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Abstract. Backlund transformations (BTs) are traditionally regarded as a tool for
integrating nonlinear partial differential equations (PDEs). Their use has been recently
extended, however, to problems such as the construction of recursion operators for
symmetries of PDEs, as well as the solution of linear systems of PDEs. In this article, the
concept and some applications of BTs are reviewed. As an example of an integrable linear
system of PDEs, the Maxwell equations of electromagnetism are shown to constitute a BT
connecting the wave equations for the electric and the magnetic field; plane-wave
solutions of the Maxwell system are constructed in detail. The connection between BTs
and recursion operators is also discussed.
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1. INTRODUCTION

Bécklund transformations (BTs) were originally devised as a tool for obtaining solutions of
nonlinear partial differential equations (PDEs) (see, e.g., [1] and the references therein). They
were later also proven useful as recursion operators for constructing infinite sequences of
nonlocal symmetries and conservation laws of certain PDEs [2—6].

In simple terms, a BT is a system of PDEs connecting two fields that are required to
independently satisfy two respective PDEs [say, (a) and (b)] in order for the system to be
integrable for either field. If a solution of PDE (a) is known, then a solution of PDE (b) is
obtained simply by integrating the BT, without having to actually solve the latter PDE (which,
presumably, would be a much harder task). In the case where the PDEs (a) and (b) are
identical, the auto-BT produces new solutions of PDE (a) from old ones.

As described above, a BT is an auxiliary tool for finding solutions of a given (usually
nonlinear) PDE, using known solutions of the same or another PDE. But, what if the BT itself is
the differential system whose solutions we are looking for? As it turns out, to solve the problem
we need to have parameter-dependent solutions of both PDEs (a) and (b) at hand. By properly
matching the parameters (provided this is possible) a solution of the given system is obtained.
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The above method is particularly effective in linear problems, given that parametric solutions
of linear PDEs are generally not hard to find. An important paradigm of a BT associated with a
linear problem is offered by the Maxwell system of equations of electromagnetism [7,8]. As is
well known, the consistency of this system demands that both the electric and the magnetic field
independently satisfy a respective wave equation. These equations have known, parameter-
dependent solutions; namely, monochromatic plane waves with arbitrary amplitudes,
frequencies and wave vectors (the “parameters” of the problem). By inserting these solutions
into the Maxwell system, one may find the appropriate expressions for the “parameters” in order
for the plane waves to also be solutions of Maxwell’'s equations; that is, in order to represent an
actual electromagnetic field.

This article, written for educational purposes, is an introduction to the concept of a BT and its
application to the solution of PDEs or systems of PDEs. Both “classical” and novel views of a
BT are discussed, the former view predominantly concerning integration of nonlinear PDEs
while the latter one being applicable mostly to linear systems of PDEs. The article is organized
as follows:

In Section 2 we review the classical concept of a BT. The solution-generating process by
using a BT is demonstrated in a number of examples.

In Sec. 3 a different perception of a BT is presented, according to which it is the BT itself
whose solutions are sought. The concept of conjugate solutions is introduced.

As an example, in Secs. 4 and 5 the Maxwell equations in empty space and in a linear
conducting medium, respectively, are shown to constitute a BT connecting the wave equations
for the electric and the magnetic field. Following [7], the process of constructing plane-wave
solutions of this BT is presented in detail. This process is, of course, a familiar problem of
electrodynamics but is seen here under a new perspective by employing the concept of a BT.

Finally, in Sec. 6 we briefly review the connection between BTs and recursion operators for
generating infinite sequences of nonlocal symmetries of PDEs.

2. BACKLUND TRANSFORMATIONS: CLASSICAL VIEWPOINT

Consider two PDEs P[u]=0 and Q[v]=0 for the unknown functions u and v, respectively. The
expressions P[u] and Q[v] may contain the corresponding variables u and v, as well as partial
derivatives of u and v with respect to the independent variables. For simplicity, we assume that
u and v are functions of only two variables x, t. Partial derivatives with respect to these variables
will be denoted by using subscripts: uy, U, Uy, Uy, Uy, etc.

Independently, for the moment, also consider a pair of coupled PDEs for u and v:

B,[u,v]=0 (a)  B,[u,v]=0 (b) (1)

where the expressions B, [u,V] (i=1,2) may contain u, v as well as partial derivatives of u and v
with respect to x and t. We note that u appears in both equations (a) and (b). The question then
is: if we find an expression for u by integrating (a) for a given v, will it match the corresponding
expression for u found by integrating (b) for the same v? The answer is that, in order that (a)
and (b) be consistent with each other for solution for u, the function v must be properly chosen
so as to satisfy a certain consistency condition (or integrability condition or compatibility
condition).

By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for solution for v,
for some given u, the function u must now itself satisfy a corresponding integrability condition.

If it happens that the two consistency conditions for integrability of the system (1) are
precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a Backlund

http://nausivios.snd.edu.gr/nausivios

C-4



PART C: Natural Sciences and Mathematics

transformation (BT) connecting solutions of P[u]=0 with solutions of Q[v]=0. In the special case
where P=Q), i.e., when u and v satisfy the same PDE, the system (1) is called an auto-Bé&cklund
transformation (auto-BT) for this PDE.

Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able to find a
BT connecting solutions u of this equation with solutions v of the PDE Q[v]=0 (if P=Q, the auto-
BT connects solutions u and v of the same PDE) and let v=vy(x,t) be some known solution of
Q[v]=0. The BT is then a system of PDEs for the unknown u,

Bu,v,]=0, i=12 (2)

The system (2) is integrable for u, given that the function v, satisfies a priori the required
integrability condition Q[v]=0. The solution u then of the system satisfies the PDE P[u]=0. Thus
a solution u(x,t) of the latter PDE is found without actually solving the equation itself, simply by
integrating the BT (2) with respect to u. Of course, this method will be useful provided that
integrating the system (2) for u is simpler than integrating the PDE P[u]=0 itself. If the
transformation (2) is an auto-BT for the PDE P[u]=0, then, starting with a known solution vy(x,f)
of this equation and integrating the system (2), we find another solution u(x,t) of the same
equation.

Let us see some examples of the use of a BT to generate solutions of a PDE:

1. The Cauchy-Riemann relations of Complex Analysis,
u,=v, (@  u,=-v, () (3)
(here, the variable t has been renamed y) constitute an auto-BT for the Laplace equation,
Plwl=w, +w, =0 (4)

Let us explain this: Suppose we want to solve the system (3) for u, for a given choice of the
function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we must compare them
in some way. We thus differentiate (a) with respect to y and (b) with respect to x, and equate the
mixed derivatives of u. That is, we apply the integrability condition (uy),= (u,)x . In this way we
eliminate the variable u and find the condition that must be obeyed by v(x,y):

Plvl=v,+v, =0 .

Similarly, by using the integrability condition (v,),= (v,)« to eliminate v from the system (3), we
find the necessary condition in order that this system be integrable for v, for a given function
u(x,y):

Plul=u, +u,, =0 .

In conclusion, the integrability of system (3) with respect to either variable requires that the
other variable must satisfy the Laplace equation (4).

Let now vy(x,y) be a known solution of the Laplace equation (4). Substituting v=v, in the
system (3), we can integrate this system with respect to u. It is not hard to show (by eliminating
vo from the system) that the solution u will also satisfy the Laplace equation (4). As an example,
by choosing the solution vo(x,y)=xy, we find a new solution u(x,y)=(x*-y*)2 +C .

