Exponential function with any real exponent

Costas J. Papachristou ${ }^{1}$
Department of Physical Sciences, Hellenic Naval Academy

Problem: Let a be a positive real number. We know how to define $a^{m / n}$ with m, n integers. But, how do we define a^{x} for a general, real x that may be an irrational number, i.e., cannot be written as a quotient of integers m, n ?

Well, if it is difficult to define a function directly, we may try defining the inverse function (assuming it exists). To this end, we consider the function

$$
\begin{equation*}
\ln x=\int_{1}^{x} \frac{1}{t} d t, x>0 \tag{1}
\end{equation*}
$$

Then,

$$
(\ln x)^{\prime}=1 / x
$$

where the prime denotes differentiation with respect to x. Note in particular that $\ln 1=0$. It can also be shown [1] that, for $a, b \in R^{+}, \ln (a b)=\ln a+\ln b, \ln (a / b)=\ln a-\ln b$. Thus, $\ln x$ is a logarithmic function in the usual sense.

The function $\ln x$ is increasing for $x>0$ (indeed, its derivative $1 / x$ is positive for $x>0$). Since $\ln x$ is monotone, this function is invertible. Call $\exp x$ the inverse of $\ln x$. That is,

$$
y=\exp x \Leftrightarrow x=\ln y .
$$

This means that

$$
\exp (\ln y)=y \text { and } \ln (\exp x)=x
$$

It can be shown [1] that $\exp x$ is an exponential function in the usual sense; i.e., it has the form $\exp x=e^{x}$ for some $e>0$, to be determined. We write

$$
y=e^{x} \Leftrightarrow x=\ln y \quad\left(x \in R, y \in R^{+}\right)
$$

so that

$$
e^{\ln y}=y \text { and } \ln \left(e^{x}\right)=x
$$

Note in particular that, for $x=0$ we have $e^{0}=1$ and $\ln 1=0$, as required. Also, for $x=1$ we have that $\ln \left(e^{1}\right)=1$ and, by the definition (1) of the logarithmic function,

$$
\ln e=\int_{1}^{e} \frac{1}{t} d t=1
$$

We will now show that the function $e^{x}(x \in R)$ can be expressed as the limit of a certain infinite sequence:

[^0]\[

$$
\begin{equation*}
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \quad(x \in R) \tag{2}
\end{equation*}
$$

\]

Then, for any $a \in R^{+}$we will have that $a=e^{\ln a} \Rightarrow$

$$
a^{x}=e^{x \ln a}=\lim _{n \rightarrow \infty}\left(1+\frac{x \ln a}{n}\right)^{n} .
$$

Proposition 1: Given a function $u=f(x)$ that assumes positive values for all x in its domain of definition, the derivative of $\ln [f(x)]$ is given by

$$
\begin{equation*}
\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)} \tag{3}
\end{equation*}
$$

Proof: $\frac{d}{d x} \ln f(x)=\frac{d(\ln u)}{d u} \frac{d u}{d x}=\frac{1}{u} \frac{d u}{d x}=\frac{f^{\prime}(x)}{f(x)}$.
Proposition 2: The derivative of e^{x} is given by $\left(e^{x}\right)^{\prime}=e^{x}$.
Proof: $\ln \left(e^{x}\right)=x \Rightarrow\left[\ln \left(e^{x}\right)\right]^{\prime}=1 \Rightarrow\left(e^{x}\right)^{\prime} / e^{x}=1 \Rightarrow\left(e^{x}\right)^{\prime}=e^{x}$, where we have used relation (3) for the derivative of $\ln \left(e^{x}\right)$.

Corollary: $\quad[\exp f(x)]^{\prime}=f^{\prime}(x) \exp f(x)$.
Now, consider the function $g(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}(x \in R)$. We have:

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{n \rightarrow \infty}\left[n\left(1+\frac{x}{n}\right)^{n-1} \frac{1}{n}\right]=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n-1}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{x}{n}\right)^{n}\left(1+\frac{x}{n}\right)^{-1}\right] \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \cdot \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{-1}=g(x) \cdot 1=g(x) .
\end{aligned}
$$

Moreover, $g(0)=1$. Hence the function $y=g(x)$ satisfies the differential equation $y^{\prime}=y$ with initial condition $y=1$ for $x=0$. On the other hand, the function $y=e^{x}$ satisfies the same differential equation with the same initial condition. Since the solution of this differential equation with given initial condition is unique, we conclude that the functions $g(x)$ and e^{x} must be identical. Therefore relation (2) must be true.

We note that, for $x=1$, Eq. (2) gives

$$
\begin{equation*}
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \quad(\simeq 2.72) \tag{4}
\end{equation*}
$$

This is the formula by which the number e is usually defined.

In the same spirit we may show that another possible representation of the exponential function e^{x} is in the form of a power (Maclaurin) series:

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad(x \in R) \tag{5}
\end{equation*}
$$

Indeed, notice that the x-derivative of this series is the series itself, as well as that the value of the series is equal to 1 for $x=0$. Although expressions (2) and (5) do not look alike, they represent the same function, $\exp x!$ (Note: Two functions of x are considered identical if they have the same domain D of definition and assume equal values for all $x \in D$.)

We defined $a^{x}(a>0, x \in R)$ in a rather indirect way by first defining the function e^{x} as the inverse of the function $\ln x$ and then by writing $a^{x}=e^{x \ln a}$. There is, however, a more direct definition of a^{x}. Let $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ be any infinite sequence of rational numbers x_{n} such that $\lim _{n \rightarrow \infty} x_{n}=x \in R$. [Question: Can a sequence of rational numbers have an irrational limit? Yes! See, e.g., the expression (4) for e, where the latter number is irrational (see, e.g., [2]).] We now define a^{x} as follows:

$$
a^{x}=\lim _{n \rightarrow \infty} a^{x_{n}} \quad(a>0, x \in R) .
$$

Since x_{n} is a rational number for all n, raising a to a rational number should not be a problem! Note that the value of a^{x} does not depend on the specific choice of the sequence x_{n}, as long as the limit of this sequence is x.

References

[1] D. D. Berkey, Calculus, $2^{\text {nd }}$ Edition (Saunders College, 1988), Chap. 8.
[2] https://mindyourdecisions.com/blog/2015/06/18/lets-prove-e-2-718-is-irrational-3-methods/

[^0]: ${ }^{1}$ papachristou@hna.gr

