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PREFACE

In the world around us, as well as in the astsnmetryis a property that enhances
beauty. In Physics, however, symmetry is not justadter of aesthetics! Indeed, it is a
dynamical aspect of most (if not all) physical thes, where it is realized asvari-
anceunder certain sets of transformations. In somes#se requirement of symme-
try leads to physical principles such as consesmaaws, as Emmy Noether’s beauti-
ful theorem has shown. Also, tkhevariance(form-invariance) of physical laws upon
passing from one inertial frame of reference totlamoopens the gate to high-energy
physics. The main aspects of this latter kind ahsetry, which is at the heart of
Special RelativitfSR), is the subject of this short book.

Symmetry transformations constitute the nirogtortant topic in group theory. So,
a proper study of SR should include at least ametgary study of theorentz group
After the basic “philosophical” ideas regarding 8Rve been briefly discussed in
Chapter 1, the Lorentz group is presented in CBap.its own right, as a mathemati-
cal entity not yet directly associated with SR. Toanection of this group with rela-
tivistic mechanics is the subject of Chap. 3, widleap. 4 deals with Lorentz covari-
ance in Maxwell’s theory of electrodynamics.

Several special topics are discussed in Chapection 5.1 serves as a brief intro-
duction to Lie groups and Lie algebras, some kndgdeof which is a prerequisite for
Chap. 2. Section 5.2 focuses on the Lorentz groupis homomorphism with the
group SL(2,C), while Sec. 5.3 discusses the concept of theienietrflat and curved
(Riemannian) spaces. Section 5.4 presents somigvedtarecently published ideas
supporting the view that Maxwell's equations, sesna Backlund transformation,
form a system of independent equations. This inadd@ece is particularly significant
with regard to the coherence of the covariant fdatnon of the Maxwell system.

To make the book suitable for self-studypatiblems at the end of Chaps. 3 and 4
are accompanied by detailed solutions.

The reader is assumed to have some acquegntaith SR at the basic (under-
graduate) level. Knowledge of basic electrodynanmscalso necessary at the level,
e.g., of this author’s textbodintroduction to Electromagnetic Theory and the Bhy
ics of Conducting Solids{Springer, 2020). In fact, the present book maydesid-
ered as a supplement to the aforementioned ongif albta somewhat more advanced
level. Finally, some previous knowledge of groupdty may be helpful but is not
required for reading this book, given that, as nogred above, the necessary ideas
regarding groups and algebras are presented irbSec.

Costas J. Papachristou
July 2025
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CHAPTER 1

OVERVIEW OF THE BASIC IDEAS

1.1 Why Relativity?

Einstein’sSpecial Theory of RelativifsR) assumes the existence of an underlying 4-
dimensionalflat spacetime — i.e., a spacetime admittinglabally constant (albeit
non-Euclidean) metric — which has a preferred ctdssames of reference, namely,
inertial frames (This is analogous to the existence of globaké&ssan systems of co-
ordinates in a standard Euclidean space.) Accordirtigespecial(or restricted prin-
ciple of relativity all inertial frames are equivalent to each othéth regard to
describing physical phenomena. This suggests tHaiphysical laws must be
expressed iwovariant formsi.e., in forms that are invariant upon passirgrfrone
inertial frame to another. We are thus in seardwofthings:

@) the proper coordinate transformations that relaeial frames to one another;

©) the proper mathematical statements of physioak lao that these laws be
form-invariant under the aforementioned transforomet

In classical mechanics, invariance of meateraws is established by means of
the Galilean transformation(GT). The GT, however, fails to satisfy the inzate
requirement for Maxwell's equations of electromaggme. In particular, the value of
the speed of light, which is a direct consequeri¢hase equations, is not an invariant
quantity under the GT. It is found experimentalipwever, that the speed of ligist
an invariant, the same for all inertial observdisis suggests that either Maxwell’s
equations are not correct — thus need to be cedectorder to comply with the GT —
or the GT itself is not correct and a new transfation is needed that makes the
Maxwell equations frame-invariant and, in particuleats the speed of light as a
constant of the theory, independent of any padicinthme of reference.

Einstein chose to accept the second poggibilihich eventually leads to the re-
placement of the GT with tHeorentz transformatiorfLT) and to the requirement that
all physical laws be expressible in Lorentz-invariéor covariant) forms. The Max-
well equations are already consistent with thisinegment, by construction of the LT.
The laws of mechanics, however, which are Galilieaariant, need to be re-
formulated in order to comply with the LT. For exaley a redefinition of momentum
in relativistic form is required in order for th@w of conservation of momentum to be
Lorentz-invariant.

As for the LT itself, it is defined aslmear transformation that preserves the
value of the elementary spacetime interval

ds?= c?dt? — d¥ — dy? — dZ

where &, Y, z t) are the spacetime coordinates and wieethe (Lorentz-invariant)
speed of light in empty space. In particular, ésf = 0, the invariance ofls’ under a
LT is equivalent to the invariance of the speedightt. Moreover, the invariant space-
time intervalds® endows the spacetime of SR with a metric, repteseny the diago-
nal (4<4) matrix g=[g.] = diag(1, -1, -1, —1)whereu,v=0,1,2,3.
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Since the metric elemergs are constant quantities having the same valual at
spacetime points, the underlying spacetime ig$le¢ Sec. 5.3). This is true as long as
gravity may be ignored. In the presence of grathty flat spacetime of SR must be
replaced by theurvedspacetime ofseneral Relativity(GR). In GR the notion of a
global inertial frame of reference has no meanimg) thegeneral principle of relativ-
ity requires invariance of physical laws under allcgpiane transformations (not just a
restricted class such as the LTs, which are spadifi associated with the inertial
frames of SR).

1.2 Inertial Frames of Reference

In SR, as in classical mechanics,ia@rtial frame of references any system of coor-
dinates or axes — say, Y, z) — relative to which #ree patrticle (i.e., a particle subject
to no interactions) remains at rest or moves umfpr(that is, with constant velocity
and hence with no acceleration). An observer usingnertial frame (relative to
which she is at rest) is called arertial observerand is herself subject to no net ex-
ternal interaction.

Let us look at this last statement in moreiteConsider two observe®; andO;
located at the corresponding origins of two inéfftames. Consider also a free parti-
cle P. ThenP will move with constant velocity relative to both andO, . It follows
that O; andO, will move uniformly relative to each other. In peular, since the ob-
serverO, is moving with constant velocity relative to aritial frame, she must be a
free “particle”. By the same token, obser@rwill also be a free “particle” given that
he moves uniformly relative to the frame ©f . As a corollary, two free patrticles
move with constant velocities (are not acceleratretative to each other. Classically,
this is one way to express Newton'’s first law ofcimanics [1].

Time in Galilean relativity has a universataning, independent of any particular
observer. On the contrary, in SR time is relatind depends on the motion of one
observer relative to another. Thus the spaggZ) of classical mechanics is enhanced
to a 4-dimensional spacetime with coordinatey, g, t) or, for the purpose of dimen-
sional homogeneityXx(y, z, ct). The coordinatesx(y, z) correspond to the spatial axes
of the frame of reference used by an inertial olegewhilet is the time of occurrence
of events as determined by that observer.

The trajectory of a particle in spacetimea#ied theworldline of the particle. This
line describes the position of the particle asrection of time and is mathematically
expressed by the functiongt), y(t), z(t). Geometrically, a worldline is the plot of po-
sition versus time in a coordinate systeqry,z, ct). The graph of the system of equa-
tions {x=x(t), y=y(t), z=z(t)} in a system of axex(y, z ct) is a curve in 4-dimensional
spacetime.

A free particle moves with constant velodityany inertial frame. The coordinates
(x,y,2) of the particle are therefore linear functiong ahd the particle’s worldline is
a straightline. An inertial frame may thus be defined aystesm of spacetime coor-
dinates (or axes) in which the worldlines of fregtigles are straight lines.

The Lorentz transformation (LT), which tramshs both space and time coordi-
nates of a particle, ensures that uniform motioone inertial frame transforms into
uniform motion in any other inertial frame. Sincaifarm motions are described
geometrically by straight worldlines, it followsatha LT transforms straight worldli-
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nes in a spacetime coordinate syste&fy, g, ct) into straight lines in some other coor-
dinate systemx(,y’, z’, ct”). This requires the LT connecting the two syst@mso-
ordinates to be Bnear transformation [2].

free particle
light ray light ray

7[/4(‘ wﬂ'/4
(0]

Fig. 1.1. Worldlines of two light rays and a fregrticle; the former define a 2-dimensional lighheo

The spacetime diagram in Fig. 1.1 shows tbddhnes of two light rays and a
free particle. We sex®=ct and we assume that both the particle and theriiyls are
traveling along the-axis (the two rays in opposite directions), so thahdz are con-
stant. By making this choice we effectively redtice spacetime dimensions from 4
to 2.

The velocityv=dx/dt of a free patrticle is constant, wheremay be positive or
negative in accordance with the direction of matiBar a light rayy=dx/dt= £ c. In
either case,

cotd =ﬁ dx i

& d(c) ¢

whered is the angle formed by the worldline and #axis. For a light ray, cét +1
= 6=nl4 or H=3x/4. For a free particldy|<c = |coV|<1l = #/4<H<3rl4.

The latter result, which follows from the Wiehown fact that no speed in Nature
can exceed the speed of light, has the followiranugdrical interpretation: The world-
line of a free particle — and, indeed, the worldlofany massive particle — must lie in
the interior of thdight coneformed by the possible worldlines of a light ragé Fig.
1.1). Of course, for aaccelerating(thus non-free) particle the angles not constant
(sincev is not constant) and the associated worldline aabe a straight line (it is
generally curved). At all points of the worldlinegwever, the tangent line must be
such that its anglé with thex-axis conforms to the conditioti4 < < 3z/4 . This re-
sult can be generalized for light cones in higlparcetime dimensions.

References

1. C. J. Papachristodntroduction to Mechanics of Particles and Systed®pringer,
2020).

2. W. Rindler,Relativity: Special, General and Cosmologi¢aixford University Press,
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CHAPTER 2

THE LORENTZ GROUP

2.1 The GroupSO(3,1)t

In this chapter we discuss the Lorentz group iows right, independently of its role
in Relativity. Before we proceed, let us note ttiegt reader who is not familiar with
group theory — and, in particular, with Lie grougp®l Lie algebras — may find it use-
ful to consult Sec. 5.1. Additional material on ttmrentz group can be found in Sec.
5.2.

Leta be a vector irR*, with components” (u=1,2,3,4). This vector may be rep-
resented by a §4l) matrix (column vector)

I\Jml—‘

a=[a"] =

Lo

Thena' (trar 1ISpose od) is the row vector
a' = [al 8.2 8.3 a“} .

We introduce the symmetricd)) matrix

1000
010 0
= = = diag1,1,1,-1 2.1
9=lg.l=1y 7 1 o s ) (2.1)
000 -1

whereu,v=1,2,3,4and where we have used a standard notation foodlggnatrices.
Given two vectors andb in R?, we define thescalar product(a, b) of a andb by the
relation

@,b)=a'gb (2.2)

In terms of components, and by using the familiansmation convention of summing
from 1 to 4 over repeated up and down indices,amegite (2.2) as

6' b): a,ug vbv =g va,ubvz albl + a2b2 + a3b3_ a4b4 (23)
Ju u

As a consequence of the symmetrygofi.e., sinceg'=g < 0w= 0w , the scalar prod-
uct is symmetric:d,b) = (b,a), as is obvious from the right-hand-side of (2.3).
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Now, letA =[A”,] be a constant () matrix with real element&”, (u,v=1,2,3,4).
For any vectora=[a"']eR* we consider the homogeneous linear transformation

a—s>a=Aa < a''=Aa" (2.4)

We assume thad is such that, for any vectoa beR* the transformation (2.4)
leaves the scalar produet i) invariant. That is, by (2.2) and (2.4),

(a,b)= (Aa,Ab)= (a,b) = a'(A'gA)b=a'gb.
For this to be true for all, b we must have
ANgA=g < ANguA,=0, (2.5)

with the understanding that",= (A");”.

We notice thatdet(A'gA) = detg = (detA)? =1. This can be satisfied in two
ways:

detA = +1 = the transformation (2.4) ispopertransformation; or

detA = -1 = the transformation (2.4) is ampropertransformation.
Now, assume that all transformation matricean be obtained from the identity
transformationA=1 < A", = J,, by continuously varying a certain set of parameters
on which these matrices depend. Clearly, qumigper transformations can be con-
nected to the identity in this fashion. These tfmmsations form aroup[1,2] named

S(3,1), in accordance with the number of plus andusisigns in the diagonal ele-
ments of the matrig in (2.1).

To verify the group property &Q(3,1), let us note the following:

1. The set 08(3,1) matrices is closed under the operation ofimnatultiplica-
tion. Indeed, let\1, A, €S(3,1) and calA=A3A,. Both A; andA; satisfy the condi-
tion (2.5) and we must show that the same is oué f We have:

A'gA = (A1A2)"'g (A1A2) = (A2) ' [(A1)'g Al A2= (A2)'gA2=g.

Moreover, def\= det(A1A2) = (detA;) (detAy) = (+1)(+1) = +1.

2. IfAeSQQ3,1), thenA™eSQ3,1) also. Indeed, by using (2.5) and the fact tha
g =g, we have:

(A'gA) =g => Ag(A)'=g = gA)'=Ag =
(AH'=gAg = (A)'g=gA = (A)'gAt=g.

Moreover, detA™)= (detA) *=1.

However, not all elements of the grdaf(3,1) can be connected to the identity
A=1in a continuous way. Indeed, an additional camadimust be satisfied. Setting
J=p=4 in (2.5), we have:

NaguwA'4=Qaa=-1
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from which we get
2 3. \2
(ST YO
i=1
(show this). This suggests that

IA%4|21 = A% =1 or A%<-1.

Since A% = 1 for the identity transformation, connectivity withe identity requires
that allpropertransformations hava?; > 1.

It can be shown [2] that the set of propansformations\ having the additional
propertyA*; > 1 is asubgroupof SQ3,1), called theestricted Lorentz groupnd de-
notedSQ3,1)T. For the purpose of notational simplicity, in wiallows we will de-
note this group bi..

