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1. Second-order linear differential equations

A second-order linear differential equation (DE} hiae general form
y’'+a(X)y +b(x)y="f(x) 1)

wherey=y(x) and wherea(x), b(x), f(x) are given functions. Iff (x)=0, the DE (1) is
calledhomogeneous linear

y’+axy +b(x)y=0 (2

As is easy to prove, if a functigrn(x) is a solution of (2), then so is the function
y2(X)=Cy1(X) (C=const.). More generally, the following is true:

Theorem 11If yi(X), y2(X),... are solutions of the homogeneous DE (2), thenyever
linear combination of the forg=C; y1(X)+C; y>(X)+... (whereC,, C,,... are con-
stants) also is a solution of (2).

Proof: By substituting fory on the left-hand side of (2) and by taking intecamt
that each of thgi(X), y=(X),... satisfies this DE, we have:

y'+aX)y +b(x)y=Ci(ya”’+ayi + by)) +Ca(y2""+ay."+ by,)+... =0,

Letyi(X) andy»(X) be two non-vanishing solutions of the homogendag2) [no-
tice that the zero functioy(x)=0 is a particular solution of (2)]. We say that thac-
tionsy; andy, arelinearly independenif one is not a scalar multiple of the other. To
put it in more formal terms, linear independencg;@ndy, means that a relation of
the form C,y1(X)+C,y2(X)=0 can only be true €,=C,=0.

If we manage to find two linearly independealusionsyi(x) andy(x) of the ho-

mogeneous DE (2) (I can assure you that no otHeti@o linearly independent of the
former two exists!) then thgeneral solutiorof (2) is the linear combination

y =Ciyi(¥) + C2y2(X) )3

whereC;, C, are arbitrary constants.
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Theorem 2The general solution of the non-homogeneous DEs(ffje sum of the
general solution (3) of the corresponding homogesemuation (2) andny particu-
lar solutionof (1).

Analytically: Letyi(x), y2(X) be two linearly independent solutions of the hgeso
neous DE (2), and lg(x) be any particular solution of (1). Then, the gahsolution
of (1) is

y = C1yi(¥) + Caya(X) + Yo(X) (4)
This practically means that, for any choggnany other particular solution of (1) can
be derived from (4) by properly choosing the comist&; andC, . Since (4) contains
the totality of particular solutions of (1), it ntuse the general solution of (1).

2. Homogeneous linear equation with constant coefficients

This DE has the form
y'+tay'+by=0 5)
with constant andb. It will be assumed that andb are real numbers.

Theorem 3:If the complex functiony=u(x)+iv(x) satisfies the DE (5), then the
same is true for each of the real functigrsu(x) andy.=v(x) (real and imaginary
part ofy, respectively).

Proof: Putting y=u+iv into (5), we find:

(u’+au’+bu)+i(v'+av'+bv)=0,

which is true iffu”+au+bu=0 andv’'+av+bv=0.

The standard method for solving (5) is thedwihg: We try an exponential solu-
tion of the formy=e**. Then,y'=ke**, y"'=k?e* and (5) yields (after eliminatiref*):

K>+ ak +b =0 (characteristic equation (6)
We distinguish the following cases:

1. Eq. (6) has real and distinct rokisk, . Then, the functiond* ande'** are line-
arly independent and, according to (3), the gersaaition of (5) is of the form

y = C €9 + C @)

2. Eqg. (6) has real and equal rodtss k. =k. The general solution of (5) is, in this
case (check!),

y = (C1+Cox) € (8)
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3. Eq. (6) has complex conjugate rokitso+if, ko=a—if (wherea, S are real). The
general solution of (5) is

y = CL ¥+ Co "= e™(Cre™ + C,e™) .

+ipx

By Euler's formula,e™" = cospx + i sin fx . We thus have:

y = e”[(Cy+Cy)cospx +i (C1—Cy) sinpx] .

Since the (generally complex) constaftsand C, are arbitrary, we may put; in
place of C;+C, andC; in place ofi (C;—C,), so that, finally,

y = e”(Crcospx + C,sinpx) 9)

In any case, the general solution of (5) corstawo arbitrary constan; andC,.
Upon assigning specific values @ and C, we get aparticular solutionof (5). The
values ofC; and C, (and thus the particular solution itself) are deieed from the
general solution if we are given twwitial conditions that the sought-for particular
solution must obey. There are two kinds of initahditions:

(@) We are given the values gfx) andy’(x) for some value=xg of x.

