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Abstract. Bäcklund transformations (BTs) are traditionally regarded as a tool for 
integrating nonlinear partial differential equations (PDEs). Their use has been recently 
extended, however, to problems such as the construction of recursion operators for 
symmetries of PDEs, as well as the solution of linear systems of PDEs. In this article, the 
concept and some applications of BTs are reviewed. As an example of an integrable linear 
system of PDEs, the Maxwell equations of electromagnetism are shown to constitute a BT 
connecting the wave equations for the electric and the magnetic field; plane-wave 
solutions of the Maxwell system are constructed in detail. The connection between BTs 
and recursion operators is also discussed.  

Keywords: Bäcklund transformations, integrable systems, Maxwell equations, 
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1.  INTRODUCTION 

Bäcklund transformations (BTs) were originally devised as a tool for obtaining solutions of 
nonlinear partial differential equations (PDEs) (see, e.g., [1] and the references therein). They 
were later also proven useful as recursion operators for constructing infinite sequences of 
nonlocal symmetries and conservation laws of certain PDEs [2–6].  

In simple terms, a BT is a system of PDEs connecting two fields that are required to 
independently satisfy two respective PDEs [say, (a) and (b)] in order for the system to be 
integrable for either field. If a solution of PDE (a) is known, then a solution of PDE (b) is 
obtained simply by integrating the BT, without having to actually solve the latter PDE (which, 
presumably, would be a much harder task). In the case where the PDEs (a) and (b) are 
identical, the auto-BT produces new solutions of PDE (a) from old ones.  

 As described above, a BT is an auxiliary tool for finding solutions of a given (usually 
nonlinear) PDE, using known solutions of the same or another PDE. But, what if the BT itself is 
the differential system whose solutions we are looking for? As it turns out, to solve the problem 
we need to have parameter-dependent solutions of both PDEs (a) and (b) at hand. By properly 
matching the parameters (provided this is possible) a solution of the given system is obtained.  
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 The above method is particularly effective in linear problems, given that parametric solutions 
of linear PDEs are generally not hard to find. An important paradigm of a BT associated with a 
linear problem is offered by the Maxwell system of equations of electromagnetism [7,8]. As is 
well known, the consistency of this system demands that both the electric and the magnetic field 
independently satisfy a respective wave equation. These equations have known, parameter-
dependent solutions; namely, monochromatic plane waves with arbitrary amplitudes, 
frequencies and wave vectors (the “parameters” of the problem). By inserting these solutions 
into the Maxwell system, one may find the appropriate expressions for the “parameters” in order 
for the plane waves to also be solutions of Maxwell’s equations; that is, in order to represent an 
actual electromagnetic field.  

 This article, written for educational purposes, is an introduction to the concept of a BT and its 
application to the solution of PDEs or systems of PDEs. Both “classical” and novel views of a 
BT are discussed, the former view predominantly concerning integration of nonlinear PDEs 
while the latter one being applicable mostly to linear systems of PDEs. The article is organized 
as follows:  

 In Section 2 we review the classical concept of a BT. The solution-generating process by 
using a BT is demonstrated in a number of examples.  

 In Sec. 3 a different perception of a BT is presented, according to which it is the BT itself 
whose solutions are sought. The concept of conjugate solutions is introduced.  

 As an example, in Secs. 4 and 5 the Maxwell equations in empty space and in a linear 
conducting medium, respectively, are shown to constitute a BT connecting the wave equations 
for the electric and the magnetic field. Following [7], the process of constructing plane-wave 
solutions of this BT is presented in detail. This process is, of course, a familiar problem of 
electrodynamics but is seen here under a new perspective by employing the concept of a BT.  

 Finally, in Sec. 6 we briefly review the connection between BTs and recursion operators for 
generating infinite sequences of nonlocal symmetries of PDEs.  

2.  BÄCKLUND TRANSFORMATIONS: CLASSICAL VIEWPOINT 

Consider two PDEs P[u]=0 and Q[v]=0 for the unknown functions u and v, respectively. The 
expressions P[u] and Q[v] may contain the corresponding variables u and v, as well as partial 
derivatives of u and v with respect to the independent variables. For simplicity, we assume that 
u and v are functions of only two variables x, t. Partial derivatives with respect to these variables 
will be denoted by using subscripts: ux , ut , uxx , utt , uxt , etc.  

Independently, for the moment, also consider a pair of coupled PDEs for u and v:  
 

    1 2[ , ] 0 ( ) [ , ] 0 ( )B u v a B u v b= =                                          (1) 

 
where the expressions Bi [u,v] (i=1,2) may contain u, v as well as partial derivatives of u and v 
with respect to x and t. We note that u appears in both equations (a) and (b). The question then 
is: if we find an expression for u by integrating (a) for a given v, will it match the corresponding 
expression for u found by integrating (b) for the same v? The answer is that, in order that (a) 
and (b) be consistent with each other for solution for u, the function v must be properly chosen 
so as to satisfy a certain consistency condition (or integrability condition or compatibility 
condition).  

By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for solution for v, 
for some given u, the function u must now itself satisfy a corresponding integrability condition.  

If it happens that the two consistency conditions for integrability of the system (1) are 
precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a Bäcklund 
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transformation (BT) connecting solutions of P[u]=0 with solutions of Q[v]=0. In the special case 

where PºQ, i.e., when u and v satisfy the same PDE, the system (1) is called an auto-Bäcklund 

transformation (auto-BT) for this PDE.  
Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able to find a 

BT connecting solutions u of this equation with solutions v of the PDE Q[v]=0 (if PºQ , the auto-
BT connects solutions u and v of the same PDE) and let v=v0(x,t) be some known solution of 
Q[v]=0. The BT is then a system of PDEs for the unknown u,  

 

0[ , ] 0 , 1,2iB u v i= =                                                (2) 

 
The system (2) is integrable for u, given that the function v0 satisfies a priori the required 

integrability condition Q[v]=0. The solution u then of the system satisfies the PDE P[u]=0. Thus 
a solution u(x,t) of the latter PDE is found without actually solving the equation itself, simply by 
integrating the BT (2) with respect to u. Of course, this method will be useful provided that 
integrating the system (2) for u is simpler than integrating the PDE P[u]=0 itself. If the 
transformation (2) is an auto-BT for the PDE P[u]=0, then, starting with a known solution v0(x,t) 
of this equation and integrating the system (2), we find another solution u(x,t) of the same 
equation.  

Let us see some examples of the use of a BT to generate solutions of a PDE:  
 
1. The Cauchy-Riemann relations of Complex Analysis,  
 

        ( ) ( )x y y xu v a u v b= = -                                         (3) 

 
(here, the variable t has been renamed y) constitute an auto-BT for the Laplace equation,  
 

        [ ] 0xx yyP w w wº + =                                                 (4) 

 
Let us explain this: Suppose we want to solve the system (3) for u, for a given choice of the 

function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we must compare them 
in some way. We thus differentiate (a) with respect to y and (b) with respect to x, and equate the 
mixed derivatives of u. That is, we apply the integrability condition (ux)y= (uy)x . In this way we 
eliminate the variable u and find the condition that must be obeyed by v(x,y):  

 

[ ] 0xx yyP v v vº + =  . 

 
Similarly, by using the integrability condition (vx)y= (vy)x to eliminate v from the system (3), we 

find the necessary condition in order that this system be integrable for v, for a given function 
u(x,y):  

[ ] 0xx yyP u u uº + =  . 

 
In conclusion, the integrability of system (3) with respect to either variable requires that the 

other variable must satisfy the Laplace equation (4).  
Let now v0(x,y) be a known solution of the Laplace equation (4). Substituting v=v0 in the 

system (3), we can integrate this system with respect to u. It is not hard to show (by eliminating 
v0 from the system) that the solution u will also satisfy the Laplace equation (4). As an example, 
by choosing the solution v0(x,y)=xy , we find a new solution  u(x,y)= (x

2 
–y2)/2 +C .  

2. The Liouville equation is written  
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[ ] 0u u
xt xtP u u e u eº - = Û =                                       (5) 

 
Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus sought by 

means of a BT. We consider an auxiliary function v(x,t) and an associated PDE,  
 

        [ ] 0xtQ v vº =                                                       (6) 

 
We also consider the system of first-order PDEs,  
 

        
( )/2 ( )/22 ( ) 2 ( )u v u v

x x t tu v e a u v e b- ++ = - =                       (7) 

 
Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and eliminating 

(ut -vt) and (ux+vx) in the ensuing equations with the aid of (a) and (b), we find that u and v 
satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is a BT connecting solutions of 
(5) and (6). Starting with the trivial solution v=0 of (6), and integrating the system  

 
/2 /22 , 2 ,x t

u uu e u e= =  

 
we find a nontrivial solution of (5):  

( , ) 2ln
2

x t
u x t C

+æ ö
=- -ç ÷

è ø
 . 

 
 3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., in the study 

of crystalline solids, in the transmission of elastic waves, in magnetism, in elementary-particle 
models, etc. The equation (whose name is a pun on the related linear Klein-Gordon equation) is 
written  

 

        [ ] sin 0 sinxt xtP u u u u uº - = Û =                                    (8) 

 
The following system of equations is an auto-BT for the nonlinear PDE (8):  
 

        
1 1 1
( ) sin , ( ) sin
2 2 2 2

x t

u v u v
u v a u v

a

- +æ ö æ ö+ = - =ç ÷ ç ÷
è ø è ø

                    (9) 

 
where a (≠0) is an arbitrary real constant. [Because of the presence of a, the system (9) is called 
a parametric BT.] When u is a solution of (8) the BT (9) is integrable for v, which, in turn, also is 
a solution of (8): P[v]=0; and vice versa. Starting with the trivial solution  v=0  of  vxt= sin v , and 
integrating the system  

2
2 sin , sin ,

2 2
x t

u u
u a u

a
= =  

 
we obtain a new solution of (8):  
 

( , ) 4arctan exp
t

u x t C ax
a

ì üæ ö= +í ýç ÷
è øî þ

 . 
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3.  CONJUGATE SOLUTIONS AND ANOTHER VIEW OF A BT 

As presented in the previous section, a BT is an auxiliary device for constructing solutions of 
a (usually nonlinear) PDE from known solutions of the same or another PDE. The converse 
problem, where solutions of the differential system representing the BT itself are sought, is also 
of interest, however, and has been recently suggested [7,8] in connection with the Maxwell 
equations (see subsequent sections).  

