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Abstract. The concept of electromotive force (emf) may be introduced in various ways in
an undergraduate course of theoretical electromagnetism. The multitude of alternate
expressions for the emf is often the source of confusion to the student. We summarize the
main ideas, adopting a pedagogical logic that proceeds from the general to the specific.
The emf of a “circuit” is first defined in the most general terms. The expressions for the
emf of some familiar electrodynamical systems are then derived in a rather straightforward
manner. A diversity of physical situations is thus unified within a common theoretical
framework.

1. INTRODUCTION

The difficulty in writing this article was not just due to the subject itself: we had to first
overcome some almost irreconcilable differences in educational philosophy between an
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer.
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.

Having taught intermediate-level electrodynamics courses for several years, we have come
to realize that, in the minds of many of our students, the concept of electromotive force (emf) is
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the
electric field along a closed path? And what if a magnetic rather than an electric field is present?

Generally speaking, the problem with the emf lies in the diversity of situations where this
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas,
choosing a pedagogical approach that proceeds from the general to the specific. We begin by
defining the concept of emf of a “circuit” in the most general way possible. We then apply this
definition to certain electrodynamic systems in order to recover familiar expressions for the emf.
The main advantage of this approach is that a number of different physical situations are treated
in a unified way within a common theoretical framework.

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5)
application is made to particular cases, such as motional emf, the emf due to a time-varying
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6,
the connection between the emf and Ohm’s law is discussed.
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2. THE GENERAL DEFINITION OF EMF

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or
any other elements whose presence may contribute to the e/m field).

We arbitrarily assign a positive direction of traversing the loop C, and we consider an element

dl of C oriented in the positive direction. Imagine now a test charge g located at the position of

dl, and let F be the force on g at time t:

g di

)

This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources
(e.g., batteries) that can interact electrically with g. The force per unit charge at the position of

dl attime t,is

f= (1)

|

Note that 7 is independent of g, since the force by the e/m field and/or the sources on g is
proportional to the charge. In particular, reversing the sign of g will have no effect on f

(although it will change the direction of F).
We now define the electromotive force (emf) of the circuit C at time t as the line integral

of f along C, taken in the positive sense of C:

£= §[>C f-di @)

Note that the sign of the emf is dependent upon our choice of the positive direction of
circulation of C: by changing this convention, the sign of £is reversed.
We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial

observers since at this limit the force F is invariant under a change of frame of reference.
In the following sections we apply the defining equation (2) to a number of specific
electrodynamic situations that are certainly familiar to the student.
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3. MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC
FIELD

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic
field B(7). Let U be the velocity of the element di of C relative to our inertial frame of

reference. A charge q (say, a free electron) at the location of d/ executes a composite motion,
due to the motion of the loop C itself relative to our frame, as well as the motion of g along C.
The total velocity of g relative to us is 4, =6 +0', where U is the velocity of g in a direction

parallel to 4 . The force from the magnetic field on qis

FZQ(GtotXE)ZQ(GXE)"‘(](UXB) =

f=£=(5x1§)+(5’x§)
q

By (2), then, the emf of the circuit Cis
g =<}'>C f-dl:cﬁc (DxB)-di + <.[>C (0'x B)-di
But, since U’ is parallel to di, we have that (5'x B)-di =0 . Thus, finally,
5=<j>c (Ox B)-di ®3)

Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note

also that the velocity & may vary around the circuit.
By using (3), it can be proven (see Appendix) that

_do
dt

(4)

where (D:JE-cTa is the magnetic flux through the wire C at time t. Note carefully that (4)

does not express any novel physical law: it is simply a direct consequence of the definition of
the emf!

4. EMF DUE TO ATIME-VARYING MAGNETIC FIELD

Consider now a closed wire C that is at rest inside a time-varying magnetic field B(F,t). As

experiments show, as soon as B starts changing, a current begins to flow in the wire. This
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And,
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed

experimentally that, if the magnetic field B stops varying in time, the current in the wire
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disappears. The only field that can put an initially stationary charge in motion and keep this
charge moving is an electric field.

We are thus compelled to conclude that a time-varying magnetic field is necessarily
accompanied by an electric field. (It is often said that “a changing magnetic field induces an
electric field”. This is somewhat misleading since it gives the impression that the “source” of an
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of
any e/m field are the electric charges and the electric currents!)

So, let E(7,f) be the electric field accompanying the time-varying magnetic field B .
Consider again a charge g at the position of the element 4/ of the wire. Given that the wire is
now at rest (relative to our inertial frame), the velocity of g will be due to the motion of the
charge along the wire only, i.e., in a direction parallel to 41 : 0,, =0 (since 5=0). The force on
q by the e/m field is

F=qlE+(0, xB)=q[E+(@'xB)] =

f=—=E+@WxB)

Q|

The emf of the circuit Cis now
I =<j>c f-dl:cﬁc E-dl+<j>c (5'x B)-di
But, as explained earlier, (5'x B)-dl =0 . Thus, finally,
£ = c.[)CE -dl (5)

Equation (4) is still valid. This time, however, it is not merely a mathematical
consequence of the definition of the emf ; rather, it is a true physical law deduced from
experiment! Let us examine it in some detail.

In a region of space where a time-varying e/m field (E,B) exists, consider an arbitrary
open surface S bounded by the closed curve C:

da
@,

C

(The relative direction of 4/ and the surface element %, normal to S, is determined

according to the familiar right-hand rule.) The loop Cis assumed stationary relative to the inertial
observer; hence the emf along C at time tis given by (5). The magnetic flux through S at this
instant is
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@, ()= B-da

(Note that the signs of £ and ®,, depend on the chosen positive direction of C.) Since the field

B is solenoidal, the value of ®,, for a given C is independent of the choice of the surface S.
That is, the same magnetic flux will go through any open surface bounded by the closed curve
C.

According to the Faraday-Henry law,

do
E=——™" 6
o (6)
or explicitly,
S d ¢ - —
gSCE-dzz—EjSB-da (7)

(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)
Equation (7) can be re-expressed in differential form by using Stokes’ theorem,

¢ E-dl=[ (VxE)-da
and by taking into account that the surface S may be arbitrarily chosen. The result is

OB

VxE=-—=
ot

(8)
We note that if dB/dt+0, then necessarily E#0. Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B is static (
dB/10t=0), then E is irrotational: VxE =0 < cj}Ecﬁ:O, which allows for the possibility

that E=0.
Corollary: The emf around a fixed loop C inside a static e/m field (E(?), E(?)) is £€=0
(the student should explain this).

5. EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance)
connected to an external resistor. As shown below, the emf of the circuit in the direction of the
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the
work per unit charge done by the source (battery).
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We recall that, in general, the emf of a circuit C at time tis equal to the integral
e=¢_f-di

where f = F/q is the force per unit charge at the location of the element 4i of the circuit, at
time t. In essence, we assume that in every element 4/ we have placed a test charge g (this

could be, e.g., a free electron of the conducting part of the circuit). The force F on each q is
then measured simultaneously for all charges at time t. Since here we are dealing with a static
(time-independent) situation, however, we can treat the problem somewhat differently: The

measurements of the forces F on the charges g need not be made at the same instant, given
that nothing changes with time, anyway. So, instead of placing several charges g around the

circuit and measuring the forces F on each of them at a particular instant, we imagine a single
charge g making a complete tour around the loop C. We may assume, e.g., that the charge g is
one of the (conventionally positive) free electrons taking part in the constant current / flowing in

the circuit. We then measure the force F on g at each point of C.
We thus assume that g is a positive charge moving in the direction of the current I. We
also assume that the direction of circulation of C is the same as the direction of the current

(counterclockwise in the figure). During its motion, g is subject to two forces: (1) the force F, by
the source (battery) that carries g from the negative pole a to the positive pole b through the
source, and (2) the electrostatic force F, = gE due to the electrostatic field E at each point of
the circuit C (both inside and outside the source). The total force on qis

.. . . . L F F . . .
F=F+F =F+qFE > f=—=-"2+E=f+E
q9 q
Then,
szcﬁcf-dlzcﬁc fo-dl+<ﬁCE-dl=<j>C f,-di )

since cﬁc E-dl =0 for an electrostatic field. However, the action of the source on g is limited to

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence,

f, =0 outside the source, so that (9) reduces to

e=[ fy-di (10)
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Now, since the current / is constant, the charge g moves at constant speed along the circuit.
This means that the total force on q in the direction of the path Cis zero. In the interior of the

resistor, the electrostatic force F, = ¢E is counterbalanced by the force on g due to the

collisions of the charge with the positive ions of the metal (this latter force does not contribute to
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however,

where there is no resistance, the electrostatic force F, must be counterbalanced by the
opposing force F, exerted by the source. Thus, in the section of the circuit between a and b,

- o~ - - F - - - -
F=F+F =0 = f:;:f0+E:O = f,=—-FE
Equation (10) then takes the final form,
b - —
g=—["E-dI=V,-V,=V (11)

where V, and V, are the electrostatic potentials at a and b, respectively. This is, of course,
what every student knows from elementary e/m courses!
The work done by the source on g upon transferring the charge from ato bis

b -~ — b - —
W=["F-di=q[ f,-di=q¢ (12)

[where we have used (10)]. So, the work of the source per unit charge is W/q= £ . This work is

converted into heat in the resistor, so that the source must again supply energy in order to carry
the charges once more from a to b. This is something like the torture of Sisyphus in Greek
mythology!

6. EMF AND OHM’S LAW

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery)
and may also be in motion relative to our inertial frame of reference. Let g be a test charge at

the location of the element di of C, and let F be the total force on g (due to the e/m field
and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-
independent quantity.) The force per unit charge at the location of 4/ at time t then, is

f = F /q . According to our general definition, the emf of the circuit at time tis

szgﬁcf-il (13)

Now, if o is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p.
285 of [1]) we have:

~i
Il
q

~1

(14)
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where J is the volume current density at the location of di at time t (Note that the more
common expression J =gE, found in most textbooks, is a special case of the above formula.

Note also that J is measured relative to the wire, thus is the same for all inertial observers.) By
combining (13) and (14) we get:

szlgﬁcj.il (15)

Taking into account that J isin the direction of 4] at each point of C, we write:

j-dlz]dlzidl
S

where S is the constant cross-sectional area of the wire. If we make the additional assumption
that, at each instant t, the current /is constant around the circuit (although / may vary with time),
we finally get:

g=Lg-Ply_ g (16)
oS S

where /is the total length of the wire, p=1/0 is the resistivity of the material, and R is the total
resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.

As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery
with internal resistance r. Let R, be the external resistance connected to the battery. The total
resistance of the circuit is R=R,+r. As before, we call V=V, -V, the potential difference between
the terminals of the battery, which is equal to the voltage across the external resistor. Hence,
V=IR,, where I is the current in the circuit. The emf of the circuit (in the direction of the current)
is

E=IR=1(Rp+n=V+Ir

Note that the potential difference V between the terminals a and b equals the emf only when
no current is flowing (/=0).
As another example, consider a circuit C containing an ideal battery of voltage V and
having total resistance R and total inductance L :

L

(’R_mm_

—)

In this case, the emf of C in the direction of the current flow is

http://nausivios.snd.edu.gr/nausivios

C-10



PART C: Natural Sciences and Mathematics

E(t) =V+V, = V—L% = I(t)R

To understand why the total emf of the circuit is V+V,, we think as follows: On its tour around
the circuit, a test charge g is subject to two forces (ignoring collisions with the positive ions in the
interior of the wire): a force inside the source, and a force by the non-conservative electric field
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry
law (6). The latter emf is precisely V, ; it has a nonzero value for as long as the current /is
changing.

Some interesting energy considerations are here in order. The total power supplied to the
circuit by the battery at time tis

P=1V=12R+L1ﬂ
dt

The term /2R represents the power irreversibly lost as heat in the resistor (energy, per unit
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the
source in order to maintain the current against dissipative losses in the resistor. On the other
hand, the term L/ (dl/df) represents the energy per unit time required to build up the current
against the “back emf” V, . This energy is retrievable and is given back to the source when the
current decreases. It may also be interpreted as energy per unit time required in order to
establish the magnetic field associated with the current. This energy is “stored” in the magnetic
field surrounding the circuit.