(b) We are given the values gfx) for x=x; andx=x,.

Examples:

1. y'-y-2y=0 = a=-1, b=-2. The characteristic equation (6) is written:
Ik*— k —2 = 0, with real roots,=2, k.= —1. The general solution (7) is
y = C;e® + C,e*. Assume the initial conditions=2 andy = -5 whenx=0. Then,
C:= -1, C,=3 (show it!) and we get thgarticular solution y = —e* +3¢&™*.

2. y'-6y+9y=0 = a=-6, b=9. The characteristic equation (6) is written:
K*—6k +9 =0, with real and equal roots=k,=3. The general solution (8) is
y = (Cy+Cyx) ™.

3. y=4y'+13y=0 = a=-4, b=13. The characteristic equation (6) is written:
K¥—4k +13 = 0, with complex conjugate rooks=2+3, k:=2-3. The general solu-
tion (9) is (witha=2, f=3): y = e®(C,cos3x + C,sin3x). (Show that essentially the

same result is found by making the alternative ahe+ 2, f=-3.)
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3. Harmonic oscillation

In a harmonic oscillation along theaxis the total force on the oscillating body (of
massm) is F= —kx (k>0), wherex is the momentary displacement of the body from the
position of equilibrium X=0). By Newton’s second law we have tlkama, wherea

is the acceleration of the body=d >/dt®. Therefore,

md?x/ dt®= —kx
or, settingk/m= w? (Wwhere we assume that-0),

X+ w?x=0 (10)

Eq. (10) is a homogeneous linear DE of the f@inwith x in place ofy andt in

place ofx (notice that the first-derivative term is missingthis case). The character-
istic equation (6) is writtenk’+w’=0 (or, analytically k’+0k+w?=0), with complex
rootsk=+ iw (analytically,k;=0+w, k.=0-iw). The general solution of (10) is given
by (9), withe=0 andf=w:

x= C;coswt+ C,sinwt (11)

where we assume that the constant coeffici€ndC, are real in order for the solu-
tion (11) to have physical meaning.

The general solution (11) can be put in diffiefgut equivalent form by setting
Ci=Asing, C,=Acosp (A>0) < A=(C;*+C,)Y?, tanp=C,/C,.

Then,
x=Asin(wt + ¢) 12)

The positive constart is called theamplitudeof the oscillation, while the angleis
called theinitial phase(the value of thgphasewt+¢ at timet=0). The positive con-
stantw is theangular frequencyof oscillation, to be called jusfrequency” in the
sequel.

Notice that, if we se€;=A cosp, C,= —Asing in (11), we will get the general so-
lution of (10) in the form

x= Acos(wt+ ¢) (13)

which is equivalent to (12). Indeed, equation (fidlows directly from (12) by put-
ting ¢+ (7/2) in place ofp (which is arbitrary anyway) in the latter equation
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4. Damped oscillation
In a damped oscillation, in addition to the restgrforce—kx opposite to the dis-
placementx from the equilibrium position, there is a frictanforce Av= —-idx/dt
(4>0) opposite to the velocity. The total force on the body 5= —kx-idxdt. By
Newton’s law,F=md?x/dt® Hence,

md?x/dt?*=—kx -1 dx/dt .
We set

k/m=w¢® (wo= natural frequency of oscillatiowithout damping), /m= 2y,

so that
X+ 2yX + wg x=0 (14)
Eq. (14) is a homogeneous linear DE. The claratc equation (6) is
I+ 2)k+ 0’=0 = k= -+ (P—wo?)2.
We distinguish the following cases:
1.Large damping< y >wo. We have two real solutions:
k]_= —y + (yZ_a)OZ)l/Z' k2= —— (yZ_a)OZ)l/Zl
The general solution of (14) is of the form (7):
X = Cy e + C, € 15
Let us assume th&;>0 andC,>0. Given thak;<0 andk,<0 (why?) we see that>0
at all timest ka1, moreover x—0 ast—o. That is, as the timeincreases, the moving
object approaches the equilibrium positier® without ever crossing it. The motion is

thereforenon-oscillatory

2.Critical damping < y =wq. Then, k= k= —y, and the general solution of (14)
is of the form (8):

X = (C1+Cot) €= (C1+ Cot) €7 (16)
If we assume thaf;>0 andC,>0, we see again that-0 at allt and thatx—0 ast—oo.
(For the termt e = t / &' we may use L’Hospital’s rule for the indetermin&mem
w/o0; show this!) Thus, there is no oscillation in th&se either.

