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Foundations of Newtonian Dynamics:
An Axiomatic Approach for the Thinking Student*

C. J. Papachristou?

Department of Physical Sciences, Hellenic Navald&oay, Piraeus 18539, Greece

Abstract. Despite its apparent simplicity, Newtonian mechamontains conceptual
subtleties that may cause some confusion to thp-tiéeking student. These subtle-
ties concern fundamental issues such as, e.gautider of independent laws needed
to formulate the theory, or, the distinction betwgenuine physical laws and deriva-
tive theorems. This article attempts to clarifyshessues for the benefit of the stu-
dent by revisiting the foundations of Newtonian dgrics and by proposing a rigor-
ous axiomatic approach to the subject. This thaaiescheme is built upon two fun-
damental postulates, namely, conservation of maumnend superposition property
for interactions. Newton’s laws, as well as all fi@an theorems of mechanics, are
shown to follow from these basic principles.

1. Introduction

Teaching introductory mechanics can be a majorlemgd, especially in a class of
students that are not willing to take anything doanted! The problem is that, even
some of the most prestigious textbooks on the subyey leave the student with
some degree of confusion, which manifests itsetfuastions like the following:

e Is the law of inertia (Newton’s first law) a law ofotion (of free bodies) or is
it a statement of existence (of inertial referefmaenes)?

e Are the first two of Newton’s laws independent atk other? It appears that
the first law is redundant, being no more thaneci case of the second law!

e Is the second law a true law or a definition (ot&)?

e |Is the third law more fundamental than conservatibmomentum, or is it the
other way around?

e Does the “parallelogram rule” for composition ofdes follow trivially from
Newton’s laws, or is an additional, independemgiple required?

e And, finally, what is the minimum number ofdependentaws needed in or-
der to build a complete theoretical basis for maas?

In this article we describe an axiomatic @agh to introductory mechanics that is
both rigorous and pedagogical. It purports to flagsues like the ones mentioned
above, at an early stage of the learning procéss, @iding the student to acquire a
deep understanding of the basic ideas of the thédsynot the purpose of this article,
of course, to present an outline of a complete sswf mechanics! Rather, we will
focus on the most fundamental concepts and priesjfghose that are taught at the
early chapters of dynamics (we will not be concdmh kinematics, since this sub-
ject confines itself to a description of motionhat than investigating the physical
laws governing this motion).

! See Note at the end of the article.
2 papachristou@snd.edu.gr




2 C. J. Papachristou

The axiomatic basis of our approach consittsvo fundamental postulates, pre-
sented in Section 3. The first postulaRl)(embodies both the existenceioértial
reference frameand theconservation of momentywhile the second oné’®) ex-
presses auperposition principldor interactions Thelaw of inertiais deduced from
Pl

In Sec. 4, the conceptfoirce on a particle subject to interactions is definasli
Newton’s second lamandP2is used to show that a composite interaction dréicle
with others is represented by a vector sum of grédenP1 andP2 are used to de-
rive theaction-reaction lawFinally, a generalization to systems of partidabject to
external interactions is made.

For completeness of presentation, certainvaere concepts such as angular
momentum, work, kinetic energy, etc., are discuseefiec. 5. To make the article
self-contained, proofs of all theorems are included

2. A critical look at Newton'’s theory

There have been several attempts to reexamine N&nBws even since Newton’s
time. Probably the most important revision of New$adeas — and the one on which
modern mechanics teaching is based — is that déenst Mach (1838-1916) (for a
beautiful discussion of Mach’s ideas, see the mamsicle by H. A. Simon [1]). Our
approach differs in several aspects from those atiMand Simon, although all these
approaches share common characteristics in sfot. a historical overview of the
various viewpoints regarding the theoretical ba$islassical mechanics, see, e.g., the
first chapter of [2].)

The question of thendependencef Newton’s laws has troubled many genera-
tions of physicists. In particular, still on thiaydsome authors assert that the first law
(the law of inertia) is but a special case of tkeosid law. The argument goes as fol-
lows:

“According to the second law, the acceleration gfaaticle is proportional to
the total force acting on it. Now, in the case dfee particle the total force
on it is zero. Thus, a free particle must not beeterating, i.e., its velocity
must be constant. But, this is precisely what éwedf inertia says!”

Where is the error in this line of reasonidg®wer: The error rests in regarding
the acceleration as an absolute quantity indeperafehe observer that measures it.
As we well know, this is not the case. In particutae only observegntitledto con-
clude that a non-accelerating object is subjectamet force is amertial observey
one who uses amertial frame of referencéor his/her measurements. It is precisely
the law of inertia thatlefinesinertial frames anduaranteegheir existence. So, with-
out the first law, the second law becomes indeteaitei, if not altogether wrong, since
it would appear to be valid relative to any obsemegardless of his/her state of mo-
tion. It may be said that the first law defines therrain” within which the second
law acquires a meaning. Applying the latter lawhwiit taking the former one into
account would be like trying to play soccer withpossessing a soccer field!

The completeness of Newton’s laws is anoigsre. Let us see a significant ex-
ample: As is well known, thprinciple of conservation of momentusna direct con-
sequence of Newton’s laws. This principle dictated the total momentum of a sys-
tem of particles is constant in time, relative toirertial frame of reference, when the
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total external force on the system vanishes (iniqdar, this is true for amsolated
system of particles, i.e., a system subject to xtereal forces). But, when proving
this principle we take it for granted that the tdtace on each particle is the vector
sum of all forces (both internal and external) ragton it. This isnot something that
follows trivially from Newton’s laws, however! Imatt, it was Daniel Bernoulli who
first stated thigrinciple of superpositiomafter Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a totdloofr — rather than just three — basic
laws.

The question now is: can we somehow “comfyéddtie axiomatic basis of New-
tonian mechanics in order for it to consist of aaen number of independent princi-
ples? At this point it is worth taking a closer koat the principle of conservation of
momentum mentioned above. In particular, we natfdhowing:

e For an isolated “system” consisting of a singletipk, conservation of mo-
mentum reduces to the law of inertia (the momentilnms also the velocity,
of a free particle is constant relative to an ilaftame of reference).

e For an isolated system of two particles, conseswatif momentum takes us
back to the action-reaction law (Newton’s third Jaw

Thus, starting with four fundamental lawse(three laws of Newton plus the law
of superposition) we derived a new principle (conagon of momentum) that yields,
as special cases, two of the laws we started Wiib.idea is then that, by takitigs
principle as our fundamental physical law, the namtf independent laws necessary
for building the theory would be reduced.

How about Newton’s second law? We take tlevyiadopted by several authors
including Mach himself (see, e.g., [1,3-7]) thastaw” should be interpreted as the
definition of force in terms of the rate of change of momentu

We thus end up with a theory built ugaro fundamental principles, i.e., the con-
servation of momentum and the principle of supatjos In the following sections
these ideas are presented in more detail.

3. The fundamental postulates and their consequees
We begin with some basic definitions.

Definition 1. A frame of referencéor reference framgis a system of coordinates
(or axes) used by an observer to measure physiealtifjes such as the position, the
velocity, the acceleration, etc., of any particiespace. The position of the observer
him/herself is assumdtkedrelative to his/her own frame of reference.

Definition 2. An isolated system of particles a system of particles subject only
to their mutual interactions, i.e., subject to exiernal interactions. Any system of
particles subject to external interactions that eloowv cancel one another in order to
make the system’s motion identical to that of aated system will also be consid-
ered “isolated”. In particular, an isolated systeonsisting of a single patrticle is
called afree patrticle

Our first fundamental postulate of mechamscstated as follows:
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Postulate 1. A class of frames of referencedrtial frameg exists such that, for
anyisolatedsystem of particles, a vector equation of theofelihg form is valid:

Z m ¥ = constant in tim (1)

where V; is the velocity of the particle indexed byi=1,2,--) and wherem is a

constant quantity associated with this particlejciwiguantity is independent of the
number or the nature of interactions the partglsubject to.

We callm themassand p. =m Yy themomentunof theith particle. Also, we call

P=2my=>"% ) (2

thetotal momentunof the system relative to the considered referéracee. Postulate
1, then, expresses tpeinciple of conservation of momentuthe total momentum of
an isolated system of particles, relative to antialereference frame, is constant in
time. (The same is true, in particular, for a fpaeticle.)

Corollary 1. A free particle moves with constant velocity (i.@ith no accelera-
tion) relative to annertial reference frame.

Corollary 2. Any two free particles move with constant velastrelative to each
other (their relative velocity is constant and threlative acceleration is zero).

Corollary 3. The position of a free particle may define thegioriof an inertial
frame of reference.

We note that Corollaries 1 and 2 constitltieriaate expressions of tihew of in-
ertia (Newton'’s first law.

Byinertial observerwe mean an “intelligent” free particle, i.e., aat can per-
form measurements of physical quantities such decig or acceleration. By
convention, the observer is assumed to be locatdearigin of his/her own inertial
frame of reference.

Corollary 4. Inertial observers move with constant velocities.(they do not ac-
celerate) relative to one another.

Consider now an isolated system of two pl@siof massesn, andm,. Assume

that the particles are allowed to interact for samme intervaldt. By conservation of
momentum relative to an inertial frame of referenwee have:

AB+P)=0 = Ap=-4p, = mAY=— ma7y.

We note that the changes in the velocities of we particles within the (arbitrary)
time intervaldt must be in opposite directions, a fact that isfieel experimentally.
Moreover, these changes are independent of thécydart inertial frame used to
measure the velocities (although, of course, thiecitees themselvesre frame-
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dependent!). This latter statement is a consequehtiee constancy of the relative
velocity of any two inertial observers (the studesninvited to explain this in detail).
Now, taking magnitudes in the above vector equatienhave:

|AY1| _Me constan 3)
|av,|  my

regardless of the kind of interaction or the tifte(which also is an experimentally
verified fact). These demonstrate, in practice vagity of the first postulate. Equa-
tion (3) allows us to specify the mass of a pagtimimerically, relative to the mass of
some other particle (which particle may arbitrakiy assigned a unit mass), by letting
the two particles interact for some time. As argabdve, the result will be independ-
ent of the specific inertial frame used by the obsewho makes the measurements.
That is, in the classical theomass is a frame-independent quantity

So far we have examined the case of isolsgstbms and, in particular, free parti-
cles. Consider now a particle subject to interatiwith the rest of the world. Then,
in general (unless these interactions somehow taneeanother), the particle’s mo-
mentum will not remain constant relative toiaartial reference frame, i.e., will be a
function of time. Our second postulate, which egpes thesuperposition principle
for interactions asserts that external interactions act on agbaitidependently of
one anotheand their effects are superimposed.

Postulate 2. If a particle of masan is subject to interactions with particles
m,, m,,---, then, at each instaptthe rate of change of this particle’s momentuta-re

tive to an inertial reference frame is equal to
dp dp
—r_ Bl 4
-2l @

Where(d p/ dt)i Is the rate of change of the particle’s momentwa dolely to the
interaction of this particle with the partictg (i.e., the rate of change ¢ if the par-
ticle minteractedbnly with m ).

4. The concept of force and the Third Law
We nowdefinethe concept of force, in a manner similaN@wton’s second law

Definition 3. Consider a particle of mass that is subject to interactions. Let
p(t) be the particle’s momentum as a function of tim®,measured relative to an

inertial reference frame. The vector quantity

d

o]

F= (5)

o

t

is called theotal forceacting on the particle at tinte
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Taking into account that, for a single pagtico = mv with fixed m, we may re-
write EQ. (5) in the equivalent form,

—

F=ma=

T
— | <l

(6)

where a is the particle’s acceleration at tiheGiven that both the mass and the ac-
celeration (prove this!) are independent of thetiakframe used to measure them, we
conclude thathe total force on a particle is a frame-independgmantity

Corollary 5. Consider a particle of mass subject to interactions with particles
m,, m,---. Let F be the total force om at timet, and letF. be the force om due
solely to its interaction withm . Then, by the superposition principle for interawas
(Postulate 2) as expressed by Eq. (4), we have:

F=2F Y

Theorem 1. Consider two particles and2. Let F,, be the force on particte due

to its interaction with particl@ at timet, and letF,, be the force on partict due to
its interaction with particlé at the same instant. Then,

—

l:12 == 'le (8)

Proof. By the independence of interactions, as exprebsethe superposition
principle, the forces,, and F,, are independent of the presence or not of othei pa

cles in interaction with particlesand2. Thus, without loss of generality, we may as-
sume that the system of the two particles is iedlaifhen, by conservation of mo-
mentum and by using Eq. (5),

d . dp df - =
a(pﬁr p)=0 = d_%:_TF?[Z = Fy=—Fy .

Equation (8) expresses thetion-reaction law(Newton’s third lavy.

Theorem 2. The rate of change of the total moment@tt) of a system of parti-

cles, relative to an inertial frame of referenapads the totaéxternalforce acting on
the system at time

Proof. Consider a system of particles of massg$i=1,2,--). Let F. be the total
externalforce onm (due to its interactions with particle®t belongingto the sys-

tem), and Ietlf”- be theinternal force onm due to its interaction witim, (by con-

—

vention, F; =0 wheni=j). Then, by Eq. (5) and by taking into account &9,
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dp - B,
S _FE+YE, .
dat ; !

By using Eqg. (2) for the total momentum, we have:

dP_$dA_vE,.TE
Py yeTe.
But,
- L le. -
Z':ij:ZFjiZEZ(FuJFFﬁ):O'
ij ji

ij
where the action-reaction law (8) has been takenaocount. So, finally,

P - -
E:ZE:Fext (9)

where F,

ext

represents thtal external forceon the system.

5. Derivative concepts and theorems

Having presented the most fundamental conceptsechanics, we now turn to some
useful derivative concepts and related theorend) as those of angular momentum
and its relation to torque, work and its relatienkinetic energy, and conservative
force fields and their association with mechanaargy conservation.

Definition 4. Let O be the origin of amnertial reference frame, and |&€t be the
position vector of a particle of mass relative toO. The vector quantity

[=Fxp=m(FxV) oj1

(where p=mvV is the particle’s momentum in the considered fraimealled thean-
gular momentunof the particle relative t@.

Theorem 3. The rate of change of the angular momentum ofrticieg relative to
O, is given by

—=rxF =T (11)
where F is thetotal force on the particle at tinteand whereT is thetorqueof this
force relative tdO, at this instant.

Proof. Equation (11) is easily proven by differentiatiig. (10) with respect to
time and by using Eq. (5).



8 C. J. Papachristou

Corollary 6. If the torque of the total force on a particldatee to some poinD,
vanishes, then the angular momentum of the pamatéive toO is constant in time
(principle of conservation of angular momenjum

Under appropriate conditions, the above cmas®n principle can be extended to
the more general case of a system of particles ¢sge [2-8]).

Definition 5. Consider a particle of massin aforce field F(F), wheref is the

particle’s position vector relative to the origihof an inertial reference frame. L&t
be a curve representing the trajectory of the garfrom pointA to pointB in this
field. Then, the line integral

W,g = jf E(F). dF o

represents thevork done by the force field om along the patl€. (Note: This defini-
tion is valid independently of whether or not adbhtl forces, not related to the field,

are acting on the particle; i.e., regardless ofttdeor notF (F) represents the total
force onm.)

Theorem 4. Let F(F) represent théotal force on a particle of mass in a force
field. Then, the work done on the particle alonzpehC from A to B is equal to

Bﬁ — —
Wy =[, F(7)-df = Ecg— Exa= 4E, (13)
where

(14)

is thekinetic energyof the particle.
Proof. By using Eq. (6), we have:

E.dr=md

<l

dr=my dve s mEv =S mey= mvg

o
—

from which Eq. (13) follows immediately.

Definition 6. A force field F(F) is said to beconservativef a scalar function
E,(F) (potential energyexists, such that the work on a particle alangpath from
A to B can be written as

Bﬁ — —
Wy =[, F(7)-df = E, ;- E 5=—4E (15)

p
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Theorem 5. If the total forceF (F) acting on a particlen is conservative, with an
associated potential ener@y, (r) , then the quantity

E:Ek+Ep:%m\?+ (7 (16)

(total mechanical energygf the particle) remains constant along any pedhed by
the particle ¢onservation of mechanical enejgy

Proof. By combining Eq. (13) (which is generally valid finy kind of force) with
Eq. (15) (which is valid foconservativdorce fields) we find:

AR =-4E, = A(E+ E)=0 = E+ E,= cons

Theorems 4 and 5 are readily extended tac#se of a system of particles (see,
e.g., [2-8]).

6. Some conceptual problems

After establishing our axiomatic basis and demattisty that the standard Newtonian
laws are consistent with it, the development ofrést of mechanics follows familiar
paths. Thus, as we saw in the previous sectiorgamedefine concepts such as angu-
lar momentum, work, kinetic and total mechanicargres, etc., and we can state de-
rivative theorems such as conservation of angulamentum, conservation of me-
chanical energy, etc. Also, rigid bodies and cardirs media can be treated in the
usual way [2-8] as systems containing an arbitrdailge number of particles.

Despite the more “economical” axiomatic basisNewtonian mechanics sug-
gested here, however, certain problems inheretitarclassical theory remain. Let us
point out a few:

1. The problem of “inertial frames”

An inertial frame of reference is only a tretecal abstraction: such a frame can-
not exist in reality. As follows from the discussim Sec. 3, the origin (saf) of an
inertial frame coincides with the position of a btipetical free particle and, more-
over, any real free particle moves with constanbaity relative toO. However, no
such thing as an absolutely free particle may arighe world. In the first place,
every material particle is subject to the infintédng-range gravitational interaction
with the rest of the world. Furthermore, in order & supposedly inertial observer to
measure the velocity of a “free” particle and wettiat this particle is not accelerat-
ing relative to him/her, the observer must somel@eract with the particle. Thus,
no matter how weak this interaction may be, theigarcannot be considered free in
the course of the observation.

2. The problem of simultaneity

In Sec. 4 we used our two postulates, togetitd the definition of force, to de-
rive the action-reaction law. Implicit in our argants was the requirement that action
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must besimultaneouswith reaction. As is well known, this hypothesmhich sug-
gests instantaneous action at a distance, ignioecknite speed of propagation of the
field associated with the interaction and violatagsality.

3. A dimensionless “observer”

As we have used this concept, an “obsengdni intelligent free particle capable
of making measurements of physical quantities sischelocity or acceleration. Such
an observer may use any convenient (preferablyamgalar) set of axes
(%, ¥, 2) for his/her measurements. Different systems @samsed by this observer
have different orientations in space. By conventtbe observer is located at the ori-
gin O of the chosen system of axes.

As we know, inertial observers do not acakerelative to one another. Thus, the
relative velocity of the origins (sa@) andQ’) of two different inertial frames of ref-
erence is constant in time. But, what if the axethese frames are ielative rota-
tion (although the origin® and O" move uniformly relative to each other, or even
coincide)? How can we tell which observer (if arsyan inertial one?

The answer is that, relative to the systeraxals of an inertial frame, a free parti-
cle does not accelerate. In particular, relativa totating frame, a free particle will
appear to possess at least a centripetal acceler&tiich a frame, therefore, cannot be
inertial.

As mentioned previously, an object with #ndimensions (e.g., a rigid body) can
be treated as an arbitrarily large system of dagidNo additional postulates are thus
needed in order to study the dynamics of such gectbrhis allows us to regard
momentum and its conservation as more fundamedrdal angular momentum and its
conservation, respectively. In this regard, ourrapph differs significantly from,
e.g., that of Simon [1] who, in his own treatmealces the aforementioned two con-
servation laws on an equal footing from the outset.

7. Summary

Newtonian mechanics is the first subject in Physicsundergraduate student is ex-
posed to. It continues to be important even atintermediate and advanced levels,
despite the predominant role played there by theengeneral formulations of La-
grangian and Hamiltonian dynamics.

It is this author's experience as a teachet, tdespite its apparent simplicity,
Newtonian mechanics contains certain conceptudletids that may leave the deep-
thinking student with some degree of confusion. @kerage student, of course, is
happy with the idea that the whole theory is budon three rather simple laws attrib-
uted to Newton’s genius. In the mind of the morendeding student, however, puz-
zling questions often arise, such as, e.g., howynraaependent laws we really need
to fully formulate the theory, or, which ones shibbke regarded as truly fundamental
laws of Nature, as opposed to others that can fieedeas theorems.

This article suggested an axiomatic apprdadhtroductory mechanics, based on
two fundamental, empirically verifiable laws; nameheprinciple of conservation of
momentumand theprinciple of superposition for interaction¥Ve showed that all
standard ideas of mechanics (including, of coukmyton’s laws) naturally follow
from these basic principles. To make our formulai&s economical as possible, we
expressed the first principle in terms of a systdnparticles and treated the single-
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particle situation as a special case. To makeriweaself-contained for the benefit of
the student, explicit proofs of all theorems werkeg.

By no means do we assert, of course, thatghrticular approach is unique or
pedagogically superior to other established methbds adopt different viewpoints
regarding the axiomatic basis of classical mectsarboreover, as noted in Sec. 6,
this approach is not devoid of the usual theorkpecablems inherent in Newtonian
mechanics (see also [9,10]).

In any case, it looks like classical mechamamains a subject open to discussion
and re-interpretation, and more can always be aaadit things that are usually taken
for granted by most students (this is not exclugitieeir fault, of course!). Happily,
some of my own students do not fall into this catggl appreciate the hard time they
enjoy giving me in class!
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Abstract. The concept of electromotive force (emf) may be introduced in various ways in
an undergraduate course of theoretical electromagnetism. The multitude of alternate
expressions for the emf is often the source of confusion to the student. We summarize the
main ideas, adopting a pedagogical logic that proceeds from the general to the specific.
The emf of a “circuit” is first defined in the most general terms. The expressions for the
emf of some familiar electrodynamical systems are then derived in a rather straightforward
manner. A diversity of physical situations is thus unified within a common theoretical
framework.

1. INTRODUCTION

The difficulty in writing this article was not just due to the subject itself: we had to first
overcome some almost irreconcilable differences in educational philosophy between an
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer.
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.

Having taught intermediate-level electrodynamics courses for several years, we have come
to realize that, in the minds of many of our students, the concept of electromotive force (emf) is
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the
electric field along a closed path? And what if a magnetic rather than an electric field is present?

Generally speaking, the problem with the emf lies in the diversity of situations where this
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas,
choosing a pedagogical approach that proceeds from the general to the specific. We begin by
defining the concept of emf of a “circuit” in the most general way possible. We then apply this
definition to certain electrodynamic systems in order to recover familiar expressions for the emf.
The main advantage of this approach is that a number of different physical situations are treated
in a unified way within a common theoretical framework.

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5)
application is made to particular cases, such as motional emf, the emf due to a time-varying
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6,
the connection between the emf and Ohm’s law is discussed.
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2. THE GENERAL DEFINITION OF EMF

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or
any other elements whose presence may contribute to the e/m field).