2. The Liouville equation is written
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Plul=u,—-€e"=0 < u,=é" (5)

Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus sought by
means of a BT. We consider an auxiliary function v(x,f) and an associated PDE,

Ovl=v, =0 (6)

We also consider the system of first-order PDEs,
u +v, =2 2 (a) u,—v, =2 )2 (b) (7)

Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and eliminating
(us —v¢) and (uytv,) in the ensuing equations with the aid of (a) and (b), we find that u and v
satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is a BT connecting solutions of
(5) and (6). Starting with the trivial solution v=0 of (6), and integrating the system

ux:ﬁeu/Z, ut:\/aeu/Z,

we find a nontrivial solution of (5):
X+t

u(x,t):—Zln[C—ﬁj :

3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., in the study
of crystalline solids, in the transmission of elastic waves, in magnetism, in elementary-particle
models, etc. The equation (whose name is a pun on the related linear Klein-Gordon equation) is
written

Plul=u,—sinu=0 < u,=sinu (8)

The following system of equations is an auto-BT for the nonlinear PDE (8):

1 . (u—=v 1 I . (u+v
E(u+v)x—asm( 5 J , E(M—v)t—;sm( 5 j (9)

where a (#0) is an arbitrary real constant. [Because of the presence of a, the system (9) is called
a parametric BT.] When u is a solution of (8) the BT (9) is integrable for v, which, in turn, also is
a solution of (8): P[v]=0; and vice versa. Starting with the trivial solution v=0 of v,=sinv, and
integrating the system

. u 2 . u
u,=2asin— , wu,=—sin— ,
a

we obtain a new solution of (8):

a

u(x,t) =4arctan {C exp (ax + Lj} .
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3. CONJUGATE SOLUTIONS AND ANOTHER VIEW OF A BT

As presented in the previous section, a BT is an auxiliary device for constructing solutions of
a (usually nonlinear) PDE from known solutions of the same or another PDE. The converse
problem, where solutions of the differential system representing the BT itself are sought, is also
of interest, however, and has been recently suggested [7,8] in connection with the Maxwell
equations (see subsequent sections).
To be specific, assume that we need to integrate a given system of PDEs connecting two
functions u and v:
B [u,v]=0, i=12 (10)

Suppose that the integrability of the system for both functions requires that v and v
separately satisfy the respective PDEs

Plu]=0 (a)  Q[v]=0 (b) (11)

That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, that
these PDEs possess known (or, in any case, easy to find) parameter-dependent solutions of the

form
u=f,y;a.p,..) , v=gxy;x,4,..) (12)

where a, B, K, A, etc., are (real or complex) parameters. If values of these parameters can be
determined for which u and v jointly satisfy the system (10), we say that the solutions v and v of
the PDEs (11a) and (11b), respectively, are conjugate through the BT (10) (or BT-conjugate, for
short). By finding a pair of BT-conjugate solutions one thus automatically obtains a solution of
the system (10).

Note that solutions of both integrability conditions P[u]=0 and Q[v]=0 must now be known
in advance! From the practical point of view the method is thus most applicable in linear
problems, since it is much easier to find parameter-dependent solutions of the PDEs (11) in this
case.

Let us see an example: Going back to the Cauchy-Riemann relations (3), we try the
following parametric solutions of the Laplace equation (4):

u(x:y):a(xz_yz)-i-ﬂx_'_}/y )
v(x,y)=kxy+Ax+uy .

Substituting these into the BT (3), we find that k=2a, y=6 and A= —y. Therefore, the solutions

u(xay):a(xz_yz)-i-ﬂx_'_?/y 9
v(x,y)=2axy—yx+pBy

of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.
As a counter-example, let us try a different combination:

ux,y)=axy , v(x,y)=pxy .
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Inserting these into the system (3) and taking into account the independence of x and y, we
find that the only possible values of the parameters a and 8 are a=£=0, so that u(x,y)= v(x,y)=0.
Thus, no non-trivial BT-conjugate solutions exist in this case.

4. EXAMPLE: THE MAXWELL EQUATIONS IN EMPTY SPACE

An example of an integrable linear system whose solutions are of physical interest is
furnished by the Maxwell equations of electrodynamics. Interestingly, as noted recently [7], the
Maxwell system has the property of a BT whose integrability conditions are the electromagnetic
(e/m) wave equations that are separately valid for the electric and the magnetic field. These
equations possess parameter-dependent solutions that, by a proper choice of the parameters,
can be made BT-conjugate through the Maxwell system. In this and the following section we
discuss the BT property of the Maxwell equations in vacuum and in a conducting medium,
respectively.

In empty space, where no charges or currents (whether free or bound) exist, the Maxwell
equations are written (in S.1. units) [9]

(a) V-E=0 (¢) @xE:—z—f
3 (13)
B VB0 @) VxBegu o

where E and B are the electric and the magnetic field, respectively. Here we have a system
of four PDEs for two fields. The question is: what are the necessary conditions that each of
these fields must satisfy in order for the system (13) to be self-consistent? In other words, what
are the consistency conditions (or integrability conditions) for this system?

Guided by our experience from Sec. 2, to find these conditions we perform various
differentiations of the equations of system (13) and require that certain differential identities be
satisfied. Our aim is, of course, to eliminate one field (electric or magnetic) in favor of the other
and find some higher-order PDE that the latter field must obey.

As can be checked, two differential identities are satisfied automatically in the system
(13):

(V-E),=V-E,, (V-B),=V-B,
Two others read
Vx(VxE)=V(V-E)-V’E (14)
Vx(VxB)=V(V-B)-V’B (15)

Taking the rot of (13c¢) and using (14), (13a) and (13d), we find
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- 0°E
VPE — gy pty— = 16
Oluo 812 ( )
Similarly, taking the rot of (13d) and using (15), (13b) and (13c), we get
-
— B
sz_goﬂoaa?: (17)

No new information is furnished by the remaining two integrability conditions,
(VxXE),=VxE, , (VxB),=VxB, .

Note that we have uncoupled the equations for the two fields in the system (13), deriving
separate second-order PDEs for each field. Putting

1 1
oy =— & c= (18)
¢’ \ €0 o
(where c is the speed of light in vacuum) we rewrite (16) and (17) in wave-equation form:
-
VZE—iaf=o (19)
¢ Ot
-
vzé—iafzo (20)
c” Ot

We conclude that the Maxwell system (13) is a BT relating solutions of the e/m wave
equations (19) and (20), these equations representing the integrability conditions of the BT. It
should be noted that this BT is not an auto-BT! Indeed, although the PDEs (19) and (20) are of
similar form, they concern different fields with different physical dimensions and physical
properties.

The e/m wave equations admit plane-wave solutions of the form ﬁ(E -F—mwt), with
%:c where & =|k | (21)

The simplest such solutions are monochromatic plane waves of angular frequency w,
propagating in the direction of the wave vector £ :

E(F,0)=E,expli(k-F—wt)} (a)
B(F,0)=B,exp{i(k-F—wt)} (b)
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where EO and l;’o are constant complex amplitudes. The constants appearing in the above
equations (amplitudes, frequency and wave vector) can be chosen arbitrarily; thus they can be

regarded as parameters on which the plane waves (22) depend.
We must note carefully that, although every pair of fields (E,B) satisfying the Maxwell

equations (13) also satisfies the wave equations (19) and (20), the converse is not true. Thus,
the plane-wave solutions (22) are not a priori solutions of the Maxwell system (i.e., do not
represent actual e/m fields). This problem can be taken care of, however, by a proper choice of
the parameters in (22). To this end, we substitute the general solutions (22) into the BT (13) to
find the extra conditions the latter system demands. By fixing the wave parameters, the two
wave solutions in (22) will become BT-conjugate through the Maxwell system (13).

