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1. Second-order linear differential equations  
 
A second-order linear differential equation (DE) has the general form  
 

      y΄΄ +  a(x) y΄ +  b(x) y = f (x)                                            (1) 
 
where y=y(x) and where a(x), b(x),  f (x) are given functions. If  f (x)≡0, the DE (1) is 
called homogeneous linear :  
 

      y΄΄ +  a(x) y΄ +  b(x) y =  0                                               (2) 
 
    As is easy to prove, if a function y1(x) is a solution of (2), then so is the function 
y2(x)=Cy1(x) (C=const.). More generally, the following is true:  
 
    Theorem 1: If y1(x), y2(x),… are solutions of the homogeneous DE (2), then every 
linear combination of the form y=C1 y1(x)+C2 y2(x)+… (where C1 , C2 ,… are con-
stants) also is a solution of (2).  
 
    Proof: By substituting for y on the left-hand side of (2) and by taking into account 
that each of the y1(x), y2(x),… satisfies this DE, we have:  
 

y΄΄ +  a(x) y΄ +  b(x) y = C1 (y1΄΄ +  a y1΄ +  b y1) + C2 (y2΄΄ +  a y2΄ +  b y2) +… = 0 . 
 
    Let y1(x) and y2(x) be two non-vanishing solutions of the homogeneous DE (2) [no-
tice that the zero function y(x)≡0 is a particular solution of (2)]. We say that the func-
tions y1 and y2 are linearly independent if one is not a scalar multiple of the other. To 
put it in more formal terms, linear independence of y1 and y2 means that a relation of 
the form  C1 y1(x)+C2 y2(x) ≡ 0  can only be true if C1=C2=0.  
 
    If we manage to find two linearly independent solutions y1(x) and y2(x) of the ho-
mogeneous DE (2) (I can assure you that no other solution linearly independent of the 
former two exists!) then the general solution of (2) is the linear combination  
 

y = C1 y1(x) + C2 y2(x)                                                (3) 
 
where C1 , C2  are arbitrary constants.  
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    Theorem 2: The general solution of the non-homogeneous DE (1) is the sum of the 
general solution (3) of the corresponding homogeneous equation (2) and any particu-
lar solution of (1).  
 
    Analytically: Let y1(x), y2(x) be two linearly independent solutions of the homoge-
neous DE (2), and let y0(x) be any particular solution of (1). Then, the general solution 
of (1) is  
 

    y = C1 y1(x) + C2 y2(x) + y0(x)                                           (4) 
 
This practically means that, for any chosen y0 , any other particular solution of (1) can 
be derived from (4) by properly choosing the constants C1 and C2 . Since (4) contains 
the totality of particular solutions of (1), it must be the general solution of (1).  
 
 
2. Homogeneous linear equation with constant coefficients  
 
This DE has the form  

      y΄΄ +  a y΄ +  b y =  0                                                    (5) 
 
with constant a and b. It will be assumed that a and b are real numbers.  
 
    Theorem 3: If the complex function y=u(x)+iv(x) satisfies the DE (5), then the 
same is true for each of the real functions y1=u(x) and y2=v(x) (real and imaginary 
part of y, respectively).  
 
    Proof: Putting  y=u+iv  into (5), we find:  
 

(u΄΄ +  a u΄ +  b u) + i (v΄΄ +  a v΄ +  b v) = 0 , 
 
which is true iff  u΄΄+a u΄+b u =  0  and  v΄΄+a v΄+b v =  0.  
 
    The standard method for solving (5) is the following: We try an exponential solu-
tion of the form y=ekx. Then,  y΄=kekx,  y΄΄=k2ekx, and (5) yields (after eliminating ekx):  
 

      k2 + ak +b = 0    (characteristic equation)                                (6) 
 
    We distinguish the following cases:  
 
    1. Eq. (6) has real and distinct roots k1 , k2 . Then, the functions ek1x and ek2 x are line-
arly independent and, according to (3), the general solution of (5) is of the form  
 

      y = C1 e
k1x + C2 e

k2 x                                                    (7) 
 
    2. Eq. (6) has real and equal roots,  k1 =  k2 ≡ k. The general solution of (5) is, in this 
case (check!),  
 

         y = (C1 + C2 x) ekx                                                     (8) 
 



LINEAR DIFFERENTIAL EQUATIONS & APPLICATION TO OSCILLATIONS 

 3 

    3. Eq. (6) has complex conjugate roots  k1=α+iβ , k2=α–iβ (where α, β are real). The 
general solution of (5) is  
 

y = C1 e
k1x + C2 e

k2 x = e αx (C1 e
 iβx + C2 e

 –iβx ) . 
 
