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Abstract.  The concept of electromotive force (emf) may be introduced in various ways in 
an undergraduate course of theoretical electromagnetism. The multitude of alternate 
expressions for the emf is often the source of confusion to the student. We summarize the 
main ideas, adopting a pedagogical logic that proceeds from the general to the specific. 
The emf of a “circuit” is first defined in the most general terms. The expressions for the 
emf of some familiar electrodynamical systems are then derived in a rather straightforward 
manner. A diversity of physical situations is thus unified within a common theoretical 
framework.  

1.  INTRODUCTION 

The difficulty in writing this article was not just due to the subject itself: we had to first 
overcome some almost irreconcilable differences in educational philosophy between an 
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer. 
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.  

Having taught intermediate-level electrodynamics courses for several years, we have come 
to realize that, in the minds of many of our students, the concept of electromotive force (emf ) is 
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC 
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the 
electric field along a closed path? And what if a magnetic rather than an electric field is present?  

Generally speaking, the problem with the emf lies in the diversity of situations where this 
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is 
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the 
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas, 
choosing a pedagogical approach that proceeds from the general to the specific. We begin by 
defining the concept of emf of a “circuit” in the most general way possible. We then apply this 
definition to certain electrodynamic systems in order to recover familiar expressions for the emf. 
The main advantage of this approach is that a number of different physical situations are treated 
in a unified way within a common theoretical framework.  

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5) 
application is made to particular cases, such as motional emf, the emf due to a time-varying 
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6, 
the connection between the emf and Ohm’s law is discussed.  
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2.  THE GENERAL DEFINITION OF EMF 

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general 
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the 
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or 
any other elements whose presence may contribute to the e/m field).  

We arbitrarily assign a positive direction of traversing the loop C, and we consider an element 

dl
���

 of C oriented in the positive direction. Imagine now a test charge q located at the position of 

dl
���

, and let F
�

 be the force on q at time t :  

 

                                               

dl
���

•

C

+

q

F
�

      
 
This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources 

(e.g., batteries) that can interact electrically with q. The force per unit charge at the position of 

dl
���

 at time t, is  

 

                   
F

f
q

=

�
�

                                                                (1) 

 

Note that f
�

 is independent of q, since the force by the e/m field and/or the sources on q is 

proportional to the charge. In particular, reversing the sign of q will have no effect on f
�

 

(although it will change the direction of F
�

).  
      We now define the electromotive force (emf ) of the circuit C at time t as the line integral 

of f
�

 along C, taken in the positive sense of C :  

 

                            E
C

f dl= ⋅∫
����

�                                                             (2) 

 
Note that the sign of the emf is dependent upon our choice of the positive direction of 

circulation of C: by changing this convention, the sign of E is reversed.  

We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial 

observers since at this limit the force F
�

 is invariant under a change of frame of reference.  
In the following sections we apply the defining equation (2) to a number of specific 

electrodynamic situations that are certainly familiar to the student.  
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3.  MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC 
FIELD 

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic 

field ( )B r
� �

. Let υ
�

 be the velocity of the element dl
���

 of C relative to our inertial frame of 

reference. A charge q (say, a free electron) at the location of dl
���

 executes a composite motion, 

due to the motion of the loop C itself relative to our frame, as well as the motion of q along C. 

The total velocity of q relative to us is totυ υ υ′= +
� � �

, where υ′
�

 is the velocity of q in a direction 

parallel to dl
���

. The force from the magnetic field on q is  

 

                               

( ) ( ) ( )

( ) ( )

totF q B q B q B

F
f B B

q

υ υ υ

υ υ

′= × = × + × ⇒

′= = × + ×

� � � �� � �

�
� � �� �            

 
By (2), then, the emf of the circuit C is  
 

                           E ( ) ( )
C C C

f dl B dl B dlυ υ ′= ⋅ = × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� �

� � �      

 

But, since υ′
�

 is parallel to dl
���

, we have that ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

           E ( )
C

B dlυ= × ⋅∫
�����

�                                                         (3) 

 
Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note 

also that the velocity υ
�

 may vary around the circuit.  
      By using (3), it can be proven (see Appendix) that  
 

      E 
d

dt

Φ
= −                                                                 (4) 

 

where B daΦ= ⋅∫
����

 is the magnetic flux through the wire C at time t. Note carefully that (4) 

does not express any novel physical law: it is simply a direct consequence of the definition of 
the emf !  

4.  EMF DUE TO A TIME-VARYING MAGNETIC FIELD 

Consider now a closed wire C that is at rest inside a time-varying magnetic field ( , )B r t
� �

. As 

experiments show, as soon as B
�

 starts changing, a current begins to flow in the wire. This 
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And, 
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed 

experimentally that, if the magnetic field B
�

 stops varying in time, the current in the wire 
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disappears. The only field that can put an initially stationary charge in motion and keep this 
charge moving is an electric field.  

      We are thus compelled to conclude that a time-varying magnetic field is necessarily 
accompanied by an electric field. (It is often said that “a changing magnetic field induces an 
electric field”. This is somewhat misleading since it gives the impression that the “source” of an 
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of 
any e/m field are the electric charges and the electric currents!)  

      So, let ( , )E r t
� �

 be the electric field accompanying the time-varying magnetic field B
�

. 

Consider again a charge q at the position of the element dl
���

 of the wire. Given that the wire is 

now at rest (relative to our inertial frame), the velocity of q will be due to the motion of the 

charge along the wire only, i.e., in a direction parallel to dl
���

: totυ υ′=
� �

 (since 0υ =
�

). The force on 

q by the e/m field is  
 

                             

[ ( )] [ ( )]

( )

totF q E B q E B

F
f E B

q

υ υ

υ

′= + × = + × ⇒

′= = + ×

� � � � �� �

�
� � ��       

 
The emf of the circuit C is now  
 

                              E ( )
C C C

f dl E dl B dlυ ′= ⋅ = ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � ��

� � �        

 

But, as explained earlier, ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

         E 
C

dlΕ= ⋅∫
����

�                                                                (5) 

 
      Equation (4) is still valid. This time, however, it is not merely a mathematical 

consequence of the definition of the emf ; rather, it is a true physical law deduced from 
experiment! Let us examine it in some detail.  

      In a region of space where a time-varying e/m field ( , )E B
� �

 exists, consider an arbitrary 

open surface S bounded by the closed curve C :  
 

                                                               

S

C

da
���

da

dl
���

     
 

(The relative direction of dl
���

 and the surface element da
���

, normal to S, is determined 

according to the familiar right-hand rule.) The loop C is assumed stationary relative to the inertial 
observer; hence the emf along C at time t is given by (5). The magnetic flux through S at this 
instant is  
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                                                  ( )m
S

t B daΦ = ⋅∫
����

        

 

(Note that the signs of E and Φm depend on the chosen positive direction of C.) Since the field 

B
�

 is solenoidal, the value of Φm for a given C is independent of the choice of the surface S. 
That is, the same magnetic flux will go through any open surface bounded by the closed curve 
C.  

      According to the Faraday-Henry law,  
 

               E m
d

dt

Φ
= −                                                                        (6) 

or explicitly,  
 

  
C S

d
E dl B da

d t
⋅ = − ⋅∫ ∫
��� ���� �

�                                                           (7) 

 
(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)  
      Equation (7) can be re-expressed in differential form by using Stokes’ theorem,  
 

                                           ( )
C S

E dl E da⋅ = ∇× ⋅∫ ∫
��� ���� � �

�             

 
and by taking into account that the surface S may be arbitrarily chosen. The result is  
 

B
E

t

∂
∇× = −

∂

�
� �

                                                                (8) 

 

We note that if / 0B t∂ ∂ ≠
�

, then necessarily 0E ≠
�

. Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B
�

 is static (

/ 0B t∂ ∂ =
�

), then E
�

 is irrotational: 0 0E E dl∇× = ⇔ ⋅ =∫
���� � �

� , which allows for the possibility 

that 0E =
�

.  

