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1.  Definition of the center of mass  
 
Consider a system of particles of masses m1 , m2 , m3 ,... Assume that at some particu-
lar moment the particles are located at the points of space with corresponding position 
vectors 1 2 3, , , ,r r r

� � �

⋯  relative to a reference point Ο which is typically chosen to be 

the origin of an inertial1 frame of reference (see figure).  
 
 

 
 
      The total mass of the system is  
 

    1 2 3 i
i

M m m m m= + + + =∑⋯                                   (1) 

 
The center of mass of the system is defined as the point C of space having the position 
vector  
 

    1 1 2 2

1 1
( )C i i

i

r m r m r m r
M M

= + + = ∑� � � �

⋯                                  (2) 

 
      In relation (2) the position vectors of the particles and of the center of mass are 
defined with respect to the fixed origin O of our coordinate system. If we choose a 
different reference point O΄, these position vectors will, of course, change. However, 
as will be shown below, the position of the center of mass C relative to the system of 
particles will remain the same, regardless of the choice of reference point.  
 

                                                 
1 At least, insofar as Newton's laws are to be used.  
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      If (xi , yi , zi ) and (xC , yC , zC) are the coordinates of mi and C, respectively, we can 
replace the vector relation (2) with three scalar equations:  
 

 
1 1 1

, ,C i i C i i C i i
i i i

x m x y m y z m z
M M M

= = =∑ ∑ ∑                       (3) 

 
      As an example, consider two particles of masses m1=m and m2=2m, located at 
points x1 and x2 of the x-axis. Call  a = x2 – x1  the distance between these particles:  
 
                                                                
 
 
 
 
 
The total mass of the system is M=m1+m2=3m . From relations (3) it follows that the 
center of mass C of the system is located on the x-axis. Indeed, yi=zi=0 (i= 1,2) so that  
yC=zC=0  (the y and z-axes have not been drawn). Furthermore,  
 

1 1 2 2 1 2 1

1 1 2
( ) ( 2 )

3 3Cx m x m x x x x a
M

= + = + = +  

 
where we have used the fact that  x2=  x1+a . Thus, the center of mass C is located at a 
distance 2a/3 from m. Note that the position of C relative to the system of particles 
does not depend on the choice of the reference point Ο with respect to which the co-
ordinates of the particles are determined.  
      As the above example demonstrates, the position of the center of mass does not 
necessarily coincide with the position of a particle of the system. (Give examples of 
systems in which a particle is located at C, as well as of systems where no such coin-
cidence occurs.)  
 
 
2.  Independence from the point of reference  
 
We must now show that the location of C in space does not depend on the choice of 
the reference point Ο. Let us assume for the moment, however, that the position of C 
does depend on the choice of reference point. So, let C and C΄ be two different posi-
tions of the center of mass, corresponding to the reference points Ο and Ο΄. We call 

Cr
�

 and Cr ′
�

 the position vectors of C and C΄ with respect to Ο and Ο΄, respectively, and 

we let ir
�

 and ir ′
�

 be the position vectors of the particle mi relative to Ο and Ο΄. For 

convenience, we denote by b
�

the vector OO′
�����

 (see figure).  
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      The defining equation (2), expressed successively for Ο and Ο΄, yields  
 

1 1
,C i i C i i

i i

r m r r m r
M M

′ ′= =∑ ∑� � � �

 

where i ir r b′ = −
�

� �

. Now,  

 

1 1 1
( )

1 1 1
0

C C

i i i i i i i
i i i

i i
i i

CC CO OO O C r b r

CC m r b m r b m r r
M M M

b m b b m b b M b
M M M

′′ ′ ′ ′= + + = − + + ⇒

′ ′′ = − + + = − −

 
= − = − = − = 

 

∑ ∑ ∑

∑ ∑

����� ���� ����� ������ �
� �

����� � �
� � � �

� � � � � �

 

 
which suggests that the points C and C΄ coincide. Hence, the center of mass of the 
system is a uniquely determined point of space, independent of the origin of our coor-
dinate system.  
 
 
3.  Center of mass and Newton’s laws  
 
We define the total (linear) momentum of the system at time t , relative to an inertial 
reference frame, as the vector sum  
 

    i i i
i i

P p m v= =∑ ∑
� � �

                                                   (4) 

Let iF
�

 be the external force acting on mi  at this instant. The total external force acting 

on the system at time t is ext i
i

F F=∑
� �

. By Newton’s 2nd and 3rd laws we find that  

 

      ext

dP
F

dt
=

�

�

                                                           (5) 

 
[see, e.g., Papachristou (2020)]. We now prove the following:  
 
 
 



 C. J. PAPACHRISTOU 

 4 

1. The total momentum of the system is equal to the momentum of a hypothetical 
particle having mass equal to the total mass Μ of the system and moving with 
the velocity of the center of mass of the system.  