2.2 The Lie Algebra of the Lorentz Group

The restricted Lorentz groupis alLie group the elements of which depend on 6 real
parameters. The associate@ algebra namedsq(3,1), is thus 6-dimensional. An
elementA el can be written as

A=e"=expw (r.6

for some (44) matrix wesq3,1), where

) n 2
) @

expo = Z— = @t—t- .
o n! 2

By (2.6) the matrixo inherits certain properties from:

1. From the fact thatetA=1, and by using the matrix propertet(e”)= e"”, we
have that det= det(e”)=e"“=1 =

tro=0 2.7)

That is, the matrixoesq(3,1) istraceless
2. From (2.5) and (2.6) we have:

(€) g€ =& gb= g> €= g€ §= ¥ =o'=— oy b=
o'g+gw =0 2.8)
Note that, sincey'= g, the above relation is written
(Qw)'+gw=0 < @Qo)'=-go (2.9)

That is, the matrixgw is antisymmetric
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Matricesw satisfying the properties (2.7) - (2.9) can beregped in the following
parametric form:

0 -a3 a, B
0o -
o=| “ P (2.10)
0, @ 0 B
B B, B3 O

whereq; , fi (1=1,2,3) are 6 real parameters. The madrigan be written as a linear
combination

3
0= (%A +AB) (211
i=1

where the 6 matriced;, B; (i=1,2,3) form the basis of the Lie algels@3,1) of the
groupL. These matrices can be read-off from (2.10), laygu€.11). For example,

00 0 O 0 001
0 0-10 0 00O
A= , etc; B;= , etc.
01 0 O 0 00O
00 0 O 1 000
Exercise:Write the remaining 4 matricés, As, B2, Bs.
Thecommutation relationsf the algebraa(3,1) are
[A. Al = Z ik A (2a)2
[BHB]__Z Jk"b (2“)2
[A. Bl = Z gk B (292

where €123= €231= €312=1, €213= €132= €321= —1, and k=0 in all other cases. By
[M, N][=MN—-NM we denote theommutatorof two matricesv, N.

In the context of Relativity (to be studiedthe next chapter) thgeneratorsA;, B;
of transformations\ L admit a certain geometrical interpretation. TiAg¢ fenerate
rotationsof the system of spatial axes. (Careful: by “rot@t we mean redefinition of
orientation of the system in spac®t any kind of rotational motion!) TheB{} gener-
ate boosts which physically represent uniform motions (witthachange of orienta-
tion) of the system of spatial axes, along theesponding three axes. We note the
following:

1. According to (2.18), rotations are closed and form a subgroup [nan$$l3)]
of the Lorentz group.=SO(3,1)T.
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2. According to (2.18), boosts are not closed and wot form a subgroup ot
(except for boosts along the same axis, whizgform a 1-parameter subgrouplgf

3. According to (2.132, the rotation grouQ(3) is not annvariant subgroup ot.
since the Lie algebraq(3), with basis A}, is not an invariant subalgebra (wmkeal;
cf. Sec. 5.1) oBd(3,1). This is related to the fact that the comrurtalA;, Bj] are not
linear combinations of the basis vectofgK Technically speaking, the absence of an
ideal suggests that the Lie algeoé3,1) issimple[1].

Finally, we note that, for infinitesimal valsl of the parametets, g appearing in
(2.10), the matrixv is infinitesimal ande” ~ 1+w . Then, by using (2.11), relation

(2.6) reduces to thiefinitesimal Lorentz transformation

A:1+a):1+i((liA1 +4B).
i-1

References
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CHAPTER 3

RELATIVISTIC TRANSFORMATIONS

3.1 Lorentz Transformations in Relativistic Spacame

The group-theoretical ideas presented in the posvahapter will now be applied to
Special Relativity (SR), albeit with some notatibrevision regarding the numbering
of vector components.

In Chapter 1 we defined amertial frame of referencas a system of coordinates
(or axes) relative to which a free particle movathwonstant velocity (thus no accel-
eration). This reference frame is chosen to bedin&nsional Cartesian system of
axes X, Y,2). An observer using this frame (relative to whstte/he is at rest) is called
aninertial observer

An eventis something that occurs at a certain poxy,(2) at a certain timé, as
measured by an inertial observer in her/his owmé&aThe set of all possible events
constitutes 4-dimensionapacetimewith coordinatesx y, z t) or (x,y, z ct), the latter
choice being made for the purpose of dimensionaidgeneity (the constasgtis, of
course, the speed of light in empty space, theevafuvhich speed is independent of
any particular frame of reference).

Vectors in spacetime are 4-component objéttSR it is customary to rename the
fourth component of a vectaras “zero” component and write

a“= (), d, & a)= (& 9 (3.1)
where 4=0,1,2,3 and whereda=(a,, a,, &) is a vector inR>. As for the spacetime
coordinates, we write

x“= 00, xt, %, %) = (ct, x, Y, 2) (3.2)
The a” and, likewise, thex may be regarded as elements of column veeterga”]

andX=[x"], respectively. Thea' andX"' are the corresponding row vectors.

The matrixg introduced in Chapter 2, which in SR plays the ral ametric ten-
sor (cf. Sec. 5.3), will be rewritten here as

1 0 0 O
0O -1 0 O
= = = diagl,-1,-1-1 3.3
0=10.1=|y o _4 o= % ) (3.3)
O 0 0 -1

(#,v=0,1,2,3) For any two vectora=[a“] andb=[b”] we define thescalar product
(@,b)=a'gh=g,a"b’'=a’h’ —a'b' —a’b® - a’b° (3.4)

(note the use of the summation convention iandv). In particular, for the infini-

tesimal vectordX =[dx“] with dx" = (cdt, dx dy, d2 we define thespacetime interval
ds?= (dX,dX):
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ds’= g, dx“dx’= (dx°)? — (dx*)? — (dx*)? — (dx?)?
=c?dt?— d¥ — dyf — dZ (3.5)

Note thatds* may be positive, negative or zero. The sign ofsipecetime interval has
profound significance focausality(see Problem 3).

As in Chapter 2, given two vect@&andb we consider the transformation
a—sa=Aa < a''=Aa" (3.6)
and similarly forb, whereA=[A")] is a real (44) matrix such that
(a,b)=(Aa,Ab)= (a,b) = a'(A'gA)b=a'gb.
This will be true for al andb if
AgA=g o AN9uA, =0, (3.7)

where A“,= (A'),*. It follows from (3.7) that(detA)’=1 = detA= +1. Moreover,
by settingl=p=0 we have that

(A%) :1+iz:(Aio)2

(explain this) so thatAPs|>1 = A% >1 or A% <—1. As argued in Chap. 2,
connectivity with the identity transformation£1) dictates that we choose

den=+1, A%>1 (8.8

Notice that, by (3.7), the transformation matfixs unaffected if we choose our met-
ric to be—g instead of.

The transformation (3.6) that leaves theascatoduct 4, b) invariant for all vec-
torsa, b, and which satisfies the matrix relation (3.7)hnibe additional constraints
(3.8), is called groper orthochronous Lorentz transformati@r) and, as we saw in
the previous chapter, is represented by the mgtoxp SQ3,1)T. Four-component
objectsa” = (a°, a*, a?, &%) or, equivalently, column vectoss=[a*], transforming ac-
cording to (3.6), are callettvectors The“magnitude” of a 4-vector:

2

@a)=a'ga=g,a'a’= @°%°’-(@")’-@**-@°%? (3.9)
is invariant under a LT(a’,a’)= (Aa,Aa)=(a,a). Thus,g,a“a"=g,a"“a’" =
(aOr)Z _ (alr)Z _ (aZr)Z _ (a3r)2 — (aO)Z _ (al)Z _ (a2)2 _ (a3)2 (310)

In particular, for the vectatX=[dx] the invariant magnitude is the spacetime interval
ds®= (dX, dX), given in explicit form by Eq. (3.5). We thus hawt, under a LT,
gw dx*'dx” = g,, dx“dx’ =

¢(dt’)? = (dx)? =(dy’)? = (dz')? = c?dt®* — d¥ — dyf — dZ (3.11)

10
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3.2 Rotations and Boosts

Special types of LTs are rotations and bodSfsatial rotationsredefine the orienta-
tion of the 3-dimensional Cartesian system of afean inertial frame (no physical
motion of the axes is implied!) and, in group-themal terms, are represented by
(3x3) orthogonal matricesR[']] with unit determinant, which belong to the 3-
parameter subgroup((3) of the Lorentz group (see, e.g., [1]). The L&tnx for ro-
tations is of the form

A=[A")] = where R']eSQQ3) (3.12)

[R]

o o O B+

Given a 4-vectoa” = (&°, a*, a2, a) = (a°, &) (k=1,2,3) its transformation undar
is, according to (3.6)a” "= A“, a". Foru=0 we have:

a%=A%a"=6%a" =a’.
Thus a rotation of spatial axes does not affectzéfre-component of a 4-vector. For
u=k (k=1,2,3) we have:

ak'= Ak a' =A% +Aka =0+AKa =R A .

Thus thek-componentsk=1,2,3) of a 4-vector transform according to 8@3) ma-

trix [R']] . Finally, the LT (3.12) leaves the magnitude (39) 4-vector invariant,
i.e., guarantees that (3.10) is satisfied. Thiko¥e$ from the invariance o&’, as well

as the invariance ofa()?+(a?)?+(a®)? underSQ3) transformationsa*’= R a'.

o '

O/ X

z z

Fig. 3.1. Anx-boost. The origin® andO’ coincide fort=t '=0.

TheSQ33) matrix R'j], which constitutes the essential part of the LTrixa\ in
(3.12), contains 3 of the total 6 parameters [&} parametrize a general LT. Three
more parameters come from théd@ostsalong the 3 spatial axes. Consider two iner-
tial observers using inertial fram8s&andS” with Cartesian systems of axesy(z) and
(x',y’,2"), respectively, as shown in Fig. 3.1. The fra®és moving with velocity
relative toS along the commor-axis of the two frames. (Note thais analgebraic

11
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valuethat may be positive or negative, depending orditextion of motion of5".) At

the moment when the origirt3 andO’ of the frames coincide, the two observers ar-
range their clocks so that they show the same timaejely,t=t '=0. The LT (3.6)
from the systemxy, 2) to the systemx(,y’, z") is called anx-boost It is a one-
parameter transformation parametrized by the vigleof S” in a direction parallel to
thex-axis. Similar boosts along tlye andz-directions will introduce two more veloci-
ties, hence two more parameters.

We introduce the constants
p=vic , y=@1-p%"2= (1P (3.13)
(note that p|<1). Consider a 4-vector with componeté= (a°, a*, a2, a°) in the in-

ertial frameS. In the case of ar-boost, the matrix of the L&* = A, a" of this vec-
torfrom the frameSto the frames’ is [2]

y -rB 0 0
A=[A"] = _gﬁ g 2 % (3.14)
0 0 01
and the transformation equations are
2 =y (- pal) = —(aljv(zv/c?)i
' = y(a-pad) = a-(vgd (3.15)

(1_ V2/CZ)1/2

Exercise:Check the invariance of the magnitu¢e a) = g,,a“a” of a 4-vector,
under the transformation (3.15); i.e., show that@Bis satisfied.Hint: Take into ac-
count (3.13).]

In particular, the 4-vector” = (X2, x*, X%, X°) = (ct, X, y, Z) transforms under ax-
boost as follows:

, t-(v/Ax x— vt ]
“wvie? X Y P (3.16)

Now, since the matriX in (3.14), representing a certain type of LT, nseéement
of a group (namely, the Lorentz group), its invess&émust also be in the group, thus
it must also be a LT. Obviouslyy™ takes us from the fran® back to the framé&.
So, let a*’= A", a" be the LT of a 4-vector, produced by the matxiin (3.14). In
matrix form, a’=Aa, wherea=[a"] and a’=[a"’] are column vectors. Then,

— —l 4 _— —l r
a=A7a < a“=(AM)4a’.

12
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An easy way to construct the matrix’ is to think as follows: If the fram&’
moves with velocity relative to the fram&, the latter frame moves with velocityw
relative to the former. Thus all we have to doeglacev andf by —v and-4, respec-
tively, in Egs. (3-14) - (3.16). We then have:

y v 00

0 0
Atoay =P 7 3.17
[(A™)%] 0 0 10 (3.17)

0O 0 01

o’ !

, , /o9d

=y paty=2r9a

7( pa) (1—V2/c?)12

: al+ (vl d
a =y (a +ﬂa°)=—(1_\§2/02))1,2 (3.18)

a?=a”, a=a’
' 2

_t+(v/ic) X X+ vt y=y, z= 3 (3.19)

=, X=— ,
(1—V2/02)1/2 (1_ V2/ C2)1/2

Exercise:Verify that the matrixA™ in (3.17) is indeed the inverse of the matkix
in (3.14); i.e., than™A=1. [Hint: Take into account (3.13).]

Exercise:Show that, in the limit of very small velocitiés<<c = v/c—0) the LT
(3.16) reduces to th®alilean transformatiorof classical mechanics:

X=x-wt, y=y, z=z, t=t.

3.3 Physical 4-Vectors

Let us now see some of the most common 4-vectqreaamng in relativistic mechan-
ics.

1. The spacetime coordinate 4-vector

In the previous section we treated the sjpaeetoordinate vectox“= (ct, x, Y, 2)
as a 4-vector, i.e., an object transforming acogrdo the LT (3.6)x" = A, x", with
matrix A belonging to the Lorentz group. But, how is théswamed property of the’
justified?

Consider two infinitesimally separated poiRtandQ in 3-space. Assume that a
light ray proceeds fror® to Q. From the point of view of an observer using asrtial
frameS, the passage of the ray frdPrandQ at definite times constitutes two separate
spacetimeaventgx”) and &“+dx"). If the ray traveled a distance

dl = (d¥¢ +dy? +dZ)*?

13
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within a time intervatlt, then, according to this observer, the speedybt Is
¢ = dl /dt= (¢ +dy? +dZ)*?/ dt .

For a different inertial observer, using a fraBigthe corresponding events associated
with the passage of the light ray frdPrandQ are &“’) and &“ +dx”*"), respectively,
while the speed of light is

¢’ = [(dx")2+ (dy") 2+ (dz)) ]2/t .