By Euler’s formula,  e ±iβx = cos βx ± i sin βx . We thus have:  
 

y = e αx [(C1 +C2) cos βx + i (C1 – C2) sin βx ] . 
 
Since the (generally complex) constants C1 and C2 are arbitrary, we may put C1 in 
place of  C1+C2  and C2 in place of  i  (C1 – C2), so that, finally,  
 

     y = e αx (C1 cos βx + C2 sin βx )                                          (9) 
 
    In any case, the general solution of (5) contains two arbitrary constants C1 and C2 . 
Upon assigning specific values to C1 and C2 we get a particular solution of (5). The 
values of C1 and C2 (and thus the particular solution itself) are determined from the 
general solution if we are given two initial conditions that the sought-for particular 
solution must obey. There are two kinds of initial conditions:  
 
    (a) We are given the values of  y(x) and y΄(x) for some value  x=x0  of x.  

    (b) We are given the values of  y(x) for  x=x1 and  x=x2 .  
 
 
    Examples:  
 
    1.   y΄΄–  y΄– 2 y =  0  ⇒  a= –1,  b= –2.  The characteristic equation (6) is written:  

k2 – k – 2 = 0,  with real roots  k1=2,  k2= –1. The general solution (7) is  

y = C1 e
2x + C2 e

– x.  Assume the initial conditions y=2 and y΄= –5 when x=0. Then,  

C1= –1, C2=3 (show it!) and we get the particular solution  y = – e
2x + 3 e– x.  

 
    2.   y΄΄–  6 y΄+  9 y =  0  ⇒  a= –6,  b=9.  The characteristic equation (6) is written:  

k2 – 6 k + 9 = 0,  with real and equal roots  k1=k2=3. The general solution (8) is  

y = (C1 + C2 x) e3x.   
 
    3.   y΄΄–  4 y΄+  13 y =  0  ⇒  a= –4,  b=13. The characteristic equation (6) is written:   

k2 – 4 k +13 = 0,  with complex conjugate roots  k1=2+3i,  k2=2–3i. The general solu-

tion (9) is (with α=2,  β=3):  y = e 2x (C1 cos 3x + C2 sin 3x ). (Show that essentially the 

same result is found by making the alternative choice α=2,  β=  –3.)  
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3. Harmonic oscillation  
 
In a harmonic oscillation along the x-axis the total force on the oscillating body (of 
mass m) is F=  –kx (k>0), where x is the momentary displacement of the body from the 
position of equilibrium (x=0). By Newton’s second law we have that F=ma,  where a 
is the acceleration of the body:  a=d 2x/dt 2. Therefore,  
 

m d 2x / dt 2 = – kx 
 
or, setting  k/m ≡ ω

2 (where we assume that ω>0),  
 

                  x΄΄ +  ω
2
 x =  0                                                     (10) 

 
    Eq. (10) is a homogeneous linear DE of the form (5) with x in place of y and t in 
place of x (notice that the first-derivative term is missing in this case). The character-
istic equation (6) is written: k2+ω2=0 (or, analytically, k2+0k+ω2=0), with complex 
roots k= ± iω (analytically, k1=0+iω, k2=0–iω). The general solution of (10) is given 
by (9), with α=0 and  β=ω:  
 

      x = C1 cos ωt +  C2 sin ωt                                             (11) 
 
where we assume that the constant coefficients C1 and C2 are real in order for the solu-
tion (11) to have physical meaning.  
 
    The general solution (11) can be put in different but equivalent form by setting  
 

C1 =  A sin φ ,  C2 =  A cos φ  (A>0)   ⇔   A=(C1
2+C2

2)1/2 ,  tan φ=C1 /C2 . 
 
