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1. Definition of the center of mass

Consider a system of particles of massesny,, mg,... Assume that at some particu-
lar moment the particles are located at the pahgpace with corresponding position
vectorst, r,,l,, -, relative to a reference poidt which is typically chosen to be

the origin of an inertidlframe of reference (see figure).

The total mass of the system is
M=m+m+m+-=3m (1)

Thecenter of massf the system is defined as the pdndf space having the position
vector

= 1 _ _ 1 -
fc=ﬁ(mlr1+mzfz+'“)=ﬁsz (2)

In relation (2) the position vectors of thartcles and of the center of mass are
defined with respect to the fixed origd of our coordinate system. If we choose a
different reference poir®’, these position vectors will, of course, changewelver,
as will be shown below, theositionof the center of magss relative to the system of
particleswill remain the same, regardless of the choiceefe#frence point.

1 At least, insofar as Newton's laws are to be used.



C.J. PAPACHRISTOU

If ,yi,z) and &c, Yc, Zc) are the coordinates af andC, respectively, we can
replace the vector relation (2) with three scatpragions:

1 1 1 .
xc—Vime, x—ﬁiva, @—WZ m: (3)

As an example, consider two particles of reasg=m and m,=2m, located at
pointsx; andx, of thex-axis. Call a= x,—x; the distance between these particles:

e} m C 2m

. ° . o X
Xl XC X2
D —— a B ———

The total mass of the systemNi=m;+m,=3m. From relations (3) it follows that the
center of mas€ of the system is located on tkexis. Indeedy,=z;=0 (i=1,2) so that
yc=zc=0 (they andz-axes have not been drawn). Furthermore,

Xc=ﬁ(nl>i+ nw)=—;( X+2 %)= >1<+—§ i

where we have used the fact that x;+a . Thus, the center of ma€sis located at a
distance 3/3 from m. Note that the position d@ relative to the system of particles
does notdepend on the choice of the reference pointith respect to which the co-
ordinates of the particles are determined.

As the above example demonstrates, the positi the center of mass does not
necessarily coincide with the position of a paetiof the system. (Give examples of
systems in which a particle is locatedCatas well as of systems where no such coin-
cidence occurs.)

2. Independence from the point of reference

We must now show that the location©fin space does not depend on the choice of
the reference poir®. Let us assume for the moment, however, that ts&ipn ofC
doesdepend on the choice of reference point. ScClahdC” be two different posi-
tions of the center of mass, corresponding to éherence point® andO’. We call

r. andf.’ the position vectors af andC" with respect t@ andO’, respectively, and
we let and T’ be the position vectors of the particte relative toO and O'. For

convenience, we denote Ithe vectorOO' (see figure).
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The defining equation (2), expressed suceelysior O andO’, yields

— 1 — - ! 1 !
o=y 2ME = > mE

wheref’ =F —b . Now,

CC'=CO+ 00+ OC=-g+ b7 =
CC=— Y mp+be ¥ mit= b3 mir- )
=5—ﬁ2m5= B—ﬁl(z mj b- b= Mb-0

which suggests that the pointsand C" coincide. Hence, the center of mass of the
system is a uniquely determined point of spacegpeddent of the origin of our coor-
dinate system.

3. Center of mass and Newton’s laws

We define thdotal (linear) momentunof the system at timeg, relative to an inertial
reference frame, as the vector sum

P=YR=my @
Let IfI be theexternalforce acting onrm at this instant. Theotal external forceacting

on the system at timeis F,,, = ZIE, . By Newton’s 2nd and 3rd laws we find that
i

b
_t = I:ext (5)

[see, e.qg., Papachristou (2020)]. We now provédiewing:
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1. The total momentum of the system is equal tonttreentum of a hypothetical
particle having mass equal to the total massf the system and moving with
the velocity of the center of mass of the system.

2. The equation of motion of the center of magbefsystem is that of a hypo-
thetical particle of mass equal to the total magsf the system, subject to the

total external forceF,,, acting on the system.

Proof:

1. Differentiating (2) with respect to timee find the velocity of the center of
mass of the system:

o1 B
Vo= 2 MY =120 P (6)

P=MV, (7
2. Differentiating (7), we have:
dP d dy,
—=—(MV.)=M—=M3a
dt dt( c) dt %

whered. is the acceleration of the center of mass. Hdne ),

Fou =M & @)

A system of particles is said to iselatedif (a) it is not subject to any external
interactions (a situation that is only theoretiggdossible) or if) the total external
force on the system is zer@;ext =0. In this case, relations (5) and (7) lead to tile f

lowing conclusions:

1. The total momentum of an isolated system ofgbestretains a constant value
relative to an inertial frame of reference (printgpof conservation of momen-
tum).