It is an experimental fact, however, that the spafiht in empty space is the same
in all inertial frames. Thug=c’, and hence

c?dt? — ¥ — dy? — dZ = c?(dt")*> —(dx')? = (dy’)? = (dz')*= 0 .
That is, for the propagation of a light rawe must have
Ow dX“dX’ = g, dx*"dx""= 0 (3.20)
where[g,,] is the matrixg= diag(1,-1,-1,-1). Four-dimensional spacetime endowed
with a metric equal tg=[g,,] is known asMinkowski space
We nowdemandthat, more generally, the spacetime interval betveay two in-
finitesimally separated eventg'f and &“+dx“), given by (3.5):

ds’= g, dx“dx’ = ¢?dt® — d¥ — dy’ — dZ,

is the same for all inertial observers. Considey sach observers that are using iner-
tial framesS andS” with spacetime coordinates”() and &“"), respectively. Assume
that the two coordinate systems are related’oy A”, X", for some (yet unspecified)
constant matrixA =[A”,]. Then, dx*"= A*, dx". If dX=[dx"] (column vector) and
(dX)'=[dx"]" (row vector), we can writeds? = (dX)'gdX and express the invariance
of ds® under the coordinate change&X— (x*") as follows:

(dX")'gdX = (dX)'gdX = (AdX)'gAdX = (dX)'gdX =
(dX) ' (A'gA)dX = (dX)'gdX .

For this to be satisfied for amX, we must haveA'gA = g, which suggests that is
in fact a matrix belonging to the Lorentz groupemhfrom

x'= ALXD < X = AXY]

we infer that the 4-component obj¢xt'] is indeed a 4-vector.

Note that spacetime coordinate transformatigt) — (x") arelinear transforma-
tions of the formx* = A*,x". This must be assumedpriori [2] in order that inertial
(thus uniform) motions transform into inertial mais under a LT. In other words, the
LT must guarantee that a free particle, subjectamet interaction, moves with con-
stant velocity relative tall inertial observers.

14
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As we have said, the spacetime intedglis invariant under LT, i.e., islaorentz
scalar:

ds’= g, dx“dx’= g,, dx" dx"’ (3.21)
In particular, by (3.20) the invariance d§°=0 is equivalent to the invariance of the

speedc of light upon passing from one inertial referefigane to another. From the
Lorentz scalars andds® we can now construct a new scalar:

di® = ds?/ ¢ = (1/c?) g, dX“ dx” (3.22)
If ds’ is atimelikeinterval (see Problem 3), i.e., ifs*>0, then we may write
ds =+(ds’)"? , dr=+(d?)™

and defingoroper timedr by
dr=ds/c < ds=cdr (3.23)

Clearly,dr is a Lorentz-invariant quantity, its value being game for all inertial ob-
servers.

Assume now thais®> 0 is an element of spacetime distance alongvirédline
(spacetime trajectory; see Sec. 1.2) of a partadesiewed by an inertial observer us-
ing a frameS. The speed of the particle is, accordingto

u = dl /dt= (d +dy? +dZ)"?/dt .
Given thatdl=udt and that
ds?= c?dt?— d¥ — dyf — dZ = c?dt® — dI? = (c®— u?) dt?,

by (3.23) we have

u2 1/2 u2 -1/2
drz(l—?J dt dtz(l—?J & =y(Ud (3.24)

wherey (U) = (1-u%c?) 2. In particular, for a fram& momentarily at rest relative to
the particleu’=0, y(u")=1 and, by (3.24)dt’=y(u")dr=dr . So, according t&’, dr is

a purely time interval.For any other fram&, relative to whichu0, we have that
y(u)>1 and sadt>dr, hencedt>dt". This result expresses the familiar relativistic e
fect of time dilation (The analogous effect déngth contractionwill be studied in
Problem 2.)

2. Four-velocity

Consider the spacetime coordinate 4-vestoe (X, X', x4, X°)=(ct, X, y, 2). Under
a general LT with (constant) matrix, the differentialdx” transforms as a 4-vector
(dx“"= A",dx") while dr is invariant. Hencegx"/dr must transform as a 4-vector. This
suggests defining-velocity U’ by

! In general, @roper time intervals the time interval between two events occurehg point of space
that isat restrelative to an observer.

15
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dx“ (d)? dx

U’u: = y
dr  dr

] (k=1,2,3) (3.25)
dr

Let x=(0¢, %8 ) =(x,y,2) be the spatial coordinates of a particle at timrelative
to some fram&. Then, X=xX(t). The 3-velocity of the particle igis

a= O[O dy d3_, )
“ar )T Uar e ) T e e )
According to (3.24) dt= y(u) dr, where y (u) = (1-u%/c?) > and whereu is the speed

of the particle:u=(u’+u,®+u,?)"2 In terms of derivatives,

d_dd_od
dr drdt " at

We then have:
U%=ddr = y(u)c, U'=dxYdr = y(u)uy,

U2=dx¥/dr = y(u)uy, U=dxX/dr=y(U)u,.
Therefore,

U“=(rue, (WU, 704, 7(9 y)=7(9( ¢y (3.26)
The Lorentz-invariant magnitude of the 4-velocgy i
gwU"U"= (U7)° = (U= (U%)*-(U?)*=c’ (3.27)

Exercise:Prove Eq. (3.27).

Under arx-boost the 4-vectot “ transforms according to Egs. (3.15). We thus
have:

U%=yW)[U°=Mc)U?Y where y(v) = (1-v?/c?) 2.
By settingU°= y(u)c,U% =y’ )c,U=y(u)u, we get:

p(u)=y(V)yU)[1— V)] (3.28)
We also have:

ult'=yW[Uul=mi)u?, U?=uU?, U3=U?3.

By using (3.26) in primed and unprimed forns'E y(u)u, U = y(u’)uy’, etc.] and
by taking into account (3.28), we find:

o U=V ' uy ' u,
* C1-vu /] Y y(Wa-vy/é)’ t y(V(@- vy/ B) (3.29)

Exercise:Prove Egs. (3.29) and show that they are consistigéimtthe Lorentz in-
variance of the speed of light. (Consider a ligtyt propagating in the-direction.)
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Equations (3.29) express the LT for velocAn alternative way to derive these
relations is to use the LT oix” directly. We have that

dx’= y(v) (dx—vdf) = y(v) (ixk—Vv)dt, dy=dy, dz'=dz,
dt’= y(V)[dt—(v/c?)d¥] = y(V)[L—(V/c?) uy] dt .

By using the fact thati= dx/dt, u,"=dx’/dt’, etc., relations (3.29) follow.

3. Four-acceleration
We definel-acceleratiorby

A= dU"/de 3.30)
whereU" is the 4-velocity. Clearly&\" is a 4-vector. Then, by (3.27),
9o U*U"=c¢c® = d(g,U"U")/dc=0 = g, U"A"+g, U"A*=0.

But,
gw U "A*=g,,U*A"=g,, U"A" (explain!) .

Therefore, ,,U*A"'=0 =
U, A =g,U"A'=0 (3131

This result generalizes the familiar 3-dimensiomahciple of mechanics, according
to which, if the magnitude of the velocity is carstthen the acceleration is normal to
the velocity (see, e.g., [3]).

More on the issue of acceleration in SR hallsaid in Problem 5.
4. Energy-momentum 4-vector

Consider a particle wést mass mBy definition,m is the mass measured by an
inertial observer relative to whom the particléiisomentarily) at rest. Like the speed
c of light and like proper time, the rest massis a Lorentz scalar.

We define théd-momentunof the particlan by
P“ = mU¥=(7(y mc y( 9 miy (3.32)

where y(u) = (1-u%c®) ™ and whereii = (u,, u,, u,) is the 3-velocity ofm. It can be

shown (see Problem 8) that ttoal relativistic energyf a particle éxcludingexter-
nal potential energy) is given by

E=y(u)mc? 3.33)
(the most famous equation in Relativity and, prdyaaim Physics!). Moreover, the

proper relativistic expression for 3-momentum, regpl by the Lorentz-invariance of
the principle of conservation of momentum, is [2,4]

p=y(u) mu 3.34)
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In view of (3.33) and (3.34), Eq. (3.32) is written

P = (E , pj 39)
c
The invariant magnitude &f‘ is
9w P*PY= (El0)® - f = m*¢? (3.36)
[Exercise:Prove (3.36).] From (3.36) we get the familiar rgggemomentum relation
E?= m’c*+ ¢?p? 33)

Consider now &ee particle, subject to no net interaction. Its egyeagd momen-
tum must be constant emy inertial frame, which suggests that the principlecon-
servation of energgnd momentum (see Problem 7) must be a Lorentz-innadan-
cept. That is,

if dE/ dt=0 and dp/dt= 0 (inertial frameS)
then dE' /dt = 0 anddp /dt= O (inertial frames .

Now, E and p form the energy-momentum 4-vecter, defined in (3.35). We can
thus write:

dP“/dt= 0 < dP*/dt'=0 (©=0,1,2,3).

In other words, the relatiom P#/dt = 0 is Lorentz-invariant. The truth of this state-
ment can be proven as follows:

Letz be proper time, i.e., time as measured by a dloek inertial frame attached
to the free particle. According to (3.24), timeeinals in the frameS andS’ are re-
lated todz by dt=y(u) dr and dt"=y(u") dr (remember thatlz is Lorentz-invariant).
We have:

dP“/dt= y(u) ™ dP*/dr, dP*/[dt’=yu’)tdP*/dr.
Under a LT,dP*'= A*, dP". Therefore,
dP“/[dt’'= y(u) A%, dPYIdr = p(u) y(u’) T A%, dPY/dt .

So, if dP#/dt=0 in the Sframe, thend P*’/dt’= 0 in the S-frame, and vice versa.
This result can be generalized [2,4] for asglatedsystem of particles, subject to no
netexternalinteraction.

Note that, in contrast to the situation iasslical mechanics, conservation of en-
ergy and conservation of momentum are not sepanateers in Relativity! The rea-
son for this will become clear in Problem 7.
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3.4 Transformation of Derivatives

As we know, the spacetime coordinaiés= (°, x*, X%, X°) transform like components
of a 4-vector under a LT. We now want to see thameain which partial derivatives
with respect to the”, denotedd, = /0x”, transform.

As we did before, we consider the column eelt=[x“]. Under a LT represented
by a matrixA,

X=AX < x"'=AX".
The inverse transformation is
X=A"X" & x=(AH)"x"".
We notice that
A= axMlox”,  (AH*, = axtlox” (3.38)
Then, by the chain rule of differentiation,
8,'= olox"'= (ox"Iox"")aloxt =
8,= (A™) "0, 39)

Therefore, partial derivatives with respect to sipacetime coordinates transform ac-
cording to thanverseLT.

3.5 Transformation of Covariant Vectors

Let a* andb” be 4-vectors, represented by the column veael(a”] , b=[b”]. Their
scalar product is

(a,b)=a'gb=g, a"b"

where a'=[a"]" is a row vector. We define the quantitsandb, by

v

8=0gwad’, b.=gub" (3.40)
Then, by taking into account thag,= g,, , we have:
é,b)=(b,a)=a,b”=a"b, (3.41)
From (3.40) we have that
a=a’, a=-a“ (k=1,2,3)

and similarly forb, .

The quantities” (1=0,1,2,3) are called theontravariant componentsf the 4-
vectora, while thea, are called theovariant componentsf a. The symmetric scalar
product (3.41) is, of course, invariant under aiLd., is a Lorentz scalar.
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Under a LT with matriXA =[A”,] the contravariant componerds transform as
a"’= A, a"= (ox*’1ox")a" (3.42)
where we have used (3.38). We now want to see hewcdvariant components
transform under this LT.
Consider the column vectoas=[a”], a’=[a”']. In matrix form the LT is written
as a’= Aa. The Lorentz-invariant magnitude afis

g,a)=a'ga=a,a" (3.43)

Sincea is a column vector with componerat$, the produck'g must be a row vector
with components,,. We write:a'g = [a.]r, whereR stands for “row”. Under a LT,

ag=[alr — (@) 'g=[a. ]r-
We have:
@)g=(Aa)g=a'A'g.
But, sinceA belongs to the Lorentz group,

A'gA=g = A'g=gA™
and so
@)'g=a'gA™ o [a == [alrA™.
In terms of components,
a,’= a (A", = (@Ox'1ox")a (3.44)

where again we have used (3.38). By comparing {388 (3.44) we notice that the
derivativesd, = 0/0x" with respect to the spacetime coordinates transtikenco-
variant components of a 4-vector.

Exercise:By using Egs. (3.42) and (3.44) demonstrate theerita invariance of
the magnitudeg,a) of a 4-vectora, defined in (3.43).

Exercise:By using Egs. (3.42) and (3.39) show the Lorentariance of thel-
divergenced, a” of a 4-vectora. Note that this property rests critically on thene
stancy (coordinate-independence) of ttfe, which reflects thdlatnessof spacetime
in SR. It is no longer true thata” is an invariant quantity under the more general co-
ordinate transformations in therved spacetime of General Relativity. In this latter
case, ordinary derivatives must be replaceddwariantones [2,5,6].

Exercise:By using (3.17) for the matrix inverse™ show that, in ax-boost, the
transformation equations for the covariant comp&&nof a 4-vector are given by

a'=y(a+pfar), a'=y(at+pfa), a'=ay, az'=ag (3.45)

where g=vic, y= (1-8?) -2 _ (1-P/c?) -2
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3.6 Transformation of Antisymmetric Tensors

An antisymmetric tensof “* = — T has only 6 independent components. In matrix
form,

B 0 T 01 T 02 T 03]
T 01 0 T 12 T 13
[T#V] - 02 12 23 (3'46)
-T% T o T

__Tos T8 _18

Under a LT,T*" follows the general tensor transformation law [5,6]
T'= NN, T? 43)
The transformed tensdr"” also is an antisymmetric tensor. Indeed,
T = AN TP == NN T = =T
In particular, if the LT is am-boost with matrixA given by (3.14), then
TOl= 0l 702 y(TOZ—ﬁle) , T03'=y(T03—ﬂT13) ’
TP=T2B 7=, (TB_g703%) T2, (T12_ 5702 (3.48)

where, as alwaysg = vic, y= (1-8%) 2= (1=A/c?) 2.

Given two 4-vectore”, b” we may construct an antisymmetric tensor by the ex
pression

T=a"b’'—a’b"= - T (3.49)
Then,
T'=a"b" -a" b= (A";a") (A", b") — (A", @") (A", D)
=N A, @' —a’b”) =AY A, T .