7. CONCLUDING REMARKS

In concluding this article, let us highlight a few points of importance:

1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”)
in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain
sources such as batteries.

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of
reference with respect to which it is measured.

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present,
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of
the battery and represents work per unit charge done by the source.

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s
law can be expressed in terms of the emf by equation (16).
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APPENDIX

Here is an analytical proof of equation (4) of Sec.3:
Assume that, at time f, the wire describes a closed curve C that is the boundary of a plane
surface S. At time = t+dt, the wire (which has moved in the meanwhile) describes another

curve C’that encloses a surface S”. Let di be an element of C in the direction of circulation of

the curve, and let U be the velocity of this element relative to an inertial observer (the velocity
of the elements of C may vary along the curve):

—_—> C

¢ di

The direction of the surface elements % and @ is consistent with the chosen direction of
dl, according to the right-hand rule. The element of the side (“cylindrical”) surface S** formed
by the motion of C, is equal to

da" =dIx (6 dt) = (dlx0)dt

Since the magnetic field is static, we can view the situation in a somewhat different way:
Rather than assuming that the curve C moves within the time interval dt so that its points
coincide with the points of the curve C” at time t’, we consider two constant curves C and C~ at

the same instant t. In the case of a static field B, the magnetic flux through C* at time t'= t+dt
(according to our original assumption of a moving curve) is the same as the flux through this
same curve at time t, given that no change of the magnetic field occurs within the time interval

dt. Now, we note that the open surfaces S;=S and S,= S” U S§"" share a common boundary,
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux ®,, passes
through S; and S, at time t. That s,

J‘S1B~da1 =J‘S2B~da2 = ISB~da =J‘S,B~da +J‘S”B~da
But, returning to our initial assumption of a moving curve, we note that

Is B-da= @, (1) = magnetic flux through the wire at time t

and
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C-12



PART C: Natural Sciences and Mathematics

J‘S B-dd = @, (t+dt)= magnetic flux through the wire at time t+dt

Hence,

@m(r)zam(r+dr)+js,,é.%" -

d®, =d (1+di)—-D, (1) :—J'S,,E.W:_dt Sﬁcé.(ﬁxg) N

d@, ¢ 7z = o £ B =
- _q}cB.(dlxu)_q.)C(uxB)«dl—E

in accordance with (3) and (4).

REFERENCES

—_

D. J. Griffiths, Introduction to Electrodynamics, 3 Edition (Prentice-Hall, 1999).
R. K. Wangsness, Electromagnetic Fields, 2" Edition (Wiley, 1986).

J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of Electromagnetic Theory, 4" Edition (Addison-
Wesley, 1993).

W. N. Cottingham, D. A. Greenwood, Electricity and Magnetism (Cambridge, 1991).

P. Lorrain, D. R. Corson, F. Lorrain, Electromagnetic Fields and Waves, 3 Edition (Freeman, 1988).
V. Rojansky, Electromagnetic Fields and Waves (Dover, 1979).

A. Shadowitz, The Electromagnetic Field (McGraw-Hill, 1975).

C. J. Papachristou, Introduction to Electromagnetic Theory and the Physics of Conducting Solids, 2m
Edition, in Greek (Naval Academy of Greece Publications, 2010).

9. A. N. Magoulas, Applied Electromagnetism, 2" Edition, in Greek (Naval Academy of Greece
Publications, 2012).

10. J. D. Jackson, Classical Electrodynamics, 3" Edition (Wiley, 1999)".

11. W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism, 2" Edition (Addison-Wesley,
1962).

12. W. Greiner, Classical Electrodynamics (Springer, 1998).

w

© N oA

' One of us (C.J.P.) strongly feels that the 2nd Edition of 1975 (unfortunately out of print) was a much
better edition!

ISSN:1791-4469 Copyright © 2014, Hellenic Naval Academy

C-13



ADVANCED ELECTROMAGNETICS, VOL. 4, NO. 1, MARCH 2@L

Does the electromotive for ce (always) represent work?

C. J. Papachristou’ and A. N. Magoulas’

'Department of Physical Sciences, Naval Academyreg€e, Piraeus, Greece
’Department of Electrical Engineering, Naval Acadef(reece, Piraeus, Greece
* papachristou@snd.edu.gr

Abstract equality £&=w is satisfied only in the special case where the

. . . magnetic field varies linearly with time.
In the literature of Electromagnetism, the elective g y

force of a “circuit” is often defined as work done a unit
charge during a complete tour of the latter aratinedcircuit.
We explain why this statement cannot be generaljparded
as true, although it is indeed true in certain $engases.
Several examples are used to illustrate thesegoint

2. Thegeneral definitions of emf and work per
unit charge

Consider a region of space in which an electromiagne
(e/m) field exists. In the most general sense,@dogedpath

C (or loop) within this region will be called &circuit”
(whether or not the whole or parts @fconsist of material
objects such as wires, resistors, capacitors, rizdfeetc.).
We arbitrarily assign a positive direction of traversing the

1. Introduction

In a recent paper [1] the authors suggested a pgdaag
approach to thelectromotive forcdemf) of a “circuit”,
fundamental concept of Electromagnetism. Rathem tha loop C, and we consider an elementt of C oriented in the
defining the emf in arad hocmanner for each particular positive direction (Fig. 1).

electrodynamic system, this approach begins withnttost

general definition of the emf and then specializesertain

cases of physical interest, thus recovering theili@mex-

g dl
pressions for the emf.
Among the various examples treated in [1, ¢hse of a
simple battery-resistor circuit was of particularterest +
since, in this case, the emf was shown to be efudhe C
work, per unit chargedone by the source (battery) for a

complete tour around the circuit. Now, in the htiere of

Electrodynamics the emf is oftefefinedas work per unit Figure 1: An oriented loop representing a circuit.

charge. As we explain in this paper, this is nategally true _ -

except for special cases, such as the aforemeadtiome Imagine now a test chargglocated at the position of
In Section 2, we give the general definitafrthe emf., dl, and letF be the force om at timet. This force is ex-

and, separately, that of the work per unit chavgejone by  erted by the e/m field itself, as well as, possitily addi-
the agencies responsible for the generation angepration  tional energy sourcege.g., batteries or some external me-
of a current flow in the circuit. We then state trecessary  chanical action) that may contribute to the genienaand
conditions in order for the equalif=w to hold. We stress  preservation of a current flow around the Ic@pTheforce

that, by their very definitions] andw aredifferentconcepts.  per unit chargeat the position ofl| at timet, is

Thus, the equatiofi=w suggests the possible equality of the

valuesof two physical quantities, not the conceptuahtite
fication of these quantities!