2. The equation of motion of the center of mass of the system is that of a hypo-
thetical particle of mass equal to the total mass Μ of the system, subject to the 

total external force extF
�

 acting on the system.  

 
      Proof:  
 
      1. Differentiating (2) with respect to time, we find the velocity of the center of 
mass of the system:  
 

1 1C i
C i i i

i i

dr d rd
v m r m

dt dt M M dt

 
= = = ⇒ 

 
∑ ∑

� �

� �

 

 

    
1 1

C i i i
i i

v m v p
M M

= =∑ ∑� � �

                                           (6) 

 
Combining this with (4), we have:  
 

        CP M v=
� �

                                                         (7) 

 
      2. Differentiating (7), we have:  
 

( ) C
C C

dvdP d
M v M M a

dt dt dt
= = =

� �

� �

 

 
where Ca

�

 is the acceleration of the center of mass. Hence, by (5),  

 

            ext CF M a=
� �

                                                         (8) 
 
      A system of particles is said to be isolated if (a) it is not subject to any external 
interactions (a situation that is only theoretically possible) or (b) the total external 

force on the system is zero: ext 0F =
�

. In this case, relations (5) and (7) lead to the fol-

lowing conclusions:  
 

1. The total momentum of an isolated system of particles retains a constant value 
relative to an inertial frame of reference (principle of conservation of momen-
tum).  

2. The center of mass C of an isolated system of particles moves with constant 
velocity relative to an inertial reference frame.  

 
      As an example, consider two masses m1 and m2 connected to each other with a 
spring. The masses can move on a frictionless horizontal plane, as shown in the fig-
ure:  
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1m 2m
k

 
 
The system may be considered isolated since the total external force on it is zero (ex-
plain this!). Thus, the total momentum of the system and the velocity of the center of 
mass C remain constant while the two masses move on the plane. Note that the inter-
nal force Fint=k∆l, where ∆l is the deformation of the spring relative to its natural 
length, cannot produce any change to the total momentum and the velocity of C.  
 
 
4.  Center of mass and angular momentum  
 
The total angular momentum of the system at time t, relative to an arbitrary point O, 
is defined as  
 

( )i i i i
i i

L L m r v= = ×∑ ∑
� � � �

                                              (9) 

 
In particular, the total angular momentum relative to the center of mass C of the sys-
tem is  
 

    ( )i i i
i

L m r v′ ′′ = ×∑
� � �

                                                 (10) 

 
where primed quantities are measured with respect to C. We have:  
 

,i i C i i Cr r r v v v′ ′= + = +
� � � � � �

 . 

 
Substituting these into (9) and using (1) and (10), we get:  
 

( )C C i i C C i i
i i

L L M r v m r v r m v
    ′ ′′= + × + × + ×    
    
∑ ∑

� � � � � � � �

 . 

 

But, 0i im r′Σ =
�

 and 0i im v′Σ =
�

, since these quantities are proportional to the position 

vector and the velocity, respectively, of the center of mass C relative to C itself. Thus, 
finally,  
 

    ( )C CL L M r v′= + ×
� � � �

                                                  (11) 

 
      We may interpret this result as follows:  
 

The total angular momentum of the system, with respect to a point O, is the 
sum of the angular momentum relative to the center of mass (“spin angular 
momentum”) and the angular momentum relative to O, of a hypothetical par-
ticle of mass equal to the total mass of the system, moving with the center of 
mass (“orbital angular momentum”).  
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      Now, suppose O is the origin of an inertial reference frame. Let iF
�

 be the external 

force acting on mi at time t. The total external torque acting on the system at this time, 
relative to O, is given by  
 

   ext i i
i

T r F= ×∑
� ��

                                                    (12) 

 
If we make the assumption that all internal forces in the system are central (as the 
case is in most physical situations of interest), then the following relation exists be-
tween the total angular momentum and the total external torque, both quantities meas-
ured relative to O [see, e.g., Papachristou (2020)]:  
 

    ext
dL

T
dt

=

�

�

                                                          (13) 

 
      Equation (13) is strictly valid relative to the origin O of an inertial frame. If the 
system of particles is isolated, the center of mass C moves with constant velocity 
(relative to O) thus is a proper choice of point of reference for the vector relation (13). 
That is, (13) is valid with respect to the center of mass of an isolated system. But, 
what if the system of particles is not isolated? Then C is accelerating (relative to O) 
and it would appear that (13) is not valid relative to C in this case. This is not so, 
however:  
 

Equation (13) is always valid with respect to the center of mass C, even when 
C is accelerating (i.e., even if the system of particles is not isolated)!  