3.7 The d’Alembert Operator

Given the spacetime coordinateé= (xX°, X', X%, X°) = (ct, x, y, 2), the partial derivatives
with respect to th&” are given by

0 =0lox! = lg,i,i,i )
# cot ox o0y oz

As shown in Sec. 3.4, these derivatives transfakenthe covariant components of a
4-vector under a LTA=[A"]:

3., = (A N0, ()]
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We now define the quantities
0"=g"o, (3.51)
where
6“1=1[g.] = diag(1, -1, -1, -1) 53

(Clearly, g"’= g**.) We thus haved®= 6y, 6= - o« (k=1,2,3) =
P (12, NI _EJ (3.53)

Let us callg”, = g“ g, . Then,g", = 5*, (Kronecker delta).Exercise:Prove this.)

From (3.51) we have:
0.0"=0,9"0,=9"%0u0,=9"0,=0"0, =
(o)1 o= 0; (3.54)

By comparing (3.54) with (3.40) and by taking imtccount that thé, transform like
covariant components, we come to the conclusionttieaoperatorg” transform like
the contravariantcomponents of a 4-vector:

0" = AN, 0" (3.55)

It follows that the second-order differential ogerad, 0“ is ascalar operator To
show this we consider a scalar functib(x”), the value (but not necessarily the func-
tional form) of which is invariant under a L@’ (x“")=® (x*). Then, by using (3.50)
and (3.55) we have:

0, 0" D (X" )= (AT, 6, (A", 0" D (X")]

=6%8,0"O(X") =5,0" D(X") .

The operatoro, 0* is called thed’Alembert operator
ia_z v 2

2_ _
n°=0,0"= o (3.56)
Thewave equatiorior a scalar functio® (x*) is written as
2
uzcb(x#)ziz‘?a—t?—vzq):o (3.57)
c

Since both the d’Alembert operator and the functioare Lorentz scalars, Eg. (3.57)
is covariantunder LTs. That is, ib(x") satisfies the wave equation in the “unprimed”
frame, thend"(x* ") satisfies the wave equation in the “primed” frame
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Let nowA” (x*) be a4-vector field which transforms as
A (XF) = AR AT (X
Assume that each component of this field satishesvave equation:
o?A“(x*)=0 (x©=0,1,2,3.
Then the above equation is covariant under LTsdddnotice that

oA (X') = DZ[A'UV AV(%)] =A% 02K (%)=0.

We emphasize once more that this property resisaidly on the constancy (coordi-
nate-independence) of the LT matrix elemeXts, i.e., on thelatnessof Minkowski
spacetime.

Another example of Lorentz covariance is fiblowing. Consider gensor field

T (x). Under a LT this field transforms @ (x) - T*"" (x*"), with
T'= AN, T,

Proposition: The expressiord, T*" (sum onu!) transforms like a (contravariant)
component of a 4-vector.

Proof: Set ¢, T*" = A”. We must show tha” transforms like a 4-vector compo-
nent under a LT. We have:

A'=0, T = (A %0, NN, T = (AT W AL A, 8, T
=05, 0, TY=N, 5, T =N, (3.58)

which is what we needed to prove.
Now, let us assume that, in the “unprimediiie of reference, the following set
of differential equations is valid:
0, T ()=0 (=0,1,2,3) @5
It then follows from (3.58) that, in the “primed’aime,
0. T (xX")=0,
which is of the same form as (3.59). Therefore, dHferential system (3.59) is co-

variant (invariantn form) under LTs.

Generally speaking, with regard to their reathatical structure, all properly for-
mulated physical laws must exhibit covariance undes. This will guarantee that the
validity of these laws is independent of the ir@rframe of reference in which they
are being tested.
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Problems

1. Show that the necessary and sufficient condittoorder for two events to be si-
multaneous irany inertial frame is that these events occur at #mespoint in space,
relative toanyinertial frame.

Solution: Consider two infinitesimally separated spacetiments &, Yy, z, t) and
(x+dx, y+dy, z+dz t+dt). Consider also two inertial fram&andS’, assuming that
the LT fromSto S’ is anx-boost:

dx'= y(dx—vdt) , dy’=dy, dz’=dz, dt’= y[dt—(v/c?)dX]

where y(v) = (1-V?/c?) 2,

@ Assume that the two events are simultaneousvel&t both framesS andS'.
Then,dt= dt'=0 and, by the LTdx= dx'= 0. By considering boosts in tlye andz-
directions we find, by similar reasoning, tligt= dy’= 0 anddz= dz'= 0. Thus the
events must occur at the same spatial point reléibothS andS'.

) Conversely, assume that the two events occinreasdame point relative to both
SandS’. Then,dx=dx=0, dy=dy'=0, dz=dz=0 and, by the LTdt=dt'=0. That
is, the events are simultaneous relative to B&hdS'.

2. Show that a linear object appears shortened tobaerver moving parallel to the
object. This is the familidength contractioreffect of SR.

Solution: Assume that the object is at rest on xh@xis of an inertial fram&’
used by an observ€’. The ends of the object are at poirtsand x'+dx’". Hence the
length of the object isll ‘= dx’; it is called thegoroper lengthof the stationary object.

LetO be another inertial observer whose frafleas axesxy, 2) parallel to the
corresponding axes &, and assume th&" is moving in thex direction with veloc-
ity v relative t0O. To measure the length of the object in her owam&S, observe©O
must record the two ends of the objsithultaneouslyThus, if & t) and &+dx, t+dt)
represent the events of assigning positions temtigs of the object at timésindt+dt,
respectively, we must demand tltit0. (The observe®’, however, may recorgd’
andx’+dx” atanytimes, given that the object is stationary in & &ame!)

Now, the LT fron5to S’ is anx-boost, so that
dx'= y (dx—vd) = ydx where y(v) = (1-V%/c?) 2.
Putting dx=dl and dx=dl’, we have thadl = ydl =
dl =y7tdl' = (1-V%c?) Y2 dl .
Clearly,dl<dl’, which means that the moving object will appslaorterto O. Equiva-
lently, sinceO is moving with respect to the object with velociy, this observer will

again measure a shorter length. In conclusion:tRelanotion “shortens” the length
of objects in the directioparallel to the motion, by a factor equal ¢v) .
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3. Show that, along the worldline (spacetime trajggt@f a massive particle the
spacetime interval must bienelike while along the worldline of a light signal the i
terval islightlike. How are these observations related to the pimapcausality?

Solution: Let (x,y,zt) and &+dx, y+dy, z+dz t+dt) be two infinitesimally sepa-
rated points on a worldline, representing two imdisimally separated events in
spacetime. The spacetime interval between thesdsise

ds’= g, dx“dx’= c?dt® — d¥ — dyf — dZ,

which is a Lorentz invariant quantity. In partioylds® retains its sign under a LT. For
example, ifds®>0 in some inertial frame, theds”>0 in all frames. There are three
classes of spacetime intervals:

e timelikeintervals whereds’>0 ;
e spacelikentervals wherals’<0 ; and
e lightlike intervals wherels’=0 .

Suppose now massiveparticle is at pointx y, z) at timet, and at pointx+dx,
y+dy, z+d2) at timet+dt. The particle’s speed at tinhés

u=dl/dt= (dX¢ +dy? +dZ)?/dt .
Given thatu<c, we have:
(b +dy? +dZ) /dt? <c? = ds’= c?dt’—d¥ —dyy —dZ > 0.

That is, the spacetime interval between two indsitnally separated points on the
particle’s worldline igimelike

Next, suppose a light signal has reachedtpainy, z2) and &+dx, y+dy, z+d2) at
respective times$ andt+dt. Hereu=c, so that

(X +dy? +dZ) /dt?=c? = ds’= 0 .

That is, the spacetime interval along the signabsldline islightlike.

In geometrical terms, the worldline of a nnasgarticle must lie in the interior of
thelight cone(see Sec. 1.2 and Fig. 1.1), while the worldliha bght ray lieson the
cone. No particle or photon worldline may lie iretéxterior of the light cone, since
along such a line the spacetime interval wouldbecelike In such a case we would
have ds*<0 and, thereforey > ¢, which is impossible given that no matter or egerg
can travel faster than light!

The foregoing discussion can be related eégticiple of causalityConsider two
spacetime event&”) and (x“+dx*) and letds?= gw dx“dx” be the spacetime interval
separating them. The fact that no speed in Nammeegceed the speedf light sug-
gests that, ifds’> 0, it is possible to connect these events by @madsignal such as
a massive particle or a massless photon, while sucbnnection is impossible if
ds®< 0 (the speed of the signal would have to be grehterd). This means that two
spacelike-related events may not have influencet ether, i.e., may not bmusally
related
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The fact that causality cannot be violatedtimelike-separated events also fol-
lows from the observation that, as can be provéntli time ordering (“before” and
“after”) for such events is absolute, i.e., Loremtzariant. On the contrary, the time
ordering of spacelike-separated events is framesttgnt and can be reversed by a
LT. Thus such events may not be causally related.

4. A moving clock describes a (generally curved) dionke in an inertial fram& with
coordinates<“=(ct, x, y, 2). Show that the time interval measured by thiskls given
by

r= f(axay )t -2 (& dt- ok af- @

c

Solution: If the clock describes a curved worldlinefiat spacetime, it executes
non-inertial (accelerated) motion. We may assume, however ttigatvorldline can
be divided into an infinite number of infinitesimihear segments, along each of
which the motion of the clock may be consideredtiak Moreover, being a part of
the worldline of a massive particle, each segmeunstnietimelike (cf. Prob. 3).
Hence, the spacetime interval along a segment is

ds?= c2dt’—d¥—dy—dZ>0 = ds=+(ds’)*?eR.

Now, ds=cdr = dr=ds/c, wheredz is theproper timeof the segment, equal to the
time measured by lacal inertial framerelative to which the clock isiomentarilyat
rest (obviously, an infinite number of such franaes needed, one for each momen-
tary position of the clock). So, the time interdalin the instantaneous inertial frame
moving with the clock is equal to the spacetimenvél ds/c measured in the frant
with coordinates<” or (x,y,zt), relative to which frame the clock is moving. Ttoe

tal time measured by the clock is, therefore,

v = [dr = (L) [ds = (1/c) [ (c?dt? — dx¢ — dyf — dZ2)*?
or
7 = (1/¢) [ (g dx“dx") "2 = (1/c) | (dx“dx, )

where dx, = g,, dx". Notice that, if the clock traveled at the speédight, then we
would havedsgz 0 (Prob. 3) anddz=0: the clock would measure no time at all!

5. As is well known, acceleration is Galilean-invatign Newtonian mechanics. Is it
Lorentz-invariant in SR? For simplicity, considereadimensional motion of a parti-
cle in thex direction, and a LT in the form of arboost.

Solution: Consider a particle viewed by two inertial obsesv@ and O” using
spacetime coordinateg, /,z t) and &', y’, z',t"), respectively. As usual)’ moves
along the commonr-axis of the two frames of reference, with veloeityVe call

(Ux, Uy, Uz) = (dx/dt, dy/dt,dzdt) and (', uy’,u,")=(dx7dt’,dy/dt", dz’/dt").
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As we have shown (Sec. 3.3), the LT for velocitges

u =—x =V = Y u, = Y
ol i@ Y y(W@A-vy /i é) T Ty (9@ vyl €)

where y(v) = (1-v?/c?) 2. For motion of the particle along theaxis, we seti = u,
uy=u,= 0, so that

=U=———-, U =u=0 (1)

We want to find the LT for acceleration, for motiatong thex-axis. We have that
a=dudt, a’=du’/dt’. Now, from (1=

. d u—v 1- ¥/ &
du=—| —— |du=———=
dul\1-vu/c (1- vu/ &)

Moreover,

dt—(v/&)dx  1- v é .

dt' = = dt (sincedx=udt) .

(1—V2/02)1/2 (1_ V2/ CZ) 1/2 ( )

Therefore,
3/2
4 al- \/2/<:2)3 2
(1-vu/c)

To find the inverse transformation we simply exdma with a” and putu” in place
of u and—v in place ofv.

We note the following:

1. Equation (1) reduces to the Galilean fiansation for velocitiesu'= u-v, if
v << c (small relative velocity of the two inertial frames/andu << c (small particle
velocity).

2. We recall that the relativistic momentufmagparticle of massn moving with
velocity U is

(1_u2/CZ)1/2 '
In the case of anasslesgarticle (n=0), such as a photon, a non-vanishing momen-
tum requires thau=c, which expresses the well-known fact that a massparticle
travels at the speed of light amy inertial frame. Let us check this last assertibo:
cording to an observé, a photon’s velocity isi=c. Then, by Eq. (1), the velocity of
the photon according to another obsei®eélis, again,u’= c, in accordance with the
relativistic principle of frame-independence of #peed of light.

3. Forv<<c < vic—0, Eq. (2) reduces to the Newtonian result a. That is,
according to Galilean relativity all inertial obsers must measure the same accelera-
tion of a moving particle. According to (2) thisret the case with SRt is still true,
however, thata’= 0 if a=0. This reflects the fact that inertial motions s&m into
inertial motions under LTs.
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6. Show that, according to SR, the force on a partghot necessarilproportional to
the acceleration of the particle, although it i Bue that the vanishing of the accel-
eration implies the vanishing of the force. Find tklationship between force and ac-
celeration in the cases of rectilinear motion aedegal uniform motion. What do you
observe?

Solution: Consider a particle of masg moving with velocityd and acceleration
a=du/ dt relative to some inertial observer. The relatigcishomentum of the parti-

cle is p=y(u) mu, whereu=|0| andy (u) = (1-u?c®) "2 . We define the total force
on the particle at timeby F =d p/ dt. We then have:
E- %(ymﬂ) — m( g/ df Uy i

As we can show,

dy u 3 du
—— =—y(u)>—.
FTRRrCRAArT
Therefore,
E = w2 Masy(u ma 1)
c dt

Clearly, in the general case, force is not propodl to acceleration.

As is well known, the velocity is a vectonggnt to the trajectory of the particle
and can be expressed s uz, wherez is the unit tangent vector in the direction of
motion and where, as defined previousiy0 is the speed of the particle. Let us now
concentrate on two special cases of motion:

@ In the case ofectilinear motion the direction of the unit vectar is constant
and soad= du/dt= ar, where a= du/dt= +|a| (algebraic value!). Moreover, the
total force on the particle cannot have a centalpgdmponent since a hormal compo-
nent would produce curvilinear motion. Thés is directed along the line of motion
and can be expressed Bs=F 7, whereF = +|F |. From (1) we have, after eliminat-
ing the common factof and by puttingdu/dt=a:

F=y(uma[l+ uc?)y(u)’] .