Section 3 reviews the case of a circuit cstitgj of a
battery connected to a resistive wire, in whichecalse . ) )
equality&=w is indeed valid. Note that-]c is mdependent of,, since the elec-tromagnetlc

In Sec. 4, we study the problem of a wire ingv force onq is proportional to the charge;ln particular, msve
through a static magnetic field. A particular stton where  ing the sign ofg will have no effect onf (although it will
the equality€=w is valid is treated in Sec. 5. change the direction df ).

Finally, Sec. 6 examines the case of acstaty wire In general, neither the shape nor the siz@ isfrequired
inside a time-varying magnetic field. It is showmat the  to remain fixed. Moreover, the loop may be in motiela-

(1)

—h
I
o |



tive to an external inertial observer. Thus, fdo@p of (pos-

sibly) variable shape, size or position in space,will use

the notatiorC(t) to indicate the state of the curve at time
We now define theslectromotive force(emf) of the

circuit C at timet as the line integral of alongC, taken in
thepositivesense o€C:

f(F,t)-dl

(t)

5@:@

C

)

(wherer is the position vector ofll relative to the origin

of our coordinate system). Note that the sign ef &imf is
dependent upon our choice of the positive direatibaircu-

lation of C: by changing this convention, the sign &fis
reversed.

As mentioned above, the force (per unit cepagefined
in (1) can be attributed to two factors: the intéian of g
with the e/m field itself and the action grdue to any addi-
tional energy sources. Eventually, this latter riatgion is
electromagnetién nature even when it originates from some
external mechanical action. We write:

f=fnt o

®3)

where f,_is the force due to the e/m field arfg, is the

applied forcedue to an additional energy source. We note
that the force (3) does not include aegistive(dissipative)
forces that oppose a charge flow alddgit only contains
forces that may contribute to the generation aedgrvation
of such a flow in the circuit.

Now, suppose we alloasingle charge to make a full
trip around the circui€ under the action of the force (3). In

doing so, the charge describes a cu@/ein space(not
necessarily a closed one!) relative to an externeitial

observer. Letdl’ be an element of’ representing an in-

finitesimal displacement af in space, in timet. We define
the work per unit chargdor this complete tour around the
circuit by the integral:

w= [ fdf (4)

For astationarycircuit of fixed shape,C’ coincides with the
closed curveC and (4) reduces to

( fixed C) (5)

w=¢ f-dl
It should be noted carefully that the intédga is evalu-
atedat a fixed time,twhile in the integrals (4) and (5) time
is allowed to flow! In general, the value wfdepends on the
time to and the poinP, at whichq starts its round trip o@.
Thus, there is a certain ambiguity in the defimtiaf work
per unit charge. On the other hand, the ambigusty t0
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speak) with respect to the emf is related to theeddence
of the latter on timé.

The question now is: can the emf be equaklueto the
work per unit charge, despite the fact that thesentties

are defined differently? For the equalifyw to hold, both&
and w must be defined unambiguously. Thésmust be

constant independent of timed€/dt=0) while w must not

depend on the initial tim& or the initial pointP, of the
round trip ofg on C. These requirements amecessary con-

ditionsin order for the equalit§=w to be meaningful.

In the following sections we illustrate theiskeas by
means of several examples. As will be seen, thsfaetion
of the above-mentioned conditions is the exceptather
than the rule!

3. Aresistivewireconnected to a battery

Consider a circuit consisting of an ideal batterg.( one
with no internal resistance) connected to a metiat wf
total resistanc® (Fig. 2). As shown in [1] (see also [2]), the
emf of the circuitin the direction of the currens equal to
the voltageV of the battery. Moreover, the emf in this case
represents the work, per unit charge, done by thecse
(battery). Let us review the proof of these stateine

R
—AAAA—
AT
o ")
app
(|
a —1 [+ b
E<~—
— ]

Figure 2: A battery connected to a resistive wire.

A (conventionally positijemoving chargej is subject to
two forces around the circui€: an electrostatic force

F,=qE at every point ofC and a forceF,  inside the

battery, the latter force carryirggfrom the negative pola
to the positive pold through the sourceAccording to (3),
the total force per unit charge is

f=f+f,=E+f,.

The emf in the direction of the current (i.e., ctawmolock-
wise), at any time, is

gzécf-&
:¢c Eal+¢c

-[[7.-d

—

f o.dl
app

(6)



where we have used the facts tq‘}act E. al =0 for an elec-

trostatic field and that the action of the sourneyads limited
to the region between the poles of the battery.

Now, in a steady-state situatidn=(constant) the charge
g moves at constant speed along the circuit. Thisnm¢hat
the total force om in the direction of the pat@ is zero. In

the interior of the wire, the electrostatic forBe=qE is

counterbalanced by the resistive forcegodue to the colli-
sions of the charge with the positive ions of thetah (as
mentioned previously, this latter force doexd contribute to
the emf). In the interior of the (ideal) batterypowever,
where there is no resistance, the electrostatiefonust be

counterbalanced by the opposing force exerted hgy th

source. Thus, in the section of the circuit betwaemdb,
f_=—f,=-E.By(6), then, we have:

app

g=-["E-di=y-v =V @)

whereV, andV, are the electrostatic potentialsatndb,
respectively. We note that the emf is constantirmet as
expected in a steady-state situation.

Next, we want to find the work per unit charfpr a
complete tour around the circuit. To this end, Weva a
single charge go make a full trip aroun®€ and we use
expression (5) (since the wire is stationary andfixéd
shape). In applying this relation, time is assunmetiow as
g moves alongC. Given that the situation is static (time-
independent), however, time is not really an issinee it
doesn’t matter at what moment the charge will gassny
given point ofC. Thus, the integration in (5) will yield the
same result (7) as the integration in (6), degpi¢efact that,
in the latter case, time was assurfigdd We conclude that

the equalityw=£ is valid in this case: the erdbesrepresent
work per unit charge.