To be specific, assume that we need to integrate a given system of PDEs connecting two 
functions u and v:  

        [ , ] 0 , 1,2iB u v i= =                                                (10) 

 
Suppose that the integrability of the system for both functions requires that u and v 

separately satisfy the respective PDEs  
 

        [ ] 0 ( ) [ ] 0 ( )P u a Q v b= =                                        (11) 

 
That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, that 

these PDEs possess known (or, in any case, easy to find) parameter-dependent solutions of the 
form  

        ( , ; , , ) , ( , ; , , )u f x y v g x ya b k l= =, ) , ( , ; , , ); , ,; , ,g y, ) , ( ,, ( ,)                                (12) 

 
where α, β, κ, λ, etc., are (real or complex) parameters. If values of these parameters can be 

determined for which u and v jointly satisfy the system (10), we say that the solutions u and v of 
the PDEs (11a) and (11b), respectively, are conjugate through the BT (10) (or BT-conjugate, for 
short). By finding a pair of BT-conjugate solutions one thus automatically obtains a solution of 
the system (10).  

      Note that solutions of both integrability conditions P[u]=0 and Q[v]=0 must now be known 
in advance! From the practical point of view the method is thus most applicable in linear 
problems, since it is much easier to find parameter-dependent solutions of the PDEs (11) in this 
case.  

      Let us see an example: Going back to the Cauchy-Riemann relations (3), we try the 
following parametric solutions of the Laplace equation (4):  

 
2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

a b g
k l m

= - + +

= + +
 

 
Substituting these into the BT (3), we find that κ=2α, μ=β and λ= –γ. Therefore, the solutions  
 

2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

a b g
a g b

= - + +

= - +
 

 
of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination:  
 

( , ) , ( , ) .u x y xy v x y xya b= =  
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Inserting these into the system (3) and taking into account the independence of x and y, we 
find that the only possible values of the parameters α and β are α=β=0, so that u(x,y)= v(x,y)=0. 
Thus, no non-trivial BT-conjugate solutions exist in this case.  

4.  EXAMPLE: THE MAXWELL EQUATIONS IN EMPTY SPACE 

An example of an integrable linear system whose solutions are of physical interest is 
furnished by the Maxwell equations of electrodynamics. Interestingly, as noted recently [7], the 
Maxwell system has the property of a BT whose integrability conditions are the electromagnetic 
(e/m) wave equations that are separately valid for the electric and the magnetic field. These 
equations possess parameter-dependent solutions that, by a proper choice of the parameters, 
can be made BT-conjugate through the Maxwell system. In this and the following section we 
discuss the BT property of the Maxwell equations in vacuum and in a conducting medium, 
respectively.  

      In empty space, where no charges or currents (whether free or bound) exist, the Maxwell 
equations are written (in S.I. units) [9]  

 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
e m

¶
Ñ× = Ñ´ = -

¶

¶
Ñ× = Ñ´ =

¶

0 ( )
B

E0 ( )
¶

= -E0 ( )
B

EE
B d B0 ( )0 ( ) e m

¶
=B0 ( )0 ( )0

E
                           (13) 

 

where EE  and BB  are the electric and the magnetic field, respectively. Here we have a system 
of four PDEs for two fields. The question is: what are the necessary conditions that each of 
these fields must satisfy in order for the system (13) to be self-consistent? In other words, what 
are the consistency conditions (or integrability conditions) for this system?  

      Guided by our experience from Sec. 2, to find these conditions we perform various 
differentiations of the equations of system (13) and require that certain differential identities be 
satisfied. Our aim is, of course, to eliminate one field (electric or magnetic) in favor of the other 
and find some higher-order PDE that the latter field must obey.  

      As can be checked, two differential identities are satisfied automatically in the system 
(13):  

( ) 0 , ( ) 0 ,E BÑ× Ñ´ = Ñ× Ñ´ =( ) 0 ( ) 0) 0 ( )Ñ×( )( ) 0 ( )(  

 

( ) , ( ) .t t t tE E B BÑ× =Ñ× Ñ× =Ñ×) ( )) ( ))) ( )) )(  

 
Two others read  

        
2( ) ( )E E EÑ´ Ñ´ =Ñ Ñ× -Ñ 2( ) ( ) E2) ( )) ( )Ñ´(( ) ( )) ( )) (                                         (14) 

 

        
2( ) ( )B B BÑ´ Ñ´ =Ñ Ñ× -Ñ 2( ) ( ) B2) ( )) (Ñ´(( ) ( )) )                                         (15) 

 
Taking the rot of (13c) and using (14), (13a) and (13d), we find  
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2

2

0 0 2
0

E
E

t
e m

¶
Ñ - =

¶
E

E
¶

-E e m
¶

                                            (16) 

Similarly, taking the rot of (13d) and using (15), (13b) and (13c), we get  
 

        
2

2

0 0 2
0

B
B

t
e m

¶
Ñ - =

¶
B

B
¶

-B e m
¶

                                             (17) 

 
No new information is furnished by the remaining two integrability conditions,  
 

( ) , ( ) .t t t tE E B BÑ´ =Ñ´ Ñ´ =Ñ´) ( )) ( )) ( )) ( )) ( )) ( )  

 
      Note that we have uncoupled the equations for the two fields in the system (13), deriving 

separate second-order PDEs for each field. Putting  
                           

        0 0 2

0 0

1 1
c

c
e m

e m
º Û =                                          (18) 

 
(where c is the speed of light in vacuum) we rewrite (16) and (17) in wave-equation form:  
 

        
2

2

2 2

1
0

E
E

c t

¶
Ñ - =

¶
E21 E

E
¶

-
1 E

E
¶

                                                (19) 

 

        

2
2

2 2

1
0

B
B

c t

¶
Ñ - =

¶
B21 B

B
¶

-
1 B

B
¶

                                                 (20) 

 
      We conclude that the Maxwell system (13) is a BT relating solutions of the e/m wave 

equations (19) and (20), these equations representing the integrability conditions of the BT. It 
should be noted that this BT is not an auto-BT! Indeed, although the PDEs (19) and (20) are of 
similar form, they concern different fields with different physical dimensions and physical 
properties.  

      The e/m wave equations admit plane-wave solutions of the form ( )F k r tw× -F ( )) , with  

 

        where | |c k k
k

w
= = |                                            (21) 

 
The simplest such solutions are monochromatic plane waves of angular frequency ω, 

propagating in the direction of the wave vector kk :  

 

        
0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

w

w

= × -

= × -

E (( } ( )} (()})}) exp{ () exp{ (exp{ (exp{ ( )}))})}(E ((

B ((

E ( , ) exp{ (, ) exp{ (0 exp{ (exp{ ()) exp{ (exp{ ( } ( )

} ( )

} ((

, ) exp{ ( )} () { ( )} (0 exp{ (exp{ (exp{ (

)} (()})})

)})

)})0, ) exp{ (0, ) exp{ (, ) exp{ (0

) exp{ (expexp{ (exp{ (exp{ (

, ) exp{ (, ) exp{ (0
                                   (22) 
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where 0EE  and 0BB  are constant complex amplitudes. The constants appearing in the above 

equations (amplitudes, frequency and wave vector) can be chosen arbitrarily; thus they can be 
regarded as parameters on which the plane waves (22) depend.  

      We must note carefully that, although every pair of fields ( , )E B)))  satisfying the Maxwell 

equations (13) also satisfies the wave equations (19) and (20), the converse is not true. Thus, 
the plane-wave solutions (22) are not a priori solutions of the Maxwell system (i.e., do not 
represent actual e/m fields). This problem can be taken care of, however, by a proper choice of 
the parameters in (22). To this end, we substitute the general solutions (22) into the BT (13) to 
find the extra conditions the latter system demands. By fixing the wave parameters, the two 
wave solutions in (22) will become BT-conjugate through the Maxwell system (13).  

      Substituting (22a) and (22b) into (13a) and (13b), respectively, and taking into account 

that 
i k r i k re i k e× ×Ñ = i k rk e i k ri k ri k ri k ri k ri k ri k r i ki k rÑee i k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k r

, we have  

 
( )

0 0

( )

0 0

( ) 0 ( ) 0 ,

( ) 0 ( ) 0 ,

i t i k r i k r t

i t i k r i k r t

E e e k E e

B e e k B e

w w

w w

- × × -

- × × -

×Ñ = Þ × =

×Ñ = Þ × =

,0i t i k r i)i t i k r ii t i)))))) ( )( )( )0 ( ) ( )( )( )( )( )0 (0 (00 (k r ik r i 0( )( )( )( )( )( )( )( )( )0 ((00 ( ( ) 0( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )k r ik r i0 (0 (0 (0 ( ( ))) ( )( )( ))))) ( )( ))) ( )( )))k r i ( )( )k r i ( )( )) ( )( )) ( )( )) ( )( )))))0 00 00 0

0i t i k r i

)0 00 00 0

)i t i k r ii t i))))))))

0 00 00 00 (0 (00 00 00 00 0

( )( )( )0 ( )0 ( )0 ( ( )( )( )( )( )0 (0 (00 (0 (0

00 00 00 0

k r ik r i 0( )( )( )( )( )( )( )( )( )0 (00 ( ( ) 0( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )k r ik r i0 ((0 ((0 ( ( ))) ( )( )( )))))

)0 0)0 0))0 00 00 0)0 0

( )( ))) ( )( )))k r i ( )( )k r i ( )( ))) ( )( )) ( )( ))) ( )( )))
 

 
so that  

        0 00 , 0k E k B× = × =k EE 0E 0 0E k B0EE 0 .                                            (23) 

 
Relations (23) reflect the fact that that the monochromatic plane e/m wave is a transverse 

wave.  
      Next, substituting (22a) and (22b) into (13c) and (13d), we find  
 

( )

0 0

( ) ( )

0 0

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e E i B e

k E e B e

w w

w w

w

w

- × × -

× - × -

Ñ ´ = Þ

´ =

Þi t i k r ii t i k r i Þ( )( )( )E i B e)w w( )( )k r i ( )( )( )E i B eE)k r ik r ik r i))k r ik r ik r ik r i Þ( )( )( )k r i ( )( )( )k r ik r ik r i)k r i ( )( )( )k r ik r i)) ( )k r i ( )( )k r i ( )( )( )))k r ik r i)) ( )( )( )k r i ( )( )( )k r ik r i))k r i ( )( )( )k r ik r i))e (

( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ()) ( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (

0 0)´ = Þ0 0) B e0 00 0E iE i0 00 0) 0 00 00 00 00 0)

( ) (( ) (( ) (( ) (( ) (( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ( ))( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (

(

i k r( ) (( ) (

(

)) ( ) (( ) ()) ( ) (( ) (( ) (( ) (( ) (( ) (( ) (
 

 
( )

0 0 0 0

( ) ( )

0 02

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e B i E e

k B e E e
c

w w

w w

w e m

w

- × × -

× - × -

Ñ ´ = - Þ

´ = -

i t i k r ii t i k r i Þ( )( )( )B i E eB i)w w( )( )k r i ( )( )( )B i E eB)k r ik r ik r i))k r ik r ik r ik r i Þ( )( )( )k r i ( )( )( )k r ik r i))k r i ( )( )( )k r ik r i)) ( )k r i ( )( )k r i ( )( )( ))k r i)) ( )( )( )k r i ( )( )( )k r ik r i))k r i ( )( )( )k r ik r i))

( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ()) ( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ( ))( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (w( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (i k r( ) (( ) ()) ( ) (( ) () ( ) (( ) (( ) (( ) (( ) (( ) (( ) (
 

 
so that  

        0 0 0 02
,k E B k B E

c

w
w´ = ´ = -k EE EE B k BE B k B E

w
E B k B                                   (24) 

 

We note that the fields EE  and BB  are normal to each other, as well as normal to the direction 
of propagation of the wave. We also remark that the two vector equations in (24) are not 

independent of each other, since, by cross-multiplying the first relation by kk , we get the second 

relation.  