But, u?/c* =1—y(u) 2, so that, finally,F = y(u)®ma . In rectilinear motion, total force
is proportional to acceleration.

®©) In uniform (generally curvilinear) motion the speads constant and hence
dwdt=0. Equation (1) then reduces #®= y(u) ma. As in the previous example, the
total force is proportional to the acceleration.

Back to the general case (1) we note fhatco as u—c (explain). This means
that aninfinite force would be needed to accelerataassiveparticle up to the speed
of light (this is not a problem, however, forn@asslesgarticle such as a photon,
which, as seen in Prob. 5, always travels at spgeWe also notice that, ii=0
(thus T = const and sou =| 1 |= const) then F =0, in accordance with the require-
ment that a free particle should move with consvaitcity.
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7. Derive the LT x-boost) for energy and momentum. Are conservatioenergy and
conservation of momentum independent issues ifiRin classical mechanics?

_ Solution: The energy-momentum 4-vector for a particle of smasnd velocityu
) P = (Efc, px, Py, P2) = (P°, P', P% P)
where E= y(u)mc? and p = y(u) mu, with y(u) = (1-u?c?) 2 The LT of P* is
pO_ P°-~(v/g P pr_ P=(V 8 P
(1-v?/c?)H? (1- Vv cA)H?

Substituting for thé®” andP”” we have:

P?= P2, P¥= P

e___E-vp . p-VvEE

-V AV B = (1-vZ A1’ R=n. R=Pp

For the inverse transformation we sgtin place ofv.

We notice that the LT mixes energy and monrantso that the separation of
these physical quantities islame-dependenfwhat appears as energy to one inertial
observer may appear as momentum to another, aedveisa). Therefore, as dis-
cussed in Sec. 3.3, conservation of energy andecaaison of momentum are not
separate matters in SR (both eneagg momentum must be conserved).

8. By using the work-energy theorem, justify the @gsionE =y (u) mc? for the total
relativistic energy of a particle of massmoving with speed. Doesexternalpoten-
tial energy contribute to the energ§y? How aboutinternal potential energy in the
case of a composite body?

Solution: As found in Prob. 6, the total force on the p#etet timet is given by

3 duu+7(u) mo 1)

F= u
27() .

where y (U) = (1-u?c?) "2 The work of this force on the particle along thatigd
path fromA to B is given by the line integral

B~ — B~ _
w= [ F. lsz F-udt 2)
where, by (1),
_ mu 5 du_ u
F-d u>—au-u mu—
> 7(u) . +7(9 .
But,
G-0=? and a-99- 3 (prove!)
dt d
so that
_ 3 du
F-U= ;/(u)m{1+— (L)} (Y ua
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Now, as found in Prob. 6,

dy _
dt

u du_ , ¢
27()—:7(11) o <32dt
So,

= d d
F-u:mczd—?t/za(y m@') ,

where the mass is assumed constant. We set
E = y(uymc® (3)
Then F -G = dE/ dt, and therefore (2) yields

W=E-E (4)

The quantitye defined in (3) is called thetal relativistic energyf the particle. For a
particle at resty= 0 = y(u) =1 and soE.s;= mc? (rest energy. It is thus reasonable
to call the differenceE —Ees; thekinetic energyof the particle, and define

T=E-nm® & E=mc®+T.
Then from (4) we get
W=TB—TA

which formally expresses theork-energy theorerin SR. We note that, even i is
a conservative force, the corresponding potentiakgy is not included ik, hence
does not contribute to the total relativistic eryerg

A composite body may be considered as armsysfeparticles (e.g., the molecules
of the body) of massesy, mp, mg,... The relativistianternal energyof the body is

Eint = X m ¢+ (T+U)in

where T and Uy, are theinternal kinetic energyand theinternal potential energy
respectively, where the latter energy is associadédinternal forces. The ener

is the total energy of the body in the body's reatme (orC-frame), which is the
unique frame in which the center of mass of théesyds at rest and the system'’s total
momentum is zero.

The system as a whole may also be viewedsasgie “particle” of mas$/1 and
rest energyc® equal toEiy:

Mc®= I mc® +(T+U)ine = M= X m +(1/c%) (T+U)in .
To eliminate the usual arbitrariness in the dabnitof the potential energy to
within an additive constant, we rewrite the ladatien in terms ofdifferencesof
physical quantities within a time intervAtt:

AM = (1/c?) (AT+AU)in (5)

where we have taken into account that the massae constantAm; =0).
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Now, for a free body, subject to no exterioates, the total relativistic enerdy
must be constant iany inertial frame and, in particular, in the bodgZsrame where
E=E;n; =Mc?. Thus AE=0= AM=0 and, by Eq. (5)ATint +AUi:=0. This could not
be satisfied if we did not include the potentiaérgy Ui in the total energz, given
that, in general, kinetic energy alone is not corett We conclude that internal po-
tential energyhasto be included in the energy of the body and, floeee it contrib-
utes to the body’s mass, which is not the case patiential energy associated with
external forces.
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CHAPTER 4

COVARIANCE IN ELECTRODYNAMICS

4.1 The Maxwell Equations

As we know, theMaxwell equationglescribe the behavior (that is, the laws of change
in space and time) of the electromagnetic (e/mdl fi€his field is represented by the

pair (E, B), whereE and B are the electric and the magnetic field, respebtiv

The Maxwell equations are a system of foutigladifferential equations that is
self-consistent, in the sense that these equati@sompatible with one another. The
self-consistency of the system also implies thesfsation of two important condi-
tions that are physically meaningful:

e theequation of continuityrelated taconservation of chargeind

e thee/m wave equatioim its various forms.

We stress that the above conditions ra@eessary but not sufficiefdr the validity of
the Maxwell system. Thus, although every solutid B) of this system obeys a
wave equation separately for the electric and thgmatic field, an arbitrary pair of
fields (E, B), each field satisfying the corresponding wave #qonadoes not neces-
sarily satisfy the Maxwell system itself. Also, thanciple of conservation of charge
cannot replaceany one of Maxwell's equations. These remarksjagtfied by the
fact that the aforementioned two necessary comditire derived bdifferentiating
the Maxwell system and, in this process, part efittiormation carried by this system
is lost. [Recall, similarly, that cross-differentan of the Cauchy-Riemann relations
of complex analysis yields the Laplace equationwtych, however, we cannot re-
cover the Cauchy-Riemann relations.]

We adopt the following differential form ofdlwell’'s equations [1,2]:

@ V-E=2 (9 vxE=-2B
& ot
. (4.1)
. L OE
(b) V-B=0 (d) ¥ B= g I+ equ, O

ot

where p, J are the charge and current densities, respect{iedy “sources” of the

e/m field). Both the fields and the sources arections of the spacetime variables
(x,y,zt). Equations (4.4) and (4.b), which describe théiv of the e/m field at any
moment, constitut&auss’ lawfor the electric and the magnetic field, respesiivin
terms of physical content, (&)l expresses the Coulomb law of electricity, while
(4.1b) rules out the possibility of existence of magoegidles analogous to electric
charges. Equation (&)Lexpresses thearaday-Henry law(law of e/m induction) and
Eq. (4.1) expresses thAdmpere-Maxwell lawEquations (4.4) and (4.1), which
contain the sources of the e/m field, constitugenibn-homogeneouslaxwell equa-
tions, while Egs. (41) and (4.t) are thehomogeneousquations of the system.
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By taking theliv of (4.1d) and by using (4d) we obtain an equation of continuity
that physically expresses the principle of cond@aaof charge:

7.3+ -0 (4.2)

A different kind of differentiation of the Maxwedlystem (4.1), by taking thet of (c)
and @), leads to separate wave equations for the aeteatid the magnetic field:

= 0’E 1 aJ
VZE — EOﬂOW = 8—Vp + IUOE (43)
0

5

Vzé—eo,uoﬁz—,uoﬁxj (44)

The point was made recently [3-5] that thexiell equations may be viewed as a
Backlund transformatioiBT) relating fields and sources. The conservatiboharge
and the electromagnetic wave equations then siewgyess théntegrability (consis-
tency conditionsof the BT. The BT property of the Maxwell systeanther supports
the view according to which the four equations 4dnstitute a set ahdependent
equations [6]. This will be analytically discussedsec. 5.4.

4.2 The Electromagnetic Field Tensor

It can be shown by physical arguments (see, €¢.])[that, under a Lorentz boost in
thex direction the fieldsE and B transform as follows:

E,=E. E/ =y(E-®¥B), E=y(E+ # B)

(4.5)
B/-8, B -r(8+LE) B-y(B-L g

where g(v) = vic, y(V) = (1-8%) 2 = (1=#/c?) V2. Moreover, if the densitiep, J

are related byJ = pu, wherei is the local velocity of the moving charge (cf],[1
Chap. 6), and ifo is the charge density in the rest frame of theg#ahen

p=01-UI)y Y 2py=y(U)p, . JI=pU=per(Y (4.6)

[Careful: y(v) refers to the relative motion of two inertialdmas (saysandS’) while
y(u) refers to the motion of the charge system inS#fimme!] Both the electric charge
and the densityo will be considered Lorentz scalars.

We notice that
cp = po7(U) C=pq u°,
Je=por(U) U = poU*, k=1,2,3
where

U = (e, (W)= (7 6 7(Y 4, 7(d y,7( U Y
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is the 4-velocity of the moving charge. Given ttiat’, U k) (k=1,2,3) is a 4-vector
while po is a scalar, it follows thapg (U °, U *)=(poU? poU ) is a 4-vector. This
means that ¢p, J) must be a 4-vector. We thus defind-aurrent densityy

J”:pOU”E(Cp, j) 4.7)

Regarding the e/m fiel(E, B), we notice that it has 3+3=6 independent compo-

nents, namely, the set of Cartesian componentseoglectric and the magnetic field.
We now ask the question whether these componegist iné the 6 independent com-

ponents of somantisymmetridenso*" = —F ™. In matrix form,
0 F 0L FO2 E 03]
_Fot 0 Fl2 g3
(4.8)
_E02 _p12 0 E 23
_F% _p1B _p2

[F*]=

As mentioned in Sec. 3.6, under aboost the tensor components transform as fol-

lows:
FOlr:F01’ F02r:y(F02_ﬂF12)’ F03r:y(F03+ﬂF31)’

F23r:F23’ F31r:y(F3l+ﬁF03) ’ Fer:y(FIZ_ﬁFOZ) (49)

[In case you are worried about an apparent disawpaith Eq. (3.48) regarding the
terms forF % andF 3", remember thak *= — F3 andF *'= — F3!"] On the other
hand, the e/m-field transformation relations (£&) be rewritten as follows:

(&% () ({5

Cc
' ! E, ! Ey
S L] Bz”(BZ‘f”TJ

Comparison with (4.9) suggests trying the followidgntification of the="":

F'=_EdJc, F®=—Elc, F®=—E,lc,

Fi2=_B, F¥=_FB8=_B, FB®=_B, (4.10)

Then, F% =—E'/c, F?* = —B,’, etc. The antisymmetric tensor (4.8) then reads
0 -El/c -El/c -El/c

EJc O -B B, w1

E/c B 0 -B

E/c -B, B 0

[F] =
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An alternative comparison of (4.5) and (418ading to a different identification
of the antisymmetric-tensor components, yieldsfefiewing result (by renaming*”
asG""):

G%=_B,, GOZ:—By . G%B=_p,,

G”=Elc, G®=-Elc, G®=Elc (4.12)
(Check this!) The antisymmetric tengsf” then reads

o -B -B, -B

B, 0 E,/c -Elc
(6] =

B, -E,/c O E/c
B, E/Jc -E/c O

(4.13)

and is called thelual tensor(explicitly, the tensodual to F**). Note thatG"” can be
obtained directly fronF*" by the substitution€/c— B, B— — E/ ¢, which opera-
tion leaves the transformation relations (4.5) amgjed.

The tensoG"’, also denotedE*", is related td~*" as follows:

G =*F" = (1/2)e"” F,, (4.14)

where
Flp = glﬂ gpv F :(5)

and wheres"" is theLevi-Civita symboln 4 dimensions, equal to 1 or —1 according
to whether gv/p) is an even or odd permutation of (0,1,2,3), respely. In particu-
lar, ¢ 9%3=1 [thus ¢ 0123= —1, since an odd number of spatial indices are lodvése
using the metric tensor in a manner similar to §4.1The symbole “*” is antisym-
metric in every pair of indices (i.e., changes sign when any twdides are inter-
changed) and vanishes if any two indices are thees#s an example of applying
(4.14), let us check the compon&tt':

GOl - *F 01 - (1/2)80up Flp - (1/2) (8 0123F23 + 80132F32)
#/2)[Fas— (= F23)] = F23 = 092,093, F"*
gé2933|:23= F23= _BX )

4.3 Covariant Form of Maxwell's Equations

We now wish to express the Maxwell equations (thXovariantform; that is, as re-
lations involving 4-vectors and/or tensors in sacay that these relations be mani-
festly invariantin formunder LTs. Examples of such covariant relationsevggven in
Sec. 3.7.

Before we begin, let us recall that the speefilight in empty space, which is the
speed of propagation ahy form of e/m radiation in general, is a direct pecddn of
Maxwell’s equations and is equal to [1]
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c?= (copto) 4.16)

Proposition: (a) The inhomogeneous Maxwell equations &.and (4.4) are
represented in covariant form by the set of diffiéed relations

0. F"=10d" (v=0,1,2,3) (4.17)
where J" = (cp, J).

(©) The homogeneous (source-free) Maxwell equatidritb) and (4.t) are rep-
resented in covariant form by the set of relations

3,G"'=8,*F" =0 (=0,1,2,3) (4.18)
where G = *F* = (1/2)¢"" F;, and whereF;, = g;, g, F"" .
©) The homogeneous system (4.18) is equivalentaéh of relations
0, Fuw+ o Fy+0,F;,=0 (4.19)
Proof: (a) Note first that, according to Eqgs. (3.58) andb93, the differential

equations (4.17) obey a 4-vector transformation lader LTs. Fon=0 the system
(4.17) reads0, F“= 1o J° =

. _8F°° oF ¥ aF2°+aF3°_O+1 OB 08 O, _
Moo= o T o 0% clox oy oz
S 1
V-E=puCp=py—p=~
oMo €o

where in the last step we have used (4.16).Edrwe have:d,F** = ypJ' =

j _OF% oF" oF* oF> 10E, , 0B, 0B,
om0 o ok o 2 at oy oz
= —%EJerB
c” ot «

and similarly forv=2 andv=3. Therefore, in vector form and by using (4.16),

s s 10E 5 oE
XB:ﬂoJ+?E:ﬂoJ+5oﬂoE

<

) We leave the proof of (4.18) to the reader asxancise.