      Corollary:  The emf around a fixed loop C inside a static e/m field ( )( ) , ( )E r B r
� �� �

 is  E = 0  

(the student should explain this).  

5.  EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR 

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance) 
connected to an external resistor. As shown below, the emf of the circuit in the direction of the 
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the 
work per unit charge done by the source (battery).  
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i i+_
a b

I

I

0
f
�

E
�

                 
 
      We recall that, in general, the emf of a circuit C at time t is equal to the integral  
 

                                                      E 
C

f dl= ⋅∫
����

�                        

 

where /f F q=
� �

 is the force per unit charge at the location of the element dl
���

 of the circuit, at 

time t. In essence, we assume that in every element dl
���

 we have placed a test charge q (this 

could be, e.g., a free electron of the conducting part of the circuit). The force F
�

 on each q is 
then measured simultaneously for all charges at time t. Since here we are dealing with a static 
(time-independent) situation, however, we can treat the problem somewhat differently: The 

measurements of the forces F
�

 on the charges q need not be made at the same instant, given 
that nothing changes with time, anyway. So, instead of placing several charges q around the 

circuit and measuring the forces F
�

 on each of them at a particular instant, we imagine a single 
charge q making a complete tour around the loop C. We may assume, e.g., that the charge q is 
one of the (conventionally positive) free electrons taking part in the constant current Ι flowing in 

the circuit. We then measure the force F
�

 on q at each point of C.  
      We thus assume that q is a positive charge moving in the direction of the current Ι. We 

also assume that the direction of circulation of C is the same as the direction of the current 

(counterclockwise in the figure). During its motion, q is subject to two forces: (1) the force 
0

F
�

 by 

the source (battery) that carries q from the negative pole a to the positive pole b through the 

source, and (2) the electrostatic force 
eF q E=
� �

 due to the electrostatic field E
�

 at each point of 

the circuit C (both inside and outside the source). The total force on q is  
    

                        
0

0 0 0e

F F
F F F F qE f E f E

q q
= + = + ⇒ = = + ≡ +

� �
� �� � � � � � �

      

Then,  
 

   E 
0 0

C C C C
f dl f dl E dl f dl= ⋅ = ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫
��� ��� ��� ���� � ��

� � � �                                    (9) 

 

since 0
C

E dl⋅ =∫
����

�  for an electrostatic field. However, the action of the source on q is limited to 

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence, 

0
0f =

�
 outside the source, so that (9) reduces to  

 

  E
0

b

a
f dl= ⋅∫
����

                                                               (10) 
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Now, since the current Ι is constant, the charge q moves at constant speed along the circuit. 
This means that the total force on q in the direction of the path C is zero. In the interior of the 

resistor, the electrostatic force 
eF q E=
� �

 is counterbalanced by the force on q due to the 

collisions of the charge with the positive ions of the metal (this latter force does not contribute to 
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however, 

where there is no resistance, the electrostatic force 
eF
�

 must be counterbalanced by the 

opposing force 
0

F
�

 exerted by the source. Thus, in the section of the circuit between a and b,  

 

                     0 0 0
0 0

e

F
F F F f f E f E

q
= + = ⇒ = = + = ⇒ = −

�
� � �� � � � �

         

 
Equation (10) then takes the final form,  
 

  E
b

b a
a

E dl V V V= − ⋅ = − =∫
����

                                                     (11) 

 
where Va and Vb are the electrostatic potentials at a and b, respectively. This is, of course, 

what every student knows from elementary e/m courses!  
      The work done by the source on q upon transferring the charge from a to b is  
 

       
0 0

b b

a a
W F dl q f dl q= ⋅ = ⋅ =∫ ∫

��� �����
E                                                (12) 

 

[where we have used (10)]. So, the work of the source per unit charge is W/q= E . This work is 

converted into heat in the resistor, so that the source must again supply energy in order to carry 
the charges once more from a to b. This is something like the torture of Sisyphus in Greek 
mythology!  

6.  EMF AND OHM’S LAW 

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery) 
and may also be in motion relative to our inertial frame of reference. Let q be a test charge at 

the location of the element dl
���

 of C, and let F
�

 be the total force on q (due to the e/m field 

and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-

independent quantity.) The force per unit charge at the location of dl
���

 at time t, then, is 

/f F q=
� �

. According to our general definition, the emf of the circuit at time t is  

 

         E
C

f dl= ⋅∫
����

�                                                       (13) 

 
Now, if σ is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p. 

285 of [1]) we have:  
 

            J fσ=
��

                                                           (14) 
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where J
�

 is the volume current density at the location of dl
���

 at time t. (Note that the more 

common expression J Eσ=
� �

, found in most textbooks, is a special case of the above formula. 

Note also that J
�

 is measured relative to the wire, thus is the same for all inertial observers.) By 
combining (13) and (14) we get:  

 

          E
1

C
J dl

σ
= ⋅∫

����

�                                                     (15) 

 

Taking into account that J
�

 is in the direction of dl
���

 at each point of C, we write:  

 

                                               
I

J dl J dl dl
S

⋅ = =
����

     

 
where S is the constant cross-sectional area of the wire. If we make the additional assumption 
that, at each instant t, the current I is constant around the circuit (although I may vary with time), 
we finally get:  

 

          E 
l l

I I I R
S S

ρ
σ

= = =                                                 (16) 

 
where l is the total length of the wire,  ρ=1/σ  is the resistivity of the material, and R is the total 

resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.  
      As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery 

with internal resistance r. Let R0 be the external resistance connected to the battery. The total 
resistance of the circuit is R=R0+r. As before, we call V=Vb –Va the potential difference between 
the terminals of the battery, which is equal to the voltage across the external resistor. Hence, 
V=IR0 , where I is the current in the circuit. The emf of the circuit (in the direction of the current) 
is  

 

                                          E = I R = I (R0 + r) = V + I r    

 
Note that the potential difference V  between the terminals a and b equals the emf only when 

no current is flowing (I= 0) .  
      As another example, consider a circuit C containing an ideal battery of voltage V and 

having total resistance R and total inductance L :  

                                 

V

R
L

I
 

 
In this case, the emf of C in the direction of the current flow is  
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                                    E (t) ( )L

dI
V V V L I t R

dt
= + = − =            

 
To understand why the total emf of the circuit is V +VL , we think as follows: On its tour around 

the circuit, a test charge q is subject to two forces (ignoring collisions with the positive ions in the 
interior of the wire): a force inside the source, and a force by the non-conservative electric field 
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the 
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry 
law (6). The latter emf is precisely VL ; it has a nonzero value for as long as the current I is 
changing.  

Some interesting energy considerations are here in order. The total power supplied to the 
circuit by the battery at time t is  

 

                                         
2 d I

P I V I R L I
dt

= = +                                  

 
The term  I

 2R  represents the power irreversibly lost as heat in the resistor (energy, per unit 
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to 
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the 
source in order to maintain the current against dissipative losses in the resistor. On the other 
hand, the term  LI (dI/dt)  represents the energy per unit time required to build up the current 
against the “back emf ” VL . This energy is retrievable and is given back to the source when the 
current decreases. It may also be interpreted as energy per unit time required in order to 
establish the magnetic field associated with the current. This energy is “stored” in the magnetic 
field surrounding the circuit.  