We arbitrarily assign a positive direction of traversing the loop C, and we consider an element

dl of C oriented in the positive direction. Imagine now a test charge g located at the position of

dl, and let F be the force on g at time t:

g di

)

This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources
(e.g., batteries) that can interact electrically with g. The force per unit charge at the position of

dl attime t,is

f= (1)

|

Note that 7 is independent of g, since the force by the e/m field and/or the sources on g is
proportional to the charge. In particular, reversing the sign of g will have no effect on f

(although it will change the direction of F).
We now define the electromotive force (emf) of the circuit C at time t as the line integral

of f along C, taken in the positive sense of C:

£= §[>C f-di @)

Note that the sign of the emf is dependent upon our choice of the positive direction of
circulation of C: by changing this convention, the sign of £is reversed.
We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial

observers since at this limit the force F is invariant under a change of frame of reference.
In the following sections we apply the defining equation (2) to a number of specific
electrodynamic situations that are certainly familiar to the student.
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3. MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC
FIELD

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic
field B(7). Let U be the velocity of the element di of C relative to our inertial frame of

reference. A charge q (say, a free electron) at the location of d/ executes a composite motion,
due to the motion of the loop C itself relative to our frame, as well as the motion of g along C.
The total velocity of g relative to us is 4, =6 +0', where U is the velocity of g in a direction

parallel to 4 . The force from the magnetic field on qis

FZQ(GtotXE)ZQ(GXE)"‘(](UXB) =

f=£=(5x1§)+(5’x§)
q

By (2), then, the emf of the circuit Cis
g =<}'>C f-dl:cﬁc (DxB)-di + <.[>C (0'x B)-di
But, since U’ is parallel to di, we have that (5'x B)-di =0 . Thus, finally,
5=<j>c (Ox B)-di ®3)

Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note

also that the velocity & may vary around the circuit.
By using (3), it can be proven (see Appendix) that

_do
dt

(4)

where (D:JE-cTa is the magnetic flux through the wire C at time t. Note carefully that (4)

does not express any novel physical law: it is simply a direct consequence of the definition of
the emf!

4. EMF DUE TO ATIME-VARYING MAGNETIC FIELD

Consider now a closed wire C that is at rest inside a time-varying magnetic field B(F,t). As

experiments show, as soon as B starts changing, a current begins to flow in the wire. This
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And,
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed

experimentally that, if the magnetic field B stops varying in time, the current in the wire
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disappears. The only field that can put an initially stationary charge in motion and keep this
charge moving is an electric field.

We are thus compelled to conclude that a time-varying magnetic field is necessarily
accompanied by an electric field. (It is often said that “a changing magnetic field induces an
electric field”. This is somewhat misleading since it gives the impression that the “source” of an
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of
any e/m field are the electric charges and the electric currents!)

So, let E(7,f) be the electric field accompanying the time-varying magnetic field B .
Consider again a charge g at the position of the element 4/ of the wire. Given that the wire is
now at rest (relative to our inertial frame), the velocity of g will be due to the motion of the
charge along the wire only, i.e., in a direction parallel to 41 : 0,, =0 (since 5=0). The force on
q by the e/m field is

F=qlE+(0, xB)=q[E+(@'xB)] =

f=—=E+@WxB)

Q|

The emf of the circuit Cis now
I =<j>c f-dl:cﬁc E-dl+<j>c (5'x B)-di
But, as explained earlier, (5'x B)-dl =0 . Thus, finally,
£ = c.[)CE -dl (5)

Equation (4) is still valid. This time, however, it is not merely a mathematical
consequence of the definition of the emf ; rather, it is a true physical law deduced from
experiment! Let us examine it in some detail.

In a region of space where a time-varying e/m field (E,B) exists, consider an arbitrary
open surface S bounded by the closed curve C:

da
@,

C

(The relative direction of 4/ and the surface element %, normal to S, is determined

according to the familiar right-hand rule.) The loop Cis assumed stationary relative to the inertial
observer; hence the emf along C at time tis given by (5). The magnetic flux through S at this
instant is
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@, ()= B-da

(Note that the signs of £ and ®,, depend on the chosen positive direction of C.) Since the field

B is solenoidal, the value of ®,, for a given C is independent of the choice of the surface S.
That is, the same magnetic flux will go through any open surface bounded by the closed curve
C.

According to the Faraday-Henry law,

do
E=——™" 6
o (6)
or explicitly,
S d ¢ - —
gSCE-dzz—EjSB-da (7)

(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)
Equation (7) can be re-expressed in differential form by using Stokes’ theorem,

¢ E-dl=[ (VxE)-da
and by taking into account that the surface S may be arbitrarily chosen. The result is

OB

VxE=-—=
ot

(8)
We note that if dB/dt+0, then necessarily E#0. Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B is static (
dB/10t=0), then E is irrotational: VxE =0 < cj}Ecﬁ:O, which allows for the possibility

that E=0.
Corollary: The emf around a fixed loop C inside a static e/m field (E(?), E(?)) is £€=0
(the student should explain this).

5. EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance)
connected to an external resistor. As shown below, the emf of the circuit in the direction of the
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the
work per unit charge done by the source (battery).

ISSN:1791-4469 Copyright © 2014, Hellenic Naval Academy
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A
— ]70

/|
& a “'t p

E<~—

—_— I
We recall that, in general, the emf of a circuit C at time tis equal to the integral
e=¢_f-di

where f = F/q is the force per unit charge at the location of the element 4i of the circuit, at
time t. In essence, we assume that in every element 4/ we have placed a test charge g (this

could be, e.g., a free electron of the conducting part of the circuit). The force F on each q is
then measured simultaneously for all charges at time t. Since here we are dealing with a static
(time-independent) situation, however, we can treat the problem somewhat differently: The

measurements of the forces F on the charges g need not be made at the same instant, given
that nothing changes with time, anyway. So, instead of placing several charges g around the

circuit and measuring the forces F on each of them at a particular instant, we imagine a single
charge g making a complete tour around the loop C. We may assume, e.g., that the charge g is
one of the (conventionally positive) free electrons taking part in the constant current / flowing in

the circuit. We then measure the force F on g at each point of C.
We thus assume that g is a positive charge moving in the direction of the current I. We
also assume that the direction of circulation of C is the same as the direction of the current

(counterclockwise in the figure). During its motion, g is subject to two forces: (1) the force F, by
the source (battery) that carries g from the negative pole a to the positive pole b through the
source, and (2) the electrostatic force F, = gE due to the electrostatic field E at each point of
the circuit C (both inside and outside the source). The total force on qis

.. . . . L F F . . .
F=F+F =F+qFE > f=—=-"2+E=f+E
q9 q
Then,
szcﬁcf-dlzcﬁc fo-dl+<ﬁCE-dl=<j>C f,-di )

since cﬁc E-dl =0 for an electrostatic field. However, the action of the source on g is limited to

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence,

f, =0 outside the source, so that (9) reduces to

e=[ fy-di (10)
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Now, since the current / is constant, the charge g moves at constant speed along the circuit.
This means that the total force on q in the direction of the path Cis zero. In the interior of the

resistor, the electrostatic force F, = ¢E is counterbalanced by the force on g due to the

collisions of the charge with the positive ions of the metal (this latter force does not contribute to
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however,

where there is no resistance, the electrostatic force F, must be counterbalanced by the
opposing force F, exerted by the source. Thus, in the section of the circuit between a and b,

- o~ - - F - - - -
F=F+F =0 = f:;:f0+E:O = f,=—-FE
Equation (10) then takes the final form,
b - —
g=—["E-dI=V,-V,=V (11)

where V, and V, are the electrostatic potentials at a and b, respectively. This is, of course,
what every student knows from elementary e/m courses!
The work done by the source on g upon transferring the charge from ato bis

b -~ — b - —
W=["F-di=q[ f,-di=q¢ (12)

[where we have used (10)]. So, the work of the source per unit charge is W/q= £ . This work is

converted into heat in the resistor, so that the source must again supply energy in order to carry
the charges once more from a to b. This is something like the torture of Sisyphus in Greek
mythology!

6. EMF AND OHM’S LAW

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery)
and may also be in motion relative to our inertial frame of reference. Let g be a test charge at

the location of the element di of C, and let F be the total force on g (due to the e/m field
and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-
independent quantity.) The force per unit charge at the location of 4/ at time t then, is

f = F /q . According to our general definition, the emf of the circuit at time tis

szgﬁcf-il (13)

Now, if o is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p.
285 of [1]) we have:

~i
Il
q

~1

(14)
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where J is the volume current density at the location of di at time t (Note that the more
common expression J =gE, found in most textbooks, is a special case of the above formula.

Note also that J is measured relative to the wire, thus is the same for all inertial observers.) By
combining (13) and (14) we get:

szlgﬁcj.il (15)

Taking into account that J isin the direction of 4] at each point of C, we write:

j-dlz]dlzidl
S

where S is the constant cross-sectional area of the wire. If we make the additional assumption
that, at each instant t, the current /is constant around the circuit (although / may vary with time),
we finally get:

g=Lg-Ply_ g (16)
oS S

where /is the total length of the wire, p=1/0 is the resistivity of the material, and R is the total
resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.

As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery
with internal resistance r. Let R, be the external resistance connected to the battery. The total
resistance of the circuit is R=R,+r. As before, we call V=V, -V, the potential difference between
the terminals of the battery, which is equal to the voltage across the external resistor. Hence,
V=IR,, where I is the current in the circuit. The emf of the circuit (in the direction of the current)
is

E=IR=1(Rp+n=V+Ir

Note that the potential difference V between the terminals a and b equals the emf only when
no current is flowing (/=0).
As another example, consider a circuit C containing an ideal battery of voltage V and
having total resistance R and total inductance L :

L

(’R_mm_

—)

In this case, the emf of C in the direction of the current flow is
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E(t) =V+V, = V—L% = I(t)R

To understand why the total emf of the circuit is V+V,, we think as follows: On its tour around
the circuit, a test charge g is subject to two forces (ignoring collisions with the positive ions in the
interior of the wire): a force inside the source, and a force by the non-conservative electric field
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry
law (6). The latter emf is precisely V, ; it has a nonzero value for as long as the current /is
changing.

Some interesting energy considerations are here in order. The total power supplied to the
circuit by the battery at time tis

P=1V=12R+L1ﬂ
dt

The term /2R represents the power irreversibly lost as heat in the resistor (energy, per unit
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the
source in order to maintain the current against dissipative losses in the resistor. On the other
hand, the term L/ (dl/df) represents the energy per unit time required to build up the current
against the “back emf” V, . This energy is retrievable and is given back to the source when the
current decreases. It may also be interpreted as energy per unit time required in order to
establish the magnetic field associated with the current. This energy is “stored” in the magnetic
field surrounding the circuit.

7. CONCLUDING REMARKS

In concluding this article, let us highlight a few points of importance:

1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”)
in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain
sources such as batteries.

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of
reference with respect to which it is measured.

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present,
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of
the battery and represents work per unit charge done by the source.

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s
law can be expressed in terms of the emf by equation (16).
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APPENDIX

Here is an analytical proof of equation (4) of Sec.3:
Assume that, at time f, the wire describes a closed curve C that is the boundary of a plane
surface S. At time = t+dt, the wire (which has moved in the meanwhile) describes another

curve C’that encloses a surface S”. Let di be an element of C in the direction of circulation of

the curve, and let U be the velocity of this element relative to an inertial observer (the velocity
of the elements of C may vary along the curve):

—_—> C

¢ di

The direction of the surface elements % and @ is consistent with the chosen direction of
dl, according to the right-hand rule. The element of the side (“cylindrical”) surface S** formed
by the motion of C, is equal to

da" =dIx (6 dt) = (dlx0)dt

Since the magnetic field is static, we can view the situation in a somewhat different way:
Rather than assuming that the curve C moves within the time interval dt so that its points
coincide with the points of the curve C” at time t’, we consider two constant curves C and C~ at

the same instant t. In the case of a static field B, the magnetic flux through C* at time t'= t+dt
(according to our original assumption of a moving curve) is the same as the flux through this
same curve at time t, given that no change of the magnetic field occurs within the time interval

dt. Now, we note that the open surfaces S;=S and S,= S” U S§"" share a common boundary,
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux ®,, passes
through S; and S, at time t. That s,

J‘S1B~da1 =J‘S2B~da2 = ISB~da =J‘S,B~da +J‘S”B~da
But, returning to our initial assumption of a moving curve, we note that

Is B-da= @, (1) = magnetic flux through the wire at time t

and
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J‘S B-dd = @, (t+dt)= magnetic flux through the wire at time t+dt

Hence,

@m(r)zam(r+dr)+js,,é.%" -

d®, =d (1+di)—-D, (1) :—J'S,,E.W:_dt Sﬁcé.(ﬁxg) N

d@, ¢ 7z = o £ B =
- _q}cB.(dlxu)_q.)C(uxB)«dl—E

in accordance with (3) and (4).
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Abstract equality £&=w is satisfied only in the special case where the

. . . magnetic field varies linearly with time.
In the literature of Electromagnetism, the elective g y

force of a “circuit” is often defined as work done a unit
charge during a complete tour of the latter aratinedcircuit.
We explain why this statement cannot be generaljparded
as true, although it is indeed true in certain $engases.
Several examples are used to illustrate thesegoint

2. Thegeneral definitions of emf and work per
unit charge

Consider a region of space in which an electromiagne
(e/m) field exists. In the most general sense,@dogedpath

C (or loop) within this region will be called &circuit”
(whether or not the whole or parts @fconsist of material
objects such as wires, resistors, capacitors, rizdfeetc.).
We arbitrarily assign a positive direction of traversing the

1. Introduction

In a recent paper [1] the authors suggested a pgdaag
approach to thelectromotive forcdemf) of a “circuit”,
fundamental concept of Electromagnetism. Rathem tha loop C, and we consider an elementt of C oriented in the
defining the emf in arad hocmanner for each particular positive direction (Fig. 1).

electrodynamic system, this approach begins withnttost

general definition of the emf and then specializesertain

cases of physical interest, thus recovering theili@mex-

g dl
pressions for the emf.
Among the various examples treated in [1, ¢hse of a
simple battery-resistor circuit was of particularterest +
since, in this case, the emf was shown to be efudhe C
work, per unit chargedone by the source (battery) for a

complete tour around the circuit. Now, in the htiere of

Electrodynamics the emf is oftefefinedas work per unit Figure 1: An oriented loop representing a circuit.

charge. As we explain in this paper, this is nategally true _ -

except for special cases, such as the aforemeadtiome Imagine now a test chargglocated at the position of
In Section 2, we give the general definitafrthe emf., dl, and letF be the force om at timet. This force is ex-

and, separately, that of the work per unit chavgejone by  erted by the e/m field itself, as well as, possitily addi-
the agencies responsible for the generation angepration  tional energy sourcege.g., batteries or some external me-
of a current flow in the circuit. We then state trecessary  chanical action) that may contribute to the genienaand
conditions in order for the equalif=w to hold. We stress  preservation of a current flow around the Ic@pTheforce

that, by their very definitions] andw aredifferentconcepts.  per unit chargeat the position ofl| at timet, is

Thus, the equatiofi=w suggests the possible equality of the

valuesof two physical quantities, not the conceptuahtite
fication of these quantities!

Section 3 reviews the case of a circuit cstitgj of a
battery connected to a resistive wire, in whichecalse . ) )
equality&=w is indeed valid. Note that-]c is mdependent of,, since the elec-tromagnetlc

In Sec. 4, we study the problem of a wire ingv force onq is proportional to the charge;ln particular, msve
through a static magnetic field. A particular stton where  ing the sign ofg will have no effect onf (although it will
the equality€=w is valid is treated in Sec. 5. change the direction df ).

Finally, Sec. 6 examines the case of acstaty wire In general, neither the shape nor the siz@ isfrequired
inside a time-varying magnetic field. It is showmat the  to remain fixed. Moreover, the loop may be in motiela-

(1)

—h
I
o |



tive to an external inertial observer. Thus, fdo@p of (pos-

sibly) variable shape, size or position in space,will use

the notatiorC(t) to indicate the state of the curve at time
We now define theslectromotive force(emf) of the

circuit C at timet as the line integral of alongC, taken in
thepositivesense o€C:

f(F,t)-dl

(t)

5@:@

C

)

(wherer is the position vector ofll relative to the origin

of our coordinate system). Note that the sign ef &imf is
dependent upon our choice of the positive direatibaircu-

lation of C: by changing this convention, the sign &fis
reversed.

As mentioned above, the force (per unit cepagefined
in (1) can be attributed to two factors: the intéian of g
with the e/m field itself and the action grdue to any addi-
tional energy sources. Eventually, this latter riatgion is
electromagnetién nature even when it originates from some
external mechanical action. We write:

f=fnt o

®3)

where f,_is the force due to the e/m field arfg, is the

applied forcedue to an additional energy source. We note
that the force (3) does not include aegistive(dissipative)
forces that oppose a charge flow alddgit only contains
forces that may contribute to the generation aedgrvation
of such a flow in the circuit.

Now, suppose we alloasingle charge to make a full
trip around the circui€ under the action of the force (3). In

doing so, the charge describes a cu@/ein space(not
necessarily a closed one!) relative to an externeitial

observer. Letdl’ be an element of’ representing an in-

finitesimal displacement af in space, in timet. We define
the work per unit chargdor this complete tour around the
circuit by the integral:

w= [ fdf (4)

For astationarycircuit of fixed shape,C’ coincides with the
closed curveC and (4) reduces to

( fixed C) (5)

w=¢ f-dl
It should be noted carefully that the intédga is evalu-
atedat a fixed time,twhile in the integrals (4) and (5) time
is allowed to flow! In general, the value wfdepends on the
time to and the poinP, at whichq starts its round trip o@.
Thus, there is a certain ambiguity in the defimtiaf work
per unit charge. On the other hand, the ambigusty t0

11

speak) with respect to the emf is related to theeddence
of the latter on timé.

The question now is: can the emf be equaklueto the
work per unit charge, despite the fact that thesentties

are defined differently? For the equalifyw to hold, both&
and w must be defined unambiguously. Thésmust be

constant independent of timed€/dt=0) while w must not

depend on the initial tim& or the initial pointP, of the
round trip ofg on C. These requirements amecessary con-

ditionsin order for the equalit§=w to be meaningful.

In the following sections we illustrate theiskeas by
means of several examples. As will be seen, thsfaetion
of the above-mentioned conditions is the exceptather
than the rule!

3. Aresistivewireconnected to a battery

Consider a circuit consisting of an ideal batterg.( one
with no internal resistance) connected to a metiat wf
total resistanc® (Fig. 2). As shown in [1] (see also [2]), the
emf of the circuitin the direction of the currens equal to
the voltageV of the battery. Moreover, the emf in this case
represents the work, per unit charge, done by thecse
(battery). Let us review the proof of these stateine

R
—AAAA—
AT
o ")
app
(|
a —1 [+ b
E<~—
— ]

Figure 2: A battery connected to a resistive wire.

A (conventionally positijemoving chargej is subject to
two forces around the circui€: an electrostatic force

F,=qE at every point ofC and a forceF,  inside the

battery, the latter force carryirggfrom the negative pola
to the positive pold through the sourceAccording to (3),
the total force per unit charge is

f=f+f,=E+f,.

The emf in the direction of the current (i.e., ctawmolock-
wise), at any time, is

gzécf-&
:¢c Eal+¢c

-[[7.-d

—

f o.dl
app

(6)



where we have used the facts tq‘}act E. al =0 for an elec-

trostatic field and that the action of the sourneyads limited
to the region between the poles of the battery.

Now, in a steady-state situatidn=(constant) the charge
g moves at constant speed along the circuit. Thisnm¢hat
the total force om in the direction of the pat@ is zero. In

the interior of the wire, the electrostatic forBe=qE is

counterbalanced by the resistive forcegodue to the colli-
sions of the charge with the positive ions of thetah (as
mentioned previously, this latter force doexd contribute to
the emf). In the interior of the (ideal) batterypowever,
where there is no resistance, the electrostatiefonust be

counterbalanced by the opposing force exerted hgy th

source. Thus, in the section of the circuit betwaemdb,
f_=—f,=-E.By(6), then, we have:

app

g=-["E-di=y-v =V @)

whereV, andV, are the electrostatic potentialsatndb,
respectively. We note that the emf is constantirmet as
expected in a steady-state situation.

Next, we want to find the work per unit charfpr a
complete tour around the circuit. To this end, Weva a
single charge go make a full trip aroun®€ and we use
expression (5) (since the wire is stationary andfixéd
shape). In applying this relation, time is assunmetiow as
g moves alongC. Given that the situation is static (time-
independent), however, time is not really an issinee it
doesn’t matter at what moment the charge will gassny
given point ofC. Thus, the integration in (5) will yield the
same result (7) as the integration in (6), degpi¢efact that,
in the latter case, time was assurfigdd We conclude that

the equalityw=£ is valid in this case: the erdbesrepresent
work per unit charge.

4. Movingwireinside a static magnetic field

Consider a wireC moving in thexy-plane. The shape and/or
size of the wire need not remain fixed during itstion. A

static magnetic fieldB(F) is present in the region of space
where the wire is moving. For simplicity, we assuthat
this field is normal to the plane of the wire arickdtedinto
the page.

In Fig. 3, the-axis is normal to the plane of the wire and
directed towards the reader. We cdl an infinitesimal
normal vector representing an element of the plaméace

bounded by the wire (this vector is direciatb the plane,
consistently with the chosen clockwise directiontravers-

ing the loopC ). If 0, is the unit vector on theaxis, then

da=-(da U and B=-B(F){,, where B(F) =| B(F) |.
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Figure 3: A wireC moving inside a static magnetic
field.

Consider an elementl of the wire, located at a point

with position vector relative to the origin of our inertial
frame of reference. Calb (') the velocity of this element

relative to our frame. Let| be a ¢onventionally positiJe
charge passing by the considered point at tirfiéais charge

executes a composite motion, having a velocityalong
the wire and acquiring an extra velocity(f') due to the
motion of the wire itself. The total velocity gfrelative to
usisv,, =0, +0.

F f L By
r-n FappL D¢
_____________ f N o,

®B(F) 3

Figure 4: Balance of forces per unit charge.

The balance of forces acting qnis shown in the dia-
gram of Fig. 4. Theanagnetic forceon q is normal to the

charge’s total velocity and equal t&, =q(5,,xB) .

Hence, the magnetic force per unit Charge?nis: Dy X B.

Its component along the wire (i.e., in the directaf (?I) is

counterbalanced by thessistive forcef , which opposes

the motion ofg alongC (this force, as mentioned previously,
doesnot contribute to the emf). However, the component of
the magnetic forcaormal to the wire will tend to make the
wire move “backwards” (in a direction opposing thesired
motion of the wire) unless it is counterbalanced doyne
external mechanical action (e.g., our hand, which pulls the
wire forward). Now, the charggtakes a share of this action
by means of some force transferred to it by thecttire of
the wire. This force (which will be called applied forcé
must benormal to the wire (in order to counterbalance the
normal component of the magnetic force). We derbée



applied force per unit charge l:)&lpp. Although this force

originates from an external mechanical actiors delivered
to g through arelectromagnetidnteraction with the crystal
lattice of the wire (not to be confused with thesiséve
force, whose role is different!).