Substituting (22a) and (22b) into (13a) and (13b), respectively, and taking into account

that Ve *” = ik e'*" we have

By ey e =0 = (F-By)e e 0,
(B’Oe—iwr).ﬁeilif =0 = (E.éo)ei(léf—m) -0,

so that
k-E,=0, k-B,=0. (23)

Relations (23) reflect the fact that that the monochromatic plane e/m wave is a transverse
wave.
Next, substituting (22a) and (22b) into (13¢) and (13d), we find

e*iwt (Veik-F)XEO :ia)Boei(k-?fmt) =

(kXEO)e[(k-F—mt) — a)BOe[(k-Ffmt) ,

(Exéo)ei(lz-r-—m/) - _ Cﬁz _’Oei(/{.f,m,) ’
so that
kxE,=wB,, lgxl?o:_ﬁzgo (24)
c

We note that the fields £ and B are normal to each other, as well as normal to the direction
of propagation of the wave. We also remark that the two vector equations in (24) are not

independent of each other, since, by cross-multiplying the first relation by k , we get the second
relation.
Introducing a unit vector 7 in the direction of the wave vector & ,

t=klk (k=|k|=wl/c),

we rewrite the first of equations (24) as
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- ko - 1 . -
By=—(xE))=—(txE)) .
0] c
The BT-conjugate solutions in (22) are now written

E(F,ty=E,expli(k -7 —wt)} ,
o 1 . = - 1. = (25)
B(r,t)=—(txE))expli(k-r —wt)} =—TxE

C C

As constructed, the complex vector fields in (25) satisfy the Maxwell system (13). Since
this system is homogeneous linear with real coefficients, the real parts of the fields (25) also
satisfy it. To find the expressions for the real solutions (which, after all, carry the physics of the
situation) we take the simplest case of linear polarization and write

E,=E e (26)

where the vector EO,R as well as the number a are real. The real versions of the fields (25),

then, read
E:EO’R cos(k-¥ —ott+a),

N . 1. (27)
B=—(txE z)cos(k-r —ot+a)=—TxE
c c

We note, in particular, that the fields £ and B “oscillate” in phase.
Our results for the Maxwell equations in vacuum can be extended to the case of a linear
non-conducting medium upon replacement of &, and uy with € and p, respectively. The speed of
propagation of the e/m wave is, in this case,

In the next section we study the more complex case of a linear medium having a finite
conductivity.

5. EXAMPLE: THE MAXWELL SYSTEM FOR A LINEAR
CONDUCTING MEDIUM

Consider a linear conducting medium of conductivity . In such a medium, Ohm’s law is
satisfied: J, = oE, where jf is the free current density. The Maxwell equations take on the
form [9]
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S S B
(a) V-E=0 (¢) VxE:—%—t
. (28)
(b) V-B=0 (d) ﬁxé:yamgﬂ%—t
By requiring satisfaction of the integrability conditions
Vx(VxE)=V(V-E)-V’E ,
Vx(VxB)=V(V-B)-V’B,
we obtain the modified wave equations
. O’E OE
VE - ¢ —uoc—=0
o TH
0°B oB )
V’B-¢ — o —=0
Mo 1% %

which must be separately satisfied by each field. As in Sec. 4, no further information is

furnished by the remaining integrability conditions.

The linear differential system (28) is a BT relating solutions of the wave equations (29).
As in the vacuum case, this BT is not an auto-BT. We now seek BT-conjugate solutions. As can
be verified by direct substitution into equations (29), these PDEs admit parameter-dependent

solutions of the form

E(F,t)= E,exp{—st -7 +i (k-7 — wt)}

=EO exp{('—%j IE?} exp(—imt) ,

B(¥,t)= Byexp{—st-F +i(k -F — wt)}
:EO exp{(z’—%j E-F} exp(—imt)

where 7 is the unit vector in the direction of the wave vector Ig :

(30)

t=klk (k=|k|=w/v)

(u is the speed of propagation of the wave inside the conducting medium) and where, for
given physical characteristics ¢, y, o of the medium, the parameters s, k and w satisfy the

algebraic system
s’—k*+euw’ =0, puocw-2sk=0 (31)
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We note that, for arbitrary choices of the amplitudes EO and E’O, the vector fields (30) are

not a priori solutions of the Maxwell system (28), thus are not BT-conjugate solutions. To obtain
such solutions we substitute expressions (30) into the system (28). With the aid of the relation

o il (i-2) 7 (-5
k
one can show that (28a) and (28b) impose the conditions
k-E,=0, k-B,=0 (32)

As in the vacuum case, the e/m wave in a conducting medium is a transverse wave.
By substituting (30) into (28c¢) and (28d), two more conditions are found:

(k+is)txE, = oB, (33)

(k+is)tx B, = —(suw+iuc)E, (34)

Note, however, that (34) is not an independent equation since it can be reproduced by cross-
multiplying (33) by 7, taking into account the algebraic relations (31).
The BT-conjugate solutions of the wave equations (29) are now written

E(F,t) _ Eoe—.s'f-Fei(k-?—(ut) ’

k+is (35)

B(I_:,t) — (Z'_‘XEﬁvo)e—Sf-?ei(k-f‘fm[)

To find the corresponding real solutions, we assume linear polarization of the wave, as
before, and set

=F @

- i
E, 0r€ -

We also put
k+is=|k+is|e’ =k>+s> e ; tanp=s/k.

Taking the real parts of equations (35), we finally have:
E(f,f) = EO,R e St cos(E-F—ctha) ,

VE? + 52
w

B(#,t) = (#xEyz)e ™ cos(k - F—at+a+g).

As an exercise, the student may show that these results reduce to those for a linear non-
conducting medium (cf. Sec. 4) in the limit c—0.
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6. BTS AS RECURSION OPERATORS

The concept of symmetries of PDEs was discussed in [1]. Let us review the main facts:
Consider a PDE F[u]=0, where, for simplicity, u=u(x,t). A transformation

u(xt) - u'(xt)

from the function u to a new function u” represents a symmetry of the given PDE if the
following condition is satisfied: u’(x,t) is a solution of F[u]=0 if u(x,t) is a solution. That is,

Flu'1=0 when Flu]l=0 (36)
An infinitesimal symmetry transformation is written
u'=u+ou=u+aQlu] (37)

where a is an infinitesimal parameter. The function Q[ul=Q(x, t, u, uy, u;,...) is called the
symmetry characteristic of the transformation (37).
In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it must
satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We write, symbolically,

S(Q;u)=0 when Flu]l=0 (38)

where the expression S depends linearly on Q and its partial derivatives. Thus, (38) is a
linear PDE for Q, in which equation the variable u enters as a sort of parametric function that is
required to satisfy the PDE F[u]=0.

A recursion operator R [10] is a linear operator which, acting on a symmetry
characteristic Q, produces a new symmetry characteristic Q' = IAQQ. That is,

S(RO;u)=0 when S(Q;u)=0 (39)

It is not too difficult to show that any power of a recursion operator also is a recursion
operator. This means that, starting with any symmetry characteristic Q, one may in principle
obtain an infinite set of characteristics (thus, an infinite number of symmetries) by repeated
application of the recursion operator.

A new approach to recursion operators was suggested in the early 1990s [2,3] (see also
[4-6]). According to this view, a recursion operator is an auto-BT for the linear PDE (38)
expressing the symmetry condition of the problem; that is, a BT producing new solutions Q" of
(38) from old ones, Q. Typically, this type of BT produces nonlocal symmetries, i.e., symmetry
characteristics depending on integrals (rather than derivatives) of u.