4. Movingwireinside a static magnetic field

Consider a wireC moving in thexy-plane. The shape and/or
size of the wire need not remain fixed during itstion. A

static magnetic fieldB(F) is present in the region of space
where the wire is moving. For simplicity, we assuthat
this field is normal to the plane of the wire arickdtedinto
the page.

In Fig. 3, the-axis is normal to the plane of the wire and
directed towards the reader. We cdl an infinitesimal
normal vector representing an element of the plaméace

bounded by the wire (this vector is direciatb the plane,
consistently with the chosen clockwise directiontravers-

ing the loopC ). If 0, is the unit vector on theaxis, then

da=-(da U and B=-B(F){,, where B(F) =| B(F) |.
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Figure 3: A wireC moving inside a static magnetic
field.

Consider an elementl of the wire, located at a point

with position vector relative to the origin of our inertial
frame of reference. Calb (') the velocity of this element

relative to our frame. Let| be a ¢onventionally positiJe
charge passing by the considered point at tirfiéais charge

executes a composite motion, having a velocityalong
the wire and acquiring an extra velocity(f') due to the
motion of the wire itself. The total velocity gfrelative to
usisv,, =0, +0.

F f L By
r-n FappL D¢
_____________ f N o,

®B(F) 3

Figure 4: Balance of forces per unit charge.

The balance of forces acting qnis shown in the dia-
gram of Fig. 4. Theanagnetic forceon q is normal to the

charge’s total velocity and equal t&, =q(5,,xB) .

Hence, the magnetic force per unit Charge?nis: Dy X B.

Its component along the wire (i.e., in the directaf (?I) is

counterbalanced by thessistive forcef , which opposes

the motion ofg alongC (this force, as mentioned previously,
doesnot contribute to the emf). However, the component of
the magnetic forcaormal to the wire will tend to make the
wire move “backwards” (in a direction opposing thesired
motion of the wire) unless it is counterbalanced doyne
external mechanical action (e.g., our hand, which pulls the
wire forward). Now, the charggtakes a share of this action
by means of some force transferred to it by thecttire of
the wire. This force (which will be called applied forcé
must benormal to the wire (in order to counterbalance the
normal component of the magnetic force). We derbée



applied force per unit charge l:)&lpp. Although this force

originates from an external mechanical actiors delivered
to g through arelectromagnetidnteraction with the crystal
lattice of the wire (not to be confused with thesiséve
force, whose role is different!).

According to (3), the total force contribgito the emf

of the circuitis f = Fm + Fapp. By (2), the emf at timeis

£ =¢

c(t)

i Td

m app

The second integral vanishes since the appliec fraor-
mal to the wire element at every point@f The integral of
the magnetic force is equal to

$. (6% B)-dl = (5,xB)-dl + § @xB)- ql.

The first integral on the right vanishes, as canséen by
inspecting Fig. 4. Thus, we finally have:

£0 = ¢, [6(NxBM]-dl (®)

As shown analytically in [1, 2], the emf®fis equal to
d

EM)=-—0,(t) 9)
dt

where we have introduced theagnetic fluxhroughC,

o (1) = jsmé(r)-cﬁz jw B(7) da (10)

[By St) we denoteany open surface bounded Byat timet;
e.g., the plane surface enclosed by the wire.]

Now, letC' be the path ofy in space relative to the
external observer, for a full trip af around the wire (in
general,C’' will be anopen curve). According to (4), the
work done per unit charge for this trip is

w= J.c, f.dl+ IC, f-dl .

The first integral vanishes (cf. Fig. 4), while fie second
one we notice that

dl = f_.dl+f_.d’"=f_.dl

fapp ’ app’ app’ app

(since the applied force is normal to the wire edatmeve-
rywhere; see Fig. 4). Thus we finally have:

w= jc, f-dl (1B)

with
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dl =, dlI"=f, - odt

(1b)

app

where dI” = 5 dt is the infinitesimal displacement of the
wire element in timelt.

5. An example: Mation insidea uniform
magnetic field

Consider a metal bamlf) of lengthh, sliding parallel to
itself with constant speed on two parallel rails that form
part of a U-shaped wire, as shown in Fig. Sumform mag-

netic field B , pointing into the page, fills the entire region.

hre b )
Oda B
— p=const
B 1di
d a X
O —>| X
0z

Figure 5: A metal barap) sliding on two parallel rails
that form part of a U-shaped wire.

A circuitC(t) of variable size is formed by the rectangu-
lar loop @bcdg. The field and the surface element are writ-

ten, respectively, aB=-B{, (where B=|B|= const)

and da=(da) y (note that the direction of traversing the
loop C is now counterclockwise).

The general diagram of Fig. 4, representirggialance
of forces, reduces to the one shown in Fig. 6. Nio& this
latter diagram concerns only theoving part @b) of the
circuit, since it is in this part only that the oeity o and

the applied force?app are nonzero.

Figure 6: Balance of forces per unit charge.

The emf of the circuit at tintds, according to (8),

£0 =9, ©xB)-dl



_ .[bUBdl _ qude _ UBh. 6. Stationary wireinside atime-varying

magnetic field
Alternatively, the magnetic flux throughis Our final example concerns stationary wire C inside a
time-varying  magnetic field of the form
®_(t)= jsm B(F)- da= —js(o Bda= — ng) da B(F,t)=—B(F,t)d, (where B(F,t)=|B (F,t)]), as shown
in Fig. 7.
= -Bhx
(wherex is the momentary position of the bar at titheso y

that Dc \4‘

d dx
Et)=—— (t) =Bh— = Bhv .
dt dt

di ®da
®B(F,t)
We note that the emf is constant (time-independent) r
Next, we want to use (11) to evaluate thekwmar unit C
charge for a complete tour of a charge aroGndince the
applied force is nonzero only on the sectiab) (of C, the 0z X

path of integrationC’ (which is a straight line, given that
the charge moves at constant velocity in spacd)awilre-
spond to the motion of the charge along the metalonly,
i.e., froma to b. (Since the bar is being displaced in space
while the charge is traveling along it, the li@é will notbe
parallel to the bar.) According to (11),

Figure 7: A stationary wireC inside a time-varying
magnetic field.