7.  CONCLUDING REMARKS 

In concluding this article, let us highlight a few points of importance:  
1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”) 

in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain 
sources such as batteries.  

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of 
reference with respect to which it is measured.  

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence 
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present, 
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).  

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of 
the battery and represents work per unit charge done by the source.  

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s 
law can be expressed in terms of the emf by equation (16).  
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APPENDIX 

Here is an analytical proof of equation (4) of Sec.3:  
Assume that, at time t, the wire describes a closed curve C that is the boundary of a plane 

surface S. At time t΄= t+dt, the wire (which has moved in the meanwhile) describes another 

curve C΄ that encloses a surface S΄. Let d l
���

 be an element of C in the direction of circulation of 

the curve, and let υ
�

 be the velocity of this element relative to an inertial observer (the velocity 
of the elements of C may vary along the curve):  

                        

υ
�

dl
��� dl

���

S

S′

S′′ S′′da
���

da′
����

da′′
����

da′′
����

dtυ
�

C

C′ C′

C
      

The direction of the surface elements da
���

 and da′
����

 is consistent with the chosen direction of 

d l
���

, according to the right-hand rule. The element of the side (“cylindrical”) surface S΄΄ formed 

by the motion of C, is equal to  
 

                                       ( ) ( )da d l d t d l d tυ υ′′ = × = ×
���� ��� ���� �

     

 
Since the magnetic field is static, we can view the situation in a somewhat different way: 

Rather than assuming that the curve C moves within the time interval dt so that its points 
coincide with the points of the curve C΄ at time t΄, we consider two constant curves C and C΄ at 

the same instant t. In the case of a static field B
�

, the magnetic flux through C΄ at time t΄= t+dt 
(according to our original assumption of a moving curve) is the same as the flux through this 
same curve at time t, given that no change of the magnetic field occurs within the time interval 

dt. Now, we note that the open surfaces S1=S and S2= S΄ ∪ S΄΄ share a common boundary, 
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux Φm passes 
through S1 and S2 at time t. That is,  

 

                  
1 2

1 2
S S S S΄ S΄΄

B da B da B da B da B da′ ′′⋅ = ⋅ ⇒ ⋅ = ⋅ + ⋅∫ ∫ ∫ ∫ ∫
���� ���� ��� ���� ����� � � � �

       

 
But, returning to our initial assumption of a moving curve, we note that  
 

        ( )m
S
B da tΦ⋅ = =∫
����

magnetic flux through the wire at time t    

 
and  
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   ( )m
S΄

B da t dtΦ′⋅ = + =∫
�����

 magnetic flux through the wire at time t+dt    

 
Hence,  
 

            

( ) ( )

( ) ( ) ( )

( ) ( )

m m
S΄΄

m m m
S΄΄ C

m

C C

t t dt B da

d t dt t B da dt B dl

d
B dl B dl

dt

Φ Φ

Φ Φ Φ υ

Φ
υ υ

′′= + + ⋅ ⇒

′′= + − = − ⋅ = − ⋅ × ⇒

− = ⋅ × = × ⋅ =

∫

∫ ∫

∫ ∫

�����

���� ���� � �

��� ���� �� �

�

� � E

 

 
in accordance with (3) and (4).  
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Abstract 

In the literature of Electromagnetism, the electromotive 
force of a “circuit” is often defined as work done on a unit 
charge during a complete tour of the latter around the circuit. 
We explain why this statement cannot be generally regarded 
as true, although it is indeed true in certain simple cases. 
Several examples are used to illustrate these points.  
 

1.   Introduction 
 
In a recent paper [1] the authors suggested a pedagogical 
approach to the electromotive force (emf) of a “circuit”, a 
fundamental concept of Electromagnetism. Rather than 
defining the emf in an ad hoc manner for each particular 
electrodynamic system, this approach begins with the most 
general definition of the emf and then specializes to certain 
cases of physical interest, thus recovering the familiar ex-
pressions for the emf.  
      Among the various examples treated in [1], the case of a 
simple battery-resistor circuit was of particular interest 
since, in this case, the emf was shown to be equal to the 
work, per unit charge, done by the source (battery) for a 
complete tour around the circuit. Now, in the literature of 
Electrodynamics the emf is often defined as work per unit 
charge. As we explain in this paper, this is not generally true 
except for special cases, such as the aforementioned one.  
      In Section 2, we give the general definition of the emf, E, 

and, separately, that of the work per unit charge, w, done by 
the agencies responsible for the generation and preservation 
of a current flow in the circuit. We then state the necessary 
conditions in order for the equality E=w to hold. We stress 

that, by their very definitions, E and w are different concepts. 

Thus, the equation E=w suggests the possible equality of the 

values of two physical quantities, not the conceptual identi-
fication of these quantities!  
      Section 3 reviews the case of a circuit consisting of a 
battery connected to a resistive wire, in which case the 
equality E=w is indeed valid.  

      In Sec. 4, we study the problem of a wire moving 
through a static magnetic field. A particular situation where 
the equality E=w is valid is treated in Sec. 5.  

       Finally, Sec. 6 examines the case of a stationary wire 
inside a time-varying magnetic field. It is shown that the 

equality E=w is satisfied only in the special case where the 

magnetic field varies linearly with time.  
 

2.   The general definitions of emf and work per 
unit charge 

 
Consider a region of space in which an electromagnetic 
(e/m) field exists. In the most general sense, any closed path 
C (or loop) within this region will be called a “circuit”  
(whether or not the whole or parts of C consist of material 
objects such as wires, resistors, capacitors, batteries, etc.). 
We arbitrarily  assign a positive direction of traversing the 

loop C, and we consider an element dl
��

 of C oriented in the 

positive direction (Fig. 1).  
 

dl
���

•

C

+

q

F
�

 
 

Figure 1: An oriented loop representing a circuit.  
 
      Imagine now a test charge q located at the position of 

dl
��

, and let F
�

 be the force on q at time t. This force is ex-

erted by the e/m field itself, as well as, possibly, by addi-
tional energy sources (e.g., batteries or some external me-
chanical action) that may contribute to the generation and 
preservation of a current flow around the loop C. The force 

per unit charge at the position of dl
��

 at time t, is  

 

        
F

f
q

=

�
�

                                 (1) 

 

Note that f
�

 is independent of q, since the electromagnetic 

force on q is proportional to the charge. In particular, revers-

ing the sign of q will have no effect on f
�

 (although it will 

change the direction of F
�

).  
      In general, neither the shape nor the size of C is required 
to remain fixed. Moreover, the loop may be in motion rela-
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tive to an external inertial observer. Thus, for a loop of (pos-
sibly) variable shape, size or position in space, we will use 
the notation C(t) to indicate the state of the curve at time t.  
      We now define the electromotive force (emf) of the 

circuit C at time t as the line integral of f
�

 along C, taken in 

the positive sense of C :  
 

        E (t) 
( )

( , )
C t

f r t d l= ⋅∫
� �

��

�                    (2) 

 

(where r
�

 is the position vector of dl
��

 relative to the origin 

of our coordinate system). Note that the sign of the emf is 
dependent upon our choice of the positive direction of circu-
lation of C: by changing this convention, the sign of E is 

reversed.  
      As mentioned above, the force (per unit charge) defined 
in (1) can be attributed to two factors: the interaction of q 
with the e/m field itself and the action on q due to any addi-
tional energy sources. Eventually, this latter interaction is 
electromagnetic in nature even when it originates from some 
external mechanical action. We write:  
 

        em appf f f= +
� � �

                          (3) 