 
      Indeed, by differentiating (11) with respect to time and by using (13), (12) and (8), 
we have:  
 

( )( ) ( ) which vanishesC C C C
dL dL

M r a M v v
dt dt

′
= + × + × ⇒

� �

� � � �

 

ext ext( )i i C
i

dL
T r F r F

dt

′
≡ × = + × ⇒∑

�

� � �� �

 

ext

( )i i C i i C i
i i i

i i
i

dL
r F r F r r F

dt

r F T

 ′
= × − × = − × 

 

′ ′= × =

∑ ∑ ∑

∑

�

� � �� � � �

� ��

 

where extT ′
�

 is the total external torque relative to the center of mass.  

      This observation justifies using (13) to analyze, e.g., the motion of a rolling body 
on an inclined plane by choosing an axis of rotation that passes through the accelerat-
ing center of mass of the body.  
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5.  Center of mass and kinetic energy  
 
The total kinetic energy of the system relative to an external observer O is  
 

    21

2k i i
i

E m v=∑                                                   (14) 

 
The total kinetic energy with respect to the center of mass C is  
 

     21

2k i i
i

E m v′ ′=∑                                                   (15) 

 
(as before, primed quantities are measured with respect to C). We have:  
 

2 2 2 2i i C i i i i C i Cv v v v v v v v v v′ ′ ′= + ⇒ = ⋅ = + + ⋅
� � � � � � �

 . 

 
Substituting this into (14) and using (1) and (15), we get:  
 

21

2k k C i i C
i

E E M v m v v
 ′ ′= + + ⋅ 
 
∑ � �

 . 

 
But, as noted previously, the sum in the last term vanishes, being proportional to the 
velocity of the center of mass C relative to C. Thus, finally,  
 

     21

2k k CE E M v′= +                                                  (16) 

 
      This may be interpreted as follows:  
 

The total kinetic energy of the system, relative to an observer O, is the sum of 
the kinetic energy relative to the center of mass and the kinetic energy relative 
to O, of a hypothetical particle of mass equal to the total mass of the system, 
moving with the center of mass.  

 
 
6.  Adding a particle at – or removing a particle from – the center of mass  
 
We now prove the following:  
 
      (a) Consider a system of N particles of masses m1 , m2 , ... , mN . Let C be the cen-
ter of mass of the system. If a new particle, of mass m , is placed at C, the center of 
mass of the enlarged system of (N+1) particles will still be at C.  

      (b) Consider a system of N particles of masses m1 , m2 , ... , mN . It is assumed that 
the location of one of the particles, say of mN , coincides with the center of mass C of 
the system. If we now remove this particle from the system, the center of mass of the 
remaining system of (N–1) particles will still be at C.  
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      Proof:  
 
      (a) The total mass of the original system of N particles is M=m1+m2+...+mN . The 
center of mass of this system is located at the point C with position vector  
 

1 1 2 2
1

( )C N Nr m r m r m r
M

= + + +
� � � �

⋯  

 
relative to some fixed reference point O. For the additional particle, which we name 
mN+1 , we are given that  mN+1=m  and 1N Cr r+ =

� �

. The total mass of the enlarged sys-

tem of (N+1) particles  m1 , m2 , ... , mN , mN+1  is  M΄=  M+m,  and the center of mass 
of this system, relative to O, is located at  
 

1 1
1

( )C N N Cr m r m r mr
M

′ = + + +
′

� � � �

⋯  . 

 
Now,  1 1 N N Cm r m r M r+ + =

� � �

⋯ ,  so that  

 
1

( )C C C Cr M r mr r
M m

′ = + =
+

� � � �

 . 

 
      (b) Although this statement is obviously a corollary of part (a), we will prove this 
independently. Here we are given that N Cr r=

� �

. Thus,  

 

1 1
1

( )N N Nm r m r r
M

+ + =
� � �

⋯  . 

 
The mass of the reduced system of (N–1) particles m1 , m2 , ... , mN–1  is  M΄=  M–mN , 
while the center of mass of this system is located at  
 

1 1 1 1
1

( )C N Nr m r m r
M − −

′ = + +
′

� � �

⋯  . 

 
But,  1 1 1 1N N N N Nm r m r m r M r− −+ + + = ⇒

� � � �

⋯  

 

1 1 1 1 ( )N N N N Nm r m r M m r M r− − ′+ + = − =
� � � �

⋯  . 