As an example, consider the chiral field equation

Flgl=(g 'g) +(g7'g,), =0 (40)

(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued function of x
and t (i.e., an invertible complex nxn matrix, differentiable for all x, t).
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Let Q[g] be a symmetry characteristic of the PDE (40). It is convenient to put

Q[g] = g P[d]

and write the corresponding infinitesimal symmetry transformation in the form
g'=g+og=g+agPlg] (41)

The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in ® also. As can
be shown [4], this PDE is

S(@;9)=® _+, +[g g, D ]+[g g, D,]=0 (42)

which must be valid when F[g]=0 (where, in general, [A, B] = AB-BA denotes the
commutator of two matrices A and B).
For a given g satisfying F[g]=0, consider now the following system of PDEs for the matrix
functions ® and ¢":

O =D, +[g g, , D]
, . (43)
—(Dt:(Dx+-bg gx,(D]

The integrability condition (@), =(®}),, together with the equation F[g]=0, require that ® be
a solution of (42): S(®;g) =0. Similarly, by the integrability condition (®,), =(®d,), one finds,

after a lengthy calculation: S(®”; g) = 0.

In conclusion, for any g satisfying the PDE (40), the system (43) is a BT relating solutions
@ and &’ of the symmetry condition (42) of this PDE; that is, relating different symmetries of the
chiral field equation (40). Thus, if a symmetry characteristic Q=g® of (40) is known, a new
characteristic Q =g®" may be found by integrating the BT (43); the converse is also true. Since
the BT (43) produces new symmetries from old ones, it may be regarded as a recursion
operator for the PDE (40).

As an example, for any constant matrix M the choice ®=M clearly satisfies the symmetry
condition (42). This corresponds to the symmetry characteristic Q=gM. By integrating the BT
(43) for @7, we get ®'=[X, M] and Q =g[X, M], where X is the “potential” of the PDE (40), defined
by the system of PDEs

X.=g'g, . -X,=g'g (44)

Note the nonlocal character of the BT-produced symmetry Q°, due to the presence of the
potential X. Indeed, as seen from (44), in order to find X one has to integrate the chiral field g
with respect to the independent variables x and f. The above process can be continued
indefinitely by repeated application of the recursion operator (43), leading to an infinite
sequence of increasingly nonlocal symmetries.

ISSN:1791-4469 Copyright © 2016, Hellenic Naval Academy
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7. SUMMARY

Classically, Backlund transformations (BTs) have been developed as a useful tool for finding
solutions of nonlinear PDEs, given that these equations are usually hard to solve by direct
methods. By means of examples we saw that, starting with even the most trivial solution of a
PDE, one may produce a highly nontrivial solution of this (or another) PDE by integrating the BT,
without solving the original, nonlinear PDE directly (which, in most cases, is a much harder task).

A different use of BTs, that was recently proposed [7,8], concerns predominantly the solution
of linear systems of PDEs. This method relies on the existence of parameter-dependent
solutions of the linear PDEs expressing the integrability conditions of the BT. This time it is the
BT itself (rather than its associated integrability conditions) whose solutions are sought.

An appropriate example for demonstrating this approach to the concept of a BT is furnished
by the Maxwell equations of electromagnetism. We showed that this system of PDEs can be
treated as a BT whose integrability conditions are the wave equations for the electric and the
magnetic field. These wave equations have known, parameter-dependent solutions -
monochromatic plane waves — with arbitrary amplitudes, frequencies and wave vectors playing
the roles of the “parameters”. By substituting these solutions into the BT, one may determine the
required relations among the parameters in order that these plane waves also represent
electromagnetic fields (i.e., in order that they be solutions of the Maxwell system). The results
arrived at by this method are, of course, well known in advanced electrodynamics. The process
of deriving them, however, is seen here in a new light by employing the concept of a BT.

BTs have also proven useful as recursion operators for deriving infinite sets of nonlocal
symmetries and conservation laws of PDEs [2-6] (see also [11] and the references therein).
Specifically, the BT produces an increasingly nonlocal sequence of symmetry characteristics,
i.e., solutions of the linear equation expressing the symmetry condition (or “linearization”) of a
given PDE.

An interesting conclusion is that the concept of a BT, which has been proven useful for
integrating nonlinear PDEs, may also have important applications in linear problems. Research
on these matters is in progress.
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Abstract

Backlund transformations (BTs) are a useful toal ifde-
grating nonlinear partial differential equations DEs).
However, the significance of BTs in linear problestmould
not be ignored. In fact, an important linear systfnPDESs
in Physics, namely, the Maxwell equations
electromagnetism, may be viewed as a BT relatiegnthve
equations for the electric and the magnetic fidghiese
equations representing integrability conditions $ofution
of the Maxwell system. We examine the BT propeftyhis
system in detail, both for the vacuum case andffercase
of a linear conducting medium.

of

1. Introduction

Backlund transformations (BTs) are an effectivel tioy
integrating partial differential equations (PDES$hey are
particularly useful for obtaining solutions of nivdar
PDEs, given that these equations are often notslichard
to solve by direct methods (see [1] and the refa¥sn
therein).

Generally speaking, given two PDEs — sgyafid b) —
for the unknown functions andv, respectively, a BT relat-
ing these PDEs is a system of auxiliary PDEs cairtgi
bothu andyv, such that the consistenaptégrability) of this
system requires that the original PDB} &nd p) be sepa-
rately satisfied. Then, if a solution of PD&) (s known, a
solution of PDE lf)) is found simply by integrating the BT,
without having to integrate the PDb)(directly (which,
presumably, is a much harder task).

In addition to being a solution-generatingchremnism,
BTs may also serve agcursion operatorgor obtaining
infinite hierarchies of (generally nonlocal) symniet and
conservation laws of a PDE [1-7]. It is by this hoet that
the full symmetry Lie algebra of the self-dual Ya¥igls
equation was found [3,6].

In this article, the nature of which is mggiedagogical,
we adopt a somewhat different (in a sense, inverisey of
a BT, suitable for the treatment of linear proble®gppose
we are given a system of PDEs for the unknown fansu
andv. Suppose, further, that the consistency of thigesy
requires that two PDEs, one farand one fow, be sepa-
rately satisfied (thus, the given system is a Biineting

system, then a solution to this system has beendfoln
other words, we are seeking solutions of the gisgstem
by using known, parameter-dependent solutions efriti-
vidual PDEs expressing the integrability conditiafsthis
system. Pairs of functions,{) satisfying the system will be
said to represefBT-conjugatesolutions

This modified view of the concept of a BT has
important application in electromagnetism that seras a
paradigm for the significance of BTs in linear geohs. As
discussed in this paper, the Maxwell equationsaftinear
medium exactly fit this BT scheme. Indeed, as idl we
known, the consistency of the Maxwell system rezgithat
the electric and the magnetic field satisfy sepanmative
equations. These equations have known, parameter-
dependent solutions, namely, monochromatic planeesia
with arbitrary amplitudes, wave vectors, frequesgietc.
(the “parameters” of the problem). By insertingshesolu-
tions into the Maxwell system, one may find the essary
conditions on the parameters in order that theeplaaves
for the two fields represent BT-conjugate solutioof
Maxwell's equations.

The paper is organized as follows:

Section 2 reviews the classical concept @dTa The
solution-generating process by using a BT is demnatesl
in a number of examples.

In Sec. 3 the concept of parametric, BT-cgata solu-
tions is introduced. A simple example illustrates idea.

In Sec. 4 the Maxwell equations in empty space
shown to constitute a BT in the sense describeSeinn 3.
For completeness of presentation (and for the itenfethe
student) the process of constructing BT-conjugdsmes
wave solutions is presented in detail.

Finally, in Sec. 5 the Maxwell system forimehr con-
ducting medium is similarly examined.

The results of Secs. 4 and 5 are, of cowsdl, known
from classical electromagnetic theory. It is mathéoally
interesting, however, to revisit the problem of stoacting
solutions of Maxwell’s equations from a novel pabfitview
by using the concept of a BT and by treating tleetelc and
the magnetic component of a plane e/m wave as BT-
conjugate solutions.