 

where emf
�

 is the force due to the e/m field and appf
�

 is the 

applied force due to an additional energy source. We note 
that the force (3) does not include any resistive (dissipative) 
forces that oppose a charge flow along C; it only contains 
forces that may contribute to the generation and preservation 
of such a flow in the circuit.  
      Now, suppose we allow a single charge q to make a full 
trip around the circuit C under the action of the force (3). In 
doing so, the charge describes a curve C′  in space (not 
necessarily a closed one!) relative to an external inertial 

observer. Let d l′
���

 be an element of C′  representing an in-

finitesimal displacement of q in space, in time dt. We define 
the work per unit charge for this complete tour around the 
circuit by the integral:  
 

        
C

w f d l
′

′= ⋅∫
� ���

                           (4) 

 
For a stationary circuit of fixed shape, C′  coincides with the 
closed curve C and (4) reduces to  
 

        ( )
C

w f d l fixed C= ⋅∫
� ��

�                 (5) 

 
      It should be noted carefully that the integral (2) is evalu-
ated at a fixed time t, while in the integrals (4) and (5) time 
is allowed to flow! In general, the value of w depends on the 
time t0 and the point P0 at which q starts its round trip on C. 
Thus, there is a certain ambiguity in the definition of work 
per unit charge. On the other hand, the ambiguity (so to 

speak) with respect to the emf is related to the dependence 
of the latter on time t.  
      The question now is: can the emf be equal in value to the 
work per unit charge, despite the fact that these quantities 
are defined differently? For the equality E=w to hold, both E 

and w must be defined unambiguously. Thus, E must be 

constant, independent of time (dE/dt=0) while w must not 

depend on the initial time t0 or the initial point P0 of the 
round trip of q on C. These requirements are necessary con-

ditions in order for the equality E=w to be meaningful.  

      In the following sections we illustrate these ideas by 
means of several examples. As will be seen, the satisfaction 
of the above-mentioned conditions is the exception rather 
than the rule!  
 

3.   A resistive wire connected to a battery 
 
Consider a circuit consisting of an ideal battery (i.e., one 
with no internal resistance) connected to a metal wire of 
total resistance R (Fig. 2). As shown in [1] (see also [2]), the 
emf of the circuit in the direction of the current is equal to 
the voltage V of the battery. Moreover, the emf in this case 
represents the work, per unit charge, done by the source 
(battery). Let us review the proof of these statements.  
 

i i+
_

a b

I

I

E
�

appf
� +

R

 
Figure 2: A battery connected to a resistive wire.  

 
      A (conventionally positive) moving charge q is subject to 
two forces around the circuit C: an electrostatic force 

eF qE=
� �

 at every point of C and a force appF
�

 inside the 

battery, the latter force carrying q from the negative pole a 
to the positive pole b through the source. According to (3), 
the total force per unit charge is  
 

        e app appf f f E f= + = +
� � � ��

 .   

 
The emf in the direction of the current (i.e., counterclock-
wise), at any time t, is  
 

        E
C

f dl= ⋅∫
� ��

�  

          
appC C

b

appa

E dl f dl

f d l

= ⋅ + ⋅

= ⋅

∫ ∫

∫

��

�

�� ��

��

� �
               (6) 
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where we have used the facts that 0
C

E dl⋅ =∫
� �

�  for an elec-

trostatic field and that the action of the source on q is limited 
to the region between the poles of the battery.  
      Now, in a steady-state situation (Ι = constant) the charge 
q moves at constant speed along the circuit. This means that 
the total force on q in the direction of the path C is zero. In 

the interior of the wire, the electrostatic force 
e

F qE=
� �

 is 

counterbalanced by the resistive force on q due to the colli-
sions of the charge with the positive ions of the metal (as 
mentioned previously, this latter force does not contribute to 
the emf). In the interior of the (ideal) battery, however, 
where there is no resistance, the electrostatic force must be 
counterbalanced by the opposing force exerted by the 
source. Thus, in the section of the circuit between a and b, 

app ef f E= − = −
� � �

. By (6), then, we have:  

 

        E
b

b aa
E dl V V V= − ⋅ = − =∫
� ��

                (7) 

 
where Va and Vb are the electrostatic potentials at a and b, 
respectively. We note that the emf is constant in time, as 
expected in a steady-state situation.  
      Next, we want to find the work per unit charge for a 
complete tour around the circuit. To this end, we allow a 
single charge q to make a full trip around C and we use 
expression (5) (since the wire is stationary and of fixed 
shape). In applying this relation, time is assumed to flow as 
q moves along C. Given that the situation is static (time-
independent), however, time is not really an issue since it 
doesn’t matter at what moment the charge will pass by any 
given point of C. Thus, the integration in (5) will yield the 
same result (7) as the integration in (6), despite the fact that, 
in the latter case, time was assumed fixed. We conclude that 
the equality w=E is valid in this case: the emf does represent 

work per unit charge.  
 

4.   Moving wire inside a static magnetic field 
 
Consider a wire C moving in the xy-plane. The shape and/or 
size of the wire need not remain fixed during its motion. A 

static magnetic field ( )B r
� �

 is present in the region of space 

where the wire is moving. For simplicity, we assume that 
this field is normal to the plane of the wire and directed into 
the page.  
      In Fig. 3, the z-axis is normal to the plane of the wire and 

directed towards the reader. We call da
��

 an infinitesimal 
normal vector representing an element of the plane surface 
bounded by the wire (this vector is directed into the plane, 
consistently with the chosen clockwise direction of travers-

ing the loop C ). If ˆ
zu  is the unit vector on the z-axis, then 

ˆ( ) zda da u= −
��

 and ˆ( ) zB B r u= −
� �

, where ( ) | ( ) |B r B r=
�� �

.  

 

r
�

dl
���

cυ
�

x

y
+

( )rυ
� �

( )C t

da⊗
���

( )B r⊗
� �

z⊙
 

Figure 3: A wire C moving inside a static magnetic 
field.  

      Consider an element dl
��

 of the wire, located at a point 

with position vector r
�

 relative to the origin of our inertial 
frame of reference. Call ( )rυ

� �
 the velocity of this element 

relative to our frame. Let q be a (conventionally positive) 
charge passing by the considered point at time t. This charge 

executes a composite motion, having a velocity cυ
�

 along 

the wire and acquiring an extra velocity ( )rυ
� �

 due to the 

motion of the wire itself. The total velocity of q relative to 

us is tot cυ υ υ= +
� � �

.  

 

θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�( )B r⊗

� �

m totf υ⊥
� �

app cf υ⊥
� �

r cf υ↑↓
� �

 
Figure 4: Balance of forces per unit charge.  

 
      The balance of forces acting on q is shown in the dia-
gram of Fig. 4. The magnetic force on q is normal to the 

charge’s total velocity and equal to ( )m totF q Bυ= ×
� ��

. 

Hence, the magnetic force per unit charge is m totf Bυ= ×
� ��

. 