According to (3), the total force contribgito the emf

of the circuitis f = Fm + Fapp. By (2), the emf at timeis

£ =¢

c(t)

i Td

m app

The second integral vanishes since the appliec fraor-
mal to the wire element at every point@f The integral of
the magnetic force is equal to

$. (6% B)-dl = (5,xB)-dl + § @xB)- ql.

The first integral on the right vanishes, as canséen by
inspecting Fig. 4. Thus, we finally have:

£0 = ¢, [6(NxBM]-dl (®)

As shown analytically in [1, 2], the emf®fis equal to
d

EM)=-—0,(t) 9)
dt

where we have introduced theagnetic fluxhroughC,

o (1) = jsmé(r)-cﬁz jw B(7) da (10)

[By St) we denoteany open surface bounded Byat timet;
e.g., the plane surface enclosed by the wire.]

Now, letC' be the path ofy in space relative to the
external observer, for a full trip af around the wire (in
general,C’' will be anopen curve). According to (4), the
work done per unit charge for this trip is

w= J.c, f.dl+ IC, f-dl .

The first integral vanishes (cf. Fig. 4), while fie second
one we notice that

dl = f_.dl+f_.d’"=f_.dl

fapp ’ app’ app’ app

(since the applied force is normal to the wire edatmeve-
rywhere; see Fig. 4). Thus we finally have:

w= jc, f-dl (1B)

with
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dl =, dlI"=f, - odt

(1b)

app

where dI” = 5 dt is the infinitesimal displacement of the
wire element in timelt.

5. An example: Mation insidea uniform
magnetic field

Consider a metal bamlf) of lengthh, sliding parallel to
itself with constant speed on two parallel rails that form
part of a U-shaped wire, as shown in Fig. Sumform mag-

netic field B , pointing into the page, fills the entire region.

hre b )
Oda B
— p=const
B 1di
d a X
O —>| X
0z

Figure 5: A metal barap) sliding on two parallel rails
that form part of a U-shaped wire.

A circuitC(t) of variable size is formed by the rectangu-
lar loop @bcdg. The field and the surface element are writ-

ten, respectively, aB=-B{, (where B=|B|= const)

and da=(da) y (note that the direction of traversing the
loop C is now counterclockwise).

The general diagram of Fig. 4, representirggialance
of forces, reduces to the one shown in Fig. 6. Nio& this
latter diagram concerns only theoving part @b) of the
circuit, since it is in this part only that the oeity o and

the applied force?app are nonzero.

Figure 6: Balance of forces per unit charge.

The emf of the circuit at tintds, according to (8),

£0 =9, ©xB)-dl



_ .[bUBdl _ qude _ UBh. 6. Stationary wireinside atime-varying

magnetic field
Alternatively, the magnetic flux throughis Our final example concerns stationary wire C inside a
time-varying  magnetic field of the form
®_(t)= jsm B(F)- da= —js(o Bda= — ng) da B(F,t)=—B(F,t)d, (where B(F,t)=|B (F,t)]), as shown
in Fig. 7.
= -Bhx
(wherex is the momentary position of the bar at titheso y

that Dc \4‘

d dx
Et)=—— (t) =Bh— = Bhv .
dt dt

di ®da
®B(F,t)
We note that the emf is constant (time-independent) r
Next, we want to use (11) to evaluate thekwmar unit C
charge for a complete tour of a charge aroGndince the
applied force is nonzero only on the sectiab) (of C, the 0z X

path of integrationC’ (which is a straight line, given that
the charge moves at constant velocity in spacd)awilre-
spond to the motion of the charge along the metalonly,
i.e., froma to b. (Since the bar is being displaced in space
while the charge is traveling along it, the li@é will notbe
parallel to the bar.) According to (11),

Figure 7: A stationary wireC inside a time-varying
magnetic field.

As is well known [1-7], the presence of adirarying

magnetic field implies the presence of an eledteicd E as
well, such that

w= [ f,,-dl' with . B
e VxE=-— (12)
wp Al =F - dl"=f_dl"=f__odt ot

(cf. Fig. 6). Now, the role of the applied forcetiscounter- ~ AS discussed in [1], the emf of the circuit at titie given

balance thex-component of the magnetic force in order that by
the bar may move at constant speed irxttigection. Thus,

= - d
fopp = fnCOSO = v, B co® = Bu, ® <j50 (r,t) it @) (13)
and where
f,pp U dt=Boo_dt= Bo dl ®,(t) = [ B(F,1)-da= [ B(F 1) da (14)

(sincevc dt represents an elementary displacenutrdf the is the magnetic flux throug@ at this time.
charge along the metal bar in tii§. We finally have: On the other hand, the work per unit chaogeaffull trip

X . around C is given by (5): W:CJ‘D f.-dl , where
w=["Bodli=Bv[ di=Bvh. oL ) c
2 a f=f,=E+(v,xB), sothat

We note that, in this specific example, the valtithe work _ _
per unit charge is equal to that of the emf, bbtisé quanti- w= q‘> E-dl+ q‘> (6, B)- dI .
ties being constant and unambiguously defined. Woisld ¢ ¢
not have been the case, however, if the magnetic Vel

nonuniform As is easy to see (cf. Fig. 7), the second integaaishes,

thus we are left with

w=¢_E- dl (15)

14



The similarity of the integrals in (13) aritb] is decep-
tivel The integral in (13) is evaluated a fixed time,twhile
in (15) time is allowed to flow as the charge moaksgC.
Is it, nevertheless, possible that tr@uesof these integrals
coincide? As mentioned at the end of Sec. 2, assace
condition for this to be the case is that the tmgrations

yield time-independent results. In order théatbe time-
independent (but nonzero), the magnetic flux (1#)us the
magnetic field itself — must increalirearly with time. On
the other hand, the integration (15) far will be time-
independent if so is the electric field. By (12)en, the
magnetic field must be linearly dependent on timvajch
brings us back to the previous condition.

As an example, assume that the magnetic ifsetif the
form

B=-B,tl, (B = cons).

A possible solution of (12) foE is, in cylindrical coordi-
nates,

[We assume that these solutions are valid in adigniegion
of space (e.g., in the interior of a solenoid whagis coin-
cides with thez-axis) so thap is finite in the region of inter-
est.] Now, consider a circular wife of radiusR, centered at

the origin of thexy-plane. Then, given that| :—(dl)ﬁ(p ,

B

Olt 2
5 g)cdl =-B,7R".

5:qSCE-cT|:—

Alternatively,

®,=[ Bda= Bz R 1,

sothat€=- d®_/dt= - Bz R . We anticipate that, due

to the time constancy of the electric field, thensaresult
will be found for the workw by using (15).

7. Concludingremarks

No single, universally accepted definition of thefeseems
to exist in the literature of Electromagnetism. Teinition
given in this article (as well as in [1]) comessdao those
of [2] and [3]. In particular, by using an examgienilar to
that of Sec. 5 in this paper, Griffiths [2] makeslear dis-
tinction between the concepts of emf and work peit u
charge. In [4] and [5] (as well as in humerous ptfext-
books) the emf is identified with work per unit che, in
general, while in [6] and [7] it is defined as as#d line
integral of the non-conservative part of the eledteld that
accompanies a time-varying magnetic flux.

15

The balance of forces and the origin of worla con-
ducting circuit moving through a magnetic field ameely
discussed in [2, 8, 9]. An interesting approacthtorelation
between work and emf, utilizing the concept ofuaftwork,
is described in [10].

Of course, the list of references cited abmvdy no
means exhaustive. It only serves to illustratediversity of
ideas concerning the concept of the emf. The sidxlén-
herent in this concept make it an interesting stttpé study
for both the researcher and the advanced studenassical
Electrodynamics.
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Certain aspects of the concept of the electromdtivee (emf) of a “circuit”, as
this concept was defined in recent publications,discussed. In particular, the
independence of the emf from the conductivity @f tircuit is explained and the
role of the applied force in motional emf is analgz

1. Definition and analytical expression of the emf

In recent articles [1,2] we studied the concepthafelectromotive forcdemf) of a
“circuit” and examined the extent to which the empresents work per unit charge
for a complete tour around the circuit. This edigcet note contains some additional
remarks regarding the emf; it may be regarded aldendum to the aforementioned
publications.

We consider a closed pdth(or loop) in a region of space where an electromag-
netic (e/m) field exists (Fig. 1). Generally spewakithis loop will be called &cir-
cuit” if a charge flow can be sustained on it. 8hkitrarily assign a positive direction

of traversing the loof© and we consider an elemett of C oriented in the positive
direction.

Figure 1

Letq be atest chargewhich at timet is located at the position afi , and letF

be the force o at this time. The forcé& is exerted by the e/m field itself as well as,
possibly, by additiona¢nergy sourcegsuch as batteries or some external mechanical
action) that may contribute to the generation ame$grvation of a current around the

loop C. Theforce per unit charget the position ofdl, at timet, is f = F/q. We

note thatf is independent o since the e/m force on a charge is proportion&héo
charge.

Since, in general, neither the shape nositbe ofC is required to remain fixed,
and since the loop may also be in motion relativart external observer, we will use
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the notationC(t) to indicate the state, at timeof a circuit of generally variable shape,
size or position in space.
Theelectromotive forcdemf) of the circuitC at timet is defined as the line inte-

gral of f alongC, taken in thepositivesense of:

W) =¢ f(rt)-di (1)

c)

whereF is the position vector ofll relative to the origin of our coordinate system.
Obviously, the sign of the emf is dependent uponabwice of the positive direction
of circulation ofC. It should be noted carefully that the integrgl i€levaluatedat a
given time t Thus, the forcef must be measuresimultaneouslyat timet, at all
points ofC.

The forcef can be attributed to two factors) the interaction ofj with the ex-

isting e/m field itself; andh) the action org by any additional energy sources that
may be necessary in order to maintain a steady dfogharge orC. (This latter inter-
action also ielectromagnetian nature, even when it originates from some ewxter
mechanical action.) We write

—h|
I
.l
+
—h|

em app (2)

where f,, is the force due to the e/m field arfg,p is theapplied forcedue to an ad-

ditional energy source.

Two familiar cases of emf-driven circuits wdean additional applied force is re-
quired are the following:

1. In a battery-resistor circuit [1-3] an &pg force is necessary in order to carry a
(conventionallypositivg mobile charge from the negative to the positieéef the
battery,throughthe source. This force is provided by the batitseif.

2. In the case of a closed metal wiranoving in a time-independent magnetic
field [2-5] the current o€ is sustained for as long as the motioiCafontinues. This,
in turn, necessitates the action of an externaefanC (say, by our hand), as will be
explained in Sec. 4.

Now, by (1) and (2),

€0 =Py Ton 0T+ 9 T T = Eom() + Eapol) ©

We would like to find an analytical expression &r{t). So, Iet(E(f,t) , E(f,t)) be

the e/m field in the region of space where the I is lying. Letq be a test charge
located, at time, at the position ofil and leto,,, be the total velocity off in space,
relative to some inertial frame of reference. Weenr

Uit =0+ U,
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where o, is the velocity ofj alongC (i.e., in a direction parallel tdl) while & is the

velocity of di itself due to a possible motion in space, or msteformation over
time, of the loopC(t) as a whole. The total e/m force @is

lfem: (:I[E_i_(l_jtot>< B)] )

so that
N
fem:E:E+[(u+ung] .
Hence,
Eem(t) = C(t)E-dI+<ﬁC(t)(uxB)-d|+<ﬁc(t)(uc><B)-dI.

Given thato, is parallel todl, the last integral on the right vanishes. Thuslfy,
Eem(t) = cj;c(t) E(F,t)-di + qSC(t)[u(r,t)xB(r,t)]-dl = Eo(t) + En(D) (4)

We note that, in our definition of the entifetforce per unit charge was defined as
f =F /q, assuming that a replica of a test chardge placed at every point of the cir-
cuit and that the forceF on all test charges are measus@dultaneoushat timet.
Now, in the case of a conducting loGp(say, a metal wire) it is reasonable to identify
g with one of the (conventionally positive) mobiled electrons. This particular iden-
tification, although logical for practical purposés nevertheless not necessary, given
that the forcef is eventually independent gf Thus, in generaly may just be con-

sidered as &ypotheticaltest charge that is not necessarily identifiechvah actual
mobile charge.

2. Independence from conductivity

Let C(t) be a conducting loop (say, a metal wire) insidgvan e/m field. The emf of
C at timet is given by (3) and (4). We note from (4) that paet E.m Of the total emis

independent of the velocity, of qalongC (whereg may be conveniently — although
not necessarily — assumed to be a mobile freeretecif the conductor, convention-
ally considered aspositivecharge). We may physically interpret this as foo

The e/m field creates an efif, that tends to generate a charge flonGriHow-
ever, this emf does not by itself determieav fastthe mobile charges move aloGg
Presumably, this will depend on physical propertieshe pathC that are associated

with its conductivity (For example, in a battery-resistance circuitpbeential differ-
ence at the ends of the resistance — thus the wéltie electric field inside the con-

ductor — does not by itself determine the velocityof the mobile charges along the
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circuit, since this velocity is related to the @amnt generated by the source, which cur-
rent depends, in turn, on the resistance of tlwaiitjraccording to Ohm’s law.)

Now, the role of the pafy, of the total emf (3) is tanaintainthe charge flow on
C(t) that is generated bfen. We thus anticipate thakp, will also be independent of

U, (this is, e.g., the case in our previous examplere&,p, is equal to the voltage of
the battery [1-3]). In conclusion,

the total em&(t) of a conducting loop @ is not dependent upon the velocity
of motion of the mobile charges g along the loop.

This leads us to a further conclusion:

The total em€(t) of a conducting loop @) inside an e/m field is not depend-
ent upon the conductivity of the loop.

This can be justified by noting that, by its detiom, the force (2) does not include
contributions fromresistive forceghat oppose a charge flow @ it only contains
e/m interactions that may contribute to the gemamadnd preservation of a current in
the circuit. Note, however, that tiarrentitself doesdepend on theonductivitys of

C, according to Ohm's lawd = o f ) [3].

Alternatively, as argued above, the emf dussdepend orj,. Now, in a steady-
state situation under given electrodynamic conaéti¢thus, for a giverf ) this veloc-
ity is a linear function of themobility x of g, according to the empirical relation
O, = U f (by which Ohm’s law is deduced). On the other hahd conductivity ofC

is given bys=gnu. Thedensity nof mobile charges, as well as the value,ofannot
affect the value of the emf since that quantitgie§ined per unit charge. We thus con-

clude that the emf of cannot depend om, as well as om andg; hence is inde-
pendent of.

3. Emf and the Faraday-Henry law
Consider a region of space in which a (generaihetidependent) e/m fiel(E, B)

exists. LetC be afixed conducting loop in this region. There is no addiéil applied
force onC, so (3) reduces t6(t)=Een(t). Furthermore, sinc€ is stationary,o (r',t)

vanishes identically and, by (£J(t)=0 and&en{t)= E(t). Thus, finally,

E(t) = gSC E(,t)-dI (5)

By Stokes’ theorem,
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whereSis any open surface bounded®yFig. 2).

da
&
C
Figure 2
Moreover, by thé-araday-Henry law
- - 0B
VxE=-— 6
X ot (6)
So, (5) yields
d ( 5 — d
E)=—-—— | B-da=-—_(t 7
0=-—1 5 n( (7)
where

D, (1) =j8|§(r,t)-aa

is themagnetic fluxhroughC at timet. As commented in [1], relation (7) expresses a
genuine physical law, not a mere consequence afdfieition of the emf.

4. Motional emf dueto a static magnetic field
Let C(t) be a conducting loop inside a static magnetild fiB(f) (Fig. 3). The time

dependence of indicates a motion and/or a deformation of theplower time. We
will show that the emf o€ at timet is given by the expression

() = Em(®) = [6(N) xB(N] - (8)
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\+

S

dl

=

c®

Figure 3

Letqg be a mobile charge (say, a conventionplbgitivefree electron) located at
the positionf (relative to our coordinate system) of the loggneéntdi at timet. As
in Sec. 1, we denote the velocity di with respect to our frame of reference by
u(r), the velocity ofg alongC by o, and the total velocity df relative to our frame
by 0, =0+ 0.

Since there is no electric field in the regad interest,

Eolt) = gSC E(F,t)-di=0 and Eem(t) = Em(t) (9)
Also, if fapp Is the applied force per unit charge at the pmsitfq, at timet,

Eapp(t) = § , Fapp(T1)-dIT (10)

The role of the applied force is to keep the curfeawing. This will happen for as
long as the loo® is moving or/and deforming, so tha{r’) is not identically zero for

all t. Why is an external force needed to kéemoving or deforming? Let us care-
fully analyze the situation.
The magnetic force apis

Fro=q@0xxB) sothat f,=0,xB .

Now, imagine a temporary, local 3-dimensional negtdar system of axes,(y, z) at
the locationr of g at timet. We assume, without loss of generality, thatzlais is
in the direction ofdl . (The orientation of the mutually perpendicutaandy-axes on
the plane normal to theaxis may be chosen arbitrarily.) Then we may write

— — — —

fmzfmx+fmy+fm fa+f

NIl

where f.=f__ is the component of the magnetic formleng the loop (i.e., in a

C m, z

direction parallel todi) while f, = f_ +f  is the componenormalto the loop
(thus todl).
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In a steady-state situation (steady curriemt)f fc is counterbalanced by the resis-

tive force that opposes charge motion al@¢ps mentioned before, this latter force
does not contribute to the emf). However, to codoralance the normal component

f , some external action (say, by our hand that maredeforms the loo[C) is
needed in order fo€ to keep moving or deforming. This is precisely e applied

force fapp does. Clearly, this force must bermal to C at each point of the loop.

From (10) we then conclude that
Eapt) = 0.

Combining this with (3), (4) and (9), we finallynfg the validity of (8).
It can be shown [1,3] directly from (8) that

M) = — % @, (t) 1j1

where ®(t) is the magnetic flux throug@ at timet. This looks like(7) for a fixed
geometrical loop in a time-dependent e/m fieldha@ligh the origins of the two rela-
tions are different. Indeed, equation (11) is @&dirconsequence of the definition of
the emf and may be derived from (8) essentiallyrathematical manipulation (see,
e.g., the Appendix in [1]). On the contrary, toider(7) the Faraday-Henry law (6)
was used. This is aexperimentalaw, hence so is the expression (7) for the emf. |
other words, relation (7) is not a mere mathembtoasequence of the definition of
the emf.

5. An example

Consider a metal baalf) of lengthh, sliding parallel to itself with constant speed
on two parallel rails that form part of a U-shapéde, as shown in Fig. 4. Aniform
magnetic fieldB, pointing into the page, fills the entire regiéncircuit C(t) of vari-
able size is formed by the rectangular loabdd3.

y
hie - =
O da B}
—— v =const
®B 14di
d a X
O — | X
Oz
Figure 4
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In Fig. 4, thez-axis is normal to the plane of the wire and dirdd@ward the

reader. We callda an infinitesimal normal vector representing anmedat of the
plane surface bounded by the wire (this vectorinscted toward the reader, consis-

tently with the chosen counterclockwise directidrtraversing the loof€). If G, is
the unit vector on the-axis, then the field and the surface element artenr respec-
tively, asB=—-B{, (whereB=|B|= const) andda=(da 1y .

The balance of forces is shown in Fig. 5 fpywe denote the resistive force per

unit charge, which does not contribute to the emfjte that this diagram concerns
only themovingpart @b) of the circuit, since it is in this part only tithe velocityo

and the applied forcd, _ are nonzero.

app

—D)
Fm UC Dtot
; B 0L 0,
dl @
___________ o0 faon
®B ﬂ X

Figure 5

The emf of the circuit at tintas, according to (8),

E®) =¢_ (65xB)-di :j:uBm:qu:dl:uBr.

c(t)
Alternatively, the magnetic flux througbis

@m(t)=js(t)é-aa=—jso Bda= — BLU da= — Bh

(wherex is the momentary position of the bar at tithso that, by (11),

d dx
E)=——d (1) =Bh— = Bhv .
(t) at m(t) it

Now, the role of the applied force is to ctarbhalance thex-component of the
magnetic force in order that the bar may move asstant speed in the direction.
Thus,

fapp = fmCOSO = v,B co® =Bo, .

We note that, althoughp, depends on the speegdof a mobile charge along the bar,
the associated part of the emf is itself independém.! Specifically, as argued in
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Sec. 4 £4p(t)=0. On the other hand, in this particular exampé&workw of f,, for a

complete tour around the circuit is equal to thaltemf (cf. [2]): w=£=Bho. This

equality, however, is accidental and does not ceflemore general relation between
the work per unit charge and the emf. (Another sadcidental” case is the battery-
resistance circuit [1-3].)

6. Summary

This article is an addendum to our study of theceph of the electromotive force
(emf), as this concept was pedagogically approaahgatevious publications [1,2].
We have focused on some particular aspects ofubed that we felt are important
enough to merit further discussion. Let us revibam:

1. For a conducting lodp inside an e/m field, we explained why the emiCof
does not depend on the conductivity of the loop:‘@ws/ious” as this statement may
seem, one still needs to justify it physically anddemonstrate its consistency with
Ohm’s law.

2. We expressed the Faraday-Henry law ingavfrthe emf of a closed conduct-
ing curve inside a time-dependent e/m field.

3. We studied the case of motional emf in saetail (see also [2-5]). Particularly
important is the role of the applied force in tbaése. In addition to analyzing this role
and, in the process, deriving an explicit expres$w the emf, we explained why the
physics of the situation is different from thattbe Faraday-Henry law, despite the
similar-looking forms of the emf in the two cas@d.course, as Relativity has shown,
this similarity is anything but coincidental!
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Abstract

Certain subtleties concerning the work done byre+tilependent force field are discussed. In
particular, it is explained why such a field canhetconservative even if it is irrotational and
its region of action has the proper topologicalpemnies.

1. Introduction

In a previous article [1] a common misconceptiogareing the electromotive force
(emf) of electrodynamics was discussed. Specificélivas explained why it is incor-
rect todefine the emf as work (per unit charge), in generakiple terms, the emf is
always determined for a given instant of time, velasrin determining the work of a
force field on a patrticle (here, an electric chameving along a space curve, time is
allowed to flow during the motion. Of course, thare exceptional situations where
the emf of a circuit does indeed coincide in vaith work per unit charge for a
complete tour around the circuit [1].

From the point of view of classical mechartios case of time-dependent forces
and their work constitutes an interesting problémthe present article we highlight
certain aspects of this problem, focusing on stibiethat arise when one goes be-
yond the comfortable case of static force field$. 0@urse, the subject of time-
dependent forces and associated potentials isssiedun many standard textbooks of
mechanics (see, e.g., [2-5]). Our aim here is terekthe discussion in these sources
by adding a few comments that may help the stuiefutrther clarify the situation.

In Section 2 we define the work done by aetiependent force field on a test
particle and point out certain subtle points o$ ttefinition.

In Sec. 3 we discuss the relation betweestational and conservative force
fields. We explain why time-dependent fields canoetconservative and do not lead
to conservation of total mechanical energy.

2. Work along a space curve

Consider a test particle of massmoving in a region of space permeated by a force

field F . The particle is assumed to move along a spaae tuextending from point
A to pointB (Fig. 1). We callr the position vector ain onL at timet, relative to the
origin O of some inertial reference frame, and we denotelibythe elementary dis-

placement ofm alongL in an infinitesimal time intervatt.

