij
a

g g zϕ
 

= =  
 

 . 

Since g is a constant matrix, the surface S is a flat space. Moreover, one may define 
new coordinates  (x1, x2) ≡ (aφ, z)  on S, so that  

ds2
 =   (dx1)2 + (dx2)2 

which is of the Euclidean form (5.14). We notice that a cylindrical surface looks lo-
cally like a plane, although globally the two surfaces have different topological prop-
erties. This local equivalence can be visualized as follows: One may imagine cutting 
the cylindrical surface S along a line parallel to the z-axis and then developing the sur-
face on a plane. This can be done without stretching the surface (if the latter is as-
sumed elastic), so that all lengths on S will be preserved after development on the 
plane. The coordinates (x1, x2) on S will become Cartesian coordinates on the plane.  

      On the contrary, no such development on a plane is possible for any section of a 
spherical surface S without stretching the surface, i.e., without changing lengths on S. 
Geometrically this reflects the fact that one cannot define Cartesian coordinates on a 
sphere, which is a genuinely curved space (in contrast to a cylindrical surface which is 
intrinsically flat).  

 

5.4  On the Independence of Maxwell’s Equations  
 
The Maxwell equations for the electromagnetic (e/m) field are written, in differential 
form,  

      0

0 0 0

( ) ( )

( ) 0 ( )

B
a E c E

t

E
b B d B J

t

ρ
ε

µ ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�
� � � �

�
� � � � �

                   (5.15) 

By taking the div of (5.15d) and by using (5.15a) we find the equation of continuity 
that expresses conservation of charge:  

          0J
t

ρ∂
∇ ⋅ + =

∂

� �
                                                 (5.16) 

Relation (5.16) places a severe restriction on the charge and current densities that ap-
pear on the right-hand sides of (5.15a) and (5.15d). A different sort of differentiation 
of the Maxwell system (5.15), by taking the rot of (c) and (d), leads to separate wave 
equations for the electric and the magnetic field.  
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      In most textbooks on electromagnetism the Maxwell equations (5.15) are treated 
as a consistent set of four independent partial differential equations (PDEs). A number 
of authors, however, have doubted the independence of this system. Specifically, they 
argue that (5.15a) and (5.15b) – the equations for the div of the e/m field, expressing 
Gauss’ law for the corresponding fields – are redundant since they “may be derived” 
from (5.15c) and (5.15d) in combination with the equation of continuity (5.16). If this 
is true, Coulomb’s law – the most important experimental law of electricity – loses its 
status as an independent law and is reduced to a derivative theorem. The same can be 
said with regard to the non-existence of magnetic poles in Nature. In this section we 
present some recent ideas in support of the view that the Maxwell equations do form a 
system of independent PDEs [4].  

      To begin with, let us recall that a part of the “redundant” div equations is con-
tained in the covariant equation  ∂µ F µν = µ0 J

 ν, while the other part is contained in the 
equation  ∂µ *F µν

 = 0. Thus, by discarding Eqs. (5.15a) and (5.15b) we spoil the co-
variant formulation of Maxwell’s equations! But there is more to be said.  

      As far as we know, the first who doubted the independent status of the two Gauss’ 
laws in electrodynamics was Julius Adams Stratton in his 1941 famous (and, admit-
tedly, very attractive) book [5]. His reasoning may be described as follows:  

      By taking the div of (5.15c), the left-hand side vanishes identically while on the 
right-hand side we may change the order of differentiation with respect to space and 
time variables. The result is:  

       ( ) 0B
t

∂
∇ ⋅ =

∂

� �
                                                (5.17) 

On the other hand, by taking the div of (5.15d) and by using the equation of continuity 
(5.16), we find that  

              
0

0E
t

ρ
ε

 ∂
∇ ⋅ − = ∂  

� �
                                            (5.18) 

And the line of argument continues as follows: According to (5.17) and (5.18) the 

quantities B∇⋅
� �

 and ( 0/E ρ ε∇⋅ −
� �

) are constant in time at every point (x, y, z) of the 
region Ω of space that concerns us. If we now assume that there has been a period of 
time during which no e/m field existed in the region Ω, then, in that period,  

                        0B∇⋅ =
� �

    and    0/ 0E ρ ε∇⋅ − =
� �

                                (5.19) 

identically. Later on, although an e/m field did appear in Ω, the left-hand sides in 
(5.19) continued to vanish everywhere within this region since, as we said above, 
those quantities are time-constant at every point of Ω. Thus, by the equations for the 
rot of the e/m field and by the principle of conservation of charge – the status of 
which was elevated from derivative theorem to fundamental law of the theory – we 
derived Eqs. (5.19) (valid for all t), which are precisely the first two Maxwell equa-
tions (5.15a) and (5.15b)!  