Its component along the wire (i.e., in the direction of dl
��

) is 

counterbalanced by the resistive force rf
�

, which opposes 

the motion of q along C (this force, as mentioned previously, 
does not contribute to the emf). However, the component of 
the magnetic force normal to the wire will tend to make the 
wire move “backwards” (in a direction opposing the desired 
motion of the wire) unless it is counterbalanced by some 
external mechanical action (e.g., our hand, which pulls the 
wire forward). Now, the charge q takes a share of this action 
by means of some force transferred to it by the structure of 
the wire. This force (which will be called an applied force) 
must be normal to the wire (in order to counterbalance the 
normal component of the magnetic force). We denote the 
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applied force per unit charge by appf
�

. Although this force 

originates from an external mechanical action, it is delivered 
to q through an electromagnetic interaction with the crystal 
lattice of the wire (not to be confused with the resistive 
force, whose role is different!).  
      According to (3), the total force contributing to the emf 

of the circuit is m appf f f= +
� � �

. By (2), the emf at time t is  

 

        E (t) 
( ) ( )m appC t C t

f d l f d l= ⋅ + ⋅∫ ∫
� ��� ��

� �  .   

 
The second integral vanishes since the applied force is nor-
mal to the wire element at every point of C. The integral of 
the magnetic force is equal to  
 

     ( ) ( ) ( )tot cC C C
B dl B d l B d lυ υ υ× ⋅ = × ⋅ + × ⋅∫ ∫ ∫
� � �� � �
�� �� ��

� � �  .  

 
The first integral on the right vanishes, as can be seen by 
inspecting Fig. 4. Thus, we finally have:  
 

        E (t) 
( )

[ ( ) ( )]
C t

r B r d lυ= × ⋅∫
�� � �

��

�              (8) 

 
      As shown analytically in [1, 2], the emf of C is equal to  
 

        E (t) ( )m

d
t

d t
= − Φ                      (9) 

 
where we have introduced the magnetic flux through C,  
 

        
( ) ( )

( ) ( ) ( )m S t S t
t B r da B r daΦ = ⋅ =∫ ∫

� � �
��

      (10) 

 
[By S(t) we denote any open surface bounded by C at time t; 
e.g., the plane surface enclosed by the wire.]  
      Now, let C′  be the path of q in space relative to the 
external observer, for a full trip of q around the wire (in 
general, C′  will be an open curve). According to (4), the 
work done per unit charge for this trip is  
 

        m appC C
w f dl f d l

′ ′
′ ′= ⋅ + ⋅∫ ∫

� ���� ���

 .   

 
The first integral vanishes (cf. Fig. 4), while for the second 
one we notice that  
 

        app app app appf d l f d l f d l f d l′ ′′ ′′⋅ = ⋅ + ⋅ = ⋅
� � � ���� �� ��� ���

 

 
(since the applied force is normal to the wire element eve-
rywhere; see Fig. 4). Thus we finally have:  
 

        appC
w f dl

′
′= ⋅∫

� ���

         (11a) 

 
with  

        app app appf d l f d l f d tυ′ ′′⋅ = ⋅ = ⋅
� � � �
��� ���

        (11b) 

 

where d l dtυ′′ =
�

���

 is the infinitesimal displacement of the 

wire element in time dt. 
 

5.   An example: Motion inside a uniform  
magnetic field 

 
Consider a metal bar (ab) of length h, sliding parallel to 
itself with constant speed υ on two parallel rails that form 
part of a U-shaped wire, as shown in Fig. 5. A uniform mag-

netic field B
�

, pointing into the page, fills the entire region.  
 

x

y

O
z⊙

x

h

I

+

.constυ =
�

dl
���

a

bc

d
B⊗
�

da
���

⊙

 
Figure 5: A metal bar (ab) sliding on two parallel rails 
that form part of a U-shaped wire.  

 
      A circuit C(t) of variable size is formed by the rectangu-
lar loop (abcda). The field and the surface element are writ-

ten, respectively, as ˆ
zB B u= −

�
 (where | | .B B const= =

�
) 

and ˆ( ) zda da u=
��

 (note that the direction of traversing the 

loop C is now counterclockwise).  
      The general diagram of Fig. 4, representing the balance 
of forces, reduces to the one shown in Fig. 6. Note that this 
latter diagram concerns only the moving part (ab) of the 
circuit, since it is in this part only that the velocity υ

�
 and 

the applied force appf
�

 are nonzero.  

θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�B⊗

�

cυ υ⊥
� �

x
 

 
Figure 6: Balance of forces per unit charge.  

 
      The emf of the circuit at time t is, according to (8),   
 

        E (t) 
( )

( )
C t

B dlυ= × ⋅∫
��
��

�  



14 
 

               
b b

a a
B dl B d l B hυ υ υ= = =∫ ∫  .   

 
Alternatively, the magnetic flux through C is  
 

        ( ) ( ) ( )
( ) ( )m S t S t S t
t B r da B da B da

Bhx

Φ = ⋅ = − = −

= −

∫ ∫ ∫
� �

��

 

(where x is the momentary position of the bar at time t), so 
that  
 

        E (t) ( )m

d d x
t B h Bh

dt dt
υ= − Φ = =  .   

 
We note that the emf is constant (time-independent).  
      Next, we want to use (11) to evaluate the work per unit 
charge for a complete tour of a charge around C. Since the 
applied force is nonzero only on the section (ab) of C, the 
path of integration, C′  (which is a straight line, given that 
the charge moves at constant velocity in space) will corre-
spond to the motion of the charge along the metal bar only, 
i.e., from a to b. (Since the bar is being displaced in space 
while the charge is traveling along it, the line C′  will not be 
parallel to the bar.) According to (11),  
 

        appC
w f d l

′
′= ⋅∫

� ���

    with     

        app app app appf d l f d l f d l f d tυ′ ′′ ′′⋅ = ⋅ = =
� ���� ���

   

 
(cf. Fig. 6). Now, the role of the applied force is to counter-
balance the x-component of the magnetic force in order that 
the bar may move at constant speed in the x direction. Thus,  
 

        cos cosapp m tot cf f B Bθ υ θ υ= = =    

 
and  
 

        app cf d t B d t B dlυ υυ υ= =    

 
(since υc dt represents an elementary displacement dl of the 
charge along the metal bar in time dt). We finally have:  
 

        
b b

a a
w B dl B d l B hυ υ υ= = =∫ ∫  .   

 
We note that, in this specific example, the value of the work 
per unit charge is equal to that of the emf, both these quanti-
ties being constant and unambiguously defined. This would 
not have been the case, however, if the magnetic field were 
nonuniform!  
 
 
 
 
 

6.   Stationary wire inside a time-varying  
magnetic field 

 
Our final example concerns a stationary wire C inside a 
time-varying magnetic field of the form 

ˆ( , ) ( , ) zB r t B r t u= −
� � �

 (where ( , ) | ( , ) |B r t B r t=
�� �

), as shown 

in Fig. 7.  
 

r
�

dl
���

cυ
�

x

y
+

da⊗
���

z⊙

C

( , )B r t⊗
� �

 
Figure 7: A stationary wire C inside a time-varying 
magnetic field.  

 
      As is well known [1-7], the presence of a time-varying 

magnetic field implies the presence of an electric field E
�

 as 
well, such that  
 

        
B

E
t

∂
∇× = −

∂

�
� �

                        (12) 

 
As discussed in [1], the emf of the circuit at time t is given 
by  
 

        E (t) ( , ) ( )
mC

d
r t dl t

d t
Ε Φ= ⋅ = −∫
� �

�

�         (13) 

 
where  
 

        ( ) ( , ) ( , )m S S
t B r t da B r t daΦ = ⋅ =∫ ∫

� � �
��

        (14) 

 
is the magnetic flux through C at this time.  
      On the other hand, the work per unit charge for a full trip 

around C is given by (5): 
C

w f dl= ⋅∫
� ��

� , where 

( )em cf f E Bυ= = + ×
� � � ��

,  so that  

 

        ( )cC C
w E dl B dlυ= ⋅ + × ⋅∫ ∫

� ��
�� ��

� �  .   