As is well known [1-7], the presence of adirarying

magnetic field implies the presence of an eledteicd E as
well, such that

w= [ f,,-dl' with . B
e VxE=-— (12)
wp Al =F - dl"=f_dl"=f__odt ot

(cf. Fig. 6). Now, the role of the applied forcetiscounter- ~ AS discussed in [1], the emf of the circuit at titie given

balance thex-component of the magnetic force in order that by
the bar may move at constant speed irxttigection. Thus,

= - d
fopp = fnCOSO = v, B co® = Bu, ® <j50 (r,t) it @) (13)
and where
f,pp U dt=Boo_dt= Bo dl ®,(t) = [ B(F,1)-da= [ B(F 1) da (14)

(sincevc dt represents an elementary displacenutrdf the is the magnetic flux throug@ at this time.
charge along the metal bar in tii§. We finally have: On the other hand, the work per unit chaogeaffull trip

X . around C is given by (5): W:CJ‘D f.-dl , where
w=["Bodli=Bv[ di=Bvh. oL ) c
2 a f=f,=E+(v,xB), sothat

We note that, in this specific example, the valtithe work _ _
per unit charge is equal to that of the emf, bbtisé quanti- w= q‘> E-dl+ q‘> (6, B)- dI .
ties being constant and unambiguously defined. Woisld ¢ ¢
not have been the case, however, if the magnetic Vel

nonuniform As is easy to see (cf. Fig. 7), the second integaaishes,

thus we are left with

w=¢_E- dl (15)
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The similarity of the integrals in (13) aritb] is decep-
tivel The integral in (13) is evaluated a fixed time,twhile
in (15) time is allowed to flow as the charge moaksgC.
Is it, nevertheless, possible that tr@uesof these integrals
coincide? As mentioned at the end of Sec. 2, assace
condition for this to be the case is that the tmgrations

yield time-independent results. In order théatbe time-
independent (but nonzero), the magnetic flux (1#)us the
magnetic field itself — must increalirearly with time. On
the other hand, the integration (15) far will be time-
independent if so is the electric field. By (12)en, the
magnetic field must be linearly dependent on timvajch
brings us back to the previous condition.

As an example, assume that the magnetic ifsetif the
form

B=-B,tl, (B = cons).

A possible solution of (12) foE is, in cylindrical coordi-
nates,

[We assume that these solutions are valid in adigniegion
of space (e.g., in the interior of a solenoid whagis coin-
cides with thez-axis) so thap is finite in the region of inter-
est.] Now, consider a circular wife of radiusR, centered at

the origin of thexy-plane. Then, given that| :—(dl)ﬁ(p ,

B

Olt 2
5 g)cdl =-B,7R".

5:qSCE-cT|:—

Alternatively,

®,=[ Bda= Bz R 1,

sothat€=- d®_/dt= - Bz R . We anticipate that, due

to the time constancy of the electric field, thensaresult
will be found for the workw by using (15).

7. Concludingremarks

No single, universally accepted definition of thefeseems
to exist in the literature of Electromagnetism. Teinition
given in this article (as well as in [1]) comessdao those
of [2] and [3]. In particular, by using an examgienilar to
that of Sec. 5 in this paper, Griffiths [2] makeslear dis-
tinction between the concepts of emf and work peit u
charge. In [4] and [5] (as well as in humerous ptfext-
books) the emf is identified with work per unit che, in
general, while in [6] and [7] it is defined as as#d line
integral of the non-conservative part of the eledteld that
accompanies a time-varying magnetic flux.
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The balance of forces and the origin of worla con-
ducting circuit moving through a magnetic field ameely
discussed in [2, 8, 9]. An interesting approacthtorelation
between work and emf, utilizing the concept ofuaftwork,
is described in [10].

Of course, the list of references cited abmvdy no
means exhaustive. It only serves to illustratediversity of
ideas concerning the concept of the emf. The sidxlén-
herent in this concept make it an interesting stttpé study
for both the researcher and the advanced studenassical
Electrodynamics.
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Certain aspects of the concept of the electromdtivee (emf) of a “circuit”, as
this concept was defined in recent publications,discussed. In particular, the
independence of the emf from the conductivity @f tircuit is explained and the
role of the applied force in motional emf is analgz

1. Definition and analytical expression of the emf

In recent articles [1,2] we studied the concepthafelectromotive forcdemf) of a
“circuit” and examined the extent to which the empresents work per unit charge
for a complete tour around the circuit. This edigcet note contains some additional
remarks regarding the emf; it may be regarded aldendum to the aforementioned
publications.

We consider a closed pdth(or loop) in a region of space where an electromag-
netic (e/m) field exists (Fig. 1). Generally spewakithis loop will be called &cir-
cuit” if a charge flow can be sustained on it. 8hkitrarily assign a positive direction

of traversing the loof© and we consider an elemett of C oriented in the positive
direction.

Figure 1

Letq be atest chargewhich at timet is located at the position afi , and letF

be the force o at this time. The forcé& is exerted by the e/m field itself as well as,
possibly, by additiona¢nergy sourcegsuch as batteries or some external mechanical
action) that may contribute to the generation ame$grvation of a current around the

loop C. Theforce per unit charget the position ofdl, at timet, is f = F/q. We

note thatf is independent o since the e/m force on a charge is proportion&héo
charge.

Since, in general, neither the shape nositbe ofC is required to remain fixed,
and since the loop may also be in motion relativart external observer, we will use
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the notationC(t) to indicate the state, at timeof a circuit of generally variable shape,
size or position in space.
Theelectromotive forcdemf) of the circuitC at timet is defined as the line inte-

gral of f alongC, taken in thepositivesense of:

W) =¢ f(rt)-di (1)

c)

whereF is the position vector ofll relative to the origin of our coordinate system.
Obviously, the sign of the emf is dependent uponabwice of the positive direction
of circulation ofC. It should be noted carefully that the integrgl i€levaluatedat a
given time t Thus, the forcef must be measuresimultaneouslyat timet, at all
points ofC.