      According to this reasoning, the electromagnetic theory is not based on four inde-
pendent Maxwell equations but rather on three independent equations only; namely, 
the Faraday-Henry law (5.15c), the Ampère–Maxwell law (5.15d), and the principle 
of conservation of charge (5.16).  
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      What makes this view questionable is the assumption that, for every region Ω of 
space there exists some period of time during which the e/m field in Ω vanishes. This 
hypothesis is arbitrary and is not dictated by the theory itself. (It is likely that no such 
region exists in the Universe!) Therefore, the argument that led from relations (5.17) 
and (5.18) to relations (5.19) is not convincing since it was based on an arbitrary and, 
in a sense, artificial initial condition: that the e/m field was zero at some time t=0 and 
before.  

      Let us assume for the sake of argument, however, that there exists a region Ω 
within which the e/m field is zero for t < t0 and nonzero for t > t0 . The critical issue is 
what happens at t=t0 ; specifically, whether the functions expressing the e/m field are 
continuous at that moment. If they indeed are, the field starts from zero and gradually 
increases to nonzero values; thus, the line of reasoning that led from (5.17) and (5.18) 
to (5.19) is acceptable. There are physical situations, however, where the appearance 
of an e/m field is abrupt. For instance, the moment we connect the ends of a metal 
wire to a battery, an electric field suddenly appears in the interior of the wire and a 
magnetic field appears in the exterior. An even more “dramatic” example is the phe-
nomenon of pair production in particle-physics experiments, where a charged parti-
cle–antiparticle pair is created and a nonzero e/m field appears at that moment. In 
such cases the e/m field is non-continuous at t=t0 and its time derivative is not defined 
at this instant. Therefore, the line of reasoning that leads from (5.17) and (5.18) to 
(5.19) again collapses.  

      Note also a circular reasoning in Stratton’s approach. It is assumed that, in a re-
gion Ω where no e/m field exists, the second of relations (5.19) is valid identically. 
This means that the vanishing of the electric field in Ω automatically implies the ab-
sence of electric charge in that region. This fact, however, follows from Gauss’ law 
(5.15a); thus it may not be used a priori as a tool for proving the law itself !  

      In general, conservation laws emerge as consequences of the fundamental equa-
tions of a theory. In particular, conservation of charge, expressed by the continuity 
equation (5.16), is derived by differentiating the Maxwell system (5.15) and, as is well 
known, in the process of differentiation of a system of PDEs some part of the 
information carried by the system is lost. Therefore, the equation of continuity (5.16) 
cannot be regarded as more fundamental than any equation in the system (5.15) and 
hence may not replace any equation in this system.  

      It is thus our view that the Maxwell equations form a system of four independent 
PDEs that express respective laws of Nature. Moreover, the self-consistency of this 
system imposes two conditions that physically express the conservation of charge and 
the wave behavior of the time-dependent e/m field. We now re-examine this issue 
from the more formal point of view of Bäcklund transformations (BTs) [6-8]. To be-
gin with, let us see the simplest, perhaps, example of a BT.  

      The Cauchy-Riemann relations of complex analysis,  

                  ux = vy    (a)        uy = – vx    (b)                                   (5.20) 

(where subscripts indicate partial differentiations with respect to the indicated vari-
ables) constitute a BT for the Laplace equation,  

                wxx + wyy = 0                                                (5.21) 
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Let us explain this: Suppose we want to solve the system (5.20) for u, for a given 
choice of the function v(x,y). To see if the PDEs (5.20a) and (5.20b) match for solu-
tion for u, we must compare them in some way. We thus differentiate (5.20a) with 
respect to y and (5.20b) with respect to x, and equate the mixed derivatives of u. That 
is, we apply the integrability condition (or consistency condition) (ux)y=  (uy)x . In this 
way we eliminate the variable u and we find a condition that must be obeyed by 
v(x,y):  

        vxx + vyy = 0 .  