 
As is easy to see (cf. Fig. 7), the second integral vanishes, 
thus we are left with  
 

        
C

w E dl= ⋅∫
� ��

�                         (15) 
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      The similarity of the integrals in (13) and (15) is decep-
tive! The integral in (13) is evaluated at a fixed time t, while 
in (15) time is allowed to flow as the charge moves along C. 
Is it, nevertheless, possible that the values of these integrals 
coincide? As mentioned at the end of Sec. 2, a necessary 
condition for this to be the case is that the two integrations 
yield time-independent results. In order that E be time-

independent (but nonzero), the magnetic flux (14) – thus the 
magnetic field itself – must increase linearly with time. On 
the other hand, the integration (15) for w will be time-
independent if so is the electric field. By (12), then, the 
magnetic field must be linearly dependent on time, which 
brings us back to the previous condition.  
      As an example, assume that the magnetic field is of the 
form  
 

        0 0
ˆ ( .)zB B t u B const= − =

�
.   

 

A possible solution of (12) for E
�

 is, in cylindrical coordi-
nates,  
 

        0 ˆ
2

B
E uϕ

ρ
=
�

 .   

 
[We assume that these solutions are valid in a limited region 
of space (e.g., in the interior of a solenoid whose axis coin-
cides with the z-axis) so that ρ is finite in the region of inter-
est.] Now, consider a circular wire C of radius R, centered at 

the origin of the xy-plane. Then, given that ˆ( )d l d l uϕ= −
��

 ,  

 

        E 20
0

2C C

B R
E dl d l B Rπ= ⋅ = − = −∫ ∫
� ��

� � .   

 
Alternatively,  
 

        2

0m S
Bda B R tπΦ = =∫ ,    

 

so that  E 2

0/md dt B Rπ= − Φ = − . We anticipate that, due 

to the time constancy of the electric field, the same result 
will be found for the work w by using (15).  
 

7.   Concluding remarks 
 
No single, universally accepted definition of the emf seems 
to exist in the literature of Electromagnetism. The definition 
given in this article (as well as in [1]) comes close to those 
of [2] and [3]. In particular, by using an example similar to 
that of Sec. 5 in this paper, Griffiths [2] makes a clear dis-
tinction between the concepts of emf and work per unit 
charge. In [4] and [5] (as well as in numerous other text-
books) the emf is identified with work per unit charge, in 
general, while in [6] and [7] it is defined as a closed line 
integral of the non-conservative part of the electric field that 
accompanies a time-varying magnetic flux.  

      The balance of forces and the origin of work in a con-
ducting circuit moving through a magnetic field are nicely 
discussed in [2, 8, 9]. An interesting approach to the relation 
between work and emf, utilizing the concept of virtual work, 
is described in [10].  
      Of course, the list of references cited above is by no 
means exhaustive. It only serves to illustrate the diversity of 
ideas concerning the concept of the emf. The subtleties in-
herent in this concept make it an interesting subject of study 
for both the researcher and the advanced student of classical 
Electrodynamics.  
 

References 
 
[1] C. J. Papachristou, A. N. Magoulas, Electromotive 

force: A guide for the perplexed, Annals Nav. Acad. 
Gr. (Nausivios Chora) Vol. 5 (2014), in press. See 
also:  http://arxiv.org/abs/1211.6463.  

[2] D. J. Griffiths, Introduction to Electrodynamics, 3rd 
Edition (Prentice-Hall, 1999).  

[3] W. N. Cottingham, D. A. Greenwood, Electricity and 
Magnetism (Cambridge, 1991).  

[4] D. M. Cook, The Theory of the Electromagnetic Field 
(Dover, 2003).  

[5] R. K. Wangsness, Electromagnetic Fields, 2nd Edition 
(Wiley, 1986).  

[6] J. D. Jackson, Classical Electrodynamics, 2nd Edition 
(Wiley, 1975).  

[7] W. K. H. Panofsky, M. Phillips, Classical Electricity 
and Magnetism, 2nd Edition (Addison-Wesley, 1962).  

[8] E. P. Mosca, Magnetic forces doing work?, Am. J. 
Phys. 42 (1974) 295.  

[9] J. A. Redinz, Forces and work on a wire in a mag-
netic field, Am. J. Phys. 79 (2011) 774.  

[10] R. A. Diaz, W. J. Herrera, S. Gomez, The role of the 
virtual work in Faraday’s Law, 
http://arxiv.org/abs/1104.1718.  

 
 



 



���������� ���	
��	���
��
��	
	�	���������	
����	�
�����������
�	��	�
������	
�
����
 �!������"�������	���!������"#��"����	$#��� �������"�!��%�&� ���



 



 

 

C. J. PAPACHRISTOU – A. N. MAGOULAS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOME ASPECTS OF THE 
 

ELECTROMOTIVE FORCE 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

HELLENIC NAVAL ACADEMY 

2016 

 

 



 



 1 

Some aspects of the electromotive force 
 

C. J. Papachristou *,    A. N. Magoulas ** 
 

* Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece 
E-mail:  papachristou@snd.edu.gr 

 
** Department of Electrical Engineering, Hellenic Naval Academy, Piraeus 18539, Greece 

E-mail:  aris@snd.edu.gr 
 

 
Certain aspects of the concept of the electromotive force (emf) of a “circuit”, as 
this concept was defined in recent publications, are discussed. In particular, the 
independence of the emf from the conductivity of the circuit is explained and the 
role of the applied force in motional emf is analyzed.  

 
 
1.  Definition and analytical expression of the emf  
 
In recent articles [1,2] we studied the concept of the electromotive force (emf ) of a 
“circuit” and examined the extent to which the emf represents work per unit charge 
for a complete tour around the circuit. This educational note contains some additional 
remarks regarding the emf; it may be regarded as an addendum to the aforementioned 
publications.  
      We consider a closed path C (or loop) in a region of space where an electromag-
netic (e/m) field exists (Fig. 1). Generally speaking, this loop will be called a “cir-
cuit”  if a charge flow can be sustained on it. We arbitrarily  assign a positive direction 

of traversing the loop C and we consider an element dl
���

 of C oriented in the positive 
direction.  
 

dl
���

•

C

+

q

F
�

 
 

Figure 1 
 

      Let q be a test charge, which at time t is located at the position of dl
���

, and let F
�

 

be the force on q at this time. The force F
�

 is exerted by the e/m field itself as well as, 
possibly, by additional energy sources (such as batteries or some external mechanical 
action) that may contribute to the generation and preservation of a current around the 

loop C. The force per unit charge at the position of dl
���

, at time t, is /f F q=
� �

. We 

note that f
�

 is independent of q since the e/m force on a charge is proportional to the 
charge.  
      Since, in general, neither the shape nor the size of C is required to remain fixed, 
and since the loop may also be in motion relative to an external observer, we will use 
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the notation C(t) to indicate the state, at time t, of a circuit of generally variable shape, 
size or position in space.  
      The electromotive force (emf ) of the circuit C at time t is defined as the line inte-

gral of f
�

 along C, taken in the positive sense of C :  
 

           E (t) 
( )

( , )
C t

f r t d l= ⋅∫
���� �

�                                                (1) 

 

where r
�

 is the position vector of dl
���

 relative to the origin of our coordinate system. 
Obviously, the sign of the emf is dependent upon our choice of the positive direction 
of circulation of C. It should be noted carefully that the integral (1) is evaluated at a 

given time t. Thus, the force f
�

 must be measured simultaneously, at time t, at all 
points of C.  