 
Thus, finally,  

1
C N N Cr M r r r

M
′ ′= = =

′
� � � �

 . 
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7.  Center of mass of a continuous mass distribution  
 
A rigid body is a physical object the structure of which exhibits a continuous mass 
distribution. Such an object can be considered as a system consisting of an enormous 
(practically infinite) number of particles of infinitesimal masses dmi , placed in such a 
way that the distance between any two neighboring particles is zero. The total mass of 
the body is  
 

i
i

M dm dm= =∑ ∫  

 
where the sum has been replaced by an integral due to the fact that the dmi are infini-
tesimal and the distribution of mass is continuous.  
      A point in a rigid body can be specified by its position vector r

�

, or its coordinates 
(x, y, z), relative to the origin Ο of some frame of reference. Let dV be an infinitesimal 
volume centered at ( , , )r x y z≡

�

, and let dm be the infinitesimal mass contained in this 
volume element. The density ρ of the body at point r

�

 is defined by  
 

( ) ( , , )
dm

r x y z
dV

ρ ρ= =
�

 . 

 
Then,  

( )dm r dVρ=
�

 
 
and the total mass of the body is written  
 

( )M r dVρ= ∫
�

 

 
where the integration takes place over the entire volume of the body. (The integral is 
in fact a triple one since, in Cartesian coordinates, dV=dxdydz.) The center of mass C 
of the body is found by using (2):  
 

1 1
( )C i i

i

r dm r rdm
M M

= = ⇒∑ ∫
� � �

 

 

       
1

( )Cr r r dV
M

ρ= ∫
� � �

                                             (17) 

 
where the r

�

 and Cr
�

 are measured relative to the origin Ο of our coordinate system. 

(Remember, however, that the location of C with respect to the body is uniquely de-
termined and is independent of the choice of the reference point Ο.)  
      In a homogeneous body the density has a constant value ρ, independent of r

�

. 
Then,  
 

M dV dV Vρ ρ ρ= = =∫ ∫  
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ii x
0x=

O C

Cxa a l+

where V  is the total volume of the body. Also, from (17) we have:  
 

        
1

Cr r dV r dV
M V

ρ
= =∫ ∫
� � �

                                        (18) 

 
      Imagine now that, instead of a mass distribution in space, we have a linear distri-
bution of mass (e.g., a very thin rod) along the x-axis. We define the linear density of 
the distribution by  
 

( )
dm

x
dx

ρ =  . 

 
The total mass of the distribution is  
 

( )M dm x dxρ= =∫ ∫  . 

 
The position of the center of mass of the distribution is given by  
 

     
1 1

( )Cx x dm x x dx
M M

ρ= =∫ ∫                                      (19) 

 
If the density ρ is constant, independent of x, then  
 

M dx dx lρ ρ ρ= = =∫ ∫  

 
where l is the total length of the distribution. Furthermore,  
 

      
1

Cx x dx x dx
M l

ρ
= =∫ ∫                                            (20) 

 
      As an example, consider a thin, homogeneous rod of length l, placed along the x-
axis from  x=a  to  x=a+l , as shown in the figure:  
 
         
 
 
 
By equation (20),  
 

2 21 1
( )

2 2

a l

C a

l
x x dx a l a a

l l

+
 = = + − = + ∫  . 

 
That is, the center of mass C of the rod is located at the center of the rod. Note that the 
location of C on the rod is uniquely determined, independently of the choice of the 
origin Ο of the x-axis (although the value of the coordinate xC does, of course, depend 
on this choice).  
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8.  Center of mass and center of gravity  
 
We have seen that the center of mass C of a system of particles moves in space as if it 
were a particle of mass equal to the total mass M of the system, subject to the total 
external force acting on the system. The same is true for a rigid body. Let us assume 
that the only external forces that act on the system (or the rigid body) are those due to 
gravity. The total external force is then equal to the total weight of the system:  
 

( )i i i
i i i

w w m g m g
 

= = = ⇒ 
 

∑ ∑ ∑� � � �

 

w M g=
� �

   where   i
i

M m=∑  . 