Similarly, by using the integrability condition (vx)y=  (vy)x to eliminate v from the sys-
tem (5.20), we find the necessary condition in order that this system be integrable for 
v, for a given function u(x,y):  

        uxx + uyy = 0 .  

We conclude that the integrability of the system (5.20) with respect to either variable 
requires that the other variable satisfy the Laplace equation (5.21).  

      Let now v0(x,y) be a known solution of the Laplace equation (5.21). Substituting 
v=v0 in the system (5.20) we can integrate this system with respect to u. It is not hard 
to show (by eliminating v0 from the system) that the solution u will also satisfy the 
Laplace equation. As an example, by choosing the solution v0(x,y)=xy of (5.21) we 
find a new solution  u(x,y)=  (x

2 –y2)/2 +C .  

      Generally speaking, a Bäcklund transformation is a system of PDEs connecting 
two functions (say, u and v) in such a way that the consistency of the system requires 
that u and v independently satisfy the respective, higher-order PDEs F[u]=0 and 
G[v]=0. Analytically, in order that the system be integrable for u, the function v must 
be a solution of G[v]=0; conversely, in order that the system be integrable for v, the 
function u must be a solution of F[u]=0. If F and G happen to be functionally identi-
cal, as in the example given above, the BT is said to be an auto-Bäcklund transforma-
tion.  

      Classically, BTs are useful tools for finding solutions of nonlinear PDEs. In [6-8], 
however, we suggested that BTs may also be useful for solving linear systems of 
PDEs. The prototype example that we used was the Maxwell equations in empty 
space:  

          

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�
� � � �

�
� � � �

                          (5.22) 

Here we have a system of four PDEs for two vector fields that are functions of the 
spacetime coordinates (x, y, z, t). We would like to find the integrability conditions 
necessary for self-consistency of the system (5.22). To this end, we try to uncouple 
the system to find separate second-order PDEs for E

�
 and B

�
, the PDE for each field 

being a necessary condition in order that the system (5.22) be integrable for the other 
field. This uncoupling, which eliminates either field (electric or magnetic) in favor of 
the other, is achieved by properly differentiating the system equations and by using 
suitable vector identities, in a manner similar in spirit to that which took us from the 
first-order Cauchy-Riemann system (5.20) to the separate second-order Laplace equa-
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tions (5.21) for u and v. As can be shown, the only nontrivial integrability conditions 
for the system (5.22) are those obtained by using the vector identities  

2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

   
and   

2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

 . 

By these we obtain separate wave equations for the electric and the magnetic field:  

2
2

0 0 2
0

E
E

t
ε µ

∂
∇ − =

∂

�
�

 , 

2
2

0 0 2
0

B
B

t
ε µ

∂
∇ − =

∂

�
�

 . 

We conclude that the Maxwell system (5.22) in empty space is a BT relating the e/m 
wave equations for the electric and the magnetic field, in the sense that the wave 
equation for each field is an integrability condition for solution of the system (5.22) in 
terms of the other field.  

      The case of the full Maxwell equations (5.15) is more complex due to the presence 

of the source terms , Jρ
�

 in the non-homogeneous equations (5.15a) and (5.15d). As 
it turns out, the self-consistency of the BT (5.15) imposes conditions on the terms of 
non-homogeneity as well as on the fields themselves. The latter conditions are the 
non-homogeneous wave equations  

2
2

0 0 02
0

1E J
E

t t
ε µ ρ µ

ε
∂ ∂

∇ − = ∇ +
∂ ∂

� �
� �

 , 

2
2

0 0 02

B
B J

t
ε µ µ

∂
∇ − = − ∇×

∂

�
� � �

 

while the condition regarding the source terms alone is precisely the continuity equa-
tion (5.16) expressing conservation of charge.  

      In summary: From a mathematical perspective, the Maxwell system (5.15) may be 
viewed as a Bäcklund transformation (BT) the integrability conditions of which (i.e., 
the necessary conditions for self-consistency of the system) yield separate (generally 
non-homogeneous) wave equations for the electric and the magnetic field, as well as 
the equation of continuity (5.16). These integrability conditions are derived by differ-
entiating the BT (5.15) in different ways, thus they carry less information than the BT 
itself. Consequently, none of the integrability conditions may replace any equation in 
the system (5.15). In particular, the continuity equation (5.16) cannot be a partial sub-
stitute for Gauss’ law (5.15a).  
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