The forcef can be attributed to two factors) the interaction ofj with the ex-

isting e/m field itself; andh) the action org by any additional energy sources that
may be necessary in order to maintain a steady dfogharge orC. (This latter inter-
action also ielectromagnetian nature, even when it originates from some ewxter
mechanical action.) We write

—h|
I
.l
+
—h|

em app (2)

where f,, is the force due to the e/m field arfg,p is theapplied forcedue to an ad-

ditional energy source.

Two familiar cases of emf-driven circuits wdean additional applied force is re-
quired are the following:

1. In a battery-resistor circuit [1-3] an &pg force is necessary in order to carry a
(conventionallypositivg mobile charge from the negative to the positieéef the
battery,throughthe source. This force is provided by the batitseif.

2. In the case of a closed metal wiranoving in a time-independent magnetic
field [2-5] the current o€ is sustained for as long as the motioiCafontinues. This,
in turn, necessitates the action of an externaefanC (say, by our hand), as will be
explained in Sec. 4.

Now, by (1) and (2),

€0 =Py Ton 0T+ 9 T T = Eom() + Eapol) ©

We would like to find an analytical expression &r{t). So, Iet(E(f,t) , E(f,t)) be

the e/m field in the region of space where the I is lying. Letq be a test charge
located, at time, at the position ofil and leto,,, be the total velocity off in space,
relative to some inertial frame of reference. Weenr

Uit =0+ U,
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where o, is the velocity ofj alongC (i.e., in a direction parallel tdl) while & is the

velocity of di itself due to a possible motion in space, or msteformation over
time, of the loopC(t) as a whole. The total e/m force @is

lfem: (:I[E_i_(l_jtot>< B)] )

so that
N
fem:E:E+[(u+ung] .
Hence,
Eem(t) = C(t)E-dI+<ﬁC(t)(uxB)-d|+<ﬁc(t)(uc><B)-dI.

Given thato, is parallel todl, the last integral on the right vanishes. Thuslfy,
Eem(t) = cj;c(t) E(F,t)-di + qSC(t)[u(r,t)xB(r,t)]-dl = Eo(t) + En(D) (4)

We note that, in our definition of the entifetforce per unit charge was defined as
f =F /q, assuming that a replica of a test chardge placed at every point of the cir-
cuit and that the forceF on all test charges are measus@dultaneoushat timet.
Now, in the case of a conducting loGp(say, a metal wire) it is reasonable to identify
g with one of the (conventionally positive) mobiled electrons. This particular iden-
tification, although logical for practical purposés nevertheless not necessary, given
that the forcef is eventually independent gf Thus, in generaly may just be con-

sidered as &ypotheticaltest charge that is not necessarily identifiechvah actual
mobile charge.

2. Independence from conductivity

Let C(t) be a conducting loop (say, a metal wire) insidgvan e/m field. The emf of
C at timet is given by (3) and (4). We note from (4) that paet E.m Of the total emis

independent of the velocity, of qalongC (whereg may be conveniently — although
not necessarily — assumed to be a mobile freeretecif the conductor, convention-
ally considered aspositivecharge). We may physically interpret this as foo

The e/m field creates an efif, that tends to generate a charge flonGriHow-
ever, this emf does not by itself determieav fastthe mobile charges move aloGg
Presumably, this will depend on physical propertieshe pathC that are associated

with its conductivity (For example, in a battery-resistance circuitpbeential differ-
ence at the ends of the resistance — thus the wéltie electric field inside the con-

ductor — does not by itself determine the velocityof the mobile charges along the
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circuit, since this velocity is related to the @amnt generated by the source, which cur-
rent depends, in turn, on the resistance of tlwaiitjraccording to Ohm’s law.)

Now, the role of the pafy, of the total emf (3) is tanaintainthe charge flow on
C(t) that is generated bfen. We thus anticipate thakp, will also be independent of

U, (this is, e.g., the case in our previous examplere&,p, is equal to the voltage of
the battery [1-3]). In conclusion,

the total em&(t) of a conducting loop @ is not dependent upon the velocity
of motion of the mobile charges g along the loop.

This leads us to a further conclusion:

The total em€(t) of a conducting loop @) inside an e/m field is not depend-
ent upon the conductivity of the loop.

This can be justified by noting that, by its detiom, the force (2) does not include
contributions fromresistive forceghat oppose a charge flow @ it only contains
e/m interactions that may contribute to the gemamadnd preservation of a current in
the circuit. Note, however, that tiarrentitself doesdepend on theonductivitys of

C, according to Ohm's lawd = o f ) [3].

Alternatively, as argued above, the emf dussdepend orj,. Now, in a steady-
state situation under given electrodynamic conaéti¢thus, for a giverf ) this veloc-
ity is a linear function of themobility x of g, according to the empirical relation
O, = U f (by which Ohm’s law is deduced). On the other hahd conductivity ofC

is given bys=gnu. Thedensity nof mobile charges, as well as the value,ofannot
affect the value of the emf since that quantitgie§ined per unit charge. We thus con-

clude that the emf of cannot depend om, as well as om andg; hence is inde-
pendent of.

3. Emf and the Faraday-Henry law
Consider a region of space in which a (generaihetidependent) e/m fiel(E, B)

exists. LetC be afixed conducting loop in this region. There is no addiéil applied
force onC, so (3) reduces t6(t)=Een(t). Furthermore, sinc€ is stationary,o (r',t)

vanishes identically and, by (£J(t)=0 and&en{t)= E(t). Thus, finally,

E(t) = gSC E(,t)-dI (5)

By Stokes’ theorem,
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whereSis any open surface bounded®yFig. 2).

da
&
C
Figure 2
Moreover, by thé-araday-Henry law
- - 0B
VxE=-— 6
X ot (6)
So, (5) yields
d ( 5 — d
E)=—-—— | B-da=-—_(t 7
0=-—1 5 n( (7)
where

D, (1) =j8|§(r,t)-aa

is themagnetic fluxhroughC at timet. As commented in [1], relation (7) expresses a
genuine physical law, not a mere consequence afdfieition of the emf.