      Introducing a unit vector t̂  in the direction of the wave vector kk ,  

 

ˆ / ( | | / )k k k k ct w= = =/ ( | | / )k / ( | | // ( | | /k / ( | |/ ( | ||k / ( | |/ ( | |( | |  , 

 
we rewrite the first of equations (24) as  
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0 0 0

1
ˆ ˆ( ) ( )

k
B E E

c
t t

w
= ´ = ´

1
ˆ ˆ

1
( ) ( )ˆ ˆ̂

1k
B ( ) (( ) (ˆ ˆ̂ˆ

1k
( ) (( )( ) (( ) (( )( ) (( )  . 

 
The BT-conjugate solutions in (22) are now written  
 

        
0

0

( , ) exp{ ( )} ,

1 1
ˆ ˆ( , ) ( )exp{ ( )}

E r t E i k r t

B r t E i k r t E
c c

w

t w t

= × -

= ´ × - = ´

E (( )} ,, ) exp{ (, ) exp{ (0 exp{ (exp{ (exp{ ( )}) exp{ () { (exp{ (exp{ (exp{ ( )} ,0( , ) p{ (0

B ((

)} ,

E, ), ) (( )exp{ ( )}( )exp{ ( )}( )exp{ ( )( )exp{ (0

1 1
ˆ

1
Eˆ

1
) ( )exp{ ( )}) ( )exp{ (
11
ˆ̂( )exp{ ( )}( )exp{ ((( )exp{ ( )}( )exp{ ( )}( )exp{ ( )( )exp{ ( )})})})})})})

                           (25) 

 
      As constructed, the complex vector fields in (25) satisfy the Maxwell system (13). Since 

this system is homogeneous linear with real coefficients, the real parts of the fields (25) also 
satisfy it. To find the expressions for the real solutions (which, after all, carry the physics of the 
situation) we take the simplest case of linear polarization and write  

 

        0 0,

i

RE E e a= iE E e a
                                                   (26) 

 

where the vector 0,REE  as well as the number α are real. The real versions of the fields (25), 

then, read  

        
0,

0,

cos ( ) ,

1 1
ˆ ˆ( )cos ( )

R

R

E E k r t

B E k r t E
c c

w a

t w a t

= × - +

= ´ × - + = ´

E E cos (cosEE cos ((

1
ˆ

1
Eˆ

1
))))

0,

1

R

B
1
( )cos (( ˆ̂( )cos (( )cos (( )cos ()cos ()cos (

                          (27) 

 

We note, in particular, that the fields EE  and BB  “oscillate” in phase.  
      Our results for the Maxwell equations in vacuum can be extended to the case of a linear 

non-conducting medium upon replacement of ε0 and μ0 with ε and μ, respectively. The speed of 
propagation of the e/m wave is, in this case,  

 

1

k

w
u

em
= =   . 

 
In the next section we study the more complex case of a linear medium having a finite 

conductivity.  

5.  EXAMPLE: THE MAXWELL SYSTEM FOR A LINEAR 
CONDUCTING MEDIUM 

Consider a linear conducting medium of conductivity σ. In such a medium, Ohm’s law is 

satisfied: fJ Es=J EEE , where fJJ  is the free current density. The Maxwell equations take on the 

form [9]  
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( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
ms e m

¶
Ñ× = Ñ´ = -

¶

¶
Ñ× = Ñ´ = +

¶

0 ( )
B

E0 ( )
¶

= -EE0 ( )0 ( )0
B

E
B d B E0 ( )0 ( ) e m

¶
+B EB0 ( )0 ( )0 EE

E
                       (28) 

 
By requiring satisfaction of the integrability conditions  
 

2

2

( ) ( ) ,

( ) ( ) ,

E E E

B B B

Ñ´ Ñ´ =Ñ Ñ× -Ñ

Ñ´ Ñ´ =Ñ Ñ× -Ñ

2( ) ( ) 2) ( ) 2Ñ´ (( ) ( )) ( )) ( )

2

( ) ( ) ,

( ) ( ) 2) ( ) 2

Ñ´ ( ) ( )( ) ( )) ( )) ( )) ( )

Ñ´ (( ) ( )

Ñ´ (( ) ( )) ( )) ( )
 

 
we obtain the modified wave equations  

        

2
2

2

2
2

2

0

0

E E
E

t t

B B
B

t t

e m ms

e m ms

¶ ¶
Ñ - - =

¶ ¶

¶ ¶
Ñ - - =

¶ ¶

E¶E2
E

¶ 2
-E e m

¶
t

B

¶

¶B2
B

¶ 2
-B e m

¶
                                      (29) 

 
which must be separately satisfied by each field. As in Sec. 4, no further information is 

furnished by the remaining integrability conditions.  
      The linear differential system (28) is a BT relating solutions of the wave equations (29). 

As in the vacuum case, this BT is not an auto-BT. We now seek BT-conjugate solutions. As can 
be verified by direct substitution into equations (29), these PDEs admit parameter-dependent 
solutions of the form  

 

        

0

0

0

0

ˆ( , ) exp{ ( )}

exp exp( ) ,

ˆ( , ) exp{ ( )}

exp exp( )

E r t E s r i k r t

s
E i k r i t

k

B r t B s r i k r t

s
B i k r i t

k

t w

w

t w

w

= - × + × -

ì üæ ö= - × -í ýç ÷
è øî þ

= - × + × -

ì üæ ö= - × -í ýç ÷
è øî þ

E ( )}, ) exp{ (, ) exp{ (exp{ (exp{ (exp{0 ( )}ˆ) { ˆexp{{{

E exp
ì

E expí
ìì

exp(p(exp(exp(exp(
ü
exp(ý

üü

þ

B ((

îè k

)}, ), ) ((

øk

exp{ (exp{ (exp{0 ((( )}

þ

ˆ) {) ˆ

îè k

exp{{{

B exp
ì

B expí
ìì

exp(p(exp(exp(exp(
ü
exp(ý

üü

                          (30) 

 

where t̂  is the unit vector in the direction of the wave vector kk :  

 

ˆ / ( | | / )k k k kt w u= = =/ ( | | / )k / ( | | / )k / ( |/ ( | ||k / ( |/ ( |( |  

 
(υ is the speed of propagation of the wave inside the conducting medium) and where, for 

given physical characteristics ε, μ, σ of the medium, the parameters s, k and ω satisfy the 
algebraic system  

        
2 2 2 0 , 2 0s k skemw msw- + = - =                                (31) 
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      We note that, for arbitrary choices of the amplitudes 0EE  and 0BB , the vector fields (30) are 

not a priori solutions of the Maxwell system (28), thus are not BT-conjugate solutions. To obtain 
such solutions we substitute expressions (30) into the system (28). With the aid of the relation  

 
s s

i k r i k r
k ks

e i k e
k

æ ö æ ö- × - ×ç ÷ ç ÷
è ø è øæ öÑ = -ç ÷

è ø

k rr ir ir ir ir ir ir ir ir ir ir ir i k r
s ss s

r ir i
s s

r i
s s

r i
s ss ss ss s

r ir ir ir i
s ss s

r ir i k rr ir i
è øk kk kk ek kk k
ç ÷ç ÷r ir ir ir i

k kk kk kk kk k
k rk rk rr ir ir ir ir i k r

æ ös ss ss ss s
k rk rr ir ir ir ir ir i

s ss ss ss ss s
r ir i

æ ös ss s
i k
s ss ss s

ç ÷i k r ii k
æ öæ ö
i ki ki ki k
s ss ss ss ss s

i k r ii ki ki k
k kk k

ç ÷ç ÷i k r ii ki ki k
k kk kk kk kk kk kk kk kÑe k kk k

s ss ss s
i k r ii k r i
s ss s

i k r ii k r ir ir i
s ss s

r ir i
s s

r i

 

 
one can show that (28a) and (28b) impose the conditions  

        0 00 , 0k E k B× = × =k EEE 0E 0 0E k B0EE 0                                              (32) 

 
As in the vacuum case, the e/m wave in a conducting medium is a transverse wave.  
      By substituting (30) into (28c) and (28d), two more conditions are found:  
 

        0 0
ˆ( )k is E Bt w+ ´ =E BBBEEE                                               (33) 

 

        0 0
ˆ( ) ( )k is B i Et emw ms+ ´ = - + E( )( ))((                                      (34) 

 
Note, however, that (34) is not an independent equation since it can be reproduced by cross-

multiplying (33) by t̂ , taking into account the algebraic relations (31).  

      The BT-conjugate solutions of the wave equations (29) are now written  
 

        

ˆ ( )
0

ˆ ( )
0

( , ) ,

ˆ( , ) ( )

s r i k r t

s r i k r t

E r t E e e

k is
B r t E e e

t w

t wt
w

- × × -

- × × -

=

+
= ´

( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )ˆ
( ) ( )s rˆE( )( ) ( )( )( )s rs r ( )( )s r i k( )( )s r i k( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( ), ), ) 0))) 0

ˆ ( )

( , ) ,0

ˆ( ) ( )ˆ
s rˆ ( )( )is

B e e( ( )ˆ
s rt w( )( )i k( )( )( )s rs res rs rs rs rs rs rs r( ( )i k( )( )i k( )( )( )s r i k( )( )s r i k( )( )( )s r ( )( )( )( )( )( )( )( )( ), ), ))

k
)

                                  (35) 

 
To find the corresponding real solutions, we assume linear polarization of the wave, as 

before, and set  
 

0 0,

i

RE E e a= iE E e a
. 

 
We also put  

2 2| | ; tan /i ik i s k i s e k s e s kj j j+ = + = + = . 