2. Backlund transformations: definition and
examples

these PDEs). The PDEs are assumed to possess known

solutions foru andv, each solution depending on a number
of parameters. If, by a proper choice of the patarse
these functions are made to satisfy the originfiedintial

The general idea of a Backlund transformation (BVEs
explained in [1] (see also the references therdir}. us
review the main points:



We consider two PDHER[u]=0 and Q[v]=0, where the
expressiond[u] and Q[v] may contain the unknown func-
tionsu andv, respectively, as well as some of their partial
derivatives with respect to the independent vagigbFor
simplicity, we assume thatandv are functions of only two
variablesx, t. Partial derivatives with respect to these vari-
ables will be denoted by using subscripts, aig, U, Uy,

Uyt , Uy, €tC.
We also consider a system of coupled PDEs &rdy,

B[uv=0, i=12 (1)
where the expressior [u,v] may containu, v and certain
of their partial derivatives with respect xcandt. The sys-
tem (1) is assumed to be integrabledthe two equations
are compatible with each other for solution f9rwhenu
satisfies the PDIP[u]=0. The solutiorv, then, satisfies the
PDE Q[Vv]=0. Conversely, the system (1) is integrable for
if v satisfies the PDE)[V]=0, the solutioru then satisfying
P[u]=0.

If the above assumptions are valid, we say tihe sys-
tem (1) constitutes a BT connecting solutionsPpfi|=0
with solutions ofQ[v]=0. In the special case wheR=Q,
i.e., whenu andv satisfy the same PDE, the system (1) is
called armauto-Béacklundransformation (auto-BT).

Suppose now that we seek solutions of the PIE=O.
Also, assume that we possess a BT connecting aotuti
of this equation with solutionsof the PDEQ[V]=0 (if P=Q
the auto-BT connects solutiomsandv of the same PDE).
Let v=vy(x,t) be a known solution dd[v]=0. The BT is then
a system of equations for the unknown

B[luv]=0, i=12

. )
Given thatQ[vg]=0, the system (2) is integrable forand its
solution satisfies the PDE[u]=0. We may thus find a solu-
tion u(xt) of P[u]=0 without solving the equation itself,
simply by integrating the BT (2) with respect to Of
course, the use of this method is meaningful preithat
we know a solutiomvy(x,t) of Q[v]=0 beforehand, as well as
that integrating the system (2) foiis simpler than integrat-
ing the PDEP[uU]=0 directly. If the transformation (2) is an
auto-BT, then, starting with a known solutiog(x,t) of
P[u]=0 and integrating the system (2), we find anot@u-
tion u(x,t) of the same equation.

Let us see some examples of using a BT tergém
solutions of a PDE:

1. TheCauchy-Riemann relatioraf complex analysis,

u =V,

(& y=-v (Y ©)

(here, the variablehas been renamsgl constitute an auto-
BT for the (linear)Laplace equation

PIwW =w,+w =0 (4)
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Indeed, differentiating @ with respect toy and (d) with
respect tok, and demanding that thietegrability condition
(uy=(uy)x be satisfied, we eliminate the variahlgo find
the consistency condition that must be obeyed/(gy) in
order that the system (3) be integrableuor

PM=v,+v,=0.

Conversely, eliminating from the system (3) by using the
integrability condition ),=(w)x , we find the necessary
condition foru in order for the system to be integrablevor

Plu=u,+u, =0.

Now, letvg(x,y) be a known solution of the Laplace equa-
tion (4). Substitutingr=v, in the system (3), we can inte-
grate the latter with respect toto find another solution of
the Laplace equation. For example, by choosyigy)=xy
we find the solutioru(x,y)= (*~y?)/2 +C .

2. TheLiouville equationis written

Plu=uy,-€=0 < y,=2¢ (5)

Solving the PDE (5) directly is a difficult task inew of
this equation’s nonlinearity. A solution can be ridu how-
ever, by using a BT. We thus consider an auxilfanction
v(x,t) and an associated linear PDE,

QM =v, =0 (6)
We also consider the system of first-order PDEs,
u +v, = \/E guv/2
(7

u, -y, :\/E QU2

It can be shown that the self-consistency of thetesy (7)
requires that andv independently satisfy the PDEs (5) and
(6), respectively. Thus, this system constituteBTacon-
necting solutions of (5) and (6). Starting with thivial
solutionv=0 of (6) and integrating the system

UXZ\/EGUIZ, U‘:\/_Z eu/2 ,

we find a solution of (5):

u(xt) =—2In(C—X—+tj .
2

3. The 8ine-Gordon” equatiorhas applications in vari-
ous areas of Physics, such as in the study of aliyst
solids, in the transmission of elastic waves, irgnaism, in
elementary-particle models, etc. The equation (&@htame



is a pun on the related linear Klein-Gordon equmtits
written

u, =sinu (8)
As can be proven, the differential system

1 (u-v

—(u+v), = asinf —

2 2

)
1 —

[where a (#0) is an arbitrary real constant] is a parametric
auto-BT for the PDE (8). Starting with the trivisblution
v=0 of v,= sinv, and integrating the system

. u 2
u,=2asin— , U =— si
2 a

NS =

we obtain a new solution of (8):

3. BT-conjugate solutions

u(xt)=4 arctar{ C exé

Consider a system of coupled PDEs for the functioasd
v of two independent variablesy:

B[uv=0, i=12 (20)
Assume that the integrability of this system fothow andv
requires that the following PDEs be independeratisfed:

P[u=0 (8 dvy=0 (b 11)
That is, the system (10) represents a BT connedtieg
PDEs (11). Assume, further, that the PDEs (11) gssss
parameter-dependent solutions of the form

u= f(x y,a,b.7,..) ,

(12)

v=9(X Yk, A,4,...)
wherea, B, x, A, etc., are (real or complex) parameters. If
values of these parameters can be determined fahwh
andv satisfy the system (10), we say that the solutioasd
v of the PDEs (14) and (1b), respectively, areonjugate
through the BT(10) (orBT-conjugatefor short).

Let us see an example: Going back to the IBauc
Riemann relations (3), we try the following pararitet
solutions of the Laplace equation (4):
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u(x y)=a(X-y)+pxry,
VX, Y=k Xy+ A X uy.

Substituting these into the BT (3), we find that2a, u=p
andA= —y. Therefore, the solutions

u(x, =a(X-y)+Bxyy,
V(X Y)=2axy—y X+ By

of the Laplace equation are BT-conjugate througé th
Cauchy-Riemann relations.
As a counter-example, let us try a differeminbination:
u(x y)=axy, vxy=pgxy.
Inserting these into the system (3) and taking adoount
the independence afandy, we find that the only possible
values of the parametessandf area=£=0, so thau(x,y)=

v(x,y)=0. Thus, no non-trivial BT-conjugate solutions éxis
in this case.

4. Application to the Maxwell equations in
empty space

As is well known, according to the Maxwell theotyedec-
tromagnetic (e/m) disturbances propagate in spaceaaes
running at the speed of light. It is interestingnfr the
mathematical point of view that the vacuum waveatigns
for the electric and the magnetic field are conegdb each
other through the Maxwell system of equations ircmthe
same way two PDEs are connected via a Backlung-tran
formation. In fact, certain parameter-dependenttgmis of
the two wave equations are BT-conjugate through the
Maxwell system.

In empty space, where no charges or curr@vitether
free or bound) exist, th®axwell equations are written in
S.1. units [8]:

N S 0B
(@ V-E=0 (¢ VxE=-—
ot
. (13)
(b) V-B=0  (d) ﬁxézgoyoa—

ot

where E and B are the electric and the magnetic field,
respectively. In order that this system of PDESs sed-
consistent (thus integrable for the two fields)yt&@i& consis-
tency conditions (omtegrability conditiony must be satis-
fied. Four are satisfied automatically:

0, V-(VxB)=0,

|

(6 )t=§'a '



Two others read:

Vx(VXE)=V(V-E)-V’E (14)

Vx(VxB)=V(V-B)-V’B (15)
Taking therot of (13x) and using (14), (18 and (138l), we
find:

(16)

Similarly, taking therot of (13d) and using (15), (1% and
(13c), we get:

V’B - (17)

No new information is furnished by the remainingptimte-
grability conditions,

(ﬁxé)tzﬁxét . (Vx B),=VxB
Putting

! c ! (18)
E =" <& =

¢’ NENTR

. 190°E
V’E - — =0 (19)

¢ ot?