      The force f
�

 can be attributed to two factors: (a) the interaction of q with the ex-
isting e/m field itself; and (b) the action on q by any additional energy sources that 
may be necessary in order to maintain a steady flow of charge on C. (This latter inter-
action also is electromagnetic in nature, even when it originates from some external 
mechanical action.) We write  
 

      em appf f f= +
� � �

                                                      (2) 

 

where emf
�

 is the force due to the e/m field and appf
�

 is the applied force due to an ad-

ditional energy source.  
      Two familiar cases of emf-driven circuits where an additional applied force is re-
quired are the following:  
      1. In a battery-resistor circuit [1-3] an applied force is necessary in order to carry a 
(conventionally positive) mobile charge from the negative to the positive pole of the 
battery, through the source. This force is provided by the battery itself.  
      2. In the case of a closed metal wire C moving in a time-independent magnetic 
field [2-5] the current on C is sustained for as long as the motion of C continues. This, 
in turn, necessitates the action of an external force on C (say, by our hand), as will be 
explained in Sec. 4.  
      Now, by (1) and (2),  
 

     E (t) 
( ) ( )em appC t C t

f d l f d l= ⋅ + ⋅ ≡∫ ∫
��� ���� �

� �   Eem (t) + Eapp (t)                        (3) 

 

We would like to find an analytical expression for Eem(t). So, let ( )( , ) , ( , )E r t B r t
� �� �

 be 

the e/m field in the region of space where the loop C(t) is lying. Let q be a test charge 

located, at time t, at the position of dl
���

 and let totυ
�

 be the total velocity of q in space, 

relative to some inertial frame of reference. We write  
 

tot cυ υ υ= +
� � �
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where cυ
�

 is the velocity of q along C (i.e., in a direction parallel to dl
���

) while υ
�

 is the 

velocity of dl
���

 itself due to a possible motion in space, or just a deformation over 
time, of the loop C(t) as a whole. The total e/m force on q is  
 

[ ( )]em totF q E Bυ= + ×
� � ��

 ,  

 
so that   
 

[( ) ]em c
F

f E B
q

υ υ= = + + ×

�
� � �� �

 . 

 
Hence,  
 

Eem (t) 
( ) ( ) ( )

( ) ( )cC t C t C t
E dl B dl B dlυ υ= ⋅ + × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� �

� � �  . 

 

Given that cυ
�

 is parallel to dl
���

, the last integral on the right vanishes. Thus, finally,  

 

Eem (t) 
( ) ( )

( , ) [ ( , ) ( , )]
C t C t

E r t dl r t B r t dlυ= ⋅ + × ⋅ ≡∫ ∫
��� ���� ��� � �

� �   Ee (t) + Em (t)           (4)    

 
      We note that, in our definition of the emf, the force per unit charge was defined as 

/f F q=
� �

, assuming that a replica of a test charge q is placed at every point of the cir-

cuit and that the forces F
�

 on all test charges are measured simultaneously at time t. 
Now, in the case of a conducting loop C (say, a metal wire) it is reasonable to identify 
q with one of the (conventionally positive) mobile free electrons. This particular iden-
tification, although logical for practical purposes, is nevertheless not necessary, given 

that the force f
�

 is eventually independent of q. Thus, in general, q may just be con-
sidered as a hypothetical test charge that is not necessarily identified with an actual 
mobile charge.  
 
 
2.  Independence from conductivity  
 
Let C(t) be a conducting loop (say, a metal wire) inside a given e/m field. The emf of 
C at time t is given by (3) and (4). We note from (4) that the part Eem of the total emf is 

independent of the velocity cυ
�

 of q along C (where q may be conveniently – although 

not necessarily – assumed to be a mobile free electron of the conductor, convention-
ally considered as a positive charge). We may physically interpret this as follows:  
      The e/m field creates an emf Eem that tends to generate a charge flow on C. How-

ever, this emf does not by itself determine how fast the mobile charges move along C. 
Presumably, this will depend on physical properties of the path C that are associated 
with its conductivity. (For example, in a battery-resistance circuit the potential differ-
ence at the ends of the resistance – thus the value of the electric field inside the con-
ductor – does not by itself determine the velocity cυ

�
 of the mobile charges along the 
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circuit, since this velocity is related to the current generated by the source, which cur-
rent depends, in turn, on the resistance of the circuit, according to Ohm’s law.)  
      Now, the role of the part Eapp of the total emf (3) is to maintain the charge flow on 

C(t) that is generated by Eem . We thus anticipate that Eapp will also be independent of 

cυ
�

 (this is, e.g., the case in our previous example, where Eapp is equal to the voltage of 

the battery [1-3]). In conclusion,  
 

the total emf E(t) of a conducting loop C(t) is not dependent upon the velocity 

of motion of the mobile charges q along the loop.  
 
      This leads us to a further conclusion:  
 

The total emf E(t) of a conducting loop C(t) inside an e/m field is not depend-

ent upon the conductivity of the loop.  
 
This can be justified by noting that, by its definition, the force (2) does not include 
contributions from resistive forces that oppose a charge flow on C; it only contains 
e/m interactions that may contribute to the generation and preservation of a current in 
the circuit. Note, however, that the current itself does depend on the conductivity σ of 

C, according to Ohm’s law (J fσ=
��

) [3].  

      Alternatively, as argued above, the emf does not depend on cυ
�

. Now, in a steady-

state situation under given electrodynamic conditions (thus, for a given f
�

) this veloc-
ity is a linear function of the mobility µ of q, according to the empirical relation 

c fυ µ=
��

 (by which Ohm’s law is deduced). On the other hand, the conductivity of C 

is given by σ=qnµ. The density n of mobile charges, as well as the value of q, cannot 
affect the value of the emf since that quantity is defined per unit charge. We thus con-
clude that the emf of C cannot depend on µ, as well as on n and q; hence, E is inde-

pendent of σ.  
 
 
3.  Emf and the Faraday-Henry law  
 

Consider a region of space in which a (generally time-dependent) e/m field ( , )E B
� �

 
exists. Let C be a fixed conducting loop in this region. There is no additional applied 
force on C, so (3) reduces to E(t)=Eem(t). Furthermore, since C is stationary, ( , )r tυ

� �
 

vanishes identically and, by (4), Em(t)=0 and Eem(t)=  Ee(t). Thus, finally,  

 

E (t) ( , )
C

E r t dl= ⋅∫
���� �

�                                                (5) 

 
      By Stokes’ theorem,  
 

( )
C S

E dl E da⋅ = ∇× ⋅∫ ∫
��� ���� � �

�  
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where S is any open surface bounded by C (Fig. 2).  
 

S

C

da
���

da

dl
���

 
 

Figure 2 
 
Moreover, by the Faraday-Henry law,  
 

B
E

t

∂
∇× = −

∂

�
� �

                                                    (6) 

 
So, (5) yields  
 

E (t) Φ ( )mS

d d
B da t

dt dt
= − ⋅ = −∫

����
                                    (7) 

 
where  
 

Φ ( ) ( , )m S
t B r t da= ⋅∫

���� �
 

 
is the magnetic flux through C at time t. As commented in [1], relation (7) expresses a 
genuine physical law, not a mere consequence of the definition of the emf.  
 