 
Taking the real parts of equations (35), we finally have:  
 

ˆ

0,

2 2
ˆ

0,

( , ) cos( ) ,

ˆ( , ) ( ) cos( ) .

s r
R

s r
R

E r t E e k r t

k s
B r t E e k r t

t

t

w a

t w a j
w

- ×

- ×

= × - +

+
= ´ × - + +

E(( ) ,, ), ) ))cos(cos(cos(0, os((os(
ˆs r)) ts rs r cos r coco

B(( ) ., ), ) ))(( ) cos(( ) cos(( ) cos(( ) cos(0,

2 2
ˆ

ˆ
s rk s2 2

) ( )) ( ˆ ts rs r
2 22 2

( )(( cos(cos() cos() cos() cos(s r cos(cos(cos(cos(

 

 
      As an exercise, the student may show that these results reduce to those for a linear non-

conducting medium (cf. Sec. 4) in the limit σ®0.  
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6.  BTS AS RECURSION OPERATORS 

 
The concept of symmetries of PDEs was discussed in [1]. Let us review the main facts:  
      Consider a PDE F[u]=0, where, for simplicity, u=u(x,t). A transformation  
 

u (x,t)  ®  u΄ (x,t) 
 
from the function u to a new function u΄ represents a symmetry of the given PDE if the 

following condition is satisfied: u΄(x,t) is a solution of F[u]=0 if u(x,t) is a solution. That is,  
 

    [ ] 0 [ ] 0F u when F u¢ = =                                         (36) 

 
      An infinitesimal symmetry transformation is written  
 

    [ ]u u u u Q ud a¢ = + = +                                             (37) 

 

where α is an infinitesimal parameter. The function Q[u]ºQ(x, t, u, ux , ut ,...) is called the 
symmetry characteristic of the transformation (37).  

      In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it must 
satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We write, symbolically,  

 

   ( ; ) 0 [ ] 0S Q u when F u= =                                        (38) 

 
where the expression S depends linearly on Q and its partial derivatives. Thus, (38) is a 

linear PDE for Q, in which equation the variable u enters as a sort of parametric function that is 
required to satisfy the PDE F[u]=0.  

      A recursion operator R̂  [10] is a linear operator which, acting on a symmetry 

characteristic Q, produces a new symmetry characteristic ˆQ RQ¢ = . That is,  

 

  ˆ( ; ) 0 ( ; ) 0S RQ u when S Q u= =                                    (39) 

 
It is not too difficult to show that any power of a recursion operator also is a recursion 

operator. This means that, starting with any symmetry characteristic Q, one may in principle 
obtain an infinite set of characteristics (thus, an infinite number of symmetries) by repeated 
application of the recursion operator.  

      A new approach to recursion operators was suggested in the early 1990s [2,3] (see also 
[4-6]). According to this view, a recursion operator is an auto-BT for the linear PDE (38) 
expressing the symmetry condition of the problem; that is, a BT producing new solutions Q΄ of 
(38) from old ones, Q. Typically, this type of BT produces nonlocal symmetries, i.e., symmetry 
characteristics depending on integrals (rather than derivatives) of u.  

      As an example, consider the chiral field equation  
 

   
1 1[ ] ( ) ( ) 0x x t tF g g g g g- -º + =                                        (40) 

 
(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued function of x 

and t (i.e., an invertible complex n´n matrix, differentiable for all x, t).  
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      Let Q[g] be a symmetry characteristic of the PDE (40). It is convenient to put  
 

Q [g] = g Φ[g] 
 
and write the corresponding infinitesimal symmetry transformation in the form  
 

    [ ]g g g g g gd a¢ = + = + F                                          (41) 

 
The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in Φ also. As can 

be shown [4], this PDE is  
 

  
1 1( ; ) [ , ] [ , ] 0xx tt x x t tS g g g g g- -F º F + F + F + F =                      (42) 

 

which must be valid when F[g]=0  (where, in general,  [A, B] º AB–BA  denotes the 
commutator of two matrices A and B).  

      For a given g satisfying F[g]=0, consider now the following system of PDEs for the matrix 
functions Φ and Φ΄:  

 

     

1

1

[ , ]

[ , ]

x t t

t x x

g g

g g

-

-

¢F = F + F

¢-F = F + F
                                              (43) 

 

The integrability condition ( ) ( )x t t x
¢ ¢F = F , together with the equation F[g]=0, require that Φ be 

a solution of (42):  S (Φ ; g) = 0.  Similarly, by the integrability condition ( ) ( )t x x tF = F  one finds, 

after a lengthy calculation:  S (Φ΄; g) = 0.  
      In conclusion, for any g satisfying the PDE (40), the system (43) is a BT relating solutions 

Φ and Φ΄ of the symmetry condition (42) of this PDE; that is, relating different symmetries of the 
chiral field equation (40). Thus, if a symmetry characteristic Q=gΦ of (40) is known, a new 
characteristic Q΄=gΦ΄ may be found by integrating the BT (43); the converse is also true. Since 
the BT (43) produces new symmetries from old ones, it may be regarded as a recursion 
operator for the PDE (40).  

      As an example, for any constant matrix M the choice Φ=M clearly satisfies the symmetry 
condition (42). This corresponds to the symmetry characteristic Q=gM. By integrating the BT 
(43) for Φ΄, we get Φ΄=[X, M] and Q΄=g[X, M], where X is the “potential” of the PDE (40), defined 
by the system of PDEs  

 
1 1,x t t xX g g X g g- -= - =                                           (44) 

 
Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of the 

potential X. Indeed, as seen from (44), in order to find X one has to integrate the chiral field g 
with respect to the independent variables x and t. The above process can be continued 
indefinitely by repeated application of the recursion operator (43), leading to an infinite 
sequence of increasingly nonlocal symmetries.  
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7.  SUMMARY  

Classically, Bäcklund transformations (BTs) have been developed as a useful tool for finding 
solutions of nonlinear PDEs, given that these equations are usually hard to solve by direct 
methods. By means of examples we saw that, starting with even the most trivial solution of a 
PDE, one may produce a highly nontrivial solution of this (or another) PDE by integrating the BT, 
without solving the original, nonlinear PDE directly (which, in most cases, is a much harder task).  

 A different use of BTs, that was recently proposed [7,8], concerns predominantly the solution 
of linear systems of PDEs. This method relies on the existence of parameter-dependent 
solutions of the linear PDEs expressing the integrability conditions of the BT. This time it is the 
BT itself (rather than its associated integrability conditions) whose solutions are sought.  

An appropriate example for demonstrating this approach to the concept of a BT is furnished 
by the Maxwell equations of electromagnetism. We showed that this system of PDEs can be 
treated as a BT whose integrability conditions are the wave equations for the electric and the 
magnetic field. These wave equations have known, parameter-dependent solutions – 
monochromatic plane waves – with arbitrary amplitudes, frequencies and wave vectors playing 
the roles of the “parameters”. By substituting these solutions into the BT, one may determine the 
required relations among the parameters in order that these plane waves also represent 
electromagnetic fields (i.e., in order that they be solutions of the Maxwell system). The results 
arrived at by this method are, of course, well known in advanced electrodynamics. The process 
of deriving them, however, is seen here in a new light by employing the concept of a BT.  

BTs have also proven useful as recursion operators for deriving infinite sets of nonlocal 
symmetries and conservation laws of PDEs [2-6] (see also [11] and the references therein). 
Specifically, the BT produces an increasingly nonlocal sequence of symmetry characteristics, 
i.e., solutions of the linear equation expressing the symmetry condition (or “linearization”) of a 
given PDE.  

An interesting conclusion is that the concept of a BT, which has been proven useful for 
integrating nonlinear PDEs, may also have important applications in linear problems. Research 
on these matters is in progress.  
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Abstract 

Bäcklund transformations (BTs) are a useful tool for inte-
grating nonlinear partial differential equations (PDEs). 
However, the significance of BTs in linear problems should 
not be ignored. In fact, an important linear system of PDEs 
in Physics, namely, the Maxwell equations of 
electromagnetism, may be viewed as a BT relating the wave 
equations for the electric and the magnetic field, these 
equations representing integrability conditions for solution 
of the Maxwell system. We examine the BT property of this 
system in detail, both for the vacuum case and for the case 
of a linear conducting medium.  
 

1.   Introduction 
 
Bäcklund transformations (BTs) are an effective tool for 
integrating partial differential equations (PDEs). They are 
particularly useful for obtaining solutions of nonlinear 
PDEs, given that these equations are often notoriously hard 
to solve by direct methods (see [1] and the references 
therein).  
      Generally speaking, given two PDEs – say (a) and (b) – 
for the unknown functions u and v, respectively, a BT relat-
ing these PDEs is a system of auxiliary PDEs containing 
both u and v, such that the consistency (integrability) of this 
system requires that the original PDEs (a) and (b) be sepa-
rately satisfied. Then, if a solution of PDE (a) is known, a 
solution of PDE (b) is found simply by integrating the BT, 
without having to integrate the PDE (b) directly (which, 
presumably, is a much harder task).  
      In addition to being a solution-generating mechanism, 
BTs may also serve as recursion operators for obtaining 
infinite hierarchies of (generally nonlocal) symmetries and 
conservation laws of a PDE [1–7]. It is by this method that 
the full symmetry Lie algebra of the self-dual Yang-Mills 
equation was found [3,6].  
      In this article, the nature of which is mostly pedagogical, 
we adopt a somewhat different (in a sense, inverse) view of 
a BT, suitable for the treatment of linear problems. Suppose 
we are given a system of PDEs for the unknown functions u 
and v. Suppose, further, that the consistency of this system 
requires that two PDEs, one for u and one for v, be sepa-
rately satisfied (thus, the given system is a BT connecting 
these PDEs). The PDEs are assumed to possess known 
solutions for u and v, each solution depending on a number 
of parameters. If, by a proper choice of the parameters, 
these functions are made to satisfy the original differential 

system, then a solution to this system has been found. In 
other words, we are seeking solutions of the given system 
by using known, parameter-dependent solutions of the indi-
vidual PDEs expressing the integrability conditions of this 
system. Pairs of functions (u,v) satisfying the system will be 
said to represent BT-conjugate solutions.  
      This modified view of the concept of a BT has an 
important application in electromagnetism that serves as a 
paradigm for the significance of BTs in linear problems. As 
discussed in this paper, the Maxwell equations for a linear 
medium exactly fit this BT scheme. Indeed, as is well 
known, the consistency of the Maxwell system requires that 
the electric and the magnetic field satisfy separate wave 
equations. These equations have known, parameter-
dependent solutions, namely, monochromatic plane waves 
with arbitrary amplitudes, wave vectors, frequencies, etc. 
(the “parameters” of the problem). By inserting these solu-
tions into the Maxwell system, one may find the necessary 
conditions on the parameters in order that the plane waves 
for the two fields represent BT-conjugate solutions of 
Maxwell’s equations.  
      The paper is organized as follows:  
      Section 2 reviews the classical concept of a BT. The 
solution-generating process by using a BT is demonstrated 
in a number of examples.  
      In Sec. 3 the concept of parametric, BT-conjugate solu-
tions is introduced. A simple example illustrates the idea.  
      In Sec. 4 the Maxwell equations in empty space are 
shown to constitute a BT in the sense described in Sec. 3. 
For completeness of presentation (and for the benefit of the 
student) the process of constructing BT-conjugate plane-
wave solutions is presented in detail.  
      Finally, in Sec. 5 the Maxwell system for a linear con-
ducting medium is similarly examined.  
      The results of Secs. 4 and 5 are, of course, well known 
from classical electromagnetic theory. It is mathematically 
interesting, however, to revisit the problem of constructing 
solutions of Maxwell’s equations from a novel point of view 
by using the concept of a BT and by treating the electric and 
the magnetic component of a plane e/m wave as BT-
conjugate solutions.  
 