© Assume thato, F,, + 0, F,; + 0, F;, =0 is valid for all choices ofZ,u,v. We
show that this also implie8, G’“ 0,*F"" =0. We have:
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0, G = (112)e"* 6, F,, = (12)e"™" 8, F; = (112)e” 8, F;,
(all we did was to change the names of repeatetddng “down” indices). But,
gp/l,uv — gp,uwl — gpwl,u
(even number of permutations leading from one syritbanother). So,
8, G = (112)" 6, F, = (12)e"™ 8, F\y = (112)e”* 8, F,,
= (1/6)e”* (8 Fn + 8, F +8,F;,) = 0 (by assumption}>
0,G”=-0,G" =0,
Example: For A=1, u=2,v=3 we have:
0=0,F,3+0,F3+0 F =0 F?2+0 F3'+0 F ' (explain this)

:_aBX B oB, _ 0B, __%.B
OX oy 0z

from which we recover the “no-free-magnetic-polegtiationV-B=0.

Let us return to the inhomogeneous Maxwellagigns (4.17):0, F*" = uo J".
Taking the divergence of both sides, we have:

Uo0yJ" =0,0,F" .
But, by the antisymmetry oF ",

0,0,F" =0,0,F" =-0,0,F* = 8,0,F* =0,

Hence,
8,3"=023"16x" =0 (4.20)
Setting
7=(co J)=(w 1. 3. 3)
we get:
P L,5.5=0 @)2
ot

(Show this.) Equation (4.21) is, of course, #guation of continuityfor electric
charge, expressingpnservation of chargd,?2].
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4.4 Relativistic Potentials

As we have seen, the spacetime coordinates(ct, X, y, z) transform as contravariant
components of a 4-vector under LTs. We now intredtlte covariant coordinate
vector'

X, = G X' = (Ct,—%,—y,~2) (4.22)
To express the&” in terms of thex, , we write:
X=0,X = g"x=9"g,x" =g",x

where, as mentioned in Sec. 3¢/,= ¢", . Therefore,

X' = g x; (4.23)

We also define the derivatives

0" = 010x, 4.24)

By the chain rule of differentiation,

010x, = (0X"1 0%,) 01X’
where, by (4.23),

X'l ox, = g” (ox:/dx,) = g” 0", =g* = g™ .
Hence,
olox, =g olox” or o0*=g" o, (4.25)
in accordance with the definition (3.51) ®f given in Sec. 3.7. The latter definition is
thus consistent with the definition (4.24) @f given here.

As we know from electrodynamics [1,2], theattic and the magnetic field can be
expressed as

E=—-VV-—, B=VxA (4.26)

whereV(F,t) and A(F,t) are thee/m potential{scalar and vector, respectively). By
these expressions the two homogeneous (sourceMigeayell equations,

- =

V.-B=0, VxE=-0B/0t (4.27)

are satisfied automatically.

! Note that, thends’ = g,, d¥“dx’ = dx"dx, .
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We construct the 4-component object (notlatned to be a 4-vector!)

Af = (X | Aj 28)

c
Then the e/m field tensé" is written in terms ofA" as follows:

F“ = 0"A"—0"A" = 0A"] 0, — OA"] OX, (4.29)
(Notice that we differentiate with respect to ttwvariantcomponents of the coordi-

nate vector!) Let us see some examples of usitP)4o recover the classical rela-
tions (4.26):

For 4=0,v=1, we have:
FO = 8A oxg— 0A%1 oxg = 6AY oxX° + 0A°% oxt (explain!)

from which we find

O0A . A
EX—_a—V— < _| gy -4
ox ot «

and similarly forF °> and F %, In vector form,

E-_vv_ A
ot

For u=1,v=2, we have:
F12=0A%/ 0%y — OAY dxo = —8A%] ox* +6A X (explain!)

from which we find

ThusF*" as defined in (4.29) is indeed the e/m field ten8acording to the dis-
cussion in Sec. 3.6 [see Eq. (3.49)], by the faat thec” transform as (contravariant)
components of a 4-vector under LTs, wHH&" is an antisymmetric tensor, it follows
that A“ must be a 4-vector.

We must now show that the expression (4.@B)f" satisfies the homogeneous
Maxwell equations (4.18) automatically. To this ents easier to use the equivalent
form (4.19) of these equations. Before we beginyéwer, let us recall that we have
used the metric tensay,, or g’ to “lower” or “raise” indices, respectively, of 4-
vectors. We can do the same, of course, for inddesnsors ofiny kind. Regarding
(4.29) we write:
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Qi Gov = O Yov (a'uAv_ avAﬂ) = 0w 0" (gpv Av) —0pv 0" (gly Aﬂ) =
Fi, = 0,A, —0,A;, = 0A,10x" — 0A; 10X’ (4.30)
which is equivalent to (4.29). By using (4.30) wedf after some straightforward al-

gebra:
aiF,uv'*'aﬂFv,{‘FavFgﬂ:O .

Exercise:Prove this result.

We now come tgauge transformationghat is, transformations of the potentials
V, A (or, in 4-vector formA*) which do not affect the field&, B (or F**). Classi-
cally, a gauge transformation is of the form [1,2]
oA

A=A+Vil, V=V- = (4.31)

where A (F,t) is an arbitrary function. Under this transformatio

E-—vv-A__gv_A :
ot ot
B=VxA=Vx A

We consider the transformation
A=A —0ollox, = A'=0"A (4.32)
for arbitraryA=A(x") . Explicitly,

A% =A% _55/0x=A-o1/0xX°,
A= AR5 /0% = AR+ arloxt (k=1,2,3) .

By using the fact thatA” = (V/c, TA) it can be shown that the transformation (4.32)
yields the gauge transformation equations (4.31).
Exercise:Show this.

We must now show that the transformation¥|8aves the e/m field tensbr”
invariant. LetF*"'=0“A"—0"A* and F*"'=0*A" = 0"A"’, where A"’ = A“—3"1. We
have:

F = 0" (A= 0"2) —0" (A= 8"1) = 0" A" — 9" A" = F*".

The transformation (4.32) gives us the freedo choose th&* so that the fol-
lowing relation, called theorentz conditionbe satisfied:

0, A= 0A"/ox"=0 (433
or, explicitly,
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V-A+ i@V =

Let us now consider the inhomogeneous Maxeggllations
0 F"" =p1pd" where J"= (Cp, J) :
For F*"'=0"A"—0"A", we have:
uod" =0, (0"A"—0"A") =09,0"A"-0" (0, A") .

By assuming that the Lorentz condition (4.33) iss§ad, the above relation acquires
a simpler form:

0?A"= 0,0 A =1y (4.34)
where
2
n’=0,0"== : 82 v?
c? ot

is the d’Alembert operator. For0, and by using the fact thef= (equ0) ™, Eq. (4.34)
yields:

o2V

2
10V _yy-L (4.35)
c ot &

while for v=1,2,3 we get, in vector form,
10%°A .

> - V2A=p,J (4.36)

5=
o“A=

(@]

Exercise:Prove Egs. (4.35) and (4.36).
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Problems

1. Derive the LT x-boost) for the electromagnetic 4-curréfit
Solution: The 4-vector for the e/m current is

=(cp, Iy, &)= (3% 34 3% 3%
and the LT is

o J%-WI9d 4 I~V a5 3 3
J7= (1_V2/CZ)1/2 ! J7= (1_ V2/C2)1/2’ Jo= J J7=J%
Substituting ford* andJ*” we get

,_p—(V/CZ)JX " JX—Vp '
- (1_V2/C2)1/2 ! X (1_V2/C2)1/2’ y — Yy z

As always, for the inverse transformation we-sen place ofv.

2. Derive the LT x-boost) for the electromagnetic 4-potentél
Solution: The 4-vector for the e/m potential is

A* = (Vic, A, Ay, A) = (A% AL A% AY)

and the LT is
' AO—(V/C) Al ' A\l—(\l' o N ' 2
0 1 2_ a2 A3 AZ
A= 2 oz A= _221/2’A:A’A:A'
@-ve/c?) (1-v/c)
This yields
., V-VA A-wWé ,
v :(1—V2/CZ)1/2 A= (1 V2/C)l/2 A=A, A=A

3. Show that, in the non-relativistic limit, the LT thfe electric field reduces to
E'=E+(Vx B (1)

where v is the velocity of the inertial observéxr’ relative to the inertial observer.
Justify the above result by physical reasoning.

Solution: With no loss of generality, we assume that therél@itingO with O” is
anx-boost, so that

=%, %, %)=(v0,0).
The LT for the electric field is given by Eq. (4.8hich we write in the form

EX’: EX y Ey’: y(Ey_ VBz) 3 EZ’: y(Ez+ VBy) (2)
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wherey (V) = (1=v%/c?) "2 In the non-relativistic limity/c -0 = y=1, and thus rela-
tions (2) reduce to

Ex=E, ' =E-VB,, E,/=E+VBy 3)
On the other hand, by noting that

VxB=(%B- VB, ,B 4B, %\ B Y B
=(0,-vB,,VvB)
and by taking the, y and z components of (1), we find again the result (3). Ste-

clude that relation (1) represents the non-relstitvilimit of the LT for the electric
field.

To see the physics of the situation, we aersan electric chargg that is mo-
mentarily at rest relative t@’, thus moves with velocity relative toO. According

to O, this charge is subject to a Lorentz foi€e- [ E+(Vx B] by the e/m field. Ac-
cording toO’, however, the charge is stationary and thus stibjely to an electric
force F'=qE’. Now, in the non-relativistic limit the force onparticle is frame-

independent; that is; = F'. Thus, by eliminating| we have thaE' = E+ (Vx B).

4. It is given that the electric and the magnetiddfieroduced by a charggmoving
with velocity v relative to an inertial observer are related by

B=1 (GxE) (1)
C

By using (1) compare the strengths of the ele@nd the magnetic interaction be-
tween two charges. Comment on the relative strenftime two interactions as we
approach the limit of very high speeds of the cbasarg

Solution: We consider two chargesandq” moving with corresponding velocities
o and o' relative to an inertial observer. We reggrdas the source of an e/m field
andq as a test charge within this field. We are inte@sn the force o due to the

e/m field produced by". Let (E,B') be the value of this field at the locationaf
The electric force ol is F,=qE’ or, in magnitudesF, = g E', while the magnetic
force onqis F, = q(o x B)), where, according to (1),
B :C_lz (&< E)
Therefore,
E =9 [6x(5'<E)]

m 2

C

and, in terms of orders of magnitudes,
' F

F z&UU'E':%Fe = fx—- .
c Cc F

We notice that, in the region of low velocities quared to the speed of light (i.e., for
v <<c ando’'<<c) we have thaF,<<F., while F,,~Fs wheno~c andv’~c. This
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means that, while in the world of low energies|fw speeds) that we experience in
our everyday lives the electric interaction betwebiarged particles appears to be
much stronger than their magnetic interaction him high-energy domain the two in-
teractions become comparable to each other. Tmatigral in view of the fact that,
after all, these interactions are the two “facesa gingleelectromagnetienteraction.
However, the unification of these interactionsrigdyt revealed in high-energy proc-
esses and in the framework of a high-energy theacih as SR!

5. Consider a charggin uniform rectilinear motion relative to an inattobservelO.
By using relativistic arguments, explain why thieaoge cannot emit e/m radiation.

Solution: Sinceq moves with constant velocity relative to the irsrobservelO,
it itself defines the origin of an inertial framéreference. With respect to an observer
O’ in this frame,qg is at rest. Thus the only thing recorded®yis astatic electric
field, with no presence of any e/m wave (i.e., withemission of e/m radiation). Let
us now assume that, accordingpthe chargeg emits e/m radiation. This means that
O records the existence of an e/m wave travelingpatdc. But, since the propaga-
tion speed of an e/m wave is the same in all ialeftames, it follows that the wave
observed by also propagates at speetklative toO’. This, however, contradicts the
fact thatO’" perceives no e/m wave! We conclude that neitbenay perceive an
emission of e/m radiation from

In the case of aacceleratingchargeq the above rationale breaks down sigae
longer defines the origin of an inertial frame efarence. Thus an obser@f mov-
ing with g is not an inertial observer and her measuremdasi@ not be relativisti-
cally correlated with those of the inertial obser@ The latter observer records
emission of e/m radiation and correctly attribute® the accelerated motion gf in
accordance with Maxwell’s theory [1]. For then-inertial observerO’, however, a
seemingly stationary charge appears to emit e/matrad, contrary to the predictions
of electrodynamics. Observ@’ thus reaches an erroneous conclusion in an attempt
to interpret electromagnetic phenomena in an uaisigt(i.e., non-inertial) frame of
reference!

References

1. C. J. Papachristolntroduction to Electromagnetic Theory and the Rty®f Con-
ducting SolidgSpringer, 2020).

2. D. J. Griffiths Introduction to Electrodynamic4™ Edition (Pearson, 2013).

3. C. J. Papachristothe Maxwell equations as a Backlund transformatiddvanced
Electromagnetics, Vol. 4, No. 1 (2015), pp. 52%58.

4. C. J. Papachristou, A. N. Magoul&icklund transformations: Some old and new
perspectivesNausivios Chora, Vol. 6 (2016) C3.

5. C. J. PapachristolAspects of Integrability of Differential Systemsd dfields: A
Mathematical Primer for PhysicistéSpringer, 2019).

6. C. J. Papachristou, A. N. Magoulésiependence of Maxwell's equations: A Back-
lund-transformation viewNausivios Chora, Vol. 8 (2022) Cci3.