! This article is an addendum to the published lerfit].
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O

Figure 1
Thework done by the fieldF onmfrom Ato B is
W = jL F.df (1)

To compute the line integral in (1) one needs teeh@ mathematical description of
the curvel. Of course, a parametric representatioh. ¢ possible by using any con-
venient parameter whose values correspond to theugapointsi of L. However, a
mere geometrical description bfmay not be sufficient in order to specify the work
W, since it may be important to take into accoumtttine at which the particlen
passes through any given point of the curve. Tthesmost faithful parameterization
of L in this regard is provided by tleguation of motion of m, connecting the position
r of the particle with the timeat which the particle passes from that position.

Let us assume the following mathematical deson of the motion ofm along
the trajectony:

F=@(t); to<st<t, with g(t)=F,, #(t) =T (2)

Then, dF = dg(t) = #'(t) dt . The complexity of the integration (1) now dependshe
nature of the force field® ; specifically, the dependence or not of this fiefdtime.
For astatic force field F(F), we have:

W= F(4(1)-F®ct 3)

This quantity isindependent of the parameterization of the curvel, i.e., independent
of the specific functional dependencerofont as expressed by (2). Indeed, the sub-

stitution ¢ ¢ )=r transforms the integral (3) into
B -
W:'[AF(F)-dr” (4)

Evidently, the integral on the right depends oniytloe geometry of the space cutye
not on the specific parameterization of this cutmeconclusion,

in a static force field, work is a well-defined quantity depending on the path
followed by the particle in the field.

Things become a lot more complicated in theeoof aime-dependent force field
F(F,t). The work on the particle along the curvé is written



WORK OF A TIME-DEPENDENT FORCE

wszﬁ-drzjfﬁ(r,t)-dr (5)

It should be noted carefully that, inside the iné&gthe variableg™ andt are not in-
dependent of each other since the former is aifumcif the latter through the param-
eterization (2) oL, i.e., in accordance with the specific equatiomotion ofm along
L. Relation (5) is written

W:jt?lf(q?(t),t)-&’(t)dt (6)

This time the substitutiog (t) =F will not eliminatet in favor of F . Thus, the work

W s no longer independent of the parameterizatioth@ curvelL by the equation of
motion ofm. The sole geometry af is not sufficient in order to determiie!

To understand this better, consider the eftang work dW = F -df . In the case
of a static force field, this is writtedW = F 7 (-JF . For a given equation of motion

of the form (2),dW depends onlymplicitly ont through the relatiom = ¢ (t) . Thus,
for a given elementary displacement of the par@adtegL, dW depends solely on the
position of mon the curve, not on the time at which the patpasses by that posi-
tion. Ast varies fromtp to t; , the position vector traces out all curve points froA

to B. Eventually, the total workV, given by (4), has a well-defined value indepemnden
of the parameterization @f. This work depends only on the geometry of thgetra
tory L connectingA andB.

On the other hand, in the case of a time-adeget force field the elementary work
is of the formdW =F ¢ t )dr . Here,dW dependsxplicitly ont. Thus, for a given
elementary displacement alobgdW depends not only on the position of the particle
on L but also on the time the particle passes fromgbaition. This, in turn, depends
on the equation of motiofi= ¢ (t), i.e., on the specific parameterization_ofThere-
fore the total work (5) is not a uniquely definaghqtity but depends on the equation
of motion alond..

3. Conservative and irrotational fields

Let F(F) be a static force field. Generally speaking, fiefd is conservative if the
work it does on a test partiaheis path-independent, or equivalently, if

Sﬁcﬁ(r)-dr=o 7)

for any closed patle within the field.
LetS be an open surface bounded by a given closed €limaethe field (Fig. 2).
By Stokes’ theorem and by Eq. (7),

gscﬁ(r)-dhjs(ﬁxﬁ).aa:o (8)
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In order for this to be true for eveS/bounded byC, the field F(F) must beirrota-
tional :

VxF =0 (9)

c

Figure 2

Conversely, an irrotational force fiefl(r) will also be conservative in a region

of space that isimply connected [6,7]. Indeed, given any closed curein such a
region, it is always possible to find an open stefahavingC as its boundary. Then,
if (9) is valid, the force is conservative in vief(8).

Given a conservative force fiel(Fr), there exists a functiod (F) (potential en-
ergy of the particlen) such that

F=-VU (10)

The workW from pointA to pointB in the field is then equal to
mhqfﬁﬁydrzuap—uag (11)

As is well known (and as will be shown aniabtly below) thetotal mechanical
energy of mis constant during the particle’s motion inside force field. This energy
is the sumE=T+U of the kinetic energf=mv’/2 (wherev is the speed of the particle)
and the potential energdy.

Consider now a time-dependent force fiEl(,t) in a simply connected regian
of space. This field is assumed to be irrotatidoabll values ot :

VxE(F,t)=0 (12)

Can we conclude that the fieRl is conservative?

It is tempting butncorrect (!) to argue as follows: Le€ be an arbitrary closed
curve inQ. SinceQ is simply connected, there is always an open sebounded
by C. By Stokes’ theorem,

iEﬁGJ)dr:LJﬁxﬁ)aézo (13)

for all values oft. Thisappears to imply thatF is conservative. This is not so, how-
ever, for the following reason: For any fixed vabfd, the integral
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|(t)=<j>cﬁ(r,t)-dr

doesnot represent work. Indeedi(t) expresses the integration of a function of two
independent variables; andt, over one of these variables (nameify), the other
variable ) playing the role of a “parameter” of integratiovhich remains fixed.
Thus, I(t) is evaluatedor a given instant of timet and all values of , at the various
points ofC, must be recorded simultaneously.at

On the other hand, in the integral represemtaf work,

W=<J'>C|f(r,t)-dr ,

time is assumed to flow as the test partiolgavels along the closed cur@ In this
case,r andt are no longer independent of each other but aneemied through the
equation of motion ofm on C, which equation mathematically endo@swith a cer-
tain parameterization. This complication neverexim the case of static fields, as we
saw previously. We may thus conclude that

aforcefield that is both static and irrotational in a simply connected region of
space is conservative; a time-dependent force field cannot be conservative
evenif itisirrotational and its region of action is simply connected.

Finally, let us explain why a time-dependiemte field does not lead to conserva-
tion of total mechanical energy. Consider agairiranational force fieldF (f,t) [as

defined according to (12)] in a simply connectegior Q. Then there exists a time-
dependent potential energy(r,t) of m, such that, for any value of

F(F,t)=—VU(F,t) (14)

This time we will assume thak (F,t) is thetotal force onm. By Newton’s 2nd law,

then,
md _E (wherev=dr ait) = mIV+vU = C.
dt dt

Taking the dot product withi , we have:

mv-ﬂw-?u:o.
dt
Now,
_dv_1d,_ . 1d ., e
v dt—Zdt(v V)—Zdt(V) (v=|Vv])
and
VU -dr du_aaLtJdt du auU
vovu = — 9 &
dt dt dt ot
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where we have used the fact tlofat (7, t) = VU -dr”+aa—LtJdt . Hence, finally,

d(lmvzj du _au_,

dtl 2 dt ot
d ouU
dt( ) p (15)

whereT=mv?/2. As seen from (15), the total mechanical endfigyU) of m is not
conserved unlesJ/ot=0, i.e., unless the force field is static.

Note that, for a time-dependent irrotatiolmate field [defined according to (12)]
the quantity

jflf(r,t)-dr —U(Fa )= U (Fart),

defined for anyfixed t, doesnot represent the work done by this field on a pagtial
from A to B [comp. (11) for the case of a static force fieltat is,

the work of a time-dependent irrotational force field cannot be expressed as
the (negative) difference of the values of the corresponding time-dependent
potential energy at the end points of the trajectory of a particle.

4, Summary

Let us summarize our main conclusions:

1. In a static force field, the work doneatest particle is a well-defined quantity
that depends on the geometrical characteristitiseoparticle’s trajectory in the field.

2. In a time-dependent force field, the getynef the trajectory is not sufficient
in order to determine work: one must also knowgtexise equation of motion of the
particle along this trajectory, connecting the posiof the particle with time. Thus,
work is not a uniquely defined quantity in thiseas

3. A static force field that is irrotational a simply connected region of space is
conservative.

4. A time-dependent force field cannot bessmnative even if it is irrotational and
its region of action has the proper topology.

5. The work of a time-dependent irrotatiofwate field cannot be expressed as the
difference of the values of the time-dependentgaibenergy at the end points of the
trajectory of a particle.

6. Time-dependent force fields are incompativith conservation of total me-
chanical energy.
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Abstract. The charging capacitor is used as a standard iganddr illustrating
the concept of the Maxwell “displacement currer’.certain aspect of the
problem, however, is often overlooked. It conceghgsconditions for satisfaction
of the Faraday-Henry law both in the interior andhe exterior of the capacitor.
In this article the situation is analyzed and aursiwe process is described for
obtaining (at least approximate) solutions of Malkwequations inside and out-
side the capacitor.

1. Introduction

The charging capacitor is used as a standard ganaftir demonstrating the signifi-
cance of the Maxwell “displacement current” (seg,,d1-7]). The point is correctly
made that, without this “current” term the statimpere’s law would be incomplete
with regard to explaining the conservation of cleaag well as the existence of elec-
tromagnetic radiation. Furthermore, the line inéégf the magnetic field around a
closed curve would be an ill-defined concept (sppehdix Il).

A certain aspect of the problem, howeverften overlooked in the educational
literature. It concerns the satisfaction of theaédar-Henry law both inside and out-
side the capacitor. Indeed, although care is tateansure that the expressions used
for the electromagnetic (e/m) field satisfy the AsrggMaxwell law, no such care is
exercised with regard to the Faraday-Henry lawitAsrns out, the usual formulas for
the e/m field satisfy this latter law only in theesial case where the capacitor is being
charged at a constant rate. But, if the currergamsible for charging the capacitor is
time-dependent, this will also be the case withrttegnetic field outside the capaci-
tor. This, in turn, implies the existence of andliced” electric field in that region,
contrary to the usual assertion that the elecigetd foutside the capacitor is zero.
Moreover, the time dependence of the magnetic freddle the capacitor is not com-
patible with the assumption that the electric fieldhat region is uniform, as the case
would be in a static situation. Thus, the exprassiosually given in the literature for
the e/m field inside and outside a charging capadtl to satisfy the Faraday-Henry
law in the case of a time-dependent current.

In this article we describe a method for iimgdexpressions for the e/m field that
properly satisfy the full set of Maxwell’'s equats(including, of course, the Faraday-
Henry law) both inside and outside the capacittvese solutions depend on two sca-
lar functions of space and time, which functionss§aa certain system of partial dif-
ferential equations (PDESs). The time-dependentoctrthat charges the capacitor ap-
pears as a sort of parametric function in thisesyst

We suggest a mathematical process for obigirsolutions of the above-
mentioned system of PDEs in the form of power sengh respect to time. This al-
lows one to find approximate expressions for thre 8éld in certain situations. For
example, a slowly varying (thus almost time-indeget) current allows for the

" This article extends the results of the publisheitle [9].
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“classical” (albeit incorrect in precise terms)wgans given in the literature, while a
current that is almost linearly dependent on tiae rhay be assumed, in general, for
any smoothly varying current in a very short tinexipd) allows for new solutions
that correct the standard expressions for theredefogld while retaining the corre-
sponding expressions for the magnetic field.

2. Solutions of Maxwell’s equations inside the gacitor

We consider a parallel-plate capacitor with circydéates of radius, thus of area
A=ra’. The space in between the plates is assumedempty of matter. The capaci-
tor is being charged by a time-dependent curi@gnhflowing in the+z direction (see
Fig. 1). Thez-axis is perpendicular to the plates (the lattertlaeeefore parallel to the
xy-plane) and passes through their centers, as seha figure (byl, we denote the

unit vector in thetz direction).

(el

-Q +Q

Figure 1

The capacitor is being charged at a d@yt=I(t), where+Q(t) is the charge on
the right plate (as seen in the figure) at timé o(t)=Q(t)/za’=Q(t)/A is the surface
charge density on the right plate, then the timéevdeve of o is given by

o'(t) = % = LAU (1)

We assume that the plate separation is yeall compared to the radias so that
the e/m field inside the capacitor is practicaligependent of, although itdoesde-
pend on the normal distanpefrom thez-axis. In cylindrical coordinate (¢, 2) the
magnitude of the e/m field at any tinhevill thus only depend op (due to the sym-
metry of the problem, this magnitude will not degp@m the angle).

We assume that the positive and the negatate of the capacitor of Fig. 1 are
centered ar=0 andz=d, respectively, on the-axis, where, as mentioned above, the
plate separatiod is much smaller than the radiasof the plates. The interior of the
capacitor is then the region of space withp <a and 0<z<d.

The magnetic field inside the capacitor israzhal, of the formB = B(p, 1) q/, A

standard practice in the literature is to assurat #t allt, the electric field in this re-
gion is uniform, of the form

e-2W g @)
&o

while everywhere outside the capacitor the eledigicl vanishes. With this assump-
tion the magnetic field inside the capacitor isifduo be [2,3,6]
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5 _ Mol M)p o Hol ©)p -
B= u = 3
27a®  * 2A ®)

Expressions (2) and (3) must, of coursesBathe Maxwell system of equations
in empty space, which system we write in the foind]

(@) V-E=0 © W”E:_z_'?
. (4)
. . oE
B) V-B=0 () VxBocouy o

By using cylindrical coordinates (see Appendixnyay taking (1) into account, one
may show that (2) and (3) satisfy three of Eqs.rfdnely, &), (b) and ¢l). This is not
the case with the Faraday-Henry lave)(dowever, since by (2) and (3) we find that

VxE =0, while

B _ml't)p 4
ot 2A 7

An exception occurs if the currehis constant in time, i.e., if the capacitor isrggi
charged at a constant rate, so tHé&)=0. This is actually the assumption silently or
explicitly made in many textbooks (see, e.g., Rhap. 21). But, for a currert)
with arbitrary time dependence, the pair of figf@sand (3) does not satisfy the third
Maxwell equation.

To remedy the situation and restore the itgliof the full set of Maxwell’'s equa-
tions in the interior of the capacitor, we must stww correct the above expressions
for the e/m field. To this end we employ the follogy Ansatz taking into account
Lemma 1 in Appendix III:

E=[ﬂ+ f(p,t)j g, |

)
B (ﬂo'(t)/?

T g(p.t)j 0, ®)

o'(t) =1 (t) /A

wheref (p,t) andg(p,t) are functions to be determined consistently whih given cur-
rent functionl(t) and the given initial conditions. It can be chedtkhat the solutions
(5) automatically satisfy the first two Maxwell exjions (4) and (4). By the Fara-
day-Henry law (4) and the Ampére-Maxwell law @ we get the following system of
PDEs:
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of _og  wul't)p

op ot 2A

10 of
1209, of
p Op ot

(6)

Note in particular that the “classical” solutiontiwi (p,t)=0 andg(p,t)=0 is possible
only if 1'(t)=0, i.e., if the current is constant in time, which means that the capacito
is being charged at a constant rate.

The quantity (b)o(pg)/dp in the second equation, having its origin at tkeres-
sion for Vx B in cylindrical coordinates, must tend to a firlitait for p)—0 in order
that therot of the magnetic field be finite at the centerlud tapacitor. For this to be
the cased(pg)/op must only contain terms of at least first ordep.his, in turn, re-
quires thag itself must be of at least first order (i.e., Bnevith no constant term) jm
for all t, or elseg must be identically zero. We must, therefore, megthat

g(p,t) > 0 for p—0 (7)

for all t. Keeping this condition in mind, we can rewrite thystem (6) in a more
symmetric form:

of _og  wl't)p

op ot 2A

2(p9) _ d(pf)
—6/) = &oko ot

(8)

In principle, one needs to solve the syst&nfgr a given current(t) and for
given initial conditions. An alternative approatdading to approximate solutions of
various forms, is to expand all functions (ifeg andl) in powers of timet. We thus
write:

1) =Y1,t" ®
n=0
f(p.)=3 fu ()" ©
n=0
ap)=3 g.(p) t ©
n=0

Then, for example,
| '(t) = anntn_l = Z(n +1)| n+1tn , etc.
n=1 n=0

Obviously, |, has dimensions of curregt(time)™, while f, andg, have dimensions of
field intensity (electric and magnetic, respectjyed (time)™.
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Substituting the series expansions (9) ih@ system (8), and equating coeffi-
cients of similar powers dfon both sides of the ensuing equations, we getasion
relation in the form of a system of PDEs:

fn' (,0) = (n+1)|:gn+1(p)+lL;L: Iﬂ+1:|

(10)
[29,(0)] = (N+1)eottop T a(0)

for n=0,1,2,... All non-vanishing functiorng,(p) are required to satisfy the boundary
condition (7); i.e.gn(p)—0 for p—0.

An obvious solution of the system (10) is theial solutionf,(»)=0 andg.(p)=0
for all n=0,1,2,..., corresponding fp,t)=0 andg(p,t)=0. For this to be the case, we
must havd.;=0 for all n=0,1,2,..., which means tht)=I ;=constant (independent
of t). This is the case typically treated in the litara, although the conditidrconst.
is usually not stated explicitly.

The simplest nontrivial solution of the pretnl is found by assuming thiaandg
are time-independent, i.e., are functiong ainly. Then, by (B) and (), f=fo(p) and
9=0go(p), whilef,(»)=0 andgy(p)=0 for n>0. The system (10) far=0 gives

,Uo 1,0

fo (p) = and [pg, (o) = O

with solutions

,Uo 1,0

() =22 and gy(p) =2,
o)

respectively. The boundary conditiga(p)—0 for p—0 cannot be satisfied fde0;
we are thus compelled to set0. Given thaf(p,t)=fo(p) andg(p,t)=go(p), the solution
of the system (8) is

Hol1p”

f(p,t)= +C, g(p,1)=0 (12)

As is easy to check, by the first of Egs.)(L@ollows thatl,=0 for n>1. Therefore
[(t) is linear int, i.e., is of the form(t)=l¢t+l;t. By assuming the initial condition
[(0)=0, we have thdt=0 and

() =11t (12)

On the other hand, by integrating Eq. (@)it)=I(t)/A, and by assuming that the ca-
pacitor is initially uncharged{0)=0], we get:

2
I

1t
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Finally, by Egs. (5), (11), (12) and (13) #&en field in the interior of the capaci-
tor is

_ [ 1,t? |, p?
E— 1 +ﬂ01,0 Gz'
2¢0A 4A
_ [,t
B:/JOlpO

2A 4

(14)

where we have s&@=0 since, in view of the assumed initial conditiotigre is no
electric field inside the capacitorlif=0. In order for the solution (14) to be valid, the
currentl(t) charging the capacitor must vary linearly witinei, according to (12).

3. Solutions of Maxwell’s equations outside theapacitor

We recall that the positive and the negative ptdtéhe capacitor of Fig. 1 are cen-
tered az=0 andz=d, respectively, on the-axis, where the plate separatiis much
smaller than the radiws of the plates. The space exterior to the capaciiosists of
points withp >0 and z¢(0,d ), as well as points witlhh >a and 0<z<d. (In the for-
mer case we exclude points on thaxis, withp=0, to ensure the finiteness of our
solutions in that region.) We assume that the otnrg) is of “infinite” extent and
hence the magnitude of the e/m field is practicaitydependent.

The e/m field outside the capacitor is usudikscribed mathematically by the
equations [2,3,6]

E:O, B: ﬂOI(t)
2np

0, (15)

As the case is with the standard solutions in miberior of the capacitor, the solutions
(15) fail to satisfy the Faraday-Henry lawc)4although they do satisfy the remaining

three Maxwell equations), sindéx E =0 while

B ul'(t) -
—=——Uu, .
ot  2mp 7

As before, an exception occurs if the currerst constant in time, i.e., if the capacitor
is being charged at a constant rate, soltiiigt0.

To find more general solutions that satisky éntire set of the Maxwell equations,
we work as in the previous section. Taking intocact Lemma 2 in Appendix I, we
assume the following general form of the e/m fiel@rywhere outside the capacitor:

= f(p, )0, ,
:(,uol(t)+9( ]Uw (16)
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wheref andg are functions to be determined consistently whh given current func-
tion I(t). The solutions (16) automatically satisfy thetfitwo Maxwell equations &}
and (d). By Eqgs. (4) and (4l) we get the following system of PDEs:

ot _og . ml')

5 ot 27p

(p9) _ d(pf)
—6/) = 50/10—6,[

(17)

Again, the usual solution with(p,t)=0 andg(p,t)=0 is possible only if '(t)=0, i.e., if
the capacitor is being charged at a constant K& also that, since nop0, the
boundary condition (7) fag no longer applies.

As we did in the previous section, we sederes solution of the system (17) in
powers oft. We thus expant] g andl as in Egs. (9), substitute the expansions into the
system (17), and compare terms with equal powetsTdie result is a new recursive
system of PDEs:

fy (p) = (n+1){gn+1oo)+2f‘—° Iml}
70 (18)

[pgn(p)]' = (n+1)‘901u0p fn+l(p)

for n=0,1,2,... Again, an obvious solution is the trivdalutionf,(»)=0 andg,(p)=0 for
all n=0,1,2,..., corresponding f¢p,t)=0 andg(p,t)=0. This requires thdt.,=0 for all
n=0,1,2,..., so thd{(t)=l ;=constant (independent Of

As in Sec. 2, we seek time-independent swistiforf andg, so thatf=fy(p) and
9=0go(p) while fy(p)=0 andg,(p)=0 for n>0. The system (18) far=0 gives

1:o’ (p)=

UL and [pg, ) = O

OI
27p
with solutions

fo(p) =

|
ol 1n(gp) and gy(p) == ,
2r 27p

respectively (remember that0), wherex is a positive constant quantity having di-
mensions of inverse length, and where a factorrdfi& been put igo(p) for future
convenience. Given thdfp,t)=fo(p) andg(p,t)=go(p), the solution of the system (17)
IS

|
(o) =222 n(wp) g(p,t)=2ﬂip (19)

By the first of Egs. (18) it follows thi=0 for n>1. Thereford(t) is linear int, of
the forml(t)=I o+l1t. By assuming the initial conditidi§0)=0, we have thdt=0 and
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() =11t (20)

In view of the above results, the e/m field (16)he exterior of the capacitor is

Loly

E-= In(xp) G,
7T
(21)
_ [t+A
B= 'uOl— u
2rp 7

For this solution to be valid, the currd(t) must vary linearly with time.

By comparing Egs. (14) and (21) we obsenat the value of the electric field
inside the capacitor does not match the valueisffibld outside fop=a, wherea is
the radius of the capacitor. This discontinuitytloé electric field at the boundary of
the space occupied by the capacitor is a typicalatteristic of capacitor problems, in
general. On the other hand, in order that the magfield in the strip < z< d be

continuous fop=a, the expression foB in (21) must match the corresponding ex-
pression in (14) upon substitutipga and by taking into account thAtza®. This
requires that we sét0 in (21), so that this equation finally becomes

Holy

E= In(xp) G, ,
T t (22)
B Hola 0
2np *

4. Discussion

As we have seen, expressions for the e/m fieldiénand outside a charging capacitor
may be sought in the general form given by Egsafk) (16), respectively. These ex-
pressions contain two unknown functioffs,t) and g(p,t) which, in view of Max-
well's equations, satisfy the systems of PDEs () @7). These PDEs, in turn, admit
series solutions in powers pfof the form (9), where it is assumed that theami (t)
itself may be expanded in this fashion.