Then,  

      x =  A sin (ωt +  φ)                                                 (12) 
 
The positive constant A is called the amplitude of the oscillation, while the angle φ is 
called the initial phase (the value of the phase  ωt+φ  at time t=0). The positive con-
stant ω is the angular frequency of oscillation, to be called just “frequency” in the 
sequel.  
 
    Notice that, if we set  C1=A cos φ,  C2=  –A sin φ  in (11),  we will get the general so-
lution of (10) in the form  
 

    x =  A cos (ωt +  φ)                                                  (13) 
 
which is equivalent to (12). Indeed, equation (13) follows directly from (12) by put-
ting  φ+(π/2)  in place of  φ (which is arbitrary anyway) in the latter equation.  
 
 
 
 
 
 
 



LINEAR DIFFERENTIAL EQUATIONS & APPLICATION TO OSCILLATIONS 

 5 

4. Damped oscillation  
 
In a damped oscillation, in addition to the restoring force –kx, opposite to the dis-
placement x from the equilibrium position, there is a frictional force –λv= –λdx/dt 
(λ>0) opposite to the velocity v. The total force on the body is F=  –kx–λdx/dt. By 
Newton’s law,  F=m d 2x/dt 2.  Hence,   
 

m d 2x / dt 2 = – kx – λ dx/dt . 
 
We set  
 

k/m ≡ ω0
2 

 (ω0=  natural frequency of oscillation without damping),   λ/m ≡ 2γ, 
 
so that  

      x΄΄ +  2γ x΄ +  ω0
2 x =  0                                              (14) 

 
    Eq. (14) is a homogeneous linear DE. The characteristic equation (6) is  
 

k2 +  2γk +  ω0
2 = 0    ⇒    k = –γ ± (γ2 – ω0

2 )1/2 . 
 
    We distinguish the following cases:  
 
    1. Large damping  ⇔  γ > ω0 .  We have two real solutions:  
 

k1 = –γ + (γ2 – ω0
2 )1/2 ,    k2 = –γ – (γ2 – ω0

2 )1/2 . 
 
The general solution of (14) is of the form (7):  
 

x = C1 e
k1t + C2 e

k2 t                                                 (15) 
 
Let us assume that C1>0 and C2>0. Given that k1<0 and k2<0 (why?) we see that  x>0 
at all times t και, moreover,  x→0 as t→∞. That is, as the time t increases, the moving 
object approaches the equilibrium position x=0 without ever crossing it. The motion is 
therefore non-oscillatory.  
 
    2. Critical damping  ⇔  γ = ω0 . Then,  k1=  k2 = –γ , and the general solution of (14) 
is of the form (8):  
 

x = (C1 + C2 t) ekt = (C1 + C2 t) e–γt                                     (16) 
 
If we assume that C1>0 and C2>0, we see again that  x>0 at all t and that  x→0 as t→∞. 
(For the term  t e–γt = t  / eγt we may use L’Hospital’s rule for the indeterminate form 
∞/∞; show this!) Thus, there is no oscillation in this case either.  
 
    3. Small damping  ⇔  γ < ω0 .  We have two complex conjugate solutions:  
 

k = –γ ± i  ω1   where   ω1 = (ω0
2 – γ

2 )1/2 . 
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The general solution will be of the form (9), with  α=  –γ  and  β=ω1 :  
 

x = e –γt (C1 cos ω1 t +  C2 sin ω1 t
 ) , 

 
or, by setting  C1 =  A sin φ,  C2 =  A cos φ  (A>0),  
 

     x =  A e –γt sin (ω1 t +  φ
 )                                             (17) 

 
We notice that the amplitude  Ae –γt  decreases exponentially with time.  

 

 
 
 
 
5. Forced oscillation  
 
In a forced oscillation, in addition to the restoring force –kx and the frictional force  
–λv= –λdx/dt   the body is subject to an external force of the form  
 

F(t) =  F0 sin ωf t   (F0 > 0) . 
 
The total force on the body is F=  –kx–λdx/dt+F0 sin ωf t . By Newton’s law we have 
that  
 

m d 2x / dt 2  =  – kx – λ dx/dt + F0 sin ωf t . 