3.Small damping< y <wo. We have two complex conjugate solutions:

k=—+iw where wi= (wo’—y*)"2.
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The general solution will be of the form (9), witls - and f=w;:
x= e (Cycoswit + Crsinwst) ,
or, by settingC, = Asing, C,=Acosp (A>0),
x=Ae ' sin(wit+¢p) (17)

We notice that the amplitudee™ decreases exponentially with time.

5. Forced oscillation

In a forced oscillation, in addition to the restgyiforce—kx and the frictional force
—Av=-1dx/dt the body is subject to an external force of thenfor

F(t) = Fosinwst (Fo>0) .

The total force on the body 5= —kx-Adx/dt+Fq sinwst. By Newton’s lawwe have
that

md?x/dt? = —kx —1 dx/dt + Fosinmst .
We set

kIm= wo? (wo= natural frequency A/m=2y, Fo/m=fy,

so that

X"+ 2yX '+ wo’ X= fosinwst (18)
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Eq. (18) is a non-homogeneous linear DE. Adogrdo Theorem 2 of Sec. 1, its
general solution is the sum of the general solubibtine corresponding homogeneous
equation,

X"+ 2px'+ a)ozx= 0,

andany particular solutiorof (18). For small damping € wg) the general solution of
the homogeneous equation is given by (17):

x=Are" sin(wit+ 1) where wi= (we>—y*)"2.

As can be verified, a particular solution of (18}he following:

X =Asin(wst+ @) 19)
where
2yw
A= fo - and tango:% (20)
2 : — O,
The general solution of (18) is, therefore,
x=Are7 sin(wit+ ¢1) +Asin(wst+ ) (21)

with arbitrary Aq, @1 . The first term on the right in (21) decreasesoexgntially with
time and dies out quickly. In a steady-state sibmattherefore, what remains is the
particular solution (19):

x=Asin(wst+¢).

The amplitudé of oscillation is a function of the applied freqog w;, according
to (20). This amplitude attains a maximum value nvklee denominator in the first
relation (20) becomes minimum. This occurs when

o = (w2 =2y°)? = wa (22)

Proof: We setw; = w, for simplicity, and we consider the function

Y(w) = (0°— wd)? + Hw?,
so that A= fo /[¥(w)]*%. We can show that

¥'(w) =0 for w = (we*=2y*)> =wa and ¥ (wp) =8wa>>0 .

Thus, for small damping {2 < wo?) the function¥(w) is minimum hence the ampli-
tudeA is maximumwhen ws=wa . This situation is calledmplitude resonance
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In the following figure it is assumed thak/l, < y:1<y,. This means that, in accor-
dance with (22)@wa1> wa2 . In the case of no damping=0 < y=0) Eq. (22) yields
wp=wo . In other words, in amndampedforced oscillation the amplitude becomes
maximum (in fact, infinite) when the applied freqog o is equal to the natural fre-
guencywg of oscillation.

By differentiating (19) we find the velocity tife oscillating body:
Vv = dxdt = ws Acos(wst+ @) =Vp cos(wst+ @)

where, by (20),

The velocity amplitude/, becomes maximum when the denominator on the rgght
minimum, which occurs fom =wo. The kinetic energyw?/2 then reaches its maxi-
mum value and there énergy resonance
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Note that, in contrast to amplitude resonarie, frequencyw; for energy reso-
nance is independent of the damping faétand is always equal to thmatural fre-
guencywo of the oscillator. At this frequency the work slipg by the external force
F(t) to the oscillator per unit time is maximum. Tigtthe oscillator absorbs the larg-
est possible power from the external agent thattexiee force-.

Notice also that, in the case of zero dampir® (= y=0) the velocity amplitude,
becomesnfinite at energy resonance, i.e., tor=wo. This rather unphysical situation
is, of course, purely theoretical since a mechdnnzdion with no friction whatsoever
is practically impossible!