The coefficients of expansion dfand g may be determined, in principle, by
means of the recursion relations (10) and (18} bbwhich are of the general form

fy () = (N+D)[ Goa (0)+ 1) 1,4]

, (23)

[pgn(p)] = (n"'l)goﬂop fn+l(p)
This is not an easy system to integrate, so weamgelled to make certaed hoc
assumptions. Suppose, e.g., that we seek a sokuign thaf,(p)=0 andgs(p)=0 for
n>k (k>0). It then follows from the first of Eqgs. (23) thia.;=0 for n>k or, equiva-
lently, 1,=0 for n>k+1. Thus, ifk=0, I(t) must be linear in; if k=1, I(t) must be quad-
ratic int; etc.

For a current varying sufficiently slowly witime, we may approximately assume
that 1,=0 for n>0, so thatl(t)=l,=const This allows for the possibility thdtandg
vanish identically, as is effectively assumed (tifounot always stated explicitly) in
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the literature. On the other hand, any smoothlyiagrl(t) may be assumed to vary
linearly with time for a very short time period. gy a solution of the form (14) and
(22) is admissible.

There are several aspects of the solutiossribed by Egs. (14) and (22) that may
look unphysical: &) the electric field in (22) apparently diverges fo>«; (b) the
magnetic field in both (14) and (22) diverges te¥x; (c) although, by assumption,
there are no charges at the interface betweemtbear and the exterior of the ca-
pacitor (i.e., on the cylindrical surface defingddxz<d andp=a) the electric field is
non-continuous on that surface, contrary to theeggrboundary conditions required
by Maxwell's equations;d) the constank in (22) appears to be arbitrary. We may
thus use the above solutions only as approximags tor values op not much larger
than the radiua of the plates, as well as for short time interv@iiote thap has to be
much smaller than the length of the wire that cearipe capacitor if this wire is to be
considered of “infinite” length, hence if the extal e/m field is to be regarded as
independent.) We may smoothen the discontinuitylera of the electric field for
p=a by assuming that this field is continuoust=0, i.e., at the moment when the
charging of the capacitor begins. By settirg in (14) and (22) and by equating the
corresponding expressions farwe may then determine the value of the constamt
(22). The result isk=e'a.

For an enlightening discussion of the suigttetoncerning the e/m field produced
by an infinitely long straight current, the readereferred to Example 7.9 of [1].
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Appendix |. Vector operators in cylindrical coordinates

Let A be a vector field, expressed in cylindrical copadés 4, ¢, z) as

A=A(p.0. 21U+ Alp.0, 3Yy+ Npo.w, I'L.

Thediv and therot of this field in this system of coordinates arétt@n, respectively,
as follows:

- 0
VA:li(ij)+iﬁ+% ,
p op

p Oop 0z
Vx Ao LA A, (OB AN, (1[0 Ay OB |;
v A_(pﬁgo 6Zju”+[8z 8pj%+p(8p(ppé’) 6¢jq'

In particular, if the vector field is of the form
A=A (P)T,+ AP T,

then V-A=0.
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Appendix Il. Charging capacitor: The “textbook” ap proach

When writing the Ampére-Maxwell law in its integifakm, one must carefully define
the concept of theotal current through a loop @Qwhere by “loop” we mean a closed
curve in space).

Proposition.Consider a regioR of space within which the distribution of charge,
expressed by the volume charge density, is timepaddent. LeC be an oriented
loop inR, and letS be any open surface Ribordered byC and oriented accordingly.

We define the total current throughas the surface integral of the current dengity
oversS:

lin =ISJ -da (A1)

Then, the quantity, has a well-defined value independent of the palgrcchoice of
S(that is,liy is the same for all open surfac@sounded byC).

Proof. By the equation of continuity for the electric o@ (see, e.g., [8], Chap. 6)
and by the fact that the charge density insiderdggon R is static, we have that

V-J =0. Therefore, within this region of space the cur@ensity has the properties

of a solenoidal field. In particular, the valuetb& surface integral of will be the
same for all open surfac&sharing a common bord€x

As an example, let us consider a circuitytag a time-dependent currelft). If
the circuit does not contain a capacitor, no chasgeiling up at any point and the
charge density at any elementary segment of tleaitis constant in time. Moreover,
at each instant, the currentl is constant along the circuit, its value changomdy
with time. Now, ifC is a loop encircling some section the circuitshewn in Fig. 2,
then, at each instaftthe same currertt) will pass through any open surfagéor-
dered byC. Thus, the integral in (A.1) is well defined fdi § assuming the same
valuelin=I (t) for all S

Figure 2

Things change if the circuit contains a c#pacthat is charging or discharging. It
is then no longer true that the curréft} is constant along the circuit; indeég) is
zero inside the capacitor and nonzero outside. ,Tthesvalue of the integral in (A.1)
depends on whether the surf&&does or does not contain points belonging torhe i
terior of the capacitor.

Figure 3 shows a simple circuit containingapacitor that is being charged by a
time-dependent currehit). At timet, the plates of the capacitor, each of akeearry
chargestQ(t).

10
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Figure 3

Assume that we encircle the currkby an imaginary plane lodp parallel to the
positive plate and oriented in accordance with“tight-hand rule”, consistently with
the direction ofl (this direction is indicated by the unit vectdarn. The “current
throughC” is here an ill-defined notion since the valuetlodé integral in Eq. (A.1) is
lin=I for the flat surfaces; andli,=0 for the curved surfac®. This, in turn, implies
that Ampere’s law of magnetostatics [1-4,8] canpetvalid in this case, given that,
according to this law, the integral of the magnétt B along the loofC, equal to
tolin , would not be uniquely defined but would dependtanchoice of the surfack
bounded byC.

Maxwell restored the single-valuedness ofdlosed line integral oB by intro-
ducing the so-calledisplacement currentvhich is essentially the rate of change of a
time-dependent electric field:

The Ampere-Maxwell laweads:

OE
Jr5oﬂoa

il

VxB =y,
(A.3)

_ 0E —
C_]SC B-dl =l + 50/10_[85' da= uo(1+14)i

wherelj, is given by Eq. (A.1).

Now, the standard “textbook” approach to ¢harging capacitor problem goes as
follows: Outside the capacitor the electric fielahishes everywhere, while inside the
capacitor the electric field is uniform — albeiing8-dependent — and has the static-
field-like form

g_o® 4 _ QM 4 (A.4)
& A

11
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whereo(t)=Q(t)/A is the surface charge density on the positiveepddittimet. This
density is related to the currdrnthat charges the capacitor by

Q(t) _ I(t)
(t)—— A (A.5)

(the prime indicates differentiation with respext)t Thus, inside the capacitor,

8E a(t) 0]
ot & 50

~

v (A.6)

>

Outside the capacitor the time derivative of thextic field vanishes everywhere and,
therefore, so does the displacement current.

Now, on the flat surfac® the total current throug@ is (+I g)in = 1+0=I(t). The
Ampere-Maxwell law (A.3) then yields:

Lﬁaz%un (A.7)

On the curved surfac® the total current throug@ is (I+1 q)in= O+ gjn = lgjn , Where
the gquantity on the right assumes a nonzero vatle for the portionS,” of S that
lies inside the capacitor. This quantity is eqoal t

—

lgin = 5'[ 88_E I(t)j (A.8)

da K plate of areaA

(side view)
Figure 4

The dot product in the integral on the right of §Arepresents the projection of the

surface elementla onto the axis defined by the unit vectdr(see Fig. 4). This is
equal to the projectioda, of an elementary arada of ;" onto the flat surface of the
plate of the capacitor. Eventually, the integraltba right of (A.8) equals the total
areaA of the plate. Hencegy,=I (t) and, given thak,=0 onS;, the Ampere-Maxwell

law (A.3) again yields the result (A.7).

So, everything works fine with regard to #epére-Maxwell law, but there is
one law we have not taken into account so far; mgniee Faraday-Henry law Ac-
cording to that law, a time-changing magnetic fisl@lways accompanied by an elec-
tric field (or, as is often said, “induces” an etecfield). So, the electric field outside

12
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the capacitor cannot be zero, as claimed previpgslyen that the time-dependent
currentl(t) is expected to generate a time-dependent magdiedtic For a similar rea-
son, the electric field inside the capacitor cartmete the static-field-like form (A.4)
(there must also be a contribution from the ratelange of the magnetic field be-
tween the plates).

An exception occurs if the currdnthat charges the capacitor is constant in time
(i.e., if the capacitor is being charged at a camistate) since in this case the magnetic
field will be static everywhere. But, in the gerlerase wheré(t)=constant, the pre-
ceding discussion regarding the charging capapitoiolem needs to be revised in or-
der to take into account the entire set of Maxwe#ijuations; in particular, the Am-
pere-Maxwell law as well as the Faraday-Henry law.

Appendix Ill. General form of the electric field
To justify the general expression for the elediatd implied in theAnsatz(5) used to
find solutions of Maxwell’s equations inside thepaaitor, we need to prove the fol-
lowing:
Lemma 1If the magnetic field inside the capacitor is azihal, of the form

B=B(p,1)0, (A.9)

then the electric field (also assumed dependeptanmtt) is of the form

E=E(p, ) (A.10)
Proof. Let
E=E(p.00,+E(0. 04+ E( )Y (A11)

Then (cf. Appendix I) from Gauss’ lawd}it follows that

i(pEp)=0 = E, _a) (A.12)
op p

In order for the electric field to be finite at thenter of the capacitor (i.e., fpr0)
we must sew(t)=0, so thatE,(p,t)=0. On the other hand, treecomponent of Fara-
day’s law (&) yields

9 _ _AM
5 (0E,)=0 = E, = . (A.13)

Again, finiteness of the electric field fpr0 dictates thap(t)=0, so thatE,(p,t)=0.

Eventually, only the-component of the electric field is non-vanishingaccordance
with (A.10).

13
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The solutions outside the capacitor are suligethe restrictiop>0. The expres-
sion for the electric field implied in thensatz(16) is based on the following observa-
tion:

Lemma 2.If the magnetic field outside the capacitor isnazthal, of the form
(A.9), then the electric field (also assumed depehdnp andt) is again of the form
(A.10).

Proof. Let the electric field be of the form (A.11). ThigEom Gauss’ law (4) and
from thez-component of Faraday’s lawddwe get (A.12) and (A.13), respectively.
On the other hand, from tlpe andp-components of the fourth Maxwell equatioml)4
we find thatoE,/0t=0 andoE,/0t=0, which means that andf are actually constants.
Thus the general form of the electric field outdide capacitor should be

E==0,+=0,+ f(o. )0 .

D ™

@
o
Obviously, the functiorfi(p,t) is related to the time-change of the magnetid &@ad is
expected to vanish if the currdnthat charges the capacitor is constant. If thetiete

field itself is to vanish wheh=constant both constants andf must be zero. Eventu-
ally, the electric field outside the capacitor miostof the general form (A.10).
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Independence of Maxwell’s equations:
A Biacklund-transformation view
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Abstract. It is now widely accepted that the Maxwell equations of Electrodynamics
constitute a self-consistent set of four independent partial differential equations.
According to a certain school of thought, however, half of these equations — namely,
those expressing the two Gauss’ laws for the electric and the magnetic field — are
redundant since they can be “derived” from the remaining two laws and the principle
of conservation of charge. The status of the latter principle is thus elevated to a law of
Nature more fundamental than, say, Coulomb’s law. In this note we examine this line
of reasoning and we propose an approach according to which the Maxwell equations
may be viewed as a Bécklund transformation relating fields and sources. The
conservation of charge and the electromagnetic wave equations then simply express
the integrability conditions of this transformation.

Keywords: Classical electrodynamics, Maxwell’s equations, Backlund transformations

1. Is Gauss’ law of Electrodynamics redundant?

As we know, the Maxwell equations describe the behavior (that is, the laws of change
in space and time) of the electromagnetic (e/m) field. This field is represented by the
pair (E,B), where E and B are the electric and the magnetic field, respectively. The

Maxwell equations additionally impose certain boundary conditions at the interface of
two different media, while certain other physical demands are obvious (for example,
the e/m field must vanish away from its localized “sources”, unless these sources emit
e/m radiation).

The Maxwell equations are a system of four partial differential equations (PDEs)
that is self-consistent, in the sense that these equations are compatible with one
another. The self-consistency of the system also implies the satisfaction of two
important conditions that are physically meaningful:

o the equation of continuity, related to conservation of charge; and

e the e/m wave equation in its various forms.

We stress that these conditions are necessary but not sufficient for the validity of the
Maxwell system. Thus, although every solution (E,B) of this system obeys a wave
equation separately for the electric and the magnetic field, an arbitrary pair of fields

ISSN:1791-4469 Copyright © 2022, Hellenic Naval Academy
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(E,B), each field satisfying the corresponding wave equation, does not necessarily

satisfy the Maxwell system itself. Also, the principle of conservation of charge cannot
replace any one of Maxwell’s equations. These remarks are justified by the fact that
the aforementioned two necessary conditions are derived by differentiating the
Maxwell system and, in this process, part of the information carried by this system is
lost. [Recall, similarly, that cross-differentiation of the Cauchy-Riemann relations of
complex analysis yields the Laplace equation (see Sec. 2) by which, however, we
cannot recover the Cauchy-Riemann relations. ]
The differential form of the Maxwell equations is

(@) V-E=L (¢) VxE=_28
& ot
- (D
L Lo OF
b) V-B=0 () VxB=pu]+eu,

where p, J are the charge and current densities, respectively (the “sources” of the

e/m field). Both the fields and the sources are functions of the spacetime variables
(x,y,z,t). Equations (la) and (1b), which describe the div of the e/m field at any
moment, constitute Gauss’ law for the electric and the magnetic field, respectively. In
terms of physical content, (1a) expresses the Coulomb law of electricity, while (1)
rules out the possibility of existence of magnetic poles analogous to electric charges.
Equation (1¢) expresses the Faraday-Henry law (law of e/m induction) and Eq. (1d)
expresses the Ampere-Maxwell law. Equations (la) and (1d), which contain the
sources of the e/m field, constitute the non-homogeneous Maxwell equations, while
Egs. (1b) and (1c) are the homogeneous equations of the system.

By taking the div of (1d) and by using (1a), we obtain the equation of continuity,
which physically expresses the principle of conservation of charge (see, e.g., [1], Sec.
9.6):

v.7+%P 2 )

Although the charge and current densities on the right-hand sides of (1a) and (1d) are
chosen freely and are considered known from the outset, relation (2) places a severe
restriction on the associated functions. A different kind of differentiation of the
Maxwell system (1), by taking the rot of (c) and (d), leads to separate wave equations
(or modified wave equations, depending on the medium) for the electric and the
magnetic field (see, e.g., [1], Sec. 10.4).

In most textbooks on electromagnetism (e.g., [2—6] and many more) the Maxwell
equations (1) are treated as a consistent set of four independent PDEs. A number of
authors, however, have doubted the independence of this system. Specifically, they
argue that (1a) and (10) — the equations for the div of the e/m field, expressing Gauss’
law for the corresponding fields — are redundant since they “may be derived” from
(1c¢) and (1d) in combination with the equation of continuity (2). If this is true,
Coulomb’s law — the most important experimental law of electricity — loses its status
as an independent law and is reduced to a derivative theorem. The same can be said
with regard to the non-existence of magnetic poles in Nature.

http://nausivios.hna.gr/

C-4



PART C: Natural Sciences and Mathematics

As far as we know, the first who doubted the independent status of the two Gauss’
laws in electrodynamics was Julius Adams Stratton in his 1941 famous (and,
admittedly, very attractive) book [7]. His reasoning may be described as follows:

By taking the div of (1¢), the left-hand side vanishes identically while on the right-
hand side we may change the order of differentiation with respect to space and time
variables. The result is:

8 /= =
a(V-B)zo &)

On the other hand, by taking the div of (1d) and by using the equation of continuity
(2), we find that

ﬁ(vﬁ—ﬁ}:o (4)

And the line of argument continues as follows: According to (3) and (4), the
quantities V-B and (V-E—p/ &,) are constant in time at every point (x,y,z) of the

region Q of space that concerns us. If' we now assume that there has been a period of
time during which no e/m field existed in the region €, then, in that period,

V-B=0 and V-E-ple,=0 (5)

identically. Later on, although an e/m field did appear in Q, the left-hand sides in (5)
continued to vanish everywhere within this region since, as we said above, those
quantities are time constant at every point of €. Thus, by the equations for the rof of
the e/m field and by the principle of conservation of charge — the status of which was
elevated from derivative theorem to fundamental law of the theory — we derived Egs.
(5), which are precisely the first two Maxwell equations (1a) and (15)!

According to this reasoning, the electromagnetic theory is not based on four
independent Maxwell equations but rather on three independent equations only;
namely, the Faraday-Henry law (1c¢), the Ampére—Maxwell law (1d), and the principle
of conservation of charge (2).

What makes this view questionable is the assumption that, for every region Q of
space there exists some period of time during which the e/m field in © vanishes. This
hypothesis is arbitrary and is not dictated by the theory itself. (It is likely that no such
region exists in the Universe!) Therefore, the argument that led from relations (3) and
(4) to relations (5) is not convincing since it was based on an arbitrary and, in a sense,
artificial initial condition: that the e/m field is zero at some time /=0 and before.

Let us assume for the sake of argument, however, that there exists a region Q
within which the e/m field is zero for ¢ <t, and nonzero for > t,. The critical issue is
what happens at =y ; specifically, whether the functions expressing the e/m field are
continuous at that moment. If they indeed are, the field starts from zero and gradually
increases to nonzero values; thus, the line of reasoning that led from (3) and (4) to (5)
is acceptable. There are physical situations, however, in which the appearance of an
e/m field is so abrupt that it may be considered instantaneous. (For instance, the
moment we connect the ends of a metal wire to a battery, an electric field suddenly
appears in the interior of the wire and a magnetic field appears in the exterior. An
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even more “dramatic” example is pair production in which a charged particle and the
corresponding antiparticle are created simultaneously, thus an e/m field appears at that
moment in the region.) In such cases the e/m field is non-continuous at t=t; and its
time derivative is not defined at this instant. Therefore, the line of reasoning that leads
from (3) and (4) to (5) again collapses.

Note, finally, a circular reasoning in Stratton’s approach. It is assumed that, in a
region  where no e/m field exists, the second of relations (5) is valid identically.
This means that the vanishing of the electric field in 2 automatically implies the
absence of electric charge in that region. This fact, however, follows from Gauss’ law
(1a); thus it may not be used a priori as a tool for proving the law itself!

Regarding charge conservation, we mentioned earlier that Eq. (2) is derived from
the two non-homogeneous Maxwell equations, namely, Gauss’ law (la) for the
electric field, and the Ampére—-Maxwell law (1d). This means that the principle of
conservation of charge is a necessary condition in order for the Maxwell system to be
self-consistent. This condition is not sufficient, however, in the sense that it cannot
replace any one of the system equations. Indeed, by the Ampére—Maxwell law and the
conservation of charge there follows the time derivative of Gauss’ law for the electric
field [Eq. (4)]; this, however, does not imply that Gauss’ law itself is valid. Of course,
the reverse is true: because Gauss’ law is valid, the same is true for its time derivative.

Our view, therefore, is that the Maxwell equations form a system of four
independent PDEs that express respective laws of Nature. Moreover, the self-
consistency of this system imposes two necessary (but not sufficient) conditions that
concern the conservation of charge and the wave behavior of the time-dependent e/m
field. In the next section the problem is re-examined from the point of view of
Bécklund transformations.

2. A Biacklund-transformation view of Maxwell’s equations

In previous articles [8,9] we suggested that, mathematically speaking, the Maxwell
equations in empty space may be viewed as a Backlund transformation (BT) relating
the electric and the magnetic field to each other. Let us briefly summarize a few key
points regarding this idea. To begin with, let us see the simplest, perhaps, example of
a BT.

The Cauchy-Riemann relations of complex analysis,

ux=vy (@  wy=—v (b) (6)

(where subscripts denote partial derivatives with respect to the indicated variables)
constitute a BT for the Laplace equation,

Wy T Wy, =0 (7)

Let us explain this: Suppose we want to solve the system (6) for u, for a given choice
of the function v(x,y). To see if the PDEs (6a) and (65) match for solution for u, we
must compare them in some way. We thus differentiate (6a) with respect to y and
(6b) with respect to x, and equate the mixed derivatives of u. That is, we apply the
integrability condition (or consistency condition) (uy),= (u,)r . In this way we
eliminate the variable # and we find a condition that must be obeyed by v(x,)):
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Vie T v, = 0.

Similarly, by using the integrability condition (v,),= (vy). to eliminate v from the
system (6), we find the necessary condition in order that this system be integrable for
v, for a given function u(x,y):

Uy T Uy, = 0.

In conclusion, the integrability of system (6) with respect to either variable requires
that the other variable satisfy the Laplace equation (7).

Let now vy(x,y) be a known solution of the Laplace equation (7). Substituting
v=Vy in the system (6), we can integrate this system with respect to u. It is not hard to
show (by eliminating vy from the system) that the solution u will also satisfy the
Laplace equation. As an example, by choosing the solution vy(x,y)=xy of (7), we find
a new solution u(x,y)= (x*—*)2+C.

Generally speaking, a BT is a system of PDEs connecting two functions (say, u
and v) in such a way that the consistency of the system requires that u and v
independently satisfy the respective, higher-order PDEs F[u]=0 and G[v]=0.
Analytically, in order that the system be integrable for u, the function v must be a
solution of G[v]=0; conversely, in order that the system be integrable for v, the
function u must be a solution of F[u]=0. If F and G happen to be functionally
identical, as in the example given above, the BT is said to be an auto-Bdcklund
transformation (auto-BT).

Classically, BTs are useful tools for finding solutions of nonlinear PDEs. In [8,9],
however, we suggested that BTs may also be useful for solving linear systems of
PDEs. The prototype example that we used was the Maxwell equations in empty
space:

(a) V-E=0 (c) vxE:_z_f
OF ®)
(b) V-B=0 (d) WE:aME

Here we have a system of four PDEs for two vector fields that are functions of the
spacetime coordinates (x,y,z,t). We would like to find the integrability conditions
necessary for self-consistency of the system (8). To this end, we try to uncouple the

system to find separate second-order PDEs for E and B, the PDE for each field
being a necessary condition in order that the system (8) be integrable for the other
field. This uncoupling, which eliminates either field (electric or magnetic) in favor of
the other, is achieved by properly differentiating the system equations and by using
suitable vector identities, in a manner similar in spirit to that which took us from the
first-order Cauchy-Riemann system (6) to the separate second-order Laplace
equations (7) for u and v.