4. Motional emf dueto a static magnetic field
Let C(t) be a conducting loop inside a static magnetild fiB(f) (Fig. 3). The time

dependence of indicates a motion and/or a deformation of theplower time. We
will show that the emf o€ at timet is given by the expression

() = Em(®) = [6(N) xB(N] - (8)
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dl

=
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Figure 3

Letqg be a mobile charge (say, a conventionplbgitivefree electron) located at
the positionf (relative to our coordinate system) of the loggneéntdi at timet. As
in Sec. 1, we denote the velocity di with respect to our frame of reference by
u(r), the velocity ofg alongC by o, and the total velocity df relative to our frame
by 0, =0+ 0.

Since there is no electric field in the regad interest,

Eolt) = gSC E(F,t)-di=0 and Eem(t) = Em(t) (9)
Also, if fapp Is the applied force per unit charge at the pmsitfq, at timet,

Eapp(t) = § , Fapp(T1)-dIT (10)

The role of the applied force is to keep the curfeawing. This will happen for as
long as the loo® is moving or/and deforming, so tha{r’) is not identically zero for

all t. Why is an external force needed to kéemoving or deforming? Let us care-
fully analyze the situation.
The magnetic force apis

Fro=q@0xxB) sothat f,=0,xB .

Now, imagine a temporary, local 3-dimensional negtdar system of axes,(y, z) at
the locationr of g at timet. We assume, without loss of generality, thatzlais is
in the direction ofdl . (The orientation of the mutually perpendicutaandy-axes on
the plane normal to theaxis may be chosen arbitrarily.) Then we may write

— — — —

fmzfmx+fmy+fm fa+f

NIl

where f.=f__ is the component of the magnetic formleng the loop (i.e., in a

C m, z

direction parallel todi) while f, = f_ +f  is the componenormalto the loop
(thus todl).
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In a steady-state situation (steady curriemt)f fc is counterbalanced by the resis-

tive force that opposes charge motion al@¢ps mentioned before, this latter force
does not contribute to the emf). However, to codoralance the normal component

f , some external action (say, by our hand that maredeforms the loo[C) is
needed in order fo€ to keep moving or deforming. This is precisely e applied

force fapp does. Clearly, this force must bermal to C at each point of the loop.

From (10) we then conclude that
Eapt) = 0.

Combining this with (3), (4) and (9), we finallynfg the validity of (8).
It can be shown [1,3] directly from (8) that

M) = — % @, (t) 1j1

where ®(t) is the magnetic flux throug@ at timet. This looks like(7) for a fixed
geometrical loop in a time-dependent e/m fieldha@ligh the origins of the two rela-
tions are different. Indeed, equation (11) is @&dirconsequence of the definition of
the emf and may be derived from (8) essentiallyrathematical manipulation (see,
e.g., the Appendix in [1]). On the contrary, toider(7) the Faraday-Henry law (6)
was used. This is aexperimentalaw, hence so is the expression (7) for the emf. |
other words, relation (7) is not a mere mathembtoasequence of the definition of
the emf.

5. An example

Consider a metal baalf) of lengthh, sliding parallel to itself with constant speed
on two parallel rails that form part of a U-shapéde, as shown in Fig. 4. Aniform
magnetic fieldB, pointing into the page, fills the entire regiéncircuit C(t) of vari-
able size is formed by the rectangular loabdd3.

y
hie - =
O da B}
—— v =const
®B 14di
d a X
O — | X
Oz
Figure 4
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In Fig. 4, thez-axis is normal to the plane of the wire and dirdd@ward the

reader. We callda an infinitesimal normal vector representing anmedat of the
plane surface bounded by the wire (this vectorinscted toward the reader, consis-

tently with the chosen counterclockwise directidrtraversing the loof€). If G, is
the unit vector on the-axis, then the field and the surface element artenr respec-
tively, asB=—-B{, (whereB=|B|= const) andda=(da 1y .

The balance of forces is shown in Fig. 5 fpywe denote the resistive force per

unit charge, which does not contribute to the emfjte that this diagram concerns
only themovingpart @b) of the circuit, since it is in this part only tithe velocityo

and the applied forcd, _ are nonzero.

app

—D)
Fm UC Dtot
; B 0L 0,
dl @
___________ o0 faon
®B ﬂ X

Figure 5

The emf of the circuit at tintas, according to (8),

E®) =¢_ (65xB)-di :j:uBm:qu:dl:uBr.

c(t)
Alternatively, the magnetic flux througbis

@m(t)=js(t)é-aa=—jso Bda= — BLU da= — Bh

(wherex is the momentary position of the bar at tithso that, by (11),

d dx
E)=——d (1) =Bh— = Bhv .
(t) at m(t) it

Now, the role of the applied force is to ctarbhalance thex-component of the
magnetic force in order that the bar may move asstant speed in the direction.
Thus,

fapp = fmCOSO = v,B co® =Bo, .

We note that, althoughp, depends on the speegdof a mobile charge along the bar,
the associated part of the emf is itself independém.! Specifically, as argued in
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Sec. 4 £4p(t)=0. On the other hand, in this particular exampé&workw of f,, for a

complete tour around the circuit is equal to thaltemf (cf. [2]): w=£=Bho. This

equality, however, is accidental and does not ceflemore general relation between
the work per unit charge and the emf. (Another sadcidental” case is the battery-
resistance circuit [1-3].)

6. Summary

This article is an addendum to our study of theceph of the electromotive force
(emf), as this concept was pedagogically approaahgatevious publications [1,2].
We have focused on some particular aspects ofubed that we felt are important
enough to merit further discussion. Let us revibam:

1. For a conducting lodp inside an e/m field, we explained why the emiCof
does not depend on the conductivity of the loop:‘@ws/ious” as this statement may
seem, one still needs to justify it physically anddemonstrate its consistency with
Ohm’s law.

2. We expressed the Faraday-Henry law ingavfrthe emf of a closed conduct-
ing curve inside a time-dependent e/m field.

3. We studied the case of motional emf in saetail (see also [2-5]). Particularly
important is the role of the applied force in tbaése. In addition to analyzing this role
and, in the process, deriving an explicit expres$w the emf, we explained why the
physics of the situation is different from thattbe Faraday-Henry law, despite the
similar-looking forms of the emf in the two cas@d.course, as Relativity has shown,
this similarity is anything but coincidental!
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