,~ 1 0°B
VB - — =0 (20)

c’ ot?

The PDEs (19) and (20) are consistency conditidma t

must be separately satisfied Byand B in order that the
differential system (13) be integrable for eithigld, given
the value of the other field. In other words, tlygstem (13)
is a BT relating solutions of the wave equation8) (and
(20).

It should be noted carefully that the BT (18not an
autoBT! Indeed, although the PDEs (19) and (20) look
similar, they concerdifferentfields with different physical
dimensions and physical properties. A true autosBould
connect similar objects (such as, e.g., differeathamatical
expressions for the electric field).

The above wave equations admit plane-wavetisok

of the formE (k- F — w t) , with
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%:c where k= [K | 1)

The simplest such solutions armnochromatic plane waves
of angular frequency, propagating in the direction of the

wave vectork :

(T, exp{l (k r—owt)} (a) 22)
(F,

exp{l(k r-ot)} (b

where the EO and I§0 represent constant complex ampli-

tudes. Since all constants appearing in equati®f} (that
is, amplitudes, frequency and wave vector) canrbérar-
ily chosen, they can be regardedbasameterson which the
solutions (22) of the wave equations depend.

Clearly, although every pair of field&, B) that satis-

fies the Maxwell equations (13) also satisfies ribspective
wave equations (19) and (20), the converse isrnet This
means that the solutions (22) of the wave equatiemota
priori solutions of the Maxwell system of equations (id®
not represent e/m fields). This problem can be diedk
however, by appropriate choice of the parameteosthis
end, we substitute the general solutions (22) timosystem
(13) in order to find the extra conditions this teys re-
quires; that is, in order to make the two functiamq22)
BT-conjugate solutions of the respective wave dqoat
(19) and (20).

Substituting (28 and (2®) into (13) and (1®), re-

spectively, and taking into account thae'*" = ik ",
we have:

(Eo e—iwl).ﬁeik'vr' -0 > (—k- E) é(k‘-r'—ml) =0 '

(éo efiml).ﬁeik'vr' -0 > (T( ”g) é(k’~r>wt) =0 ,
so that

k-E =0, k-B=0. (23)

Physically, this means that the monochromatic plafme
wave is aransversavave.

Next, substituting (29 and (2d) into (1%) and (18l),
we find:

(k f-ot)

th(velkr)X% w"%
(k % EO) el (k-r—wt) % (kr wt)
efiwt (6 ei k‘-r')X —% - —iw £, 1, T;o ei(lZ»r'—wt) =
-5 i (KF-ot) “ - i (KF-ot)
(kxB))e = E e ,



so that

- = o @ -
kxE =w B , kx%:—g E (24)

This means that the field& and B are normal to each
other as well as being normal to the direction of
propagation. It can be seen that the two vectoataus in
(24) are not independent of each other; indeedssero

multiplying the first relation byz we get the second one.
Introducing a unit vectof in the direction of the wave

vectork ,
f=klk (k=|kl=w/c),

we rewrite the first of Egs. (24) as

k . - 1. -
B,=—(rxE)=—(txE) .
[ Cc

The BT-conjugate solutions in (22) are now written:

E(F,t)=E exp{i(k-T-wt)} ,
B(F,t) 1 (FxE,)exp{i(k-T - ot)} (25)
C
1. -
=—7xE
Cc

As constructed, the complex vector field§2B) satisfy
the Maxwell system (13), which is a homogeneousdin
system with real coefficients. Evidently, the rgalrts of
these fields also satisfy this system. To find ékpressions
for the real solutions (which, after all, carry thRysics of
the situation) we take the simplest case of a tiggaolar-
ized e/m wave and write:

E,=E,€" (26)

where the vectoE, , and the numbes are real. Theeal
versions of the fields (25), then, read:

m
Il
o
@]
)
=
—
|
S
i
Q
A

E

.
Il

~~
N>

xE Jcosk - o t+a) (27)

>

X
m

olr olr Jm

We note, in particular, that the fields and B “oscillate”
in phase.

Our results for the Maxwell equations in vacucan be
extended to the case oflimear non-conducting medium
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upon replacement of, and zo with ¢ andx, respectively.
The speed of propagation of the e/m wave is, ;¢hse,

1

N

5. The Maxwell system for a linear conducting
medium

1%

=~ |2

In a linear conducting medium of conductivity in which
Ohm's law is satisfiedJ, = cE (where J, is the free
current density), the Maxwell equations read [8]:

(a)
* (28)
oE

(b) (d) Vx B= po E+eu —
ot

By the integrability conditions
Vx(VxE)=V(V-E)-V’E,
Vx(VxB)=V(V-B)-V?’B,

we get thenodified wave equations

oE
—uo—=0
ot

d’E
ot?
d’B
ot?

V’E

ep

oB @9
—uo—=0
ot

V°B -

Ep

No new information is furnished by the remainindein
grability conditions (cf. Sec. 4).

We observe that the linear differential syst@8) is a
BT relating solutions of the wave equations (29 é&-
plained in the previous section, this BTnigt an auto-BT).
As in the vacuum case, we seek BT-conjugate sulth so
tions. As can be verified by direct substitutionoirEqgs.
(29), these PDEs admit parametric plane-wave swisitbf
the form

E(,t) = E, exp{-s7-F+i (k- T - wt)}
=E, exp{(i—fj IZ-F} expfimt )

B(F,t) = B, exp{-st-T+i(k-T— ot)}

=B, exp{(i—fj R-F} expFiot )

(30)



where 7 is the unit vector in the direction of the waveve
tor k ,

f=klk (k=|k|=wlv)

(v is the speed of propagation of the wave insidecthe
ducting medium) and where, for given physical cheeas-
tics e, u, o of the medium, the parametexk andw satisfy
the algebraic system

Sz—k2+g,ua)2:0, 31)
How—2sk=0

Up to this point the complex amplitud§§ and BO in
relations (30) are arbitrary and the vector figl@i8) are not

We also set

K+ 8§ & ;

k+is=|k+is|e" =

tanp=s/k .

Taking the real parts of Egs. (35), we finally have

E(f,t)=E,,e " "cos(k-T-wt+a),
o \V k2+32 A~ = _sti N
B(f,t)=—— (rxER)e cosk-T-ot+ta+e).

4]

6. Summary and concluding remarks

Backlund transformations (BTs) were originally dmd as

a priori solutions of the Maxwell equations (28), thus are a tool for finding solutions of nonlinear partiaffdrential

not yet BT-conjugate solutions of the respectiveevaqua-
tions in (29). To find the restrictions these amyles must
satisfy, we insert Egs. (30) into the system (28)th the
aid of the relation

it is not hard to show that (a38and (2®) impose the condi-
tions
k-E =0, k-B=0 (32)
Again, this means that the e/m wave is a transvwesase.
Substituting (30) into (28 and (28l), we find two more
conditions:

(k+is)7x E = 0B (33)

(k+i8)7x B, = — (suw + iuo) E, (34)
However, (34) is not an independent equation sincan be
reproduced by cross-multiplication of (33) byand use of
relations (31).