2. The center of mass C of an isolated system nicleg moves with constant
velocity relative to an inertial reference frame.

As an example, consider two massgsnd m, connected to each other with a
spring. The masses can move on a frictionless twatdt plane, as shown in the fig-
ure:
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The system may be considered isolated since thedwternal force on it is zero (ex-
plain this!). Thus, the total momentum of the syst&nd the velocity of the center of
massC remain constant while the two masses move onldreepNote that thenter-
nal force Fin=kAl, whereAl is the deformation of the spring relative to ietural
length,cannotproduce any change to the total momentum andeloeiy of C.

4. Center of mass and angular momentum

The total angular momenturof the system at timg relative to an arbitrary poir@,
is defined as

L=2L =2 m(FxV) 9

In particular, the total angular momentum relativghe center of ma<s of the sys-
temis

L'=>"m(F'=Y) oj1

where primed quantities are measured with respect ¥We have:

— —!

— — — ! —

Substituting these into (9) and using (1) and (@) get:
L=L"+M(f; xVg) + HZmi ﬁ'jxvc} + {?szmv’} :
i i

But, >m ¥ =0 andXmV =0, since these quantities are proportional to thsition
vector and the velocity, respectively, of the cenfemassC relative toC itself. Thus,
finally,

L=L"+M (. xV,) 11§
We may interpret this result as follows:

The total angular momentum of the system, witha@s a point O, is the
sum of the angular momentum relative to the ceoteanass (“spin angular
momentum”) and the angular momentum relative t@iC3 hypothetical par-
ticle of mass equal to the total mass of the systeoving with the center of
mass (“orbital angular momentum”).



C.J. PAPACHRISTOU

Now, suppos® is the origin of annertial reference frame. Leli?i be the external

force acting omm at timet. Thetotal external torquexcting on the system at this time,
relative toO, is given by

fext = Z ﬁ X 'E; (12)

If we make the assumption that aiternal forces in the system apentral (as the
case is in most physical situations of interesigntthe following relation exists be-
tween the total angular momentum and the totalreat¢orque, both quantities meas-
ured relative td [see, e.g., Papachristou (2020)]:

di -
E = Text (13)

Equation (13) is strictly valid relative tbet originO of aninertial frame. If the
system of particles issolated the center of mas€ moves with constant velocity
(relative toO) thus is a proper choice of point of referencetlfier vector relation (13).
That is, (13) is valid with respect to the centémmass of an isolated system. But,
what if the system of particles mot isolated? Thel€ is accelerating(relative toO)
and it would appear that (13) is not valid relatteeC in this case. This is not so,
however:

Equation (13) is always valid with respect to tlemter of mass C, even when
C is accelerating (i.e., even if the system ofipkes is not isolated)!

Indeed, by differentiating (11) with resp&ztime and by using (13), (12) and (8),
we have:

% _ %+ M (F, xac) (+M (Vg x Vo) which vanishe} =

- - odr . -
TextEZriXFi = dt +(rCXFext) =
i

PP —(rexZF?j = 20— )F

= !/

whereT,,; is the total external torque relative to the cenfanass.

This observation justifies using (13) to guel e.g., the motion of a rolling body
on an inclined plane by choosing an axis of rotatltat passes through thecelerat-
ing center of mass of the body.
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5. Center of mass and kinetic energy

Thetotal kinetic energyf the system relative to an external obse®és
1 - >
B =25mY 14]
|
The total kinetic energy with respect to the cenfenas<C is
’ 1 12
B =2.5my 15]
|
(as before, primed quantities are measured withextsoC). We have:

=Y+ = V=V V= VY2V

Substituting this into (14) and using (1) and (1%3, get:

E =B+ MVC (Zm\(j

But, as noted previously, the sum in the last teamishes, being proportional to the
velocity of the center of massrelative toC. Thus, finally,

E . =E + % Mv.2 6§1

This may be interpreted as follows:

The total kinetic energy of the system, relativarimbserver O, is the sum of
the kinetic energy relative to the center of mass the kinetic energy relative
to O, of a hypothetical particle of mass equalhie total mass of the system,
moving with the center of mass.

6. Adding a particle at — or removing a particle fom — the center of mass
We now prove the following:

@ Consider a system of particles of massa®s;, m,, ... ,my. Let C be the cen-
ter of mass of the system. If a new patrticle, obsma, is placed aC, the center of
mass of the enlarged system Mift(l) particles will still be aC.