 
4.  Motional emf due to a static magnetic field  
 

Let C(t) be a conducting loop inside a static magnetic field ( )B r
� �

 (Fig. 3). The time 
dependence of C indicates a motion and/or a deformation of the loop over time. We 
will show that the emf of C at time t is given by the expression  
 

E (t) = Em (t) = 
( )

[ ( ) ( )]
C t

r B r dlυ × ⋅∫
����� � �

�                                  (8) 

 
 



 C. J. PAPACHRISTOU  &  A. N. MAGOULAS 

 6 

r
�

dl
���

cυ
� +

( )rυ
� �

( )C t

O

( )B r
� �

 
 

Figure 3 
 
      Let q be a mobile charge (say, a conventionally positive free electron) located at 

the position r
�

 (relative to our coordinate system) of the loop element dl
���

 at time t. As 

in Sec. 1, we denote the velocity of dl
���

 with respect to our frame of reference by 

( )rυ
� �

, the velocity of q along C by cυ
�

, and the total velocity of q relative to our frame 

by tot cυ υ υ= +
� � �

.  

      Since there is no electric field in the region of interest,  
 

Ee (t) ( , ) 0
C

E r t dl≡ ⋅ =∫
���� �

�     and    Eem (t) =  Em (t)                            (9) 

 

Also, if appf
�

 is the applied force per unit charge at the position of q, at time t,  

 

Eapp (t) 
( )

( , )appC t
f r t d l= ⋅∫

���� �

�                                             (10) 

 
The role of the applied force is to keep the current flowing. This will happen for as 
long as the loop C is moving or/and deforming, so that ( )rυ

� �
 is not identically zero for 

all t. Why is an external force needed to keep C moving or deforming? Let us care-
fully analyze the situation.  
      The magnetic force on q is  
 

( )m totF q Bυ= ×
� ��

    so that    m totf Bυ= ×
� ��

 . 

 
Now, imagine a temporary, local 3-dimensional rectangular system of axes (x, y, z) at 
the location r

�
 of q at time t. We assume, without loss of generality, that the z-axis is 

in the direction of dl
���

. (The orientation of the mutually perpendicular x and y-axes on 
the plane normal to the z-axis may be chosen arbitrarily.) Then we may write  
 

, , ,m m x m y m z cf f f f f f⊥= + + ≡ +
� � � � � �

 

 

where ,c m zf f=
� �

 is the component of the magnetic force along the loop (i.e., in a 

direction parallel to dl
���

) while , ,m x m yf f f⊥ = +
� � �

 is the component normal to the loop 

(thus to dl
���

).  
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      In a steady-state situation (steady current flow) cf
�

 is counterbalanced by the resis-

tive force that opposes charge motion along C (as mentioned before, this latter force 
does not contribute to the emf). However, to counterbalance the normal component 

f⊥
�

 some external action (say, by our hand that moves or deforms the loop C) is 
needed in order for C to keep moving or deforming. This is precisely what the applied 

force appf
�

 does. Clearly, this force must be normal to C at each point of the loop. 

From (10) we then conclude that  
 

Eapp(t) = 0 . 

 
Combining this with (3), (4) and (9), we finally verify the validity of (8).  
      It can be shown [1,3] directly from (8) that  
 

E (t) Φ ( )m

d
t

dt
= −                                                  (11) 

 
where Φm(t) is the magnetic flux through C at time t. This looks like (7) for a fixed 
geometrical loop in a time-dependent e/m field, although the origins of the two rela-
tions are different. Indeed, equation (11) is a direct consequence of the definition of 
the emf and may be derived from (8) essentially by mathematical manipulation (see, 
e.g., the Appendix in [1]). On the contrary, to derive (7) the Faraday-Henry law (6) 
was used. This is an experimental law, hence so is the expression (7) for the emf. In 
other words, relation (7) is not a mere mathematical consequence of the definition of 
the emf.  
 
 
5.  An example  
 
Consider a metal bar (ab) of length h, sliding parallel to itself with constant speed υ 
on two parallel rails that form part of a U-shaped wire, as shown in Fig. 4. A uniform 
magnetic field B

�
, pointing into the page, fills the entire region. A circuit C(t) of vari-

able size is formed by the rectangular loop (abcda).  
 

x

y

O
z⊙

x

h

I

+

.constυ =
�

dl
���

a

bc

d
B⊗
�

da
���

⊙

 
 

Figure 4 
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      In Fig. 4, the z-axis is normal to the plane of the wire and directed toward the 

reader. We call da
���

 an infinitesimal normal vector representing an element of the 
plane surface bounded by the wire (this vector is directed toward the reader, consis-
tently with the chosen counterclockwise direction of traversing the loop C). If ˆzu  is 

the unit vector on the z-axis, then the field and the surface element are written, respec-

tively, as ˆzB Bu= −
�

 (where | | .B B const= =
�

) and ˆ( ) zda da u=
���

.  

      The balance of forces is shown in Fig. 5 (by rf
�

 we denote the resistive force per 

unit charge, which does not contribute to the emf). Note that this diagram concerns 
only the moving part (ab) of the circuit, since it is in this part only that the velocity υ

�
 

and the applied force appf
�

 are nonzero.  

 

θ
θ

dl
���

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�B⊗

�

cυ υ⊥
� �

x
 

 
Figure 5 

 
      The emf of the circuit at time t is, according to (8),   
 

E (t) 
( )

( )
b b

C t a a
B dl B dl B dl Bhυ υ υ υ= × ⋅ = = =∫ ∫ ∫
�����

�  . 

 
Alternatively, the magnetic flux through C is  
 

( ) ( ) ( )
( )m S t S t S t
t B da B da B da BhxΦ = ⋅ = − = − = −∫ ∫ ∫

����
 

 
(where x is the momentary position of the bar at time t) so that, by (11),  
 

E (t) ( )m
d d x

t Bh Bh
dt dt

υ= − Φ = =  . 

 
      Now, the role of the applied force is to counterbalance the x-component of the 
magnetic force in order that the bar may move at constant speed in the x direction. 
Thus,  
 

cos cosapp m tot cf f B Bθ υ θ υ= = =  . 

 
We note that, although fapp depends on the speed υc of a mobile charge along the bar, 
the associated part of the emf is itself independent of υc ! Specifically, as argued in 
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Sec. 4, Eapp(t)=0. On the other hand, in this particular example the work w of fapp for a 

complete tour around the circuit is equal to the total emf (cf. [2]): w=E=Bhυ. This 

equality, however, is accidental and does not reflect a more general relation between 
the work per unit charge and the emf. (Another such “accidental” case is the battery-
resistance circuit [1-3].)  
 
 
6.  Summary  
 
This article is an addendum to our study of the concept of the electromotive force 
(emf), as this concept was pedagogically approached in previous publications [1,2]. 
We have focused on some particular aspects of the subject that we felt are important 
enough to merit further discussion. Let us review them:  
      1. For a conducting loop C inside an e/m field, we explained why the emf of C 
does not depend on the conductivity of the loop. As “obvious” as this statement may 
seem, one still needs to justify it physically and to demonstrate its consistency with 
Ohm’s law.  
      2. We expressed the Faraday-Henry law in terms of the emf of a closed conduct-
ing curve inside a time-dependent e/m field.  
      3. We studied the case of motional emf in some detail (see also [2-5]). Particularly 
important is the role of the applied force in this case. In addition to analyzing this role 
and, in the process, deriving an explicit expression for the emf, we explained why the 
physics of the situation is different from that of the Faraday-Henry law, despite the 
similar-looking forms of the emf in the two cases. Of course, as Relativity has shown, 
this similarity is anything but coincidental!  
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