The BT-conjugate solutions of the wave ecunti(29)
are now written:

E(F,t) — Eo e—sr-T‘ ei(k-f—(ot) ,

. K+iS . = oir i (35)
B(F,t) = (txE,)e gk
w

To find the corresponding real solutions, we asslinear
polarization of the e/m wave and set, as before,

E,=E.€e".
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equations (PDEs). They were later also proven usefu
nonlocal recursion operators for constructing iitdinse-
guences of symmetries and conservation laws ofaicert
PDEs [2-7].

Generally speaking, a BT is a system of PBdmect-
ing two fields that are required to independendiisfy two
respective PDEs in order for the system to be ratadg for
either field. If a solution of either PDE is knowthen a
solution of the other PDE is obtained by integmatine BT,
without having to actually solve the latter PDE koifly
(which, presumably, would be a much harder task)the
case where the two PDEs are identical, an autoiBdiyzces
new solutions of a PDE from old ones.

As described above, a BT is an auxiliary foolfinding
solutions of a given (usually nonlinear) PDE, uskmpwn
solutions of the same or another PDE. In this lasticow-
ever, we approached the BT concept differently ttyally
inverting the problem. According to this schemeisitthe
solutions of the BT itself that we are after, haviparame-
ter-dependent solutions of the PDEs that expressrte-
grability conditions at hand. By a proper choicetlté pa-
rameters, a pair of solutions of these PDEs magiblysbe
found that satisfies the given BT. These solutiares then
said to beconjugatewith respect to the BT.

A pedagogical paradigm for demonstrating frasticu-
lar approach to the concept of a BT is offered Hxy Max-
well system of equations of electromagnetism. Wenstd
that this system can be thought of as a BT whasgiiabil-
ity conditions are the wave equations for the eleend the
magnetic field. These wave equations have knowrgme-
ter-dependent solutions (monochromatic plane wawéts)
arbitrary amplitudes, frequencies, wave vectors, &y
substituting these solutions into the BT, one matkednine
the required relations among the parameters inrahaé the
plane waves also represent electromagnetic fiéles,are
BT-conjugate solutions of the Maxwell system. Thsults
arrived at by this method are, of course, well knowv
advanced electrodynamics. The process of deriviregnt
however, is seen here in a new light by employhegdon-
cept of a BT.



We remark that the physical situation wasmgrad
from the point of view of a fixed inertial observérhus,
since no spacetime transformations were involves used

the classical form of the Maxwell equations (wEhand B
retaining their individual characters) rather thhe mani-
festly covariant form of these equations.

An interesting conclusion is that the conceyt a
Béacklund transformation, which has been provenesxély
useful for finding solutions of nonlinear PDEs, darcertain
cases also prove useful for integratiligear systemsof
PDEs. Such systems appear often in Physics andrigéc
Engineering (see, e.g., [9]) and it would certaibg of in-
terest to explore the possibility of using BT methdor
their integration.
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Abstract

In electrodynamics courses and textbooks, the ptiegeof plane electromag-
netic waves in both conducting and non-conductireglim are typically studied
from the point of view of the prototype case of anochromatic plane wave. In
this note an approach is suggested that starts finone general considerations
and better exploits the independence of the Maxagglations.

1. Introduction

Plane electromagnetic (e/m) waves constitute aifgignt type of solution of the
time-dependent Maxwell equations. A standard edealt approach in courses and
textbooks (at both the intermediate [1-4] and ttheaaced [5,6] level; see also [7,8])
Is to examine the prototype case of a monochronpédite wave in both a conducting
and a non-conducting medium.

In this note a more general approach to ttublpm is described that makes
minimal initial assumptions regarding the specifimctional forms of the plane
waves representing the electric and the magnedid. fThe only assumption one does
need to make from the outset is that both fieltkc{gc and magnetic) are expressible
in integral form as linear superpositions of monoahatic waves. In particular, it is
not even necessary gopriori require that the plane waves representing thefitas
travel in the same direction.

In Section 2 we review the case of a monaolatec plane e/m wave in empty
space. A more general (non-monochromatic) treatioktite plane-wave propagation
problem in empty space is then described in Seln Sec. 4 this general approach is
extended to plane-wave solutions in the case ahnaucting medium; an interesting
difference from the monochromatic case is noted.

2. The monochromatic-wave description for empty sgce

In empty space, where no charges or currents (whétde or bound) exist, thdax-
well equations are written (in S.I. units)

(@) V-E=0 (0 ﬁsz—%
oF M)
(b) V-B=0 (d) ﬁxézgoﬂoa

where E and B are the electric and the magnetic field, respebtivBy applying the
identities
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Vx(VxE)=V(V-E)-V’E,
Vx(VxB)=V(V-B)-V?B,

we obtain separate wave equationsfoand B :

,= 1 8°E
V2E - =0 2)
vzé—iazB:o (3)
c® ot?
where
e 1

e (4)

We try monochromatic plane-wave solutiong)fand (3), of angular frequency
o, propagating in the direction of the wave vedtar

E(r,t)=E,exp{i (k-F—wt)} (a)

B B . 5)
B(F,t)=Byexp{i (k-T-wt)} (b
where E, and B, are constant complex amplitudes, and where
a) —
¢ (k=lk]) (6)

The general solutions (5) do raopriori represent an e/m field. To find the extra
constraints required, we must substitute Eqs.nt®) the Maxwell system (1). By tak-

ing into account thaVe'*" = ik &7, thediv equations (a) and (1) yield
k-E=0 (@) k- B=0 (b 7)
while therot equations (&) and (H) give

KkxE=w B (3 T«B:-?E(b (8)

2

Now, we notice that the four equations (7)-48 not form an independent set
since (b) and (&) can be reproduced by usingafand (&). Indeed, taking the dot

product of (&) with kK we get (B), while taking the cross product ofaj8with k
and using (@) and (6), we find (B).

So, from 4 independent Maxwell equations viraimed only 2 independent
pieces of information. This happened because wa” “bair trial solutions (5) with
more information than necessary, in anticipatiorresfults that followa posteriori
from Maxwell’'s equations. Thus, we assumed from déset that the two waves
(electric and magnetic) have similar simple funatibforms and propagate in the



PLANE-WAVE SOLUTIONS OF MAXWELL EQUATIONS

same direction. By relaxing these initial assumpjoour analysis acquires a richer
and much more interesting structure.

3. A more general approach for empty space

Let us assume, more generally, that the fididand B represent plane waves propa-
gating in empty space in the directions of the uaitorsz and o, respectively:

E(F,t)=F(-F—ct), B(f,t)=G (& -F—ct) (9)

Furthermore, assume that the functidhsand G can be expressed as linear combi-
nations of monochromatic plane waves of the forin f(r continuously varying val-
ues ofk andw, wherew=ck, according to (6). Theft and B can be written in Fou-
rier-integral form, as follows:

E:J‘ Eo(k) é’k(ff—ct) dk

10
B:J- E)(k) ék(é'-rfct) dk ( )

In general, the integration varialitas assumed to run from O teo+ For notational
economy, the limits of integration with respeckiwill not be displayed explicitly.
By setting

u=rz-r-ct, v=o-T-ct (11)
we write
E(u)=[ B (K & d w2
é(v)zj B (K & dk
We note that
veki = jkrdkt, vev= i & (13)

By using (12) and (13) we find that
?-E:jikf-éo(k)ék“dk, Vézjik&-éo(k)ék"dk,
V x E:jikfx Ey(K) &Y dk Vx B:jikc}x B, (K) &< dk.
Moreover, we have that

8E_ . = iku aB_ . S kv
E_-ijo(k)é dk, E_-juwso(k)é dk

where, as alwaysy=ck.
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The two Gauss’ lawsdland (D) yield
jkf- E,(k) é“ dk=0 and jkc}- B,(K) €“ dk=0,

respectively. In order that these relations bedvalentically for allu and allv, re-
spectively, we must have

7-Ey(K)=0 and &-By(k)=0, for allk (14)

From Faraday's law @ and the Ampéere-Maxwell law ¢} we obtain two more in-
tegral equations:

jkfxéo(k) gl dk:ja)”@( X & d (15)
[kex By(K) ékakz—jC—“; (k& d (16)

where we have taken into account Eqg. (4).
Taking the cross product of (15) wish and using (16), we find the integral rela-
tion

[KI(6-Bp) #—(6-7) E)] & dk=—] KT & d.
This is true for all if
(6-E)i-(6-0)E=-E = (6-7-D)E= (6" B)7.