As discussed in [8,9], the only nontrivial integrability conditions for the system
(8) are those obtained by using the vector identities

Vx(VxE)=V(V-E)-V’E 9)
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Vx(VxB)=V(V-B)-V’B (10)
By these we obtain separate wave equations for the electric and the magnetic field:

VE - ¢ i—o (11)
oMo EYE

3

= 0
V°B — Oyoﬁzo (12)

We conclude that the Maxwell system (8) in empty space is a BT relating the e/m
wave equations for the electric and the magnetic field, in the sense that the wave
equation for each field is an integrability condition for solution of the system in terms
of the other field.

The case of the full Maxwell equations (1) is more complex due to the presence of
the source terms p, J in the non-homogeneous equations (1a) and (1d). As it turns

out, the self-consistency of the BT imposes restrictions on the terms of non-
homogeneity as well as on the fields themselves. Before we get to this, however, let
us see a simpler “toy” example that generalizes that of the Cauchy-Riemann relations.

Consider the following non-homogeneous linear system of PDEs for the functions
u and v of the variables x, y, z, ¢ :

ue=vy (@) u:=v:tpx,y,z,0 (c)
(13)
Uy = —Vx (b) Ur =Vt +Q(x7yazﬂ t) (d)

where p and ¢ are assumed to be given functions. The necessary consistency
conditions for this system are found by cross-differentiation of the system equations
with respect to the variables x, y, z, ¢. In particular, by cross-differentiating (a) and (b)
with respect to x and y we find that u,+u,,=0 and v, +v,,=0; hence both u and v must
satisfy the Laplace equation (7). On the other hand, cross-differentiation of (¢) and (d)
with respect to z and ¢ eliminates the fundamental variables # and v, yielding a
necessary condition for the terms of non-homogeneity, p and ¢; that is, p,— g. =0. This
means that the functions p and ¢ cannot be chosen arbitrarily from the outset but must
conform to this latter condition in order for the system (13) to have a solution.

As an application, let us take v=xy+zt (which satisfies the Laplace equation
Vi tv,,=0) and let us choose p=2¢ and g=2z (so that p,— ¢g. =0). It is not hard to show
that the solution of the system (13) for u is then given by

u(x,y,z, ) = (x*—y*)/2+3zt + C.

Notice that u,+u,,=0, as expected.

Let us now return to the full Maxwell equations (1), which we now view as a BT
relating the electric and the magnetic field and containing additional terms in which
only the sources appear. As can be checked, there are now three nontrivial
integrability conditions, namely, those found by applying the vector identities (9) and
(10), as well as the identity
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V(ﬁxé):o (14)

(the corresponding one for E is trivially satisfied in view of the Maxwell system). By
(9) and (10) we get the non-homogeneous wave equations

. 0E 1 - oJ
VE -¢cu,——=—Vp+ u — 15
oMo Y P+t o (15)
)= 0°B Lo
V B—goyoﬁz—yOVxJ (16)

Additionally, the integrability condition (14) yields the equation of continuity (2),

V.71 ¢ (17)

expressing conservation of charge. Notice that, unlike (15) and (16), the condition
(17) places a priori restrictions on the sources rather than on the fields themselves!

In any case, the three relations (15) — (17) are necessary conditions imposed by
the requirement of self-consistency of the BT (1). As explained in Sec. 1, however,
these conditions are not sufficient, in the sense that none of them may replace any
equation in the system (1). In particular, the equation of continuity (17) may not be
regarded as more fundamental than the Gauss law (1a) for the electric field.

3. Conclusions

Let us summarize our main conclusions:

1. The Maxwell equations (1) express four separate laws of Nature. These
equations are mathematically consistent with one another but constitute a set of
independent vector relations, in the sense that no single equation may be deduced by
the remaining three. In particular, the physical arguments that attempt to render the
two Gauss' laws “redundant” are seen to be artificial and unrealistic.

2. We consider the Maxwell equations as physically acceptable simply because
the system (1) and all conclusions mathematically drawn from it represent
experimentally verifiable situations in Nature. Among these conclusions are the
conservation of charge and the conservation of energy (Poynting’s theorem). It should
be kept in mind, however, that conservation laws appear as consequences of the
fundamental equations of a theory, and not vice versa. In particular, conservation of
charge, in the form of the continuity equation (17), is a physically verifiable
mathematical conclusion drawn from the Maxwell system (1) but it may not be
regarded as more fundamental than any equation in the system. The same can be said
with regard to the existence of e/m waves, expressed mathematically by Egs. (11) and
(12).

3. From a mathematical perspective, the Maxwell system (1) may be viewed as a
Bécklund transformation (BT) the integrability conditions of which (i.e., the
necessary conditions for self-consistency of the system) yield separate (generally non-
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homogeneous) wave equations (15) and (16) for the electric and the magnetic field,
respectively, as well as the equation of continuity (17). These integrability conditions
are derived by differentiating the BT in different ways; hence they carry less
information than the BT itself. Consequently, none of the integrability conditions may
replace any equation in the Maxwell system.
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Abstract

Backlund transformations (BTs) are traditionallgaeded as a tool for integrat-
ing nonlinear partial differential equations (PDEEheir use has been recently
extended, however, to problems such as the comisinuaf recursion operators
for symmetries of PDEs, as well as the solutiohnefar systems of PDESs. In this
article, the concept and some applications of BEgeviewed. As an example of
an integrable linear system of PDEs, the Maxwaelilatipns of electromagnetism
are shown to constitute a BT connecting the wawagons for the electric and
the magnetic field; plane-wave solutions of the Mak system are constructed
in detail. The connection between BTs and recursjmsrators is also discussed.

1. Introduction

Backlund transformation@BTs) were originally devised as a tool for obiagnsolu-
tions of nonlinear partial differential equatio®DES) (see, e.g., [1] and the refer-
ences therein). They were later also proven ussfuecursion operatordor con-
structing infinite sequences of nonlocal symmetard conservation laws of certain
PDEs [2-6].

In simple terms, a BT is a system of PDEseating two fields that are required
to independently satisfy two respective PDEs [&@yand )] in order for the system
to be integrable for either field. If a solution BDE @) is known, then a solution of
PDE () is obtained simply by integrating the BT, withdwving to actually solve
the latter PDE (which, presumably, would be a mbaltder task). In the case where
the PDEs &) and p) are identical, theuto-BT produces new solutions of PDBE) (
from old ones.

As described above, a BT is an auxiliary foolfinding solutions of a given (usu-
ally nonlinear) PDE, using known solutions of tla@ne or another PDE. But, what if
the BT itself is the differential system whose $iolos we are looking for? As it turns
out, to solve the problem we need to have parandei@endent solutions djoth
PDEs &) and p) at hand. By properly matching the parametersvigea this is
possible) a solution of the given system is obthine

The above method is particularly effectivéimear problems, given that paramet-
ric solutions of linear PDEs are generally not hardind. An important paradigm of
a BT associated with a linear problem is offeredh®y Maxwell system of equations
of electromagnetism [7,8]. As is well known, thensistency of this system demands
that both the electric and the magnetic field iretetently satisfy a respective wave
equation. These equations have known, parametemdept solutions; namely,
monochromatic plane waves with arbitrary amplitydesgquencies and wave vectors
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(the “parameters” of the problem). By insertingsesolutions into the Maxwell sys-
tem, one may find the appropriate expressionstfer‘parameters” in order for the
plane waves to also be solutions of Maxwell’'s elqungt; that is, in order to represent
an actual electromagnetic field.

This article, written for educational purpgses an introduction to the concept of
a BT and its application to the solution of PDEsystems of PDEs. Both “classical”
and novel views of a BT are discussed, the fornmew\predominantly concerning
integration of nonlinear PDEs while the latter doreng applicable mostly to linear
systems of PDEs. The article is organized as falow

In Section 2 we review the classical conagfpa BT. The solution-generating
process by using a BT is demonstrated in a numfexamples.

In Sec. 3 a different perception of a BT iegented, according to which it is the
BT itself whose solutions are sought. The concdptamjugate solutionss intro-
duced.

As an example, in Secs. 4 and 5 the Maxwllgons in empty space and in a
linear conducting medium, respectively, are showvodnstitute a BT connecting the
wave equations for the electric and the magnegid fiFollowing [7], the process of
constructing plane-wave solutions of this BT issgrged in detail. This process is, of
course, a familiar problem of electrodynamics Isuseen here under a new perspec-
tive by employing the concept of a BT.

Finally, in Sec. 6 we briefly review the ceution between BTs and recursion
operators for generating infinite sequences of oxallsymmetries of PDEs.

2. Béacklund Transformations: Classical Viewpoint

Consider two PDE®[u]=0 andQ[Vv]=0 for the unknown functions andv, respec-
tively. The expressionB[u] and Q[v] may contain the corresponding variableand
v, as well as partial derivatives ofandv with respect to the independent variables.
For simplicity, we assume thatandv are functions of only two variablest. Partial
derivatives with respect to these variables wildeaoted by using subscripts:, U,
Uxx, Ui, Uxt, €tC.

Independently, for the moment, also consédeair of coupled PDEs farandyv:

B,[uv=0 (8 B[uy=0 (b 1)

where the expressiors [u,V] (i=1,2) may contain, v as well as partial derivatives
of u andv with respect tox andt. We note thati appears in both equatiors) @nd
(b). The question then is: if we find an expressionuf by integrating ) for a given

v, will it match the corresponding expression fofound by integratingh) for the
samev? The answer is that, in order that and p) be consistent with each other for
solution foru, the functionv must be properly chosen so as to satisfy a cectaisis-
tency conditior(or integrability conditionor compatibility conditioi.

By a similar reasoning, in order thaj &nd @) in (1) be mutually consistent for
solution forv, for some given, the functionu must now itself satisfy a correspond-
ing integrability condition.

If it happens that the two consistency caodg for integrability of the system (1)
are precisely the PDEH¥u]=0 andQ[v]=0, we say that the above system constitutes a
Backlund transformationBT) connecting solutions oP[u]=0 with solutions of



BACKLUND TRANSFORMATIONS: SOME OLD AND NEW PERSPEQVES

Q[V]=0. In the special case whelPeQ, i.e., whenu andv satisfythe samePDE, the
system (1) is called aauto-Backlundransformation (auto-BT) for this PDE.

Suppose now that we seek solutions of the P[E=0. Assume that we are able
to find a BT connecting solutions of this equation with solutiong of the PDE
Q[Vv]=0 (if P=Q, the auto-BT connects solutionsandv of the same PDE) and let
v=Vg(X,t) be some known solution v]=0. The BT is then a system of PDEs for the
unknownu,

Bluyl=0, i=12 )

The system (2) is integrable far given that the functiomnp satisfiesa priori the re-
quired integrability conditioQ[v]=0. The solutioru then of the system satisfies the
PDEP[u]=0. Thus a solutiom(x,t) of the latter PDE is found without actually solgi
the equation itself, simply by integrating the B yith respect ta. Of course, this
method will be useful provided that integrating Bystem (2) fow is simpler than
integrating the PDEP[u]=0 itself. If the transformation (2) is an auto-Bar the PDE
P[u]=0, then, starting with a known solutiag(x,t) of this equation and integrating
the system (2), we find another solutig(,t) of the same equation.
Let us see some examples of the use of aBj€nerate solutions of a PDE:

1. TheCauchy-Riemann relatiorsf Complex Analysis,
u.=v, (8 u=—v (0 3)

(here, the variablehas been renamegl constitute an auto-BT for tHeaplace equa-
tion,

PLW] = W+ W, =0 @)

Let us explain this: Suppose we want to solve yis¢éem (3) foru, for a given choice
of the functionv(x,y). To see if the PDEsa) and {) match for solution fou, we
must compare them in some way. We thus differen{@twith respect toy and p)
with respect tox, and equate the mixed derivativesuwofThat is, we apply the inte-
grability condition (i)y= (U)x . In this way we eliminate the variableand find the
condition that must be obeyed ¥(x,y):

PV =V + %, =0 .

Similarly, by using the integrability conditiomj,= (w)x to eliminatev from the sys-
tem (3), we find the necessary condition in ordhett this system be integrable fgr
for a given functionu(x,y):

Pu =u,+u,=0.

In conclusion, the integrability of system (3) witlispect to either variable requires
that the other variable must satisfy the Laplaaea&gn (4).

Let nowvg(x,y) be a known solution of the Laplace equation @bstituting
v=Vp in the system (3), we can integrate this systeth vespect ta. It is not hard to



C.J. PAPACHRISTOU & A. N. MAGOULAS

show (by eliminatingvy from the system) that the solutienwill also satisfy the
Laplace equation (4). As an example, by choosiegsthiiutionvy(x,y)=xy , we find a
new solutionu(x,y)= (¢ —y)/2 +C .

2. ThelLiouville equationis written
Pl=u,-¢=0 < y-=24 (5)
Due to its nonlinearity, this PDE is hard to ineg#gr directly. A solution is thus

sought by means of a BT. We consider an auxiliancfionv(x,t) and an associated
PDE,

QM = v =0 (6)
We also consider the system of first-order PDES,
U+ =v2 &V (9 y-y=v2 &M () (7)

Differentiating the PDEd) with respect td and the PDEK) with respect tok, and
eliminating (x —vt) and (xt+vy) in the ensuing equations with the aid af and (),
we find thatu andv satisfy the PDEs (5) and (6), respectively. This,system (7) is
a BT connecting solutions of (5) and (6). Startivith the trivial solutiorv=0 of (6),
and integrating the system

UX:\/EEU/Z, Ut:\/_Zé”z,
we find a nontrivial solution of (5):

X+t

u(x,t):—Zln(C—ﬁj .

3. The sine-Gordon” equatiorhas applications in various areas of Physics, e.g.
in the study of crystalline solids, in the transsios of elastic waves, in magnetism,
in elementary-particle models, etc. The equatiohoge name is a pun on the related
linear Klein-Gordon equation) is written

Plu=u,-sinu=0 < y,=sinu (8)

The following system of equations is an auto-BTtfe nonlinear PDE (8):

1 . (u-=-V 1 1 .(u+v
E(U+V)X: asm(Tj , —2(u— V)t=g sv(—zj 9)

wherea (#0) is an arbitrary real constant. [Because of ttesgnce of, the system
(9) is called gparametricBT.] Whenu is a solution of (8) the BT (9) is integrable for
v, which, in turn, also is a solution of (§[v]=0; and vice versa. Starting with the
trivial solution v=0 of v= sinv, and integrating the system
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Si

. u 2
u =2asin— , UuU=-—
2 a

I\J?C

we obtain a new solution of (8):

u(x t):4arctar{C exé ax+%j} .

3. Conjugate Solutions and Another View of a BT

As presented in the previous section, a BT is atliaty device for constructing so-
lutions of a (usually nonlinear) PDE from known gains of the same or another
PDE. The converse problem, where solutions of ifferdntial system representing
the BT itself are sought, is also of interest, hegveand has been recently suggested
[7,8] in connection with the Maxwell equations (sedsequent sections).

To be specific, assume that we need to iategx given system of PDEs connect-
ing two functionsu andv:

Bluv=0, i=12 (10)

Suppose that the integrability of the system fothbimnctions requires that andv
separately satisfy the respective PDEs

P[U=0 (3 QY=0 (b (11)

That is, the system (10) is a BT connecting sohgiof the PDEs (11). Assume, now,
that these PDEs possess known (or, in any casgt@dmd) parameter-dependent
solutionsof the form

u=~f(x vy,a,f,...) , Vv=0(X VYx,1,..) (12)

wherea, f, k, 4, etc., are (real or complex) parameters. If valiethese parameters
can be determined for whiahandv jointly satisfy the system (10), we say that the
solutionsu andv of the PDEs (14) and (1b), respectively, areonjugate through the
BT (10) (orBT-conjugatefor short). By finding a pair of BT-conjugate stbns one
thus automatically obtains a solution of the sys(&@).

Note that solutions ddoth integrability conditiondP[u]=0 andQ[v]=0 must now
be known in advance! From the practical point ewihe method is thus most appli-
cable inlinear problems, since it is much easier to find parama¢pendent solu-
tions of the PDEs (11) in this case.

Let us see an example: Going back to the I3aRtemann relations (3), we try
the following parametric solutions of the Laplacgiation (4):

u(x Y=a(X- )+ xyy,
V(X Y)=kXy+A X+ u y.
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Substituting these into the BT (3), we find that2a, u=p andi= —y. Therefore, the
solutions

u(x, =a(X- Y)+B8xyy,
V(X Y)=2aXy-y %Yy

of the Laplace equation are BT-conjugate throughGhuchy-Riemann relations.
As a counter-example, let us try a differ@mhbination:

u(x, y)=axy, Mxy=pxy.

Inserting these into the system (3) and taking adcount the independencexcnd
y, we find that the only possible values of the patersa andg area=£=0, so that
u(x,y)= v(x,y)=0. Thus, no non-trivial BT-conjugate solutions éxmsthis case.

4. Example: The Maxwell Equations in Empty Space

An example of an integrable linear system whosetswis are of physical interest is
furnished by theMaxwell equationsof electrodynamics. Interestingly, as noted re-
cently [7], the Maxwell system has the propertyaoBT whose integrability condi-
tions are the electromagnetic (e/m) wave equatibat are separately valid for the
electric and the magnetic field. These equatiorss@ss parameter-dependent solu-
tions that, by a proper choice of the parametes,lie made BT-conjugate through
the Maxwell system. In this and the following sentwe discuss the BT property of
the Maxwell equations in vacuum and in a conducatimgglium, respectively.

In empty spacewhere no charges or currents (whether free ontpexist, the
Maxwell equations are written (in S.I. units) [9]

(@) V-E=0 (0 ﬁsz—%
. (13)
- - OE
(b) V-B=0 (d) Vx Bzgo,uoa

where E and B are the electric and the magnetic field, respebtivHere we have a
system of four PDEs for two fields. The questionwhat are the necessary condi-
tions that each of these fields must satisfy ineordr the system (13) to be self-
consistent? In other words, what are to@sistency conditionr integrability con-
ditions) for this system?

Guided by our experience from Sec. 2, to fimeke conditions we perform vari-
ous differentiations of the equations of system) @3 require that certain differen-
tial identities be satisfied. Our aim is, of coyrte eliminate one field (electric or
magnetic) in favor of the other and find some hrghreler PDE that the latter field
must obey.

As can be checked, two differential idensitere satisfied automatically in the
system (13):
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Two others read
Vx(VxE)=V(V-E)-V?%E (14)
Vx(VxB)=V(V-B)-V?B (15)
Taking therot of (13c) and using (14), (18 and (18l), we find
0%E

VZE—EOILIO?—O (16)

Similarly, taking therot of (13d) and using (15), (1§ and (18), we get

_ 0%B

2
\Y B_gOﬂOW: (17)

No new information is furnished by the remainingtintegrability conditions,
(VXE),=VxE, , (VxB),=VxB .

Note that we havencoupledthe equations for the two fields in the system),(13
deriving separate second-order PDEs for each firaltting

1 1

Solhg=— < C=
c \EoHo

(wherec is the speed of light in vacuum) we rewrite (1631 417) in wave-equation
form:

(18)

- 10%
VZE—?atz :O Ilg

2* l 8ZB
V B—?atzzo 092

We conclude that the Maxwell system (13) BTarelating solutions of the e/m
wave equations (19) and (20), these equations geptiag the integrability condi-
tions of the BT. It should be noted that this BThat anautoBT! Indeed, although
the PDEs (19) and (20) are of similar form, thepa@ndifferentfields with differ-
ent physical dimensions and physical properties.
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The e/m wave equations admit plane-wave iswisitof the formF (k-F - wt),
with

%:c where k= [k (21)

The simplest such solutions arenochromatic plane waves angular frequency,
propagating in the direction of the wave vedtar

E(F,t)=E,exp{i (k- F—ot)} (a)

- _ . (22)
B(r,t)=B,exp{i (k-T—wt)} (b
where EO and BO are constant complex amplitudes. The constantsaaipgein the

above equations (amplitudes, frequency and waveornecan be chosen arbitrarily;
thus they can be regardedp@sameterson which the plane waves (22) depend.

We must note carefully that, although eveayr pf fields (E, B) satisfying the

Maxwell equations (13) also satisfies the wave &gna (19) and (20), the converse
is not true. Thus, the plane-wave solutions (22)nate priori solutions of the Max-
well system (i.e., do not represent actual e/md$ipl This problem can be taken care
of, however, by a proper choice of the parameter22). To this end, we substitute
the general solutions (22) into the BT (13) to ftheé extra conditions the latter sys-
tem demands. By fixing the wave parameters, theviaee solutions in (22) will be-
comeBT-conjugateghrough the Maxwell system (13).

Substituting (28 and (2®) into (13) and (1®), respectively, and taking into

account thatve'*" = ik €%, we have
— e—i{ut)_ﬁé‘k.-r' :O — (T< T ) é(k.r—a)t) — 0 ,
(E &
(B e ™) Ve =0 = (k B) & =0,
. B

so that
k-E,=0, k-B=0. (23)
Relations (23) reflect the fact that that the mdmomatic plane e/m wave istaans-

versewave
Next, substituting (28 and (22) into (1) and (138), we find

e—iwt (§ eilZ-r)X ‘[:0 - iw ‘% é(k‘-rtwt) —
(RX Eo) ei (K-F-wt) N B) é(k‘-rtwt) ,

g 't (6 ei'z'r)x T% =— ia)go,uoE) gkret

O S @ - KF-ot)
(kX )el(kr wt):__ é( ’
6, SE
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so that
kKxE=0B, k«B=-7F§ (24)

We note that the field€ and B are normal to each other, as well as normal to the
direction of propagation of the wave. We also réathat the two vector equations in
(24) are not independent of each other, since,rbgsemultiplying the first relation

by k , we get the second relation.
Introducing a unit vectof in the direction of the wave vectér,

f=klk (k=|k|=w/c),

we rewrite the first of equations (24) as
U R
Bo=—(FxE)==(Fx E) .
® Cc
The BT-conjugate solutions in (22) are now written

E(r,t)=E,exp{i(k-T - ot)} ,

2
I§(f,t)=%(f><Eo)exp{i(IZ-r—a)t)}: (25)

xE

Ok

As constructed, the complex vector field$28) satisfy the Maxwell system (13).
Since this system is homogeneous linear with reefficients, the real parts of the
fields (25) also satisfy it. To find the expressidor the real solutions (which, after
all, carry the physics of the situation) we take simplest case dhear polarization
and write

E;, = Eor € (26)

where the vectoéovR as well as the numberare real. Theeal versions of the fields
(25), then, read

m
O lr Jm

rcosk T-otta),
(27)

oo
Il

A= = 1. -
txEgr)cosk-T-wt+a)=—7xE
' C

We note, in particular, that the fields and B “oscillate” in phase.

Our results for the Maxwell equations in vatucan be extended to the case of a
linear non-conducting mediumpon replacement @b andy with ¢ andy, respec-
tively. The speed of propagation of the e/m way@ishis case,
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In the next section we study the more complex chselinear medium having a finite
conductivity.