) Consider a system &f particles of masses;, my, ... ,my. It is assumed that
the location of one of the particles, saywf, coincides with the center of maSsof
the system. If we now remove this particle from $lgstem, the center of mass of the
remaining system ofN-1) particles will still be aC.
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Proof:

@ The total mass of the original systemNbparticles isM=m;+my+...+Hny . The
center of mass of this system is located at thet@with position vector

-1 - - -
o= (MG MLt M)

relative to some fixed reference pofdt For the additional particle, which we name
My+1, We are given thatmy.;=m andry,, = .. The total mass of the enlarged sys-

tem of (N+1) particlesmy, m,, ... ,my, My+1 IS M'= M+m, and the center of mass
of this system, relative tO, is located at

— !

1 . S -
M = (M 4+ myTy+ mTp) .

Now, mT%+---+ myTy = MT;, so that

;1
i = MFe+mrg) = e .
Cc M+m( C C) Cc

) Although this statement is obviously a corollafypart @), we will prove this
independently. Here we are given tiigt=r. Thus,

i( L+-+MT)=T
M m My In)=Th -

The mass of the reduced systemM£)) particlesm , my, ... ,mMy4y is M'= M-y,
while the center of mass of this system is located

— !

1 " "
e = IV (MA+-+my Ty o) -

mu+-+m_ = (M-m) Ty = MTy.

Thus, finally,

> —

1.,
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7. Center of mass of a continuous mass distributio

A rigid bodyis a physical object the structure of which exisita continuousmass
distribution. Such an object can be considered sstem consisting of an enormous
(practically infinite) number of particles of inftesimal massedm, placed in such a
way that the distance between any two neighborartjgbes is zero. The total mass of
the body is

M :de :jdrr

where the sum has been replaced by an integralodilne fact that them are infini-
tesimal and the distribution of mass is continuous.

A point in a rigid body can be specified by/position vectorr , or its coordinates
(X, Y, 2), relative to the origir® of some frame of reference. L& be an infinitesimal
volume centered at = (X, Y, z), and letdmbe the infinitesimal mass contained in this

volume element. Thdensityp of the body at point is defined by

p(F) = p(X. Y, z):j—{j‘ .

Then,
dm= p(T) dV

and the total mass of the body is written
M = j o(F)dV

where the integration takes place over the enttame of the body. (The integral is
in fact atriple one since, in Cartesian coordinatd#g=dxdydz) The center of ma<s
of the body is found by using (2):

=— (@ )E=—t [fdm =
mT=

= ﬁ j F p(r)dV (17)

where ther and . are measured relative to the originof our coordinate system.

(Remember, however, that the location®iwvith respect to the body uniquely de-
terminedand is independent tiie choice of the reference poiny)

In ahomogeneou$ody the density has a constant vghyendependent ofr .
Then,

M :jpdvzpjdvzpv
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whereV is the total volume of the body. Also, from (17) heve:
rczﬁjrdvzijrdv (18)
M \Y

Imagine now that, instead of a mass distiilbuin space, we havelaear distri-
bution of mass (e.g., a very thin rod) along xkexis. We define thénear densityof
the distribution by

dm
X)=—o.
p(X) ™

The total mass of the distribution is
M :jdm:jp(x) dx .
The position of the center of mass of the distrdiuts given by
xczﬁj-xdmzﬁlj- xo( ¥ d (19)
If the density is constant, independentxfthen
M :'[de:p'[dX:pI
wherel is the total length of the distribution. Furthermor
x =L [xdx=7 [ xb (20)

As an example, consider a thin, homogeneod®f lengthl, placed along the-
axisfrom x=a to x=a+l , as shown in the figure:

O C
. X
x=0 a Xc a+l
By equation (20),
xC:} a+|xdx:—[(aﬁt )&= ar
5

That is, the center of mag&sof the rod is located at the center of the rod.eNbat the
location of C on the rod is uniquely determined, independentlyhef choice of the
origin O of thex-axis (although the value of the coordingtedoes, of course, depend
on this choice).

10
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8. Center of mass and center of gravity

We have seen that the center of mass a system of particles moves in space as if it
were a particle of mass equal to the total nissf the system, subject to the total
external force acting on the system. The sameuesfor a rigid body. Let us assume
that the only external forces that act on the sy<iar the rigid body) are those due to
gravity. The total external force is then equahetotal weightof the system:

W=iZVV.=Z(m@=[iZ mj 9=

W=Mg where M=>m .