Given that, by (14)E0 andz are mutually perpendicular, the above relation aalg

be valid if -7 =1 and - E, =0. This, in turn, can only be satisfieddf=7. The
same conclusion is reached by taking the crossugtoaf (16) with7 and by using
(15) as well as the fact thﬁb is normal toc . From (11) we then have that

u=v=r-T—ct

so that relations (12) become

E(F,1) = j E, (k) €% dk= j B(p BET ¢

17
é(r,t)zjéo(k) ék“dkzj'ﬁ%(& K@Er-ch g ")
Equations (14) are now rewritten as
7-E,(k)=0 and 7-B,(k)=0, for allk (18)

Furthermore, in order that (15) and (16) (witland 7 in place ofv and &, respec-
tively) be identically valid for alu, we must have
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kixEy(W=wB(K < 7x B(R= cB( k (19)
and
x By =—5 BB = 7x By e=—% Bk (20)

for all k, wherek=w/c. Notice, however, that (19) and (20) are not irehejent equa-
tions, since (20) is essentially the cross prodfi¢19) with 7 .

In summary, the general plane-wave solutitmghe Maxwell system (1) are
given by relations (17) with the additional constta (18) and (19). This is, of
course, a well-known result, derived here by stgrtvith more general assumptions
and by best exploiting the independence [9] of\Mlaxwell equations.

Let us summarize our main findings:

1. The fieldsE and B are plane waves traveling in the same directiefindd
by the unit vector: ; these fields satisfy the Maxwell equations in gngpace.

2. The e/m wav€E, B) is atransversavave. Indeed, from equations (17) and the
orthogonality relations (18) it follows that

7-E=0 and 7-B= C (21)

3. The fieldsE and B are mutually perpendicular. Moreover, € B,7) define

a right-handed rectangular system. Indeed, by aragtplying (17) with 7 and by
using (19) and (20), we find:

FxE=cB, 7xB-_1E (22)
C

4. Takingeal valuesof (21) and (22), we have:

A

7-ReE=0, 7- RB= ( and 7xReE=cReB (23)

The magnitude of the last vector equation in (28¢ga relation between the instan-
taneous values of the electric and the magnett: fie

|ReE | ¢ |ReB 42
The above results for empty space can bend&tkin a straightforward way to the
case of dinear, non-conducting, non-dispersingedium upon replacement gf and
o With & andu, respectively [3]. The (frequency-independent)esbef propagation
of the plane e/m wave in this casesis1/(gu)*>.

4. The case of a conducting medium

The Maxwell equations for a conducting medium afidwctivity c may be written as
follows [1,3]:



C.J. PAPACHRISTOU

(a) V-E=0 © ﬁxéz_%
. (25)
- - = oE
(b) V-B=0 (d) V x B:IIJO' E+€,Lla
By using the vector identities
Vx(VxE)=V(V-E)-VZ?E,
Vx(VxB)=V(V-B)-V?B,
the relations (25) lead to timeodified wave equations
= 0°E oE
V’E - ¢ —uo—=0 26
HoF THO (26)
. 0°B 0B
VB -¢ - —=0 27
HoT T HO (27)

Guided by our monochromatic-wave approadhegoroblem in [7,8], we now try
a more general, integral form of solution of theabwave equations:

E(r,t):jéo(k) g ST dkir-en dk:j B( kexp{ (ik ¥-"F o)t d

_ . N . (28)
B(f,t):jBo(k) g ST gkiT-on dkzj' B( kexp{ (ik ¥ "¢ dt dl
wheres is a real parameter related to the conductivitthef medium. As in the vac-
uum case, the unit vectar indicates the direction of propagation of the wa\etice

that we have assumed from the outset that both svavelectric and magnetic —
propagate in the same direction, in view of thd that our results must agree with

those for a non-conducting medium (in particular,the vacuum) upon settirsg0.
It is convenient to set

exp{(k—-s)7-T—iwtj=A[ 1) (29)
Then, Eqg. (28) takes on the form

E(7,1) :jEO(k) A(T, t) dk

- - (30)
B(r,t)zjso(k) AT, t) dk
The following relations can be easily proven:
VA(F,t) = (ik —s) 7 A(T, t) (31)
V2A(T,t) = (s* — k- 2isk) AT, 1) (32)
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Moreover,

2
%A(F,t) —_iwA(Ft) and %A(F,t) — A1),

From (26) we get
I[(SZ— k2t spuw®+ i(uow-2sK] BE(§ A1) dkeO

[a similar integral relation is found from (27)]hiB will be identically satisfied for all
r andt if

s>~ k*+euw®=0 and pow- 2sk= ( (33)

By using relations (33)y ands can be expressed as functionk,0és required in or-
der that the integral relations (28) make sensdicBloin particular, that, by the sec-
ond relation (33)s=0 if 6=0 (non-conducting medium). Then, by the first relat
wlk=1/(e1)*?, which is the familiar expression for the speegmipagation of an e/m
wave in a non-conducting medium [3].

From the two Gauss’ laws @5%and (2%) we get the corresponding integral rela-
tions

J(k=9)7-B(K AT, 9 dk=0,
j(ik—s)f-a)(k) AT, 1Y) dk=0.
These will be identically satisfied for afl andt if
7-Ey(k)=0 and 7-B,(k)=0, for allk (34)
From (2%) and (2%l) we find

[(k=9)7xEy(K AT, 9 dk=[ wB(B A1) db
and

[(k=9)7xB(K AT, 9 dk= [ (uo - buw) B(R ATt ) dk,
respectively. To satisfy these for @llandt, we require that

(k+is)7x By(R = B(R (35)

and

(k+i8)7x By(K) = ~(suw+ o) By(K (36)

Note, however, that (36) is not an independent Bgjuaince it can be reproduced by
cross-multiplying (35) withr and by taking into account Egs. (33) and (34).
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We note the following:
1. From (30) and (34) we have that

7-E=0 and 7-B= ( (37)

or, in real form,7-ReE = 0 and7- R&= . This means that botReE and ReB

are normal to the direction of propagation of treve:
2. From (30) and (35) we get

A= o o -
erzijO(k)A(r,t)dk (38)

The integral on the right-hand side of (38) is, erafly, not a vector parallel t& .
Now, in the limit of negligible conductivitys€0) the relations (33) give=0 and
wlk=1/(eu)"%. The ratio w/k represents the speed of propagatiorin the non-
conducting medium, for the frequeney If the medium isnon-dispersivethe speed
v=wlk is constant, independent of frequency. Then &). (withs=0) becomes

FxE=0[B(k AT, dk=0 B

and, in real form, it reads x ReE =v ReB. Geometrically, this means that the
(ReE, ReB 7 ' define a right-handed rectangular system.

3. As shown in [7,8], th& and B are always mutually perpendicular imeno-
chromatice/m wave of definite frequeney, traveling in a conducting medium. Such
a wave is represented in real form by the equations

E(F,t)=E,e 5 cos(kF- tT-wt+a),
2 2 o
B(r.t)= VK4S B e cos(6- T-o t+ B )
w
where Eo is a real vector and where tgng¢)=s/k. This perpendicularity betweeh
and B ceases to exist, however, in a non-monochromatiewef the form (28).
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