5. Example: The Maxwell System for a Linear Conduiing Medium

Consider a linear conducting medium of conductivityin such a medium, Ohm’s
law is satisfied:J; = E, where J; is the free current density. The Maxwell equa-
tions take on the form [9]

(@ V-E=0 (©) WE:-%
_ (28)
. - - oE
(b) V-B=0 (d VxB=uc E+8,u§
By requiring satisfaction of the integrability cotioins
Vx(VxE)=V(V-E)-VZ?E,
Vx(VxB)=V(V-B)-V?B,
we obtain thenodified wave equations
= 0°E oE
V’E - -~ puo—=0
“Hor M 5
0°B 0B (29)
V2B - —uc%2-0
AT PT

which must be separately satisfied by each fiellirASec. 4, no further information
is furnished by the remaining integrability conalits.

The linear differential system (28) is a Bilating solutions of the wave equa-
tions (29). As in the vacuum case, this BTnt an auto-BT. We now seek BT-
conjugate solutions. As can be verified by diragbsditution into equations (29),
these PDEs admit parameter-dependent solutioredbtm

E(F,t)=E, exp{-sz - t+i(k- - ot)}

exp{(i—sj R-?} expliot )

B(F,t)=B,exp{-s7-T+i(k-T—wt)}
=B, exp{(i—sj IZ-F} exptiot )

b

(30)

where7 is the unit vector in the direction of the wavetoe K :

10
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f=kl/k (k=|k|]=w/v)
(v is the speed of propagation of the wave insidectimalucting medium) and where,
for given physical characteristiesu, o of the medium, the parameteyk andw sat-
isfy the algebraic system

s~ kK’+esuw’=0, pow-2sk=0 (31)

We note that, for arbitrary choices of theptitndes E, and B,, the vector fields

(30) are not priori solutions of the Maxwell system (28), thus are Bdtconjugate
solutions. To obtain such solutions we substitwpressions (30) into the system
(28). With the aid of the relation

.S oo . S\~
ﬁe(h?jk{ _ (I_Ej Re(lfijk{
k
one can show that (a8and (2®) impose the conditions
k-E,=0, k-B=0 (32)

As in the vacuum case, the e/m wave in a conduatiedium is dransversavave.
By substituting (30) into (28and (28&), two more conditions are found:

(k+is)7x E, = 0B (33)

(k+is)7x B, = — (suw+ iuo)E, (34)

Note, however, that (34) is not an independent &guaince it can be reproduced by
cross-multiplying (33) byt , taking into account the algebraic relations (31).
The BT-conjugate solutions of the wave eaqunti(29) are now written

E(F,t) — Eo efsz:-f é(liffa)t) ’
K+is
w

(35)

B(F,t)= (Fx E,) g s ko

To find the corresponding real solutions, we asslinear polarization of the wave,
as before, and set

Eo = Eo,R Ch
We also put

k+is=|k+is|e’=v K+ & ¥ ; tanp= 9 .

11
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Taking the real parts of equations (35), we finhlhye:

E(f,t)=Ere > cos(k-F-otra),
Vk?+¢° =

B(f,t)=——— (fxEyr)e ™~ cosk- T-otta+p).
a

As an exercise, the student may show thaethesults reduce to those for a linear
non-conducting medium (cf. Sec. 4) in the ligid0.

6. BTs as Recursion Operators

The concept of symmetries of PDEs was discussdd]inLet us review the main
facts:
Consider a PDE[u]=0, where, for simplicityu=u(x,t). A transformation

u(x,t) > u’(xt)
from the functioru to a new functiom’ represents aymmetryof the given PDE if the

following condition is satisfiedu’(x,t) is a solution ofF[u]=0 if u(x,t) is a solution.
That is,

F[uU]=0 when H =0 (36)
Aninfinitesimal symmetry transformatias written
uU=u+ou=u+raQy (37)

wherea is an infinitesimal parameter. The functiQu]=Q(x, t, u, ux, U ,...) is called
thesymmetry characteristiof the transformation (37).

In order that a functio®[u] be a symmetry characteristic for the PBRi]=0, it
must satisfy a certain PDE that expressessgmametry conditiorfor F[u]=0. We
write, symbolically,

S(Q;Yy=0 when K =0 (38)
where the expressidBdependdinearly on Q and its partial derivatives. Thus, (38) is

a linear PDE forQ, in which equation the variable enters as a sort of parametric
function that is required to satisfy the PBRi]=0.

A recursion operatorli [10] is a linear operator which, acting on a syrmne
characteristi®, produces a new symmetry characteriQic- RQ. That is,

S(RQ Y=0 when 6 Q)&0 (39)

It is not too difficult to show thaany power of a recursion operator also is a recur-
sion operator This means that, starting with any symmetry ctterésticQ, one may

12
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in principle obtain an infinite set of charactddst(thus, an infinite number of sym-
metries) by repeated application of the recursjoerator.

A new approach to recursion operators wagestgd in the early 1990s [2,3] (see
also [4-6]). According to this view, a recursioneogtor is an auto-BT for the linear
PDE (38) expressing the symmetry condition of thebjem; that is, a BT producing
new solutiong)’ of (38) from old onesxQ. Typically, this type of BT producesnlo-
cal symmetries, i.e., symmetry characteristics depgndnintegrals (rather than de-
rivatives) ofu.

As an example, consider tti@ral field equation

Flgl=(g7"g),+(g"'g), =0 (40)

(as usual, subscripts denote partial differentiefjavhereg is aGL(n,C)-valued func-
tion of x andt (i.e., an invertible complemxn matrix, differentiable for alk, t).
LetQ[g] be a symmetry characteristic of the PDE (40 ttonvenient to put

Qldl = g@[q]

and write the corresponding infinitesimal symmetaynsformation in the form
9'=9+69= g+a oP[ d (41)

The symmetry condition th& must satisfy will be a PDE linear ®, thus in® also.
As can be shown [4], this PDE is

S(@; 9= @, + Py +[g g, @ J+[ g' g @] =0 (42)

which must be valid wheR[g]=0 (where, in general, A] B] = AB-BA denotes the
commutatorof two matriceA andB).

For a givery satisfyingF[g]=0, consider now the following system of PDEs for
the matrix functionsd and®’:

o, =@ +[gg,, @]

(43)
~ 0 =0, +[g gy, ]
The integrability condition®’ ), = (®}),, together with the equatidf{g]=0, require
that ® be a solution of (42):S(®; g) = 0. Similarly, by the integrability condition
(®,), =(D,), one finds, after a lengthy calculatioB(®"; g) = 0.

In conclusion, for ang satisfying the PDE (40), the system (43) is a Blating
solutions® and®’ of the symmetry condition (42) of this PDE; thst lielating dif-
ferent symmetries of the chiral field equation (4DNus, if a symmetry characteristic
Q=g® of (40) is known, a new characterisf}éc=g@" may be found by integrating the
BT (43); the converse is also true. Since the BJ) @roduces new symmetries from
old ones, it may be regarded ageursion operatofor the PDE (40).

13
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As an example, for any constant maivixthe choiced=M clearly satisfies the
symmetry condition (42). This corresponds to thametry characteristiQ=gM. By
integrating the BT (43) fod’, we getd'=[X, M] andQ '=g[X, M], whereX is the “po-
tential” of the PDE (40), defined by the systenP&fEs

X,=g'g,, -X=0"g (44)

Note thenonlocal character of the BT-produced symmeQ¥y due to the presence of
the potentialX. Indeed, as seen from (44), in order to fadne has tontegratethe
chiral field g with respect to the independent variablesdt. The above process can
be continued indefinitely by repeated applicatibrthe recursion operator (43), lead-
ing to an infinite sequence of increasingly nonl@yanmetries.

7. Summary

Classically, Backlund transformations (BTs) haverbdeveloped as a useful tool for
finding solutions of nonlinear PDEs, given thatsesquations are usually hard to
solve by direct methods. By means of examples wetbat, starting with even the
most trivial solution of a PDE, one may produceighly nontrivial solution of this
(or another) PDE by integrating the BT, withoutvéod the original, nonlinear PDE
directly (which, in most cases, is a much hardgk)ta

A different use of BTs, that was recentlypmsed [7,8], concerns predominantly
the solution of linear systems of PDEs. This methelees on the existence of pa-
rameter-dependent solutions of the linear PDEsessgimg the integrability condi-
tions of the BT. This time it is the BT itself (n&r than its associated integrability
conditions) whose solutions are sought.

An appropriate example for demonstrating #pproach to the concept of a BT is
furnished by the Maxwell equations of electromargmet We showed that this system
of PDEs can be treated as a BT whose integraliinditions are the wave equations
for the electric and the magnetic field. These wegeations have known, parameter-
dependent solutions — monochromatic plane wavesh-axbitrary amplitudes, fre-
quencies and wave vectors playing the roles of“fagameters”. By substituting
these solutions into the BT, one may determinerdélg@ired relations among the pa-
rameters in order that these plane waves alsoseprelectromagnetic fields (i.e., in
order that they be solutions of the Maxwell systeifit)e results arrived at by this
method are, of course, well known in advanced eldghamics. The process of de-
riving them, however, is seen here in a new ligh¢imploying the concept of a BT.

BTs have also proven useful resursion operatordor deriving infinite sets of
nonlocal symmetries and conservation laws of PIES][(see also [11] and the ref-
erences therein). Specifically, the BT producesnareasingly nonlocal sequence of
symmetry characteristics, i.e., solutions of timedir equation expressing the symme-
try condition (or “linearization”) of a given PDE.

An interesting conclusion is that the conadpd BT, which has been proven use-
ful for integrating nonlinear PDEs, may also hamgortant applications in linear
problems. Research on these matters is in progress.

14
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Abstract

In electrodynamics courses and textbooks, the ptiegeof plane electromag-
netic waves in both conducting and non-conductireglim are typically studied
from the point of view of the prototype case of anochromatic plane wave. In
this note an approach is suggested that starts finone general considerations
and better exploits the independence of the Maxagglations.

1. Introduction

Plane electromagnetic (e/m) waves constitute aifgignt type of solution of the
time-dependent Maxwell equations. A standard edealt approach in courses and
textbooks (at both the intermediate [1-4] and ttheaaced [5,6] level; see also [7,8])
Is to examine the prototype case of a monochronpédite wave in both a conducting
and a non-conducting medium.

In this note a more general approach to ttublpm is described that makes
minimal initial assumptions regarding the specifimctional forms of the plane
waves representing the electric and the magnedid. fThe only assumption one does
need to make from the outset is that both fieltkc{gc and magnetic) are expressible
in integral form as linear superpositions of monoahatic waves. In particular, it is
not even necessary gopriori require that the plane waves representing thefitas
travel in the same direction.

In Section 2 we review the case of a monaolatec plane e/m wave in empty
space. A more general (non-monochromatic) treatioktite plane-wave propagation
problem in empty space is then described in Seln Sec. 4 this general approach is
extended to plane-wave solutions in the case ahnaucting medium; an interesting
difference from the monochromatic case is noted.

2. The monochromatic-wave description for empty sgce

In empty space, where no charges or currents (whétde or bound) exist, thdax-
well equations are written (in S.I. units)

(@) V-E=0 (0 ﬁsz—%
oF M)
(b) V-B=0 (d) ﬁxézgoﬂoa

where E and B are the electric and the magnetic field, respebtivBy applying the
identities
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Vx(VxE)=V(V-E)-V’E,
Vx(VxB)=V(V-B)-V?B,

we obtain separate wave equationsfoand B :

,= 1 8°E
V2E - =0 2)
vzé—iazB:o (3)
c® ot?
where
e 1

e (4)

We try monochromatic plane-wave solutiong)fand (3), of angular frequency
o, propagating in the direction of the wave vedtar

E(r,t)=E,exp{i (k-F—wt)} (a)

B B . 5)
B(F,t)=Byexp{i (k-T-wt)} (b
where E, and B, are constant complex amplitudes, and where
a) —
¢ (k=lk]) (6)

The general solutions (5) do raopriori represent an e/m field. To find the extra
constraints required, we must substitute Eqs.nt®) the Maxwell system (1). By tak-

ing into account thaVe'*" = ik &7, thediv equations (a) and (1) yield
k-E=0 (@) k- B=0 (b 7)
while therot equations (&) and (H) give

KkxE=w B (3 T«B:-?E(b (8)

2

Now, we notice that the four equations (7)-48 not form an independent set
since (b) and (&) can be reproduced by usingafand (&). Indeed, taking the dot

product of (&) with kK we get (B), while taking the cross product ofaj8with k
and using (@) and (6), we find (B).

So, from 4 independent Maxwell equations viraimed only 2 independent
pieces of information. This happened because wa” “bair trial solutions (5) with
more information than necessary, in anticipatiorresfults that followa posteriori
from Maxwell’'s equations. Thus, we assumed from déset that the two waves
(electric and magnetic) have similar simple funatibforms and propagate in the
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same direction. By relaxing these initial assumpjoour analysis acquires a richer
and much more interesting structure.

3. A more general approach for empty space

Let us assume, more generally, that the fididand B represent plane waves propa-
gating in empty space in the directions of the uaitorsz and o, respectively:

E(F,t)=F(-F—ct), B(f,t)=G (& -F—ct) (9)

Furthermore, assume that the functidhsand G can be expressed as linear combi-
nations of monochromatic plane waves of the forin f(r continuously varying val-
ues ofk andw, wherew=ck, according to (6). Theft and B can be written in Fou-
rier-integral form, as follows:

E:J‘ Eo(k) é’k(ff—ct) dk

10
B:J- E)(k) ék(é'-rfct) dk ( )

In general, the integration varialitas assumed to run from O teo+ For notational
economy, the limits of integration with respeckiwill not be displayed explicitly.
By setting

u=rz-r-ct, v=o-T-ct (11)
we write
E(u)=[ B (K & d w2
é(v)zj B (K & dk
We note that
veki = jkrdkt, vev= i & (13)

By using (12) and (13) we find that
?-E:jikf-éo(k)ék“dk, Vézjik&-éo(k)ék"dk,
V x E:jikfx Ey(K) &Y dk Vx B:jikc}x B, (K) &< dk.
Moreover, we have that

8E_ . = iku aB_ . S kv
E_-ijo(k)é dk, E_-juwso(k)é dk

where, as alwaysy=ck.
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The two Gauss’ lawsdland (D) yield
jkf- E,(k) é“ dk=0 and jkc}- B,(K) €“ dk=0,

respectively. In order that these relations bedvalentically for allu and allv, re-
spectively, we must have

7-Ey(K)=0 and &-By(k)=0, for allk (14)

From Faraday's law @ and the Ampéere-Maxwell law ¢} we obtain two more in-
tegral equations:

jkfxéo(k) gl dk:ja)”@( X & d (15)
[kex By(K) ékakz—jC—“; (k& d (16)

where we have taken into account Eqg. (4).
Taking the cross product of (15) wish and using (16), we find the integral rela-
tion

[KI(6-Bp) #—(6-7) E)] & dk=—] KT & d.
This is true for all if
(6-E)i-(6-0)E=-E = (6-7-D)E= (6" B)7.

Given that, by (14)E0 andz are mutually perpendicular, the above relation aalg

be valid if -7 =1 and - E, =0. This, in turn, can only be satisfieddf=7. The
same conclusion is reached by taking the crossugtoaf (16) with7 and by using
(15) as well as the fact thﬁb is normal toc . From (11) we then have that

u=v=r-T—ct

so that relations (12) become

E(F,1) = j E, (k) €% dk= j B(p BET ¢

17
é(r,t)zjéo(k) ék“dkzj'ﬁ%(& K@Er-ch g ")
Equations (14) are now rewritten as
7-E,(k)=0 and 7-B,(k)=0, for allk (18)

Furthermore, in order that (15) and (16) (witland 7 in place ofv and &, respec-
tively) be identically valid for alu, we must have
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kixEy(W=wB(K < 7x B(R= cB( k (19)
and
x By =—5 BB = 7x By e=—% Bk (20)

for all k, wherek=w/c. Notice, however, that (19) and (20) are not irehejent equa-
tions, since (20) is essentially the cross prodfi¢19) with 7 .

In summary, the general plane-wave solutitmghe Maxwell system (1) are
given by relations (17) with the additional constta (18) and (19). This is, of
course, a well-known result, derived here by stgrtvith more general assumptions
and by best exploiting the independence [9] of\Mlaxwell equations.

Let us summarize our main findings:

1. The fieldsE and B are plane waves traveling in the same directiefindd
by the unit vector: ; these fields satisfy the Maxwell equations in gngpace.

2. The e/m wav€E, B) is atransversavave. Indeed, from equations (17) and the
orthogonality relations (18) it follows that

7-E=0 and 7-B= C (21)

3. The fieldsE and B are mutually perpendicular. Moreover, € B,7) define

a right-handed rectangular system. Indeed, by aragtplying (17) with 7 and by
using (19) and (20), we find:

FxE=cB, 7xB-_1E (22)
C

4. Takingeal valuesof (21) and (22), we have:

A

7-ReE=0, 7- RB= ( and 7xReE=cReB (23)

The magnitude of the last vector equation in (28¢ga relation between the instan-
taneous values of the electric and the magnett: fie

|ReE | ¢ |ReB 42
The above results for empty space can bend&tkin a straightforward way to the
case of dinear, non-conducting, non-dispersingedium upon replacement gf and
o With & andu, respectively [3]. The (frequency-independent)esbef propagation
of the plane e/m wave in this casesis1/(gu)*>.

4. The case of a conducting medium

The Maxwell equations for a conducting medium afidwctivity c may be written as
follows [1,3]:
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(a) V-E=0 © ﬁxéz_%
. (25)
- - = oE
(b) V-B=0 (d) V x B:IIJO' E+€,Lla
By using the vector identities
Vx(VxE)=V(V-E)-VZ?E,
Vx(VxB)=V(V-B)-V?B,
the relations (25) lead to timeodified wave equations
= 0°E oE
V’E - ¢ —uo—=0 26
HoF THO (26)
. 0°B 0B
VB -¢ - —=0 27
HoT T HO (27)

Guided by our monochromatic-wave approadhegoroblem in [7,8], we now try
a more general, integral form of solution of theabwave equations:

E(r,t):jéo(k) g ST dkir-en dk:j B( kexp{ (ik ¥-"F o)t d

_ . N . (28)
B(f,t):jBo(k) g ST gkiT-on dkzj' B( kexp{ (ik ¥ "¢ dt dl
wheres is a real parameter related to the conductivitthef medium. As in the vac-
uum case, the unit vectar indicates the direction of propagation of the wa\etice

that we have assumed from the outset that both svavelectric and magnetic —
propagate in the same direction, in view of thd that our results must agree with

those for a non-conducting medium (in particular,the vacuum) upon settirsg0.
It is convenient to set

exp{(k—-s)7-T—iwtj=A[ 1) (29)
Then, Eqg. (28) takes on the form

E(7,1) :jEO(k) A(T, t) dk

- - (30)
B(r,t)zjso(k) AT, t) dk
The following relations can be easily proven:
VA(F,t) = (ik —s) 7 A(T, t) (31)
V2A(T,t) = (s* — k- 2isk) AT, 1) (32)
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Moreover,

2
%A(F,t) —_iwA(Ft) and %A(F,t) — A1),

From (26) we get
I[(SZ— k2t spuw®+ i(uow-2sK] BE(§ A1) dkeO

[a similar integral relation is found from (27)]hiB will be identically satisfied for all
r andt if

s>~ k*+euw®=0 and pow- 2sk= ( (33)

By using relations (33)y ands can be expressed as functionk,0és required in or-
der that the integral relations (28) make sensdicBloin particular, that, by the sec-
ond relation (33)s=0 if 6=0 (non-conducting medium). Then, by the first relat
wlk=1/(e1)*?, which is the familiar expression for the speegmipagation of an e/m
wave in a non-conducting medium [3].

From the two Gauss’ laws @5%and (2%) we get the corresponding integral rela-
tions

J(k=9)7-B(K AT, 9 dk=0,
j(ik—s)f-a)(k) AT, 1Y) dk=0.
These will be identically satisfied for afl andt if
7-Ey(k)=0 and 7-B,(k)=0, for allk (34)
From (2%) and (2%l) we find

[(k=9)7xEy(K AT, 9 dk=[ wB(B A1) db
and

[(k=9)7xB(K AT, 9 dk= [ (uo - buw) B(R ATt ) dk,
respectively. To satisfy these for @llandt, we require that

(k+is)7x By(R = B(R (35)

and

(k+i8)7x By(K) = ~(suw+ o) By(K (36)

Note, however, that (36) is not an independent Bgjuaince it can be reproduced by
cross-multiplying (35) withr and by taking into account Egs. (33) and (34).
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We note the following:
1. From (30) and (34) we have that

7-E=0 and 7-B= ( (37)

or, in real form,7-ReE = 0 and7- R&= . This means that botReE and ReB

are normal to the direction of propagation of treve:
2. From (30) and (35) we get

A= o o -
erzijO(k)A(r,t)dk (38)

The integral on the right-hand side of (38) is, erafly, not a vector parallel t& .
Now, in the limit of negligible conductivitys€0) the relations (33) give=0 and
wlk=1/(eu)"%. The ratio w/k represents the speed of propagatiorin the non-
conducting medium, for the frequeney If the medium isnon-dispersivethe speed
v=wlk is constant, independent of frequency. Then &). (withs=0) becomes

FxE=0[B(k AT, dk=0 B

and, in real form, it reads x ReE =v ReB. Geometrically, this means that the
(ReE, ReB 7 ' define a right-handed rectangular system.

3. As shown in [7,8], th& and B are always mutually perpendicular imeno-
chromatice/m wave of definite frequeney, traveling in a conducting medium. Such
a wave is represented in real form by the equations

E(F,t)=E,e 5 cos(kF- tT-wt+a),
2 2 o
B(r.t)= VK4S B e cos(6- T-o t+ B )
w
where Eo is a real vector and where tgng¢)=s/k. This perpendicularity betweeh
and B ceases to exist, however, in a non-monochromatiewef the form (28).
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On active and passive transfor mations
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The concepts of active and passive transformationa vector space are discussed.
Orthogonal coordinate transformations and matrmpresentations of linear operators
are considered in particular.

1. Introduction

A physical situation magppearchanging for two reasons: the physical systentfitse
may pass from one state to another, or,sdm@estate of the system may be viewed
from two different points of view (e.g., by two flifent observers, using different
frames of reference). The former case correspomds tactive” view of the situa-
tion, while the latter one to“@assive” view.

Given that many physical quantities are vegtof particular interest in Physics
are linear transformations on vector spaces. 8tawith the prototype transformation
of rotation on a plane, we study both the active tre passive view of these trans-
formations. In the case of a Euclidean space walntgSian coordinates, a passive
transformation corresponding to a change of basaiorthogonal transformation. On
the other hand, an active transformation on a vesgace is produced by a linear op-
erator, which is represented by a matrix in a givasis. A change of basis, leading to
a different representation, is a passive transfooman this space.

2. Active view of transfor mations

Consider thexy-plane with Cartesian coordinates, y) and basis unit vectors
{q,, 4} . We callR(6) the rotation operator on this plane, i.e., therafor which ro-

tates any vectoA on the plane by an angle(see Fig. 2.1; by conventiofiz0 for
counterclockwise rotation whilé<0 for clockwise rotation). This operator is lingar
given that adding two vectors and then rotatingghm is the same as first rotating
the vectors and then adding them.

y )
A’\

Figure 2.1
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Imagine, in particular, that we rotate eaebtwr in the basigl,, 0} by an angle

!