2.   Bäcklund transformations: definition and  
examples 

 
The general idea of a Bäcklund transformation (BT) was 
explained in [1] (see also the references therein). Let us 
review the main points:  
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      We consider two PDEs P[u]=0 and Q[v]=0, where the 
expressions P[u] and Q[v] may contain the unknown func-
tions u and v, respectively, as well as some of their partial 
derivatives with respect to the independent variables. For 
simplicity, we assume that u and v are functions of only two 
variables x, t. Partial derivatives with respect to these vari-
ables will be denoted by using subscripts, e.g., ux , ut , uxx ,  
utt , uxt , etc.  
      We also consider a system of coupled PDEs for u and v,  
 

        [ , ] 0 , 1, 2iB u v i= =           (1) 

             
where the expressions Bi [u,v] may contain u, v and certain 
of their partial derivatives with respect to x and t. The sys-
tem (1) is assumed to be integrable for v (the two equations 
are compatible with each other for solution for v) when u 
satisfies the PDE P[u]=0. The solution v, then, satisfies the 
PDE Q[v]=0. Conversely, the system (1) is integrable for u 
if v satisfies the PDE Q[v]=0, the solution u then satisfying 
P[u]=0.  
      If the above assumptions are valid, we say that the sys-
tem (1) constitutes a BT connecting solutions of P[u]=0 
with solutions of Q[v]=0. In the special case where P≡Q, 
i.e., when u and v satisfy the same PDE, the system (1) is 
called an auto-Bäcklund transformation (auto-BT).  
      Suppose now that we seek solutions of the PDE P[u]=0. 
Also, assume that we possess a BT connecting solutions u 
of this equation with solutions v of the PDE Q[v]=0 (if P≡Q 
the auto-BT connects solutions u and v of the same PDE). 
Let v=v0(x,t) be a known solution of Q[v]=0. The BT is then 
a system of equations for the unknown u:  
 

        
0

[ , ] 0 , 1, 2iB u v i= =           (2) 

 
Given that Q[v0]=0, the system (2) is integrable for u and its 
solution satisfies the PDE P[u]=0. We may thus find a solu-
tion u(x,t) of P[u]=0 without solving the equation itself, 
simply by integrating the BT (2) with respect to u. Of 
course, the use of this method is meaningful provided that 
we know a solution v0(x,t) of Q[v]=0 beforehand, as well as 
that integrating the system (2) for u is simpler than integrat-
ing the PDE P[u]=0 directly. If the transformation (2) is an 
auto-BT, then, starting with a known solution v0(x,t) of 
P[u]=0 and integrating the system (2), we find another solu-
tion u(x,t) of the same equation.  
      Let us see some examples of using a BT to generate 
solutions of a PDE:  
      1. The Cauchy-Riemann relations of complex analysis,  
 

        ( ) ( )x y y xu v a u v b= = −            (3) 

 
(here, the variable t has been renamed y) constitute an auto-
BT for the (linear) Laplace equation,  
 

        [ ] 0xx yyP w w w≡ + =                (4) 

 

Indeed, differentiating (3a) with respect to y and (3b) with 
respect to x, and demanding that the integrability condition 
(ux)y=(uy)x  be satisfied, we eliminate the variable u to find 
the consistency condition that must be obeyed by v(x,y) in 
order that the system (3) be integrable for u:  
 

        [ ] 0xx yyP v v v≡ + =  .     

     
Conversely, eliminating v from the system (3) by using the 
integrability condition (vx)y=(vy)x , we find the necessary 
condition for u in order for the system to be integrable for v:  
 

        [ ] 0xx yyP u u u≡ + =  .     

 
Now, let v0(x,y) be a known solution of the Laplace equa-
tion (4). Substituting v=v0 in the system (3), we can inte-
grate the latter with respect to u to find another solution of 
the Laplace equation. For example, by choosing v0(x,y)=xy 
we find the solution  u(x,y)=  (x

2 –y2)/2 +C .  
      2. The Liouville equation is written  
 

        [ ] 0u u

xt xtP u u e u e≡ − = ⇔ =             (5) 

 
Solving the PDE (5) directly is a difficult task in view of 
this equation’s nonlinearity. A solution can be found, how-
ever, by using a BT. We thus consider an auxiliary function 
v(x,t) and an associated linear PDE,  
 

        [ ] 0xtQ v v≡ =          (6) 

 
We also consider the system of first-order PDEs,  
 

        

( ) / 2

( ) / 2

2

2

u v

x x

u v

t t

u v e

u v e

−

+

+ =

− =
        (7) 

 
It can be shown that the self-consistency of the system (7) 
requires that u and v independently satisfy the PDEs (5) and 
(6), respectively. Thus, this system constitutes a BT con-
necting solutions of (5) and (6). Starting with the trivial 
solution v=0 of (6) and integrating the system  
 

        / 2 / 22 , 2 ,
x t

u uu e u e= =      

 
we find a solution of (5):  
 

        ( , ) 2 ln
2

x t
u x t C

+
= − −

 
 
 

 .    

 
      3. The “sine-Gordon” equation has applications in vari-
ous areas of Physics, such as in the study of crystalline 
solids, in the transmission of elastic waves, in magnetism, in 
elementary-particle models, etc. The equation (whose name 
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is a pun on the related linear Klein-Gordon equation) is 
written  
 

        sinxtu u=           (8) 

 
As can be proven, the differential system  
 

        

1
( ) sin

2 2

1 1
( ) sin

2 2

x

t

u v
u v a

u v
u v

a

−
+ =

+
− =

 
 
 

 
 
 

         (9) 

 
[where a (≠0) is an arbitrary real constant] is a parametric 
auto-BT for the PDE (8). Starting with the trivial solution  
v=0  of  vxt=  sin v , and integrating the system  
 

        
2

2 sin , sin ,
2 2

x t

u u
u a u

a
= =     

 
we obtain a new solution of (8):  
 

        { }( , ) 4arctan exp
t

u x t C ax
a

= + 
 
 

 .    

 
3.   BT-conjugate solutions 

 
Consider a system of coupled PDEs for the functions u and 
v of two independent variables x, y:  
 

        [ , ] 0 , 1, 2iB u v i= =             (10) 

 
Assume that the integrability of this system for both u and v 
requires that the following PDEs be independently satisfied:  
 
        [ ] 0 ( ) [ ] 0 ( )P u a Q v b= =         (11) 

 
That is, the system (10) represents a BT connecting the 
PDEs (11). Assume, further, that the PDEs (11) possess 
parameter-dependent solutions of the form  
 

        
( , ; , , , ) ,

( , ; , , , )

u f x y

v g x y

α β γ

κ λ µ

=

=

…

…

          (12) 

 
where α, β, κ, λ, etc., are (real or complex) parameters. If 
values of these parameters can be determined for which u 
and v satisfy the system (10), we say that the solutions u and 
v of the PDEs (11a) and (11b), respectively, are conjugate 
through the BT (10) (or BT-conjugate, for short).  
      Let us see an example: Going back to the Cauchy-
Riemann relations (3), we try the following parametric 
solutions of the Laplace equation (4):  
 

        
2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

α β γ

κ λ µ

= − + +

= + +
     

 
Substituting these into the BT (3), we find that κ=2α, µ=β 
and λ= –γ. Therefore, the solutions  
 

        
2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

α β γ

α γ β

= − + +

= − +
     

 
of the Laplace equation are BT-conjugate through the 
Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination:  
 
        ( , ) , ( , ) .u x y xy v x y xyα β= =      

 
Inserting these into the system (3) and taking into account 
the independence of x and y, we find that the only possible 
values of the parameters α and β are α=β=0, so that u(x,y)= 
v(x,y)=0. Thus, no non-trivial BT-conjugate solutions exist 
in this case.  
 

4.   Application to the Maxwell equations in  
empty space 

 
As is well known, according to the Maxwell theory all elec-
tromagnetic (e/m) disturbances propagate in space as waves 
running at the speed of light. It is interesting from the 
mathematical point of view that the vacuum wave equations 
for the electric and the magnetic field are connected to each 
other through the Maxwell system of equations in much the 
same way two PDEs are connected via a Bäcklund trans-
formation. In fact, certain parameter-dependent solutions of 
the two wave equations are BT-conjugate through the 
Maxwell system.  
      In empty space, where no charges or currents (whether 
free or bound) exist, the Maxwell equations are written in 
S.I. units [8]:  
 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�

� � � �

�

� � � �

       (13) 

 

where E
�

 and B
�

 are the electric and the magnetic field, 
respectively. In order that this system of PDEs be self-
consistent (thus integrable for the two fields), certain consis-
tency conditions (or integrability conditions) must be satis-
fied. Four are satisfied automatically:  
 

        ( ) 0 , ( ) 0 ,E B∇ ⋅ ∇× = ∇ ⋅ ∇× =
� � � � � �

     

 

        ( ) , ( ) .t t t tE E B B∇ ⋅ = ∇ ⋅ ∇ ⋅ = ∇ ⋅
� � � � � � � �
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Two others read:  
 

        2( ) ( )E E E∇× ∇× = ∇ ∇ ⋅ − ∇
� � � � � � �

            (14) 

 

        2( ) ( )B B B∇× ∇× = ∇ ∇ ⋅ − ∇
� � � � � � �

            (15) 

 
Taking the rot of (13c) and using (14), (13a) and (13d), we 
find:  
 

        
2

2

0 0 2
0

E
E

t
ε µ

∂
∇ − =

∂

�

�

        (16) 