7. R. K. Wangsnes&lectromagnetic Field<2™ Edition (Wiley, 1986).

2 https://www.aemjournal.org/index.php/AEM/articleswvi/311
% https:/nausivios.snd.edu.gr/docs/2016C.pdf
* https://nausivios.hna.gr/docs/NCH_v8_ 2022 C1.pdf

44



CHAPTER 5

SPECIAL TOPICS

5.1 Lie Groups and Lie Algebras

This section serves as an elementary introductiohi¢ groups and Lie algebras.
These concepts were introduced in an informal waghap. 2, in connection with the
Lorentz group. We now present them in more generais.

Agroupis a setG={ab,c,...} equipped with an internal “multiplication” epation
with the following properties:

1. Closure: abeG, Va, beG.

2. Associativity:  a(bc) = (ab)c.

3. Identity element: 3 ecG: ae=eg VaeG.

4. Inverse element:VaeG, 3a'eG: aa'=a’a=e.
A group isabelian(or commutative) ifab=ba, Va,beG.

A subgroupof G is a subseHcG that is itself a group under the group operation
of G. Obviously,H must contain the identity elemembf G as well as the inverse of
any element oH.

A mapeg : GG’ from a groupG to a groupG” is called ahomomorphisnif it
preserves group multiplication. That is, for amybeG, the imagesp(a)eG” and
¢(b)eG’ satisfy the relation

p@o(b) =¢(ab) .
If the homomorphism is 1-1, it is called arsomorphism

A real Lie algebra £ of dimensionn is an n-dimensional real vector space

equipped with an interndlie bracketoperation [ , ] that satisfies the following prop-
erties:

1. Closure: ableLl, Vabel.
2. Linearity: xkp+ib, c] = k[a,c] +A[b,c] (k,AeR).
3. Antisymmetry: d,b]=-[b,a]. Corollary: p,a]=0.
4. Jacobi identity: [a, [b,c]] + [b,[c,a]] +[c.[a,b]] =0.
A Lie algebra isabelian(or commutative) if 4,b] =0,V a,beL.
Asubalgebra ®f £ is a subspace & that itself is a Lie algebra. The algel®&s

an invariant subalgebreor ideal of £ if [a,b]eS V acS bel. A Lie algebral is

said to besimpleif it contains no ideals other than itseff;is semisimplef it contains
no Abelianideals.
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Examples of Lie algebras:

1. The algebra ofrixm) matrices, with A, B] = AB — BA (commutatoy. Diagonal
matrices constitute an Abelian subalgebra of tlystaa.

2. The algebra of all vectors in 3-dimensl@space, with[V, W] = Vx W(vector
product). Vectors parallel to a given axis formAdoelian subalgebra of this algebra.

A mapy: L—L’ from a Lie algebrea to a Lie algebra " is ahomomorphisnif it
satisfies the following properties:
y(ka+ib) =xy (@) +iy(b) (x,AeR);
y([a.b]) = [y @),y (D) .
If the mapy is 1-1, it is called amsomorphism Isomorphic Lie algebrag and L’
have equal dimensions [1f#im{=dimL".

Let { /1=1,2,...,n} be a basis of an-dimensional Lie algebréd. Since the Lie

bracket of any two basis elemenrtands; is an element of, it must be a linear com-
bination of the {}. That is,

[Ti1Tj :qu( % 1p
(sum onk from 1 ton). By the antisymmetry of the Lie brackélif} =— Cﬁ . The real

constantsCi'} are calledstructure constantef the Lie algebraC.

Proposition:Let w: L—L" be a Lie algebra isomorphism. i} (k=1,2,...,n) is
a basis ofZ, then {y (=)} is a basis of_".

Proof: Being a basis of, the {r} are linearly independent; hence no linear com-

bination of them can be zero (unless, of courdecafficients are trivially zero).
Now, by the properties af, a linear combination of thend is mapped onto a linear
combination of the ¥ (z,)} with the same coefficients. This means thatl#tter com-
bination cannot vanish, since it can only be zétbe former one is zero as well; that
is, if all coefficients in the combination are zekWWe conclude that they{(z)} are

linearly independent and may serve as a basis for
Proposition:Isomorphic Lie algebras share common structursteois.

Proof: Lety: L—L" be a Lie algebra isomorphism anddetz; be any two basis
elements of. Then,y(r) andy(z) are basis elements 6f. By the properties af,

vz, D) =w(G ) = [¥(5), w(f)] =G w(g); g.ed.

Roughly speaking, lae groupis a groupG whose elements depend on a number
of parameters that can be varied in a continuoug Whe dimension nof G is the
number of real parameters parametrizing the elesnaid. We assume thaimG=n
and we let £*,4% ..., A"} be the set of parameters oB. We arrange the parameteriza-
tion of G so that the identity element Gfcorresponds ta“=0 for all k=1,2,...n.
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An important class of Lie groups consists gobups of fhxm) matrices pa-
rametrized byn parameters® (k=1,2,...n). Since anrfixm) matrix produces a linear
transformation on am-dimensional Euclidean space, matrix groups aredatiear
groups

Lie groups are closely related to Lie algebraet G be ann-dimensional Lie
group of xm) matricesA(1}, 42,..., AN =A(1) (where by. we collectively denote the
set of then parameters®). We define the (mxm) matrices by

_OA4)

Tk - a/'tk |11:12:---=/1”=0 (5.2)

or, in terms of matrix elements,

() pq =22
k/pg YL M=1%=...=2"=0

(k=1,2,...n; p,q=1,2,...m). Then matricesz, are callednfinitesimal operatorqor
generators) of the Lie group and form the basis of andimensional real Lie algebra
L [1]. Thus [ .7 ]= q'j‘ 5. , Where theCi'J‘ are real constants. A general elemeof
L is written as a linear combination of the a=& ¢ (sum ork), for real coefficients
&¥ [Note carefully that the matrix elementg){y themselvesre not required to be
real numbers!]

Now, leta=1*z be the general elementt £ . The general eleme®(2) of the Lie
group G parametrized by th& can then be written as [1]

A(L) = e® = exp(i*n) (5.3)

where e? is the matrix exponential function
0 a| a2
e"=expa= Y —= I+ ar

For infinitesimal values of the parametéfswve may use the approximate expression
e ~ 1+a
so that
A(L) ~ 1+ g (5.4)

The simplest example of a Lie group is a paemeter continuous group, such as
the groupSQ2) of rotations on a plane. A rotation of a vedigran angléel is repre-
sented by the §2) orthogonal matrix

cosl - sinl
sini cost

A(g):{ } (1eR.

(Notice thatA'A=1 and detA=1.) Then
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dA -sinA - cost
di | cosi —sinl

and, by Eq. (5.2), the single basis elemeat the associated Lie algebra is

r—d—A| _|9 -
S da*? 1 o)
According to (5.3),A(\)=e”" and, for infinitesimall, A(1) ~1+z. Indeed, by setting
sim=X andcosi=1, we have:

Y PR
A1) = = + A =1+Ar.
A 1 0 1 1 0

Another single-parameter Lie group is thetanyigroupU(1) with elements ¢ *}
(AeR), which may be regarded asx() matrices. Consider the mapU(1)—>SQ2)

defined by
- cosi - sinl
elﬂ — )
¢( ) sini cost

This map is a homomorphism, since

g L (et cos(l+A') —sinf+1")
(p(ei'éi)qu(éu M):Lin(ﬁm%') cos@d + A’ )}

B cosi —-sinl|| cod' - sid’
“|sina  cost || sim’ cog’

ofe) o)

Moreover, it can be shown that the maps 1-1. Thereforey is a Lie-group isomor-
phism.

We finally remark that isomorphic Lie grouipave isomorphic Lie algebras [1].
More generally, under certain restrictions, homagohar Lie groups may have iso-
morphic Lie algebras. An example of homomorphic diieups (with isomorphic Lie
algebras) is treated in Sec. 5.2.

5.2 Homomorphism of the Lorentz Group withSL(2,C)

Let L=SO(3,1)T be the restricted Lorentz group, which is represiry (44) real
matricesA=[A*,] with detA=1 and A%2> 1 (this group is also called the proper ortho-
chronous Lorentz group). Also, I81(2,C) be the group of complex ¥2) matrices
with unit determinant. Both andSL(2,C) are six-parameter Lie groups (that is, the
elements of each group depend om&l parameters). It is thus natural to ask whether
a homomorphic relation between these two groupgt®xi
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BothL andSL(2,C) are matrix transformation groups. We seek a spoadence
AeSL(2C) > A(A) el

such thatA(AB)=A(A)A(B) for any A, B € SL(2,C). We thus seek a homomorphic
mapping associating a transformation produced b$Lé2,C) elementA with a corre-
sponding Lorentz transformation (LT) produced byetamentA(A) of L. The latter
transformation is of the form

[X“1=A[X"] & x“'=AX (5.5)

(«=0,1,2,3) and is such that"’x," = x“x, , where x,=g,, X" and X" x,= g, x“x".
With the standard metric

g =[g.] =diag(1, -1, -1, -1) «v=0,1,2,3)
we have:

02— (x1)2 = (x2)2 = (x3)2 = (x°)2 = (x})? = (x?)2 = (x°)? (5.6)

Here is the plan: We seek a class of comfe®) matricesX, depending on 4
real parameters — namely, the spacetime coordindtesand a properly defined ac-
tion of Ae SL(2,C) onX to produce a new matriX’, the parameters”” of which are
such that the Lorentz invariance condition (5.6)s#isfied. By this process an
SL(2,C) transformation will be related to a LT.

A candidate class of 4-parameter complexineskX is the set of (22) hermitian
(self-adjoint) matrices. These form a linear spagth 4-dimensional basisd{},
whereogp=1 (unit matrix) and where; (i=1,2,3) are thé&auli matrices

S RS e R

A general hermitian matriX can be written as

X = X0, = X1+ Xoy+ Xo,+ Xoy= { X +.Xs x- ixz} (5.7)
X +ix? x°-x3
[Notice that X = X , where X '= (X")".] The determinant oX is
detX = (x%)% — (x1)? = (x%)? = (x*)* = x"x, (5.8)
For a givenA e SL(2,C), consider now the matrix transformation
X' = AXA (5.9)

The matrixX " is again hermitian(X')" = X'. (Exercise:Show this by using the gen-
eral matrix propertfM,;M,M )" =M M ,'M ") ThusX " will be of the form (5.7):
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X'=x""g, (5.10)
and, according to (5.8),
detX = (XO')2 _ (Xl,)z _ (x2’)2 _ (x3’)2 = X“7X,” .

But, by (5.9),detX '= detX, given thatdetA=1. This means thak” x,” = x“x, ,
which implies that the transformation from tkfeto thex” " is a LT.

In conclusion: The matrix transformation (5i8ducesa transformation on the
coefficientsx” of the g, in (5.7), which is equivalent to a LT (5.9%""]1= A(A) [x“],
where the transformation matrix depends on the particul8t(2,C) matrix A.

From (5.9) and by using (5.7), (5.10) an&)5wve have:
X"'O'y = AX”G#AI = A, Xo,= AXo, A.

In order for this to be valid independently of treues of thec, the following matrix
relation must be satisfied:

A, o,=Ac, A" or [A(A]“, o,=Ac, A (5.11)

where we have emphasized that thed4{dmatrix A= [A”)] is dependent upon the
choice of the (22) matrixA.

Let us now show that the matrice®f the Lorentz group are a representation of
the groupSL(2,C), i.e., that the corresponden&&(2,C) —» L is a homomorphism. In-
deed, letA;, A, e SL(2,C) = A1 A, € SL(2,C) . Then, by using (5.11),

[MAA o, =(AR) o (AR = A A5, B) A
=A(AAN,0,) AT =[N A" [X Al“,0,
= [A(AA(A*, o,

and, given that the matrices, are linearly independent,

[ACAA“ =[N ANAY, = NAA=N AN A, ged.
We now seek an explicit expression [fafA)]“, . We have:
A, o,=Ac, Al = A# c,0,=0,Ac, A =

tr (A”V 0'40'#) =N tr (o,0,) =tr (O'ﬂA O'VAT) :

By the properties of the Pauli matrices(s;0,)=20;,. So,

A (00,) = 2A8, 0= 2,
and hence

20, =tr (o,Ac,AT) or Aﬂvzétr(aﬂAo-VAT).
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To make this expression covariant-looking, we idtree the matrice$ “= o, and
write, finally,

[AA]X, =%tr(&”AaV A*) (5.12)

We notice thatA(A)=A(-A), which means that the relati@L(2,C) —» L is atwo-to-
one homomorphisnWe say thaSL(2,C) constitutes a two-valued, 2-dimensional rep-
resentation of the restricted Lorentz grduBoth groups are 6-parameter Lie groups
and have isomorphic 6-dimensional real Lie algefiths

An analogous homomorphism exists betweenrsthgroupsSU2) andSQ(3) of
SL(2,C) andL, respectively, wher&WU?2) is the group of () unitary matrices with
unit determinant, whil&Q(3) is the group of (&3) real orthogonal matrices with unit
determinant [1]. Bott5U2) andSQ(3) are 3-parameter Lie groups and their respec-
tive Lie algebras are 3-dimensional and isomorphieach other.

5.3 Flat and Curved Spaces

Consider am-dimensional spac& with coordinatesx, ..., X") = (X). Let ) and
(x+dx') be two neighboring point® andP’ of S, and letds denote the distance be-
tween these points as measuredso8ince the path connectifgandP " is infinitesi-
mal, we may approximately regard this path as &niiesimal straight-line segment.
Moreover, we assume that the valualsfs invariant under any change of coordinates
(X)— (X’) onS Finally, we assume that af- component fieldg; () can be defined
on S (where byx we collectively denote the‘) such that

@) detg=0 at all pointsP=(X") of S, whereg=[g; (X)] is an (xn) matrix;

() the squared distancks (infinitesimal metric forfican be expressed as
ds’ = g;j (x) dX dx! (5.13)

The spacéSis then said to be Riemannian spacéf a global coordinate systers')
exists onS such that all matrix elemengg are constants (i.e., independent of e
the Riemannian spa&is aflat space; if no such coordinate system exists, theespa
Is curved

In tensor analysis [2,3] the fiedg (x) is called themetric tensor Without loss of
generality this tensor may be assumed symmedyic)=g;i (X). Indeed, assume that

ds’= h; (x) dX dx
where theh; () have no particular symmetry. Then,
ds’= (hy dXdx + hy dx!dx') /2= [(h; + h;) /2] dX dx) = g; dX dx!

where
gi=g;i= (hj+h;)/2.
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If g (X)=0 for i, i.e., if the matrixg is diagonal, the coordinate systext) (s an
orthogonalcoordinate system. In particular,gf (X)=d; so thatg is the ixn) unit ma-
trix, the coordinate system{ is aCartesiansystem and the flat spagds aEuclid-
ean spaceEquation (5.13) then takes the form

ds’= (A% + @)%+ ... + [dX)? (5.14)

and expresses the generaliBydhagorean theoremm n dimensions.