The acceleration of gravitg is constant in a region of space where the griawital
field may be considered uniform.

Note thatw is a sum of forces that act on separate part{oleslementary masses
dm in the case of a rigid body) located at various{soof space. The question now is
whether there exists some specific point of appboaof the total weightw of the
system and, in particular, of a rigid body. A rassade assumption is that this point
could be the center of ma€wf the body, given that, as mentioned above, thet b
behaves as if it concentrates the entire Mass the body and the total external force
acting on it. And, in our casey is indeed the total external force due to gravity.

There is a subtle point here, however: Intiamt to a point particle (such as the
hypothetical “particle” of mas#! moving with the center of mas3) that simply
changes its location in space, a rigid body maygebeea more complex motion, spe-
cifically, a combination of translation and rotatiol hetranslational motion of the
body under the action of gravity is indeed represginy the motion of the center of
massC, if this point is regarded as a “particle” of mag®on which the total forcav
is applied. For theotational motion of the body, however, it is therquesof the ex-
ternal forces, rather than the forces themselWes,are responsible. Where should we
place the total forcav in order that the rotational motion it producestioa body be
the same as that caused by the simultaneous auftitme elementary gravitational
forcesd W = (dm) g? Equivalently, where should we plagein order that its torque

with respect to any point 8e equal to the total torque of thl&y with respect t® ?

You may have guessed the answer alreadeatdanter of mass! [See, e.g., Pa-
pachristou (2020).] In conclusion:

By placing the total weighiv of the body at the center of mass C we manage
to describe not only the translational but also tl¢ational motion of the
body under the action of gravity.

It is for this reason that is frequently called theenter of gravityof the body. Note

that this point doesiot necessarilybelong to the body (consider, for example, the
cases of a ring and a spherical shell).

11
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9. Mechanical energy of a rigid body

Consider a rigid body rotating with angular velgait about an axis passing from a
fixed pointO of space:

N

During rotation, every elementary magsn the body moves circularly about the axis
of rotation, with the common angular velocity If R is the perpendicular distance of
m from the axis (thus, the radius of the circularhpat m), the speed of this mass
element isv,= R w . The totalkinetic energy of rotatioms the sum of the kinetic en-

ergies of all elementary massascontained in the body:

Ek,rot :Z(%MYZJZZ(% m Rza) Zj:_;a) ZZ rln iI:s =

%lwz 21]

where

I => mR?

is themoment of inertiaf the body relative to the axis of rotation.

Relation (21) represents the total kinetiergg of the body when the latter exe-
cutespure rotationabout a fixed axis. A more general kind of motignai rotation
about an axis that is moving in space. Specificalisume that the axis of rotation
passes from the center of m&sf the body, whileC itself moves in space with ve-

locity V.. The body thus executes a composite motion camgist atranslation of

the center of masS and arotation aboutC. According to equation (16), the total ki-
netic energy of the body is the sum of two quaagitekinetic energy of translatign

1

k,trans — ~
2

E MvZ

12
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(whereM is the mass of the body ang is the speed of the center of m&sand a
kinetic energy of rotation about,C

2

Ek,rot = lCa)

N |

(wherew is the angular velocity of rotation about an axas$ng fromC, while I¢ is
the moment of inertia of the body relative to thids’). Hence, the total kinetic en-
ergy of the body is

Ek = Ek,trans+ Ek rot: % M VC2 +% ICa) ? (22)

If the body is subject to external forcest #u@ conservative, we can defineea
ternal potential energ¥, as well as @otal mechanical energy, Ehe latter assuming
a constant value during the motion of the body:

1y

E:Ek+Ep=§MvC+—;|Ca)2+ E,= const (23)

For example, if the body moves under the sole adfaravity, its potential energy is
Ep = M g yC

where yc is the vertical distance (the height) of the centanassC with respect to an
arbitrary horizontal plane of reference. Indeedrddgition (3),

1
w—ﬁZmy

wherey; is the height of the point of location of the elerta@y massn in the body.
The total gravitational potential energy of the ypoelqual to the sum of the potential
energies of all elementary masses is then

E, =2 (mgy)= g my= Mgy.

The total mechanical energy of the body is consaadtequal to

E:%Mvczdr—ilca)%ngc (24)

2 The moment of inerti& relative to an axis parallel to this axis is giventheparallel-axis theorem
[see, e.g., Papachristou (2020)]. Specificdlty+Ma? wherea is the perpendicular distance between
the two axes.

13
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