 
Similarly, taking the rot of (13d) and using (15), (13b) and 
(13c), we get:  
 

        
2

2

0 0 2
0

B
B

t
ε µ

∂
∇ − =

∂

�

�

          (17) 

 
No new information is furnished by the remaining two inte-
grability conditions,  
 

        ( ) , ( ) .t t t tE E B B∇× = ∇× ∇× = ∇×
� � � � � � � �

      

 
      Putting  
                           

        
0 0 2

0 0

1 1
c

c
ε µ

ε µ
≡ ⇔ =            (18) 

 
we rewrite Eqs. (16) and (17) in wave-equation form:  
 

        
2

2

2 2

1
0

E
E

c t

∂
∇ − =

∂

�

�

           (19) 

 

        
2

2

2 2

1
0

B
B

c t

∂
∇ − =

∂

�

�

           (20) 

 
The PDEs (19) and (20) are consistency conditions that 

must be separately satisfied by E
�

 and B
�

 in order that the 
differential system (13) be integrable for either field, given 
the value of the other field. In other words, the system (13) 
is a BT relating solutions of the wave equations (19) and 
(20).  
      It should be noted carefully that the BT (13) is not an 
auto-BT! Indeed, although the PDEs (19) and (20) look 
similar, they concern different fields with different physical 
dimensions and physical properties. A true auto-BT should 
connect similar objects (such as, e.g., different mathematical 
expressions for the electric field).  
      The above wave equations admit plane-wave solutions 

of the form ( )F k r tω⋅ −
��

�

, with  

 

        where | |c k k
k

ω
= =

�

            (21) 

 
The simplest such solutions are monochromatic plane waves 
of angular frequency ω, propagating in the direction of the 

wave vector k
�

:  
 

        
0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

ω

ω

= ⋅ −

= ⋅ −

�� �

� �

�� �

� �

         (22) 

 

where the 
0

E
�

 and 
0

B
�

 represent constant complex ampli-

tudes. Since all constants appearing in equations (22) (that 
is, amplitudes, frequency and wave vector) can be arbitrar-
ily chosen, they can be regarded as parameters on which the 
solutions (22) of the wave equations depend.  

      Clearly, although every pair of fields ( , )E B
� �

 that satis-

fies the Maxwell equations (13) also satisfies the respective 
wave equations (19) and (20), the converse is not true. This 
means that the solutions (22) of the wave equation are not a 
priori  solutions of the Maxwell system of equations (i.e., do 
not represent e/m fields). This problem can be remedied, 
however, by appropriate choice of the parameters. To this 
end, we substitute the general solutions (22) into the system 
(13) in order to find the extra conditions this system re-
quires; that is, in order to make the two functions in (22) 
BT-conjugate solutions of the respective wave equations 
(19) and (20).  
      Substituting (22a) and (22b) into (13a) and (13b), re-

spectively, and taking into account that i k r i k re i k e⋅ ⋅∇ =
� �

� ���

, 

we have:  
 

        

( )

0 0

( )

0 0

( ) 0 ( ) 0 ,

( ) 0 ( ) 0 ,

i t i k r i k r t

i t i k r i k r t

E e e k E e

B e e k B e

ω ω

ω ω

− ⋅ ⋅ −

− ⋅ ⋅ −

⋅ ∇ = ⇒ ⋅ =

⋅∇ = ⇒ ⋅ =

� �

� �

� �

� �

�� � �

�� � �
      

 
so that  
 

        
0 0

0 , 0k E k B⋅ = ⋅ =
� �� �

.                 (23) 

 
Physically, this means that the monochromatic plane e/m 
wave is a transverse wave.  
      Next, substituting (22a) and (22b) into (13c) and (13d), 
we find:  
 

        

( )

0 0

( ) ( )

0 0

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e E i B e

k E e B e

ω ω

ω ω

ω

ω

− ⋅ ⋅ −

⋅ − ⋅ −

∇ × = ⇒

× =

� �

� �

� �

� �

� � �

� � �
        

 

        

( )

0 0 0 0

( ) ( )

0 02

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e B i E e

k B e E e
c

ω ω

ω ω

ω ε µ

ω

− ⋅ ⋅ −

⋅ − ⋅ −

∇ × = − ⇒

× = −

� �

� �

� �

� �

� � �

� � �
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so that  
 

        
0 0 0 02

,k E B k B E
c

ω
ω× = × = −

� �� � � �

         (24) 

 

This means that the fields E
�

 and B
�

 are normal to each 
other as well as being normal to the direction of 
propagation. It can be seen that the two vector equations in 
(24) are not independent of each other; indeed, cross-

multiplying the first relation by k
�

 we get the second one.  
      Introducing a unit vector τ̂  in the direction of the wave 

vector k
�

,  
 

        ˆ / ( | | / )k k k k cτ ω= = =
� �

 ,          

 
we rewrite the first of Eqs. (24) as  
 

        0 0 0

1
ˆ ˆ( ) ( )

k
B E E

c
τ τ

ω
= × = ×

� � �

 .     

 
The BT-conjugate solutions in (22) are now written:  
 

        

0

0

( , ) exp{ ( )} ,

1
ˆ( , ) ( ) exp{ ( )}

1
ˆ

E r t E i k r t

B r t E i k r t
c

E
c

ω

τ ω

τ

= ⋅ −

= × ⋅ −

= ×

�� �

� �

�� �

� �

�

     (25) 

 
      As constructed, the complex vector fields in (25) satisfy 
the Maxwell system (13), which is a homogeneous linear 
system with real coefficients. Evidently, the real parts of 
these fields also satisfy this system. To find the expressions 
for the real solutions (which, after all, carry the physics of 
the situation) we take the simplest case of a linearly polar-
ized e/m wave and write:  
 

        
0 0,

i

R
E E e α=
� �

          (26) 

 

where the vector 
0,R

E
�

 and the number α are real. The real 

versions of the fields (25), then, read:  
 

        

0,

0,

cos ( ) ,

1
ˆ( ) cos ( )

1
ˆ

R

R

E E k r t

B E k r t
c

E
c

ω α

τ ω α

τ

= ⋅ − +

= × ⋅ − +

= ×

�� �

�

�� �

�

�

      (27) 

 

We note, in particular, that the fields E
�

 and B
�

 “oscillate” 
in phase.  
      Our results for the Maxwell equations in vacuum can be 
extended to the case of a linear non-conducting medium 

upon replacement of ε0 and µ0 with ε and µ, respectively. 
The speed of propagation of the e/m wave is, in this case,  
 

        
1

k

ω
υ

εµ
= =   .     

 
5.   The Maxwell system for a linear conducting 

medium 
 
In a linear conducting medium of conductivity σ, in which 

Ohm’s law is satisfied, fJ Eσ=
� �

 (where fJ
�

 is the free 

current density), the Maxwell equations read [8]:  
 

   

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
µσ ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

    (28) 

 
By the integrability conditions  
 

        

2

2

( ) ( ) ,

( ) ( ) ,

E E E

B B B

∇× ∇× = ∇ ∇ ⋅ −∇

∇× ∇× = ∇ ∇ ⋅ −∇

� � � � � � �

� � � � � � �
           

 
we get the modified wave equations  
 

        

2

2

2

2

2

2

0

0

E E
E

t t

B B
B

t t

ε µ µσ

ε µ µσ

∂ ∂
∇ − − =

∂ ∂

∂ ∂
∇ − − =

∂ ∂

� �

�

� �

�

          (29) 

 
No new information is furnished by the remaining inte-
grability conditions (cf. Sec. 4).  
      We observe that the linear differential system (28) is a 
BT relating solutions of the wave equations (29) (as ex-
plained in the previous section, this BT is not an auto-BT). 
As in the vacuum case, we seek BT-conjugate such solu-
tions. As can be verified by direct substitution into Eqs. 
(29), these PDEs admit parametric plane-wave solutions of 
the form  
 

    
{ }

{ }

0

0

0

0

ˆ( , ) exp{ ( )}

exp exp ( ) ,

ˆ( , ) exp{ ( )}

exp exp ( )

E r t E s r i k r t

s
E i k r i t

k

B r t B s r i k r t

s
B i k r i t

k

τ ω

ω

τ ω

ω

= − ⋅ + ⋅ −

= − ⋅ −

= − ⋅ + ⋅ −

= − ⋅ −

 
 
 

 
 
 

�� �

� � �

��

�

�� �

� � �

��

�

     (30) 
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where τ̂  is the unit vector in the direction of the wave vec-

tor k
�

,  
 

        ˆ / ( | | / )k k k kτ ω υ= = =
� �

     

 
(υ is the speed of propagation of the wave inside the con-
ducting medium) and where, for given physical characteris-
tics ε, µ, σ of the medium, the parameters s, k and ω satisfy 
the algebraic system  
 

        
2 2 2 0 ,

2 0

s k

sk

ε µω

µσω

− + =

− =
            (31) 

 

      Up to this point the complex amplitudes 0E
�

 and 0B
�

 in 

relations (30) are arbitrary and the vector fields (30) are not 
a priori solutions of the Maxwell equations (28), thus are 
not yet BT-conjugate solutions of the respective wave equa-
tions in (29). To find the restrictions these amplitudes must 
satisfy, we insert Eqs. (30) into the system (28). With the 
aid of the relation  
 

        
( ) ( )s s
i k r i k r

k k
s

e i k e
k

− ⋅ − ⋅

∇ = − 
 
 

� �

� �

��

 ,       

 
it is not hard to show that (28a) and (28b) impose the condi-
tions  
 

        
0 0

0 , 0k E k B⋅ = ⋅ =
� �� �

           (32) 

 
Again, this means that the e/m wave is a transverse wave.  
      Substituting (30) into (28c) and (28d), we find two more 
conditions:  
 

        0 0
ˆ( )k is E Bτ ω+ × =
� �

            (33) 

 

        0 0
ˆ( ) ( )k is B i Eτ εµω µσ+ × = − +
� �

         (34) 

 
However, (34) is not an independent equation since it can be 
reproduced by cross-multiplication of (33) by τ̂  and use of 
relations (31).  
      The BT-conjugate solutions of the wave equations (29) 
are now written:  
 

        

ˆ ( )

0

ˆ ( )

0

( , ) ,

ˆ( , ) ( )

s r i k r t

s r i k r t

E r t E e e

k is
B r t E e e

τ ω

τ ωτ
ω

− ⋅ ⋅ −

− ⋅ ⋅ −

=

+
= ×

�

� �

�

� �

� �

�

� �

�

       (35) 

 
To find the corresponding real solutions, we assume linear 
polarization of the e/m wave and set, as before,  
 

        
0 0,

i

R
E E e α=
� �

 .     