Given thads’ >0, an obvious requirement for the matgiof the metric ofSis
thatg; >0 for alli, j. This condition is relaxed in Special Relativihgwever, where
the metric of 4-dimensional flat spacetimirfjkowski spaceis represented by the
(4x4) diagonal matrix

g =diag(1, -1, -1,-1).
Note thatds’ may be positive, negative or zero in this case.

Let us see some examples of metric structures

1. Consider a 2-dimensional sp&weith coordinatesr(f) and infinitesimal met-
ric form

ds’ = dr?+r*dg?.
Define new coordinates,fy) by
X=rcosd , y=rsing.
Then, dx=cog/dr-r sinddd, dy=sinddr+rcogdd, and
(dX)?+ (dy)?= dr®+ r?de? (show this).

Therefore
ds’= (dx)* +(dy)*,

which is of the Euclidean form (5.14). A coordinatansformation thus exists that
reduces the given metric to that of a plane surfatech surface is a 2-dimensional
flat space. In fact,r(f) are polar coordinates on the plane whigy) are the usual
Cartesian coordinates.

2. LetSbe a spherical surface of radiaswhich is again a 2-dimensional space.
In spherical coordinates, ), ) and for constant=a , the metric form o1gis

ds’= a*(do? + sirfodp?) .

The matrixg representing the metric @is

a® 0
—1g (6, p)] = .
g9=[g;(0, )] { 0 2siv 9}

As can be shown [3] no coordinate transformatim)—>(x},x°) on S can reducels’
to the form (5.13) with alfy; constant. ThuSis acurvedspace.
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3. LetS be a cylindrical surface of radiws, which is another example of a 2-
dimensional space. The axis of the cylinder coegidith thez-axis of a cylindrical
system of coordinatep,(, z) and, for constani=a, the metric form oisis

ds’= a®dp 2+ dZ°
so that

a> 0
g—[gij(¢1z)]—|:o J-

Sinceg is a constant matrix, the surfages a flat space. Moreover, one may define
new coordinate$x’, x°)=(ap,2) onS, so that

ds’= (dx)? + (d%)?

which is of the Euclidean form (5.14). We noticetthacylindrical surfacéooks lo-
cally like a plane, althougplobally the two surfaces have different topological prop-
erties. This local equivalence can be visualizetbhsws: One may imagine cutting
the cylindrical surfac& along a line parallel to theaxis and then developing the sur-
face on a plane. This can be done without stretcthiegsurface (if the latter is as-
sumed elastic), so that all lengths $mwill be preserved after development on the
plane. The coordinateg'(x?) on Swill become Cartesian coordinates on the plane.

On the contrary, no such development on aepla possible for any section of a
spherical surfac& without stretchinghe surface, i.e., without changing lengthsSon
Geometrically this reflects the fact that one cdrdefine Cartesian coordinates on a
sphere, which is genuinely curvedpace (in contrast to a cylindrical surface whigh i
intrinsically flat).

5.4 On the Independence of Maxwell’'s Equations

The Maxwell equations for the electromagnetic (efielyl are written, in differential
form,

@ vV-E-L2 (9 @X*E:_aa_f
%o i (5.15)
(b) V-B=0 (d) W”B:yojwouoaa—t

By taking thediv of (5.15) and by using (5.1 we find the equation of continuity
that expresses conservation of charge:

- ap
V- J+—=0 A6
p 16)
Relation (5.16) places a severe restriction oncttegge and current densities that ap-
pear on the right-hand sides of (5aland (5.18). A different sort of differentiation
of the Maxwell system (5.15), by taking that of (c) and (), leads to separate wave
equations for the electric and the magnetic field.
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In most textbooks on electromagnetism the Widkequations (5.15) are treated
as a consistent set of four independent partiémintial equations (PDEsS). A number
of authors, however, have doubted the independeiites system. Specifically, they
argue that (5.1% and (5.18) — the equations for thaiv of the e/m field, expressing
Gauss’ law for the corresponding fields — are reldum since they “may be derived”
from (5.1%) and (5.18) in combination with the equation of continuityX6). If this
Is true, Coulomb’s law — the most important expemtal law of electricity — loses its
status as an independent law and is reduced taatile theorem. The same can be
said with regard to the non-existence of magnatiepin Nature. In this section we
present some recent ideas in support of the viatttie Maxwell equationgo form a
system of independent PDEs [4].

To begin with, let us recall that a part bé t‘redundantdiv equations is con-
tained in the covariant equatiainF“*= 1o J", while the other part is contained in the
equation g, *F“" = 0. Thus, by discarding Eqgs. (5d5%and (5.156) we spoil the co-
variant formulation of Maxwell’'s equations! But tieds more to be said.

As far as we know, the first who doubteditidependent status of the two Gauss’
laws in electrodynamics was Julius Adams Stratiohis 1941 famous (and, admit-
tedly, very attractive) book [5]. His reasoning nieeydescribed as follows:

By taking thdliv of (5.1%), the left-hand side vanishes identically while tbe
right-hand side we may change the order of diffeaéion with respect to space and
time variables. The result is:

0 /= =

§(V' B) =0 13)
On the other hand, by taking tber of (5.15) and by using the equation of continuity
(5.16), we find that

_(vg_ﬁj:o (5.18)

)

And the line of argument continues as follows: Adoog to (5.17) and (5.18) the
quantitiesV-B and (V-E—-p/&,) are constant in time at every poirty( 2) of the
regionQ of space that concerns uswe now assume that there has been a period of
time during which no e/m field existed in the ragi®, then, in that period,

- =

V-B=0 and V-E-p/g=0 (5.19)

identically. Later on, although an e/m field didpapr inQ, the left-hand sides in

(5.19) continued to vanish everywhere within thegion since, as we said above,
those quantities are time-constant at every pdig2.orhus, by the equations for the
rot of the e/m field and by the principle of conseimatof charge — the status of
which was elevated from derivative theorem to fundatal law of the theory — we

derived Egs. (5.19) (valid faall t), which are precisely the first two Maxwell equa-
tions (5.1%) and (5.18)!

According to this reasoning, the electromaigribeory is not based on four inde-
pendent Maxwell equations but rather thnee independent equations only; namely,
the Faraday-Henry law (5.&f the Ampere—Maxwell law (5.1, and the principle
of conservation of charge (5.16).
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What makes this view questionable is the mggion that, foreveryregionQ of
space there exists some period of time during wtiiehe/m field in® vanishes. This
hypothesis is arbitrary and is not dictated byttieory itself. (It is likely that no such
region exists in the Universe!) Therefore, the argnt that led from relations (5.17)
and (5.18) to relations (5.19) is not convincinggsi it was based on an arbitrary and,
in a sense, artificial initial condition: that tkén field was zero at some tirtve0O and
before.

Let us assume for the sake of argument, hekydhat there exists a regigh
within which the e/m field is zero fd< t, and nonzero for>t,. The critical issue is
what happens dtty; specifically, whether the functions expressing &im field are
continuousat that moment. If they indeed are, the fieldtstiom zero and gradually
increases to nonzero values; thus, the line obreag that led from (5.17) and (5.18)
to (5.19) is acceptable. There are physical sibnatihowever, where the appearance
of an e/m field is abrupt. For instance, the momeatconnect the ends of a metal
wire to a battery, an electric field suddenly appaa the interior of the wire and a
magnetic field appears in the exterior. An evenerigiramatic” example is the phe-
nomenon of pair production in particle-physics expents, where a charged parti-
cle—antiparticle pair is created and a nonzero f#hd appears at that moment. In
such cases the e/m fieldnen-continuousatt=ty and its time derivative isot defined
at this instant. Therefore, the line of reasoningt teads from (5.17) and (5.18) to
(5.19) again collapses.

Note also a circular reasoning in Strattapgroach. It is assumed that, in a re-
gion 2 where no e/m field exists, the second of relati($9) is valid identically.
This means that the vanishing of the electric fiel®@ automatically implies the ab-
sence of electric charge in that region. This factyever, follows from Gauss’ law
(5.1%1); thus it may not be usedpriori as a tool for proving the law itsélf

In general, conservation laws emerge@ssequencesf the fundamental equa-
tions of a theory. In particular, conservation bhige, expressed by the continuity
equation (5.16), is derived lojfferentiatingthe Maxwell system (5.15) and, as is well
known, in the process of differentiation of a systef PDEs some part of the
information carried by the system is lost. Therefdhe equation of continuity (5.16)
cannot be regarded as more fundamental than argtiequn the system (5.15) and
hence may not replace any equation in this system.

It is thus our view that the Maxwell equasdiorm a system of four independent
PDEs that express respective laws of Nature. M@edhe self-consistency of this
system imposes two conditions that physically esptée conservation of charge and
the wave behavior of the time-dependent e/m figl& now re-examine this issue
from the more formal point of view dacklund transformationéBTs) [6-8]. To be-
gin with, let us see the simplest, perhaps, exawideBT.

TheCauchy-Riemann relationsf complex analysis,
W=vy, @ w=-v% (@ (5.20)

(where subscripts indicate partial differentiatiomsh respect to the indicated vari-
ables) constitute a BT for theplace equation

Wiy + Wyy = 0 .4D)
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Let us explain this: Suppose we want to solve tfsesn (5.20) fom, for a given
choice of the functiow(x,y). To see if the PDEs (5.d8Dand (5.20) match for solu-
tion for u, we must compare them in some way. We thus diftexte (5.2@) with
respect toy and (5.20) with respect tx, and equate the mixed derivativesuofl hat

is, we apply thentegrability condition(or consistency conditign(ux)y= (Uy)x . In this
way we eliminate the variable and we find a condition that must be obeyed by
v(X,Y):

Vix + Vyy =0 .

Similarly, by using the integrability conditiomjy= (v)x to eliminatev from the sys-
tem (5.20), we find the necessary condition in ottat this system be integrable for
v, for a given functionu(x,y):

Uxx + Uy = 0.

We conclude that the integrability of the systen2@% with respect to either variable
requires that the other variable satisfy the Lapkeguation (5.21).

Let nowvy(x,y) be a known solution of the Laplace equation (b.&lbstituting
v=Vp in the system (5.20) we can integrate this systéim respect ta. It is not hard
to show (by eliminating, from the system) that the solutionwill also satisfy the
Laplace equation. As an example, by choosing thatiso vo(x,y)=xy of (5.21) we
find a new solutioru(x,y)= (¢ —y?)/2+C.

Generally speaking, a Backlutrdnsformation is a system of PDEs connecting
two functions (sayu andv) in such a way that the consistency of the systgmires
that u and v independently satisfy the respective, higher-of@®Es F[u]=0 and
G[Vv]=0. Analytically, in order that the system be grable foru, the functionv must
be a solution of5[v]=0; conversely, in order that the system be irdblgr forv, the
functionu must be a solution d¥[u]=0. If F andG happen to be functionally identi-
cal, as in the example given above, the BT is salie amauto-Backlundransforma-
tion.

Classically, BTs are useful tools for findisgjutions of nonlinear PDESs. In [6-8],
however, we suggested that BTs may also be usefusdlving linear systemsof
PDEs. The prototype example that we used was thewklh equations in empty
space:

(a) V-E=0 © ﬁxéz_z_?
3 (5.22)
. . oE
() V-B=0 () VxB=sop, -

Here we have a system of four PDEs for two veatldd$ that are functions of the
spacetime coordinates, /, z, t). We would like to find the integrability conditis
necessary for self-consistency of the system (5.2@)this end, we try to uncouple

the system to find separate second-order PDE€&fand B, the PDE for each field
being a necessary condition in order that the sy$822) be integrable for the other
field. This uncoupling, which eliminates eitherlfigelectric or magnetic) in favor of
the other, is achieved by properly differentiatihg system equations and by using
suitable vector identities, in a manner similaspirit to that which took us from the
first-order Cauchy-Riemann system (5.20) to theassp second-order Laplace equa-
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tions (5.21) foru andv. As can be shown, the only nontrivial integrapitbnditions
for the system (5.22) are those obtained by usiagéctor identities

Vx(VxE)=V(V-E)-V%E
and
Vx(VxB)=V(V-B)-V?B.

By these we obtain separate wave equations fagldutric and the magnetic field:

_ 0°E
V?E - g u,——=0,
oMo PYE:
B
VB - ¢, y—=0 .
oo PYE:

We conclude that the Maxwell system (5.22) in engsice is a BT relating the e/m
wave equations for the electric and the magnetld fiin the sense that the wave
equation for each field is an integrability conalitifor solution of the system (5.22) in
terms of the other field.

The case of the full Maxwell equations (5.65nore complex due to the presence

of the source termg, J in the non-homogeneous equations (8)1&nd (5.18). As

it turns out, the self-consistency of the BT (5.iBposes conditions on the terms of
non-homogeneity as well as on the fields themselVes latter conditions are the
non-homogeneous wave equations

_ ’E 1~ 8J

VZE - g tig— =—Vp + ty— ,
oMoz T £ o
V2B - o, B — %3
5oﬂoat2— HoV X

while the condition regarding the source terms @l@nprecisely the continuity equa-
tion (5.16) expressing conservation of charge.

In summary: From a mathematical perspecthve Maxwell system (5.15) may be
viewed as a Backlund transformation (BT) the indbgity conditions of which (i.e.,
the necessary conditions for self-consistency efdystem) yield separate (generally
non-homogeneous) wave equations for the electudictia@ magnetic field, as well as
the equation of continuity (5.16). These integiaptonditions are derived by differ-
entiating the BT (5.15) in different ways, thusytlvarry less information than the BT
itself. Consequently, none of the integrability diions may replace any equation in
the system (5.15). In particular, the continuityaiipn (5.16) cannot be a partial sub-
stitute for Gauss’ law (5.H.
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