We set  

k/m ≡ ω0
2 

 (ω0=  natural frequency),   λ/m ≡ 2γ,   F0 /m ≡ f0 , 

 

so that  

      x΄΄ +  2γ x΄ +  ω0
2 x =   f0 sin ωf t                                        (18) 

 
 
 



LINEAR DIFFERENTIAL EQUATIONS & APPLICATION TO OSCILLATIONS 

 7 

    Eq. (18) is a non-homogeneous linear DE. According to Theorem 2 of Sec. 1, its 
general solution is the sum of the general solution of the corresponding homogeneous 
equation,  
 

x΄΄ +  2γ x΄ +  ω0
2 x =  0 , 

 
and any particular solution of (18). For small damping (γ < ω0) the general solution of 
the homogeneous equation is given by (17):  
 

x =  A1 e –γt sin (ω1 t +  φ1
 )   where   ω1 = (ω0

2 – γ
2 )1/2 . 

 
As can be verified, a particular solution of (18) is the following:  
 

    x = A sin (ωf  t +  φ
 )                                                 (19) 

where  

        

( )
0

1 222 2 2 2
0 4

/

f f

f
A

ω ω γ ω
=
 − +  

     and   
2 2

0

2
tan f

f

γω
ϕ

ω ω
=

−
                 (20) 

 
The general solution of (18) is, therefore,  
 

     x =  A1 e –γt sin (ω1 t +  φ1
 ) + A sin (ωf  t +  φ

 )                              (21) 
 
with arbitrary A1 , φ1 . The first term on the right in (21) decreases exponentially with 
time and dies out quickly. In a steady-state situation, therefore, what remains is the 
particular solution (19):  
 

x = A sin (ωf  t +  φ
 ) . 

 
    The amplitude A of oscillation is a function of the applied frequency ωf , according 
to (20). This amplitude attains a maximum value when the denominator in the first 
relation (20) becomes minimum. This occurs when  
 

       ωf  = (ω0
2 –2γ2 )1/2  ≡ ωA                                             (22) 

 
    Proof: We set  ωf  ≡ ω, for simplicity, and we consider the function  
 

Ψ(ω) = (ω2 – ω0
2)2  + 4γ2ω2 , 

 
so that  A= f0  / [Ψ(ω)]1/2.  We can show that  
 

Ψ΄(ω) = 0  for  ω  = (ω0
2 –2γ2 )1/2  = ωA   and   Ψ΄΄(ωA) = 8ωA

2 > 0 . 
 
Thus, for small damping (2γ2 < ω0

2) the function Ψ(ω) is minimum, hence the ampli-
tude A is maximum, when  ωf =ωA . This situation is called amplitude resonance.  
 
 
 



C. J. PAPACHRISTOU 

 8 

    In the following figure it is assumed that λ1<λ2 ⇔ γ1<γ2 . This means that, in accor-
dance with (22), ωA,1 > ωA,2 . In the case of no damping (λ=0 ⇔ γ=0) Eq. (22) yields 
ωA=ω0 . In other words, in an undamped forced oscillation the amplitude becomes 
maximum (in fact, infinite) when the applied frequency ωf  is equal to the natural fre-
quency ω0  of oscillation.  
 
 

 
 
 
 
    By differentiating (19) we find the velocity of the oscillating body:  
 

v = dx/dt = ωf  A cos (ωf  t +  φ
 ) ≡ v0  cos (ωf  t +  φ

 ) 
 
where, by (20),  
 

0
0 1 22

2
20

21 4

f /

f

f
v Aω

ω
γ

ω

= =
  
 − +     

 . 

 
The velocity amplitude v0 becomes maximum when the denominator on the right is 
minimum, which occurs for ωf =ω0 . The kinetic energy mv0

2/2 then reaches its maxi-
mum value and there is energy resonance.  
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    Note that, in contrast to amplitude resonance, the frequency ωf for energy reso-
nance is independent of the damping factor λ and is always equal to the natural fre-
quency ω0 of the oscillator. At this frequency the work supplied by the external force 
F(t) to the oscillator per unit time is maximum. That is, the oscillator absorbs the larg-
est possible power from the external agent that exerts the force F.  
 
    Notice also that, in the case of zero damping (λ=0 ⇔ γ=0) the velocity amplitude v0 
becomes infinite at energy resonance, i.e., for ωf =ω0 . This rather unphysical situation 
is, of course, purely theoretical since a mechanical motion with no friction whatsoever 
is practically impossible!  
 
 