We also set  
 

        
2 2| | ;

tan / .

i ik i s k i s e k s e

s k

ϕ ϕ

ϕ

+ = + = +

=
       

 
Taking the real parts of Eqs. (35), we finally have:  
        

ˆ

0,

2 2
ˆ

0,

( , ) cos ( ) ,

ˆ( , ) ( ) cos ( ) .

s r

R

s r

R

E r t E e k r t

k s
B r t E e k r t

τ

τ

ω α

τ ω α ϕ
ω

− ⋅

− ⋅

= ⋅ − +

+
= × ⋅ − + +

�

�

�� �

� �

�� �

� �

 
6.   Summary and concluding remarks 

 
Bäcklund transformations (BTs) were originally devised as 
a tool for finding solutions of nonlinear partial differential 
equations (PDEs). They were later also proven useful as 
nonlocal recursion operators for constructing infinite se-
quences of symmetries and conservation laws of certain 
PDEs [2–7].  
      Generally speaking, a BT is a system of PDEs connect-
ing two fields that are required to independently satisfy two 
respective PDEs in order for the system to be integrable for 
either field. If a solution of either PDE is known, then a 
solution of the other PDE is obtained by integrating the BT, 
without having to actually solve the latter PDE explicitly 
(which, presumably, would be a much harder task). In the 
case where the two PDEs are identical, an auto-BT produces 
new solutions of a PDE from old ones.  
      As described above, a BT is an auxiliary tool for finding 
solutions of a given (usually nonlinear) PDE, using known 
solutions of the same or another PDE. In this article, how-
ever, we approached the BT concept differently by actually 
inverting the problem. According to this scheme, it is the 
solutions of the BT itself that we are after, having parame-
ter-dependent solutions of the PDEs that express the inte-
grability conditions at hand. By a proper choice of the pa-
rameters, a pair of solutions of these PDEs may possibly be 
found that satisfies the given BT. These solutions are then 
said to be conjugate with respect to the BT.  
      A pedagogical paradigm for demonstrating this particu-
lar approach to the concept of a BT is offered by the Max-
well system of equations of electromagnetism. We showed 
that this system can be thought of as a BT whose integrabil-
ity conditions are the wave equations for the electric and the 
magnetic field. These wave equations have known, parame-
ter-dependent solutions (monochromatic plane waves) with 
arbitrary amplitudes, frequencies, wave vectors, etc. By 
substituting these solutions into the BT, one may determine 
the required relations among the parameters in order that the 
plane waves also represent electromagnetic fields, i.e., are 
BT-conjugate solutions of the Maxwell system. The results 
arrived at by this method are, of course, well known in 
advanced electrodynamics. The process of deriving them, 
however, is seen here in a new light by employing the con-
cept of a BT.  
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      We remark that the physical situation was examined 
from the point of view of a fixed inertial observer. Thus, 
since no spacetime transformations were involved, we used 

the classical form of the Maxwell equations (with E
�

 and B
�

 
retaining their individual characters) rather than the mani-
festly covariant form of these equations.  
      An interesting conclusion is that the concept of a 
Bäcklund transformation, which has been proven extremely 
useful for finding solutions of nonlinear PDEs, can in certain 
cases also prove useful for integrating linear systems of 
PDEs. Such systems appear often in Physics and Electrical 
Engineering (see, e.g., [9]) and it would certainly be of in-
terest to explore the possibility of using BT methods for 
their integration.  
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Abstract 

 
In electrodynamics courses and textbooks, the properties of plane electromag-
netic waves in both conducting and non-conducting media are typically studied 
from the point of view of the prototype case of a monochromatic plane wave. In 
this note an approach is suggested that starts from more general considerations 
and better exploits the independence of the Maxwell equations.  

 
1.  Introduction 

 
Plane electromagnetic (e/m) waves constitute a significant type of solution of the 
time-dependent Maxwell equations. A standard educational approach in courses and 
textbooks (at both the intermediate [1-4] and the advanced [5,6] level; see also [7,8]) 
is to examine the prototype case of a monochromatic plane wave in both a conducting 
and a non-conducting medium.  
      In this note a more general approach to the problem is described that makes 
minimal initial assumptions regarding the specific functional forms of the plane 
waves representing the electric and the magnetic field. The only assumption one does 
need to make from the outset is that both fields (electric and magnetic) are expressible 
in integral form as linear superpositions of monochromatic waves. In particular, it is 
not even necessary to a priori require that the plane waves representing the two fields 
travel in the same direction.  
      In Section 2 we review the case of a monochromatic plane e/m wave in empty 
space. A more general (non-monochromatic) treatment of the plane-wave propagation 
problem in empty space is then described in Sec. 3. In Sec. 4 this general approach is 
extended to plane-wave solutions in the case of a conducting medium; an interesting 
difference from the monochromatic case is noted.  
 

2.  The monochromatic-wave description for empty space 
 
In empty space, where no charges or currents (whether free or bound) exist, the Max-
well equations are written (in S.I. units)   

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�

� � � �

�

� � � �

                           (1) 

where E
�

 and B
�

 are the electric and the magnetic field, respectively. By applying the 
identities  
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2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

 , 

2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

, 
 
we obtain separate wave equations for E

�

 and B
�

:  
 

        
2

2
2 2

1
0

E
E

c t

∂
∇ − =

∂

�

�

                                                (2) 

        
2

2
2 2

1
0

B
B

c t

∂
∇ − =

∂

�

�

                                                (3) 

where  

            
0 0

1
c

ε µ
=                                                       (4) 

 
      We try monochromatic plane-wave solutions of (2) and (3), of angular frequency 

ω, propagating in the direction of the wave vector k
�

:  
 

        0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

ω

ω

= ⋅ −

= ⋅ −

�� �

� �

�� �

� �

                                   (5) 

 

where 0E
�

 and 0B
�

 are constant complex amplitudes, and where  

        ( | | )c k k
k

ω
= =

�

                                               (6) 

 
      The general solutions (5) do not a priori represent an e/m field. To find the extra 
constraints required, we must substitute Eqs. (5) into the Maxwell system (1). By tak-

ing into account that i k r i k re i k e⋅ ⋅∇ =
� �

� �
��

, the div equations (1a) and (1b) yield  
 

        0 ( ) 0 ( )k E a k B b⋅ = ⋅ =
� �� �

                                       (7) 
 
while the rot equations (1c) and (1d) give  
 

        
2

( ) ( )k E B a k B E b
c

ω
ω× = × = −

� �� � � �

                                (8) 

 
      Now, we notice that the four equations (7)–(8) do not form an independent set 
since (7b) and (8b) can be reproduced by using (7a) and (8a). Indeed, taking the dot 

product of (8a) with k
�

 we get (7b), while taking the cross product of (8a) with k
�

, 
and using (7a) and (6), we find (8b).  
      So, from 4 independent Maxwell equations we obtained only 2 independent 
pieces of information. This happened because we “fed” our trial solutions (5) with 
more information than necessary, in anticipation of results that follow a posteriori 
from Maxwell’s equations. Thus, we assumed from the outset that the two waves 
(electric and magnetic) have similar simple functional forms and propagate in the 
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same direction. By relaxing these initial assumptions, our analysis acquires a richer 
and much more interesting structure.  
 

3.  A more general approach for empty space 
 
Let us assume, more generally, that the fields E

�

 and B
�

 represent plane waves propa-
gating in empty space in the directions of the unit vectors ̂τ  and σ̂ , respectively:  
 

ˆ ˆ( , ) ( ) , ( , ) ( )E r t F r ct B r t G r ctτ σ= ⋅ − = ⋅ −
�� � �

� � � �

                              (9) 
 

Furthermore, assume that the functions F
�

 and G
�

 can be expressed as linear combi-
nations of monochromatic plane waves of the form (5), for continuously varying val-
ues of k and ω, where ω=ck, according to (6). Then E

�

 and B
�

 can be written in Fou-
rier-integral form, as follows:  
 

      

ˆ( )
0

ˆ( )
0

( )

( )

ik r ct

ik r ct

E E k e dk

B B k e dk

τ

σ

⋅ −

⋅ −

=

=

∫
∫

�

�

� �

� �
                                              (10) 

 
In general, the integration variable k is assumed to run from 0 to +∞. For notational 
economy, the limits of integration with respect to k will not be displayed explicitly.  
      By setting  
 

     ˆ ˆ,u r ct v r ctτ σ= ⋅ − = ⋅ −
� �

                                         (11) 
 
we write  

     
0

0

( ) ( )

( ) ( )

iku

ikv

E u E k e dk

B v B k e dk

=

=

∫
∫

� �

� �
                                              (12) 

We note that  
 

ˆ ˆ,iku iku ikv ikve ik e e i k eτ σ∇ = ∇ =
� �

                                     (13) 
 
      By using (12) and (13) we find that  
 

0ˆ ( ) ikuE ik E k e dkτ∇⋅ = ⋅∫
� � �

,    0ˆ ( ) ikvB ik B k e dkσ∇⋅ = ⋅∫
� � �

, 

0ˆ ( ) ikuE i k E k e dkτ∇× = ×∫
� � �

,    0ˆ ( ) ikvB i k B k e dkσ∇× = ×∫
� � �

. 

 
Moreover, we have that  
 

0( ) ikuE
i E k e dk

t
ω

∂
= −

∂ ∫
�

�

,    0( ) ikvB
i B k e dk

t
ω

∂
= −

∂ ∫
�

�

 

 
where, as always, ω=ck.  
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      The two Gauss’ laws (1a) and (1b) yield  
 

0ˆ ( ) 0ikuk E k e dkτ ⋅ =∫
�

   and   0ˆ ( ) 0ikvk B k e dkσ ⋅ =∫
�

, 

 
respectively. In order that these relations be valid identically for all u and all v, re-
spectively, we must have  
 

     0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kσ ⋅ =
�

,  for all k                              (14) 

 
From Faraday’s law (1c) and the Ampère-Maxwell law (1d) we obtain two more in-
tegral equations:  
 

    0 0ˆ ( ) ( )iku ikvk E k e dk B k e dkτ ω× =∫ ∫
� �

                                  (15) 

   0 02
ˆ ( ) ( )ikv ikuk B k e dk E k e dk

c

ω
σ × = −∫ ∫
� �

                                 (16) 

 
where we have taken into account Eq. (4).  
      Taking the cross product of (15) with σ̂  and using (16), we find the integral rela-
tion  

0 0 0ˆ ˆ ˆ ˆ[( ) ( ) ] iku ikuk E E e dk k E e dkσ τ σ τ⋅ − ⋅ = −∫ ∫
� � �

. 