 
The acceleration of gravity g

�

 is constant in a region of space where the gravitational 
field may be considered uniform.  
      Note that w

�

 is a sum of forces that act on separate particles (or elementary masses 
dmi in the case of a rigid body) located at various points of space. The question now is 
whether there exists some specific point of application of the total weight w

�

 of the 
system and, in particular, of a rigid body. A reasonable assumption is that this point 
could be the center of mass C of the body, given that, as mentioned above, the point C 
behaves as if it concentrates the entire mass Μ of the body and the total external force 
acting on it. And, in our case, w

�

 is indeed the total external force due to gravity.  
      There is a subtle point here, however: In contrast to a point particle (such as the 
hypothetical “particle” of mass M moving with the center of mass C ) that simply 
changes its location in space, a rigid body may execute a more complex motion, spe-
cifically, a combination of translation and rotation. The translational motion of the 
body under the action of gravity is indeed represented by the motion of the center of 
mass C, if this point is regarded as a “particle” of mass Μ on which the total force w

�

 
is applied. For the rotational motion of the body, however, it is the torques of the ex-
ternal forces, rather than the forces themselves, that are responsible. Where should we 
place the total force w

�

 in order that the rotational motion it produces on the body be 
the same as that caused by the simultaneous action of the elementary gravitational 
forces ( )i id w dm g=

� �

? Equivalently, where should we place w
�

 in order that its torque 

with respect to any point O be equal to the total torque of the id w
�

 with respect to O ?  

      You may have guessed the answer already: at the center of mass C ! [See, e.g., Pa-
pachristou (2020).] In conclusion:  
 

By placing the total weight w
�

 of the body at the center of mass C we manage 
to describe not only the translational but also the rotational motion of the 
body under the action of gravity.  

 
It is for this reason that C is frequently called the center of gravity of the body. Note 
that this point does not necessarily belong to the body (consider, for example, the 
cases of a ring and a spherical shell).  
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9.  Mechanical energy of a rigid body  
 
Consider a rigid body rotating with angular velocity ω about an axis passing from a 
fixed point O of space:  
 

i

i

i

ω

iR
im

iv
�

ir
�

O

 
 
During rotation, every elementary mass mi in the body moves circularly about the axis 
of rotation, with the common angular velocity ω. If Ri is the perpendicular distance of 
mi from the axis (thus, the radius of the circular path of mi), the speed of this mass 
element is  vi =  Ri ω . The total kinetic energy of rotation is the sum of the kinetic en-
ergies of all elementary masses mi contained in the body:  
 

2 2 2 2 2
,

1 1 1

2 2 2k rot i i i i i i
i i i

E m v m R m Rω ω   = = = ⇒   
   

∑ ∑ ∑  

 
2

,

1

2k rotE Iω=                                                   (21) 

where  

2
i i

i

I m R=∑  

 
is the moment of inertia of the body relative to the axis of rotation.  
      Relation (21) represents the total kinetic energy of the body when the latter exe-
cutes pure rotation about a fixed axis. A more general kind of motion is a rotation 
about an axis that is moving in space. Specifically, assume that the axis of rotation 
passes from the center of mass C of the body, while C itself moves in space with ve-
locity Cv

�

. The body thus executes a composite motion consisting of a translation of 

the center of mass C and a rotation about C. According to equation (16), the total ki-
netic energy of the body is the sum of two quantities: a kinetic energy of translation,   
 

2
,

1

2k trans CE M v=  
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(where Μ is the mass of the body and vC is the speed of the center of mass C) and a 
kinetic energy of rotation about C,   
 

2
,

1

2k rot CE I ω=  

 
(where ω is the angular velocity of rotation about an axis passing from C, while IC is 
the moment of inertia of the body relative to this axis2). Hence, the total kinetic en-
ergy of the body is  
 

2 2
, ,

1 1

2 2k k trans k rot C CE E E M v I ω= + = +                               (22) 

 
      If the body is subject to external forces that are conservative, we can define an ex-
ternal potential energy Ep as well as a total mechanical energy E, the latter assuming 
a constant value during the motion of the body:  
 

2 21 1
.

2 2k p C C pE E E M v I E constω= + = + + =                           (23) 

 
For example, if the body moves under the sole action of gravity, its potential energy is  
 

p CE M g y=  

 
where  yC is the vertical distance (the height) of the center of mass C with respect to an 
arbitrary horizontal plane of reference. Indeed, by relation (3),  
 

1
C i i

i

y m y
M

= ∑  

 
where yi is the height of the point of location of the elementary mass mi in the body. 
The total gravitational potential energy of the body, equal to the sum of the potential 
energies of all elementary masses mi , is then  
 

( )p i i i i C
i i

E m g y g m y M g y= = =∑ ∑  . 

 
The total mechanical energy of the body is constant and equal to  
 

2 21 1

2 2C C CE M v I M g yω= + +                                       (24) 

 
 
 
 

                                                 
2 The moment of inertia I relative to an axis parallel to this axis is given by the parallel-axis theorem 
[see, e.g., Papachristou (2020)]. Specifically, I=I C+Ma2, where a is the perpendicular distance between 
the two axes.  
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