 
This is true for all u if  
 

0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( 1) ( )E E E E Eσ τ σ τ σ τ σ τ⋅ − ⋅ = − ⇒ ⋅ − = ⋅
� � � � �

. 

 

Given that, by (14), 0E
�

 and τ̂  are mutually perpendicular, the above relation can only 

be valid if ˆ ˆ 1σ τ⋅ =  and 0ˆ 0Eσ ⋅ =
�

. This, in turn, can only be satisfied if ˆ ˆσ τ= . The 

same conclusion is reached by taking the cross product of (16) with τ̂  and by using 

(15) as well as the fact that 0B
�

 is normal to ̂σ . From (11) we then have that  

ˆu v r ctτ= = ⋅ −
�

 

so that relations (12) become  
 

    

ˆ( )
0 0

ˆ( )
0 0

( , ) ( ) ( )

( , ) ( ) ( )

iku ik r ct

iku ik r ct

E r t E k e dk E k e dk

B r t B k e dk B k e dk

τ

τ

⋅ −

⋅ −

= =

= =

∫ ∫
∫ ∫

�

�

� � �

�

� � �

�

                           (17) 

 
      Equations (14) are now rewritten as  
 

      0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kτ ⋅ =
�

,  for all k                                  (18) 

 
Furthermore, in order that (15) and (16) (with u and τ̂  in place of v and σ̂ , respec-
tively) be identically valid for all u, we must have  
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  0 0 0 0ˆ ˆ( ) ( ) ( ) ( )k E k B k E k cB kτ ω τ× = ⇔ × =
� � � �

                               (19) 

and  

   0 0 0 02

1
ˆ ˆ( ) ( ) ( ) ( )k B k E k B k E k

cc

ω
τ τ× = − ⇔ × = −
� � � �

                           (20) 

 
for all k, where k=ω/c. Notice, however, that (19) and (20) are not independent equa-
tions, since (20) is essentially the cross product of (19) with τ̂ .  
      In summary, the general plane-wave solutions to the Maxwell system (1) are 
given by relations (17) with the additional constraints (18) and (19). This is, of 
course, a well-known result, derived here by starting with more general assumptions 
and by best exploiting the independence [9] of the Maxwell equations.  
      Let us summarize our main findings:  
      1. The fields E

�

 and B
�

 are plane waves traveling in the same direction, defined 
by the unit vector ̂τ ; these fields satisfy the Maxwell equations in empty space.  

      2. The e/m wave ( , )E B
� �

 is a transverse wave. Indeed, from equations (17) and the 
orthogonality relations (18) it follows that  
 

    ˆ ˆ0 and 0E Bτ τ⋅ = ⋅ =
� �

                                             (21) 
 

      3. The fields E
�

 and B
�

 are mutually perpendicular. Moreover, the ˆ( , , )E B τ
� �

 define 
a right-handed rectangular system. Indeed, by cross-multiplying (17) with τ̂  and by 
using (19) and (20), we find:  
 

     
1

ˆ ˆ,E cB B E
c

τ τ× = × = −
� � � �

                                          (22) 

 
      4. Taking real values of (21) and (22), we have:  
 

ˆ ˆRe 0 , Re 0E Bτ τ⋅ = ⋅ =
� �

    and    ̂ Re ReE c Bτ × =
� �

                        (23) 
 
The magnitude of the last vector equation in (23) gives a relation between the instan-
taneous values of the electric and the magnetic field:  
 

      | Re | | Re |E c B=
� �

                                                 (24) 
 
      The above results for empty space can be extended in a straightforward way to the 
case of a linear, non-conducting, non-dispersive medium upon replacement of ε0 and 
µ0 with ε and µ, respectively [3]. The (frequency-independent) speed of propagation 
of the plane e/m wave in this case is  υ=1/(εµ)1/2.  
 

4.  The case of a conducting medium 
 
The Maxwell equations for a conducting medium of conductivity σ may be written as 
follows [1,3]:  
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( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
µσ ε µ

∂
∇⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

                       (25) 

 
By using the vector identities  
 

2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

 , 

2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

, 
 
the relations (25) lead to the modified wave equations  
 

       
2

2
2

0
E E

E
t t

ε µ µσ
∂ ∂

∇ − − =
∂ ∂

� �

�

                                       (26) 

       
2

2
2

0
B B

B
t t

ε µ µσ
∂ ∂

∇ − − =
∂ ∂

� �

�

                                       (27) 

 
      Guided by our monochromatic-wave approach to the problem in [7,8], we now try 
a more general, integral form of solution of the above wave equations:  
 

   
{ }

{ }

ˆ ˆ( )
0 0

ˆ ˆ( )
0 0

ˆ( , ) ( ) ( )exp ( )

ˆ( , ) ( ) ( )exp ( )

s r i k r t

s r i k r t

E r t E k e e dk E k ik s r i t dk

B r t B k e e dk B k ik s r i t dk

τ τ ω

τ τ ω

τ ω

τ ω

− ⋅ ⋅ −

− ⋅ ⋅ −

= = − ⋅ −

= = − ⋅ −

∫ ∫
∫ ∫

� �

� �

� � �

� �

� � �

� �

          (28) 

 
where s is a real parameter related to the conductivity of the medium. As in the vac-
uum case, the unit vector τ̂  indicates the direction of propagation of the wave. Notice 
that we have assumed from the outset that both waves – electric and magnetic – 
propagate in the same direction, in view of the fact that our results must agree with 
those for a non-conducting medium (in particular, for the vacuum) upon setting s=0.  
      It is convenient to set  
 

          { }ˆexp ( ) ( , )i k s r i t A r tτ ω− ⋅ − ≡
� �

                                    (29) 

 
Then, Eq. (28) takes on the form  
 

      
0

0

( , ) ( ) ( , )

( , ) ( ) ( , )

E r t E k A r t dk

B r t B k A r t dk

=

=

∫
∫

� �

� �

� �

� �

                                         (30) 

 
The following relations can be easily proven:  
 

    ˆ( , ) ( ) ( , )A r t i k s A r tτ∇ = −
�

� �

                                          (31) 
 

         2 2 2( , ) ( 2 ) ( , )A r t s k isk A r t∇ = − −
� �

                                  (32) 
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Moreover,  

( , ) ( , )A r t i A r t
t

ω
∂

= −
∂

� �

    and    
2

2
2

( , ) ( , )A r t A r t
t

ω
∂

= −
∂

� �

. 

 
      From (26) we get  
 

2 2 2
0[( ) ( 2 )] ( ) ( , ) 0s k i sk E k A r t dkε µω µσω− + + − =∫
�

�

 

 
[a similar integral relation is found from (27)]. This will be identically satisfied for all 
r
�

 and t if  
 

        2 2 2 0 and 2 0s k skε µω µσω− + = − =                            (33) 
 
By using relations (33), ω and s can be expressed as functions of k, as required in or-
der that the integral relations (28) make sense. Notice, in particular, that, by the sec-
ond relation (33), s=0 if σ=0 (non-conducting medium). Then, by the first relation, 
ω/k=1/(εµ)1/2, which is the familiar expression for the speed of propagation of an e/m 
wave in a non-conducting medium [3].  
      From the two Gauss’ laws (25a) and (25b) we get the corresponding integral rela-
tions  
 

0

0

ˆ( ) ( ) ( , ) 0 ,

ˆ( ) ( ) ( , ) 0 .

ik s E k A r t dk

ik s B k A r t dk

τ

τ

− ⋅ =

− ⋅ =

∫
∫

�

�

�

�

 

 
These will be identically satisfied for all r

�

 and t if  
 

      0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kτ ⋅ =
�

,  for all k                                (34) 

 
From (25c) and (25d) we find  
 

0 0ˆ( ) ( ) ( , ) ( ) ( , )ik s E k A r t dk i B k A r t dkτ ω− × =∫ ∫
� �

� �

 

and  

0 0ˆ( ) ( ) ( , ) ( ) ( ) ( , )ik s B k A r t dk i E k A r t dkτ µσ εµω− × = −∫ ∫
� �

� �

, 

 
respectively. To satisfy these for all r

�

 and t, we require that  
 

      0 0ˆ( ) ( ) ( )k is E k B kτ ω+ × =
� �

                                        (35) 

and  

       0 0ˆ( ) ( ) ( ) ( )k is B k i E kτ εµω µσ+ × = − +
� �

                               (36) 

 
Note, however, that (36) is not an independent equation since it can be reproduced by 
cross-multiplying (35) with ̂τ  and by taking into account Eqs. (33) and (34).  
 
 



 C. J. PAPACHRISTOU 

 8  

      We note the following:  
      1. From (30) and (34) we have that  
 

                   ̂ ˆ0 and 0E Bτ τ⋅ = ⋅ =
� �

                                            (37) 
 

or, in real form, ̂ ˆRe 0 and Re 0E Bτ τ⋅ = ⋅ =
� �

. This means that both ReE
�

 and ReB
�

 
are normal to the direction of propagation of the wave.  
      2. From (30) and (35) we get  
 

       0ˆ ( ) ( , )E B k A r t dk
k is

ω
τ × =

+∫
� �

�

                                       (38) 

The integral on the right-hand side of (38) is, generally, not a vector parallel to B
�

. 
Now, in the limit of negligible conductivity (σ=0) the relations (33) give s=0 and 
ω/k=1/(εµ)1/2. The ratio ω/k represents the speed of propagation υ in the non-
conducting medium, for the frequency ω. If the medium is non-dispersive, the speed 
υ=ω/k  is constant, independent of frequency. Then Eq. (38) (with s=0) becomes  
 

0ˆ ( ) ( , )E B k A r t dk Bτ υ υ× = =∫
� � �

�

 

 

and, in real form, it reads ̂ Re ReE Bτ υ× =
� �

. Geometrically, this means that the 

ˆ(Re , Re , )E B τ
� �

 define a right-handed rectangular system.  

      3. As shown in [7,8], the E
�

 and B
�

 are always mutually perpendicular in a mono-
chromatic e/m wave of definite frequency ω, traveling in a conducting medium. Such 
a wave is represented in real form by the equations  
 

ˆ
0

2 2
ˆ

0

ˆ( , ) cos( ) ,

ˆ ˆ( , ) ( ) cos( )

s r

s r

E r t E e k r t

k s
B r t E e k r t

τ

τ

τ ω α

τ τ ω β
ω

− ⋅

− ⋅

= ⋅ − +

+
= × ⋅ − +

�

�

� �

� �

� �

� �

 

where 0E
�

 is a real vector and where  tan(β–α)=s/k. This perpendicularity between E
�

 

and B
�

 ceases to exist, however, in a non-monochromatic wave of the form (28).  
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