0 to obtain a new set of vectofs,, Gy'} (Fig. 2.2). The transformation equations
describing these rotations are

0, =R(#)0, =cosh U+ sird U
X X X y (2.1)
0, =R(6)0, =-sing i, + coP 1,

y

Figure 2.2

Now, letA= A 0 + A U, be a vector on they-plane (see Fig. 2.1). The rotation
operatorR(¢) will transform it into a new vector

A=R(@O)A= AL+ AT, (2.2)

We want to express the componefgsandA,” in terms ofA,, Ay andé. By the line-
arity of R(d) and by using (2.1), we have:

A=RO)(Al+AlY)= ARO) U+ ARO)Y,
=(Accost— A, sid) & +( A sid+ A cod),

By comparing this with (2.2), we get:

"= A cosf— A, sirg
A=A A (2.3)
A/ = Assing+ A cod
We define the matrix
cosd - sing
_Line c039} ¥
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The systems (2.1) and (2.3) are then rewritteh@férm of matrix equations as

lfj ! lf:l !
T l=MT {X} and A*, =M {A‘} (2.5)
u, Uy A A
respectively, wher® " is the transpose 1.
We note that the vectos and A' = R(0) A aredifferentgeometrical objects, the

latter one being a transformation of the former.t@a other hand, the components of
these vectors, connected by (2.3), are referrébdeteamebasis{t,, 0} . This is the

general idea of thactive viewof a linear transformation.
In a more abstract sense, we considaer-dimensional vector space with basis

vectors{é,s,....&} ={"g}, and we leR be a linear operator a@. We assume that
the basis vectors transform unéeas follows:

§=Reé=%2R (sumonj (2.6)

where the familiar summation convention for repeaipper and lower indices has
been used. Thus, for each valua,dhe right-hand side of (2.6) is actually a surerov
all values ofj, i.e., fromj=1 to j=n. Explicitly,

éL,:AqF‘lﬁA% I:%1+'"+Ar¢ R
%’:’\qFéZ—FA% Ié2+”'+,\le PQ (27)
én’:'qF%n"_A% F%n+"'+A# Rw
Now, let
V=Vg+Ve+ -+ Ve= Vi (2.8)

be a vector in2, and letV' =RV . We have:
V'=R(V!'8)=VIRe=V3eR= V].
Therefore the components of the original and thedfiormed vector are related by
V=R,V (2.9)

or, explicitly,
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VV=RyV'+ R, VPt RV
V¥ =RiVH+ R%, VPt RV

V=R, V+ R, V+...+ RV

Define thenxn matrix

M=[R] with M =R

The basis transformations (2.6) are then written as

Vn! VI']

3. Passive view of transfor mations

(2.10)

(2.11)

12)

12)

Imagine that our previous-y system of axes on the plane, with basis unit vecto
{q,, 4} , is rotated counterclockwise by an angl® obtain a new system of axes

andy’ with corresponding basil,, 0,} (Fig. 3.1). As before, the two bases are re-

lated by the system of equations

~ ! ~ . A
U, =cosdu,+ sind u,

~ ! . ~ A
u, =-sindu, + co u,

Figure 3.1

(3.1)
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A vector A on the plane can be expressed in both these tesstslows:
A=A+ A= AU+ A (3.2)

Substituting the basis transformations (3.1) irtte tight-hand side of (3.2), and
equating coefficients of similar unprimed basistoes, we find:

A = Acosd— A sirg

(3.3)
A = A/sind+ A cod
Solving this for the primed components, we get:
"= A cosd+ A, sird
A=A g (3.4)

A =—Asing+ A, cod

Notice that, in contrast to what we did in the poeg section, here we keep the geo-

metrical object A fixed and simply expand it in twdlifferent bases. This is the
adopted practice in theassive vievof a transformation.
Introducing the matrix

cosd - sinY
sind co9¥

we rewrite our previous equations in the matrafer

0, =MT {ux} (.5
Oy' Uy

and
A Al A/ a| A
=M =M 3.6
M M M M o
where
3 {cos@ sirﬂ} .
M= =M (3.7)
-sind coy

Notice that the transformation matik is orthogonal As will be shown below, this is
related to the fact that the transformation (rotaf axes) relates two Cartesian bases
in a Euclidean space.
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By comparing (2.3) and (3.4) it follows thtae transformation equations of the
passive view reduce to those of the active viewnugplacingd with —4. Physically

this means that a passive transformation in wHiehviectorA is fixed and the basis
of our space is rotatecbunterclockwises equivalent to an active transformation in

which the basis is fixed and the vect@ris rotatecclockwise
Let us generalize to the case of radimensional vector spac€ with basis

{6.8,...8) ={"g}. Let{§} be another basis related to the former one by
& =8 Al (3.8)

(note sum orj). A vectorV in Q may be expressed in both these bases, as follows:

V=Ve=V'¢=V"e\,

where use has been made of (3.8). This yields
Vi=AL WV (3.9

Introducing thexn matrix

M=[A'} ] with My =A') (3.10)
we write
Al ’Q
=MT|: (3.11)
&) L&
and
V2 Vl'_ VY Vi
=M = Cl=M7 (3.12)
Vl’l Vnr Vnr Vn

4. Orthogonal transformationsin a Euclidean space

In this section theassiveview of transformations will be adopted. L@tbe ann-
dimensional Euclidean space with Cartebiemordinates¢, x2,...x") = (<) and cor-
responding Cartesian bas{i@} . Let ') be another Cartesian coordinate system for

! Cartesian systems of coordinates exist only inlile@an spaces. For example, you can define a sys-
tem of Cartesian coordinates on a plane but gagmnotdefine such coordinates on the surface of a
sphere, which is aon-Euclidearspace.
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Q, with corresponding bas{g,} . We assume that the two coordinate systems have a
common origin0=(0,0,...,0). Both Cartesian bases artonormal in the sense that

A A

§§=F%

Al

£ =4q; (4.1)
Assuming that thénandednes®f the two coordinate systems is the same (eog., f
n=3, both coordinate systems are right-handed)apgarent that a linear transforma-
tion from one basis to the other is a “rotation¥dnLet us explore this in more detail.

Definition: A linear transformation from a Cartesian basiarother is said to be
anorthogonal transformation

Proposition 4.1:An orthogonal transformation is represented byogthogonal
matrix M:

M2=MT &« MTM=MM"=1 (4.2)

Proof: Assume a linear basis transformation of the foBB) &' = %;Aji' . Also,
let M be the transformation matrix defined in (3.10). Wéee:

A

Y :(@Aki,).( pA'j,):aKl Aki,A'j,:Zk:A'?,Akj,
:Zk:MkiMkj :zk:(MT)ik M, =(MTM)”_

where we have taken into account that the originaprimed) basis is orthonormal.
Given that the same is true for the transformein@al) basis, we have:

(M™™). =6, = MM =1.

Themagnitudeof a vectorV is a non-negative quantity whose square is ex-
pressed in a Cartesian basis in terms of the s@érproduct, as follows:

V" =V.V=(Ve) (V)= V Vieje g VA (4.3)
[Obviously, the last term in (4.3) is the sum o 8quares of the components\bf]

Proposition 4.2:An orthogonal transformation preserves the Catetrm (4.3)
of the magnitude of a vector.

Proof: By using the transformation formula (3.9) for campnts of vectors, de-
rived in the previous section, we have:
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5V 5, (Aik,\/k')(Ajl,\/')z(ZAik,Ail,J\7'\'/'

— kry g1l T K\ 17
_(ZM”‘M” jv Vv _(Z( M )ki M, jv Vv
=(MT™ )klvk'v" = 5y V'V
For a more compact proof, define the matrices
Vl
VI']
and similarly for the corresponding primed quaestiThen, in the unprimed basis,
512 kT K
M =[] v

Using the fact that, by (3.12@\/"] =M [VK’J , we have:

T CT\T T
T ) v L] g v
T
=[ve] [v]
CommentThe above proof suggests an alternate definiti@nmrthogonal trans-
formation as a linear transformation in a Euclidspace that preserves the Cartesian
form of the magnitude of vectors. In fact, thighe way orthogonal transformations

are usually defined in textbooks.

Now, letP be a point in2, with Cartesian coordinates'(3?,...x") = (). In this
system of coordinates the position vectoPofan be written ag =x'&. Since this
vector is a geometrical object independent of ffs¢esn of coordinates, we can write:

Fr=xé-= xj'?;'.
By using (3.8) we find, as in Sec. 3,
X =A X' (4.4)

which is the analog of (3.9). M is the matrix defined in (3.10), and ¥ is the col-
umn vector of thet, then by the general matrix relation (3.12) weehav
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(4.5)
where the orthogonality condition (4.2) has beerduget us call
MT=L withL; =M, =A", (4.6)

Then the matrix relation (4.5) can be written as/stem ofn linear equations of the
form

X" =Ly X+ L, X4+ L, X

which equations represent an orthogonal coordimnatesformation ir2

As an example far=2, letQ be a plane with Cartesian coordinatesx¢) = (x, y).

A position vector in2 is written: 7' = xU, + y{,. As seen in Sec. 3, the transformation
matrix M for a rotation of the basis vectors by an argke

cosf - sing - cog  siA
= . = L=M = _ .
sind co9y — sig  co8

The coordinate transformation equations (4.7) artem here as

X = Xcosf+ ysirg

y =—-xsind+ ycod

Exercise:By using the relationgzvjé and éj' = éA'j , together with (3.10)
and (4.1), show the following:

Vi=g.V

D>
D’

Under an orthogonal transformation from orat€sian system of coordinates to
another, the component&* of a vector transform like the coordinatéshemselves.
That is,

V=1,V
From (4.7) we have that
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X'
-
Therefore,
Vil Xy and, conversely, V :a—x_I v (4.8)
ox! ox’

5. Active and passive view combined

Let Q be ann-dimensional vector space with bagég ( k=12, ..., ). LetA be a lin-
ear operator o®. The action oA on the basis vectors is given by

AE =38 A=A (5.1)

(Note a slight change in the summation conveniiothis section subscripts only will
be used.) Thexn matrix A=[A;] is thematrix representation of the operatarin the
basis{g} .

A vector inQ is written:

X (®.2

X=2.%¢&

Let y=AX. If y=y &, then, by the linearity oA and by using (5.1) and (5.2) we
find that

Yi=A; % (sumonj (5.3)
which represents a systemrolinear equations fae 1,...n. In matrix form,
[Vid = Al %] 5.4)

where k] and jy] are column vectors.
Now, letA andB be linear operators ad. We define their product=AB by

CX=(AB)X=A(BX), VXeQ (5.5)

Then, in the basi§g} ,

Céj :A(BQ)ZA(A? B)= ﬁi(Afe)= iIAIjBiAeEiA gC
where
C;=AB or inmatrix form,C= AB (5.6)

10
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That is, in any basis @,

the matrix of the product of two operators is theduct of the matrices of
these operators.

Consider now a change of basis (passiveftranation) with transformation ma-
trix T=[Tj]:

The inverse transformation is

& =¥(TY), (58)

The same vector may be expressed in both theses laase= x & = ){A@', from
which we get, by using (5.7) and (5.8),

x=T; % and ¥=(T7) x (5.9)

]

In matrix form,

[xJ=T[x] and [x]=T7" ¥ (5.10)
How do the matrix elements of a linear opmrédt transform under a change of
basis of the form (5.7)? In other words, how ddesratrix of an active transforma-

tion transform under a passive transformation? {fetA X. By combining (5.10)
with (5.4), we have:

VI=THW=T"AX=T'AT{=R§k =
A =TT (5.11)
For an alternative proof, note that
Aéj’ =AT)=TAe= T eA= ;i A ré( -F)m
=(T ’1AT)k_ =% A => A T'AT
J
as before. A transformation of the form (5.11)afled asimilarity transformation
By applying the properties of the trace amel determinant of a matrix to (5.11) it
is not hard to show that, under basis transformatibe trace and the determinant of
the matrix representation of an operator remain hanoged:trA=trA’, deA=detA".

This means that the trace and the determinantamis-independent quantities that are
properties of the operator itself, rather than praps of its representation.

11
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Definition: A vector X = 0 is said to be arigenvectowof the linear operatok if a
constant exists such that

AR =A% (5.12)

The constani is aneigenvalueof A, to which eigenvalue this eigenvector belongs.
Note that, in general, more than one eigenvectyrhetong to the same eigenvalue.

In a given basi§&} , the linear system (5.3) corresponding to the reigkie
equation (5.12) takes on the form

Ajx =A% or  Rj=4dij)x =0 (5.13)

where B;j]=A is the matrix of the operatdy in the given basis. This is a homogene-
ous linear system of equations, which has a naatrsolution for the eigenvector
components iff

defA;—26;1=0 or detd—i1)=0 (5.14)

where 1 here is the-dimensional unit matrix. This polynomial equatiogetefmines
the eigenvalueg (not necessarily all different from each otherjhaf operatoA.
Now, in general, for any value of the constathe matrix 4—11) is the represen-

tation of the operatorA—11) in the considered bas{€} . Under a basis transforma-

tion to{&} this matrix transforms according to (5.11):

(A4=1)" =T U1 T=T AT -11=4"-)1.
On the other hand, by the invariance of the deteantiunder this transformation,
det(4'— A1) = det(4—41) .

In particular, ifA is an eigenvalue of the operaty the right-hand side of the above
equation vanishes in view of (5.14) and, thereftre,same must be true for the left-
hand siddor the same value af That is, the polynomial equation (5.14) determine
the eigenvalues oA uniquely, regardless of the chosen representaii conclude
that

the eigenvalues of an operator are a property efdperator itself and do not
depend on the choice of basis of the spgace

If we can findn linearly independent eigenvectof&} of A, belonging to the

corresponding eigenvalugg(not necessarily all different) we can use theseors to
define a basis of2. The matrix representation &f in this basis is given by (5.1):

AX; =X A . On the other hand, if= 1", then AX, = 1'% = '3, X. Therefore, since

the X, are linearly independent, we must h#@ye1'd; . We conclude that, in the ei-
genvector basis the matrix representation of tlezaiprA has thediagonalform

A= diag(/ll,/lz, ,in) .

12



ON ACTIVE AND PASSIVE TRANSFORMATIONS

Moreover, by the above formula and by the fact thatquantities &, detA andiy are
basis-independent (i.e., invariant under basissfcamations) it follows that, imny
basis ofQ,

WA =Jq+ o+ . +0n ,  deB =1 ds ..l (5.15)

Proposition 5.1:Let A andB be two linear operator a3. We assume tha& and
B have a common set oflinearly independent eigenvectdrg} . Then the operators

A andB commute
AB=BA < [A,B]=AB-BA=0

where A, B] denotes theommutatorof A andB.

Proof: Since then vectors{ X} are linearly independent, they define a basi€.of
By assumption, for each value lothe vectorX, is an eigenvector of both andB,
with corresponding eigenvalues, sayndg. Then,

(AB)X =A(BX)=A(B%)=L(AX)=faX
and similarly, BA X, =af%_ . Thus,
(AB)% =(BA)% < [A,B]% =0,
for allk=1,...n. Now, let'¥ =& X be an arbitrary vector i@2. Then,
[AB]Y=[ABI(5%) =§[AB % =0, V¥eQ.
This means tha#y, B]=0.

Definition: An operatorA is said to benonsingularif detA=0 (note that this is a
basis-independergroperty). A nonsingular operatorirs/ertible, in the sense that an
inverse linear operatak™" on Q exists such thaAA™ =A™A =1,,, wherel,, is the
unit operator. This allows us to write

J=AX < X=A1lYy.

By (5.4) it follows that, iA is the matrix representation of the nonsingulasrap
tor A in some basis, thethe matrix of the inverse operatar is the inverse A& of A
As is well known, the matrid may have an inverse iff d&t0, whence the definition
of a nonsingular operator. In view of the secondti@n in (5.15),

all eigenvalues of a nonsingular operator are nonze

Indeed, if even one eigenvalue vanishes, theA=d®in anyrepresentation.

13
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6. Comments

Both the active and the passive view are of impaeain Physics. Let us see some
examples:

1. TheGalilean transformatiorof Classical Mechanics and therentz transfor-
mation of Relativity’ arepassivetransformations connecting different inertial fiesn
of reference. When expressed in terms of mathealatguations, all physical laws
are required to be invariant in form upon passiogifone inertial frame to another.

2. The operators of Quantum Mechaha®active transformations from a quan-
tum state to a new state. On the other hand, latbssand operators may be repre-
sented by matrices in different bases, the tranmsdtion from one basis to another be-
ing apassivetransformation. Typically, the basis vectors & tfjuantum-mechanical
space are chosen to be eigenvectors of linear mpengepresenting physical quanti-
ties such as energy, angular momentum, etc. In auishsis the related operator is
represented by diagonal matrix, the diagonal elements being thgenvaluef the
operator. Physically, these eigenvalues give tissipte values that a measurement of
the associated physical quantity may yield in goeexnent.

2 H. GoldsteinClassical Mechanic2nd Ed. (Addison-Wesley, 1980).
% E. MerzbacherQuantum Mechani¢8rd Ed. (Wiley, 1998).
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The concept of pseudovectors is simply explaingablidation is made to the Max-
well equations of electromagnetism, including theewhere hypothetical magnetic
charges and currents are present.

1. True vectorsand pseudovectors

Perhaps the simplest way to distingwa&ttorsfrom pseudovectorgs to examine the
way each type of object transforms unsgjeace inversion

Let (i1, X2, X3) be an orthogonal system of coordinates, withesgonding unit vec-
tors G;, U,, Uy. This coordinate system is said torlght-handed since

UxUy=U, Uyxly=10, UOyxl=10, 1)
where the vector (cross) product is defined byuealright-hand-ruleconvention.

Imagine now that we invert the directions dfthfee axes, thus obtaining a new
coordinate systenx{’, X", x3") with corresponding unit vectors

G'=-0 (i=1,2,3) (2)
If we insist on using the right-hand conventiorerth
0 %0 =(-W)x(-0) = Ux U= "U=-"1 (etc).

If, however, we employ thieft-handconvention, then
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A

0 <0 =05, G, x0 =0, G'x0' =0, 3)
We say that the system () is left-handed' Thus,
¢ the inversion of a right-handed coordinate system left-handed system.
LetP be a point in space. The positionRotloes not depend, of course, on whether

we choose a right-handed or a left-handed systespeoify it. However, theoordi-
natesof P do depend on this choice. Write:

P= (X1, X2, X3) = (%1, X2, X3) .
The two systems of coordinates are related byahefsequations

Now, consider a physical object that is describgdabvector (e.g., velocity, force,
electric or magnetic field, etc.). Assume that e system) it is mathematically
represented by

A= Al+ Alh+ A=) A (5)
|
while in the systemx(") it is represented by

A (6)

A=A+ A+ A=)

A (true) vectoris a geometrical object independent of whetherctt@dinate system
we use is right-handed or left-handed (that isepehdent of the “handedness” of the
underlying coordinate system). Hence,

A=A (7)

In view of (2), (5), (6) and (7), the componentsaofector transform under space in-
version according to the relations

A'=-A ([=123) (8)
A pseudovectofor axial vecto}, on the other hand, transforms differently:
A=-A (9)

so that, by (2), (5), (6) and (9), its componengmsform as follows under space in-
version:

! Note that if onlytwo axes of a right-handed coordinate system are tiedtethe resulting system is
still right-handed; if onlyoneaxis is inverted, the systemiést-handed.
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A=A (=1.23) (10)

Obviously, a pseudovector ot an invariant geometrical object since it is desd
upon the handedness of the coordinate system.

Example 1Let each ofA and B be a vector or a pseudovector. Define the vector
(cross) product of these objects in the coordiegstems) and & ") as follows:

>

TS G G
AxB=|A A A, AxB=A A A (11)
B B B B/ B B

By taking into account relations (2) and €{)L0), we conclude the following:
e If both A and B arevectorsor both arepseudovectorshen A'x B' = — Ax B
so that the cross product ipseudovector

e If either A or B is avector, the other being pseudovector A'x B'= Ax B
so that the cross product isector.

Example 2Consider thalel operator, expressed in the coordinate systemharid
(%) as follows:

B W FHE S Y
i O% =
We notice that
~ 23: 0 ~
V=) (-0)——=V.
i1 o(=%)

Thus, according to (7), the del operator is a ftugetoroperator. Then, according to
Example 1,

e if A isavector itsrot Vx A is apseudovectomwhile

e if B is apseudovectgitsrot VxB is avector

Definition.A quantity® is a (true)scalarif its value remains invariant under space
inversion:

O =] (13)
A quantity® is apseudoscalaif it changes sign under space inversion:

O =-0 (14)



C.J. PAPACHRISTOU

Example 3Let each ofA and B be a vector or a pseudovector. Define the scalar
(dot) product of these objects in the coordinastesys X)) and & ") as follows:

3 3
A-B=> AB, A-B=>AH (15)
i=1 i=1

We observe the following:

e If both A and B arevectorsor both arepseudovectorghen A'- B'= A- B so
that the dot product isscalar.

e If either A or B is avector the other being pseudovectorA'- B =- A B
so that the dot product ispgeudoscalar

Example 4Let A, B, C be (true) vectors. TheBxC is a pseudovector, so that
A-(Bx O) is a pseudoscalar.

Example 5Regarding the divergence of a vector quantityhase the following:

e If Aisa (true\ector,its div V- A is a (true)scalar, while

e if B is apseudovectoritsdiv V- B is apseudoscalar
Example 6The Laplace operator
oo 3 82
Vi=v.v=> — (16)
is a scalar operator. Thusdfis either a scalar or a pseudoscalar functionsfoam-
ing under space inversion according to the gemalal
O (X1, %', X" ) =1 @ (Xq, X2, X3) (17)

(where the plus sign corresponds to a scalar whdeminus sign to a pseudoscalar),
thenV?® is a scalar or a pseudoscalar function, respégtiMete also that

e the grad V@ of a scalar (pseudoscalar) function is a vectasedovector)
function.
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2. Applicationsin electromagnetism

By its definition, E = F,/ g, and by the fact that the electric forég is a (true) vec-
tor,? we see that

e the electric field is a vector.

On the other hand, since both the magnetic fétce q(Vx B) and the velocityy of
a charged particle are vectors, we conclude that

e the magnetic field is a pseudovector
(cf. Example 1 in Sec. 1).

Consider the Maxwell equations:

(@ V-E=£
&o
b) V-B=0
. 0B 18
© vxE=-28 (18)
ot
(@) VB pty I+ ooty

ot

Equation (18) is consistent with the fact that the electriddiés a vector and the
charge density is a scalar function. In (£Bthe electric field is a vector, thus st
on the left-hand side is a pseudovector (cf. Exan®in Sec. 1); this is consistent
with the fact that the magnetic field is a pseudtwe In (1&1) the magnetic field is a
pseudovector, thus itet on the left-hand side is a vector; this is coesiswith the
fact that both the electric field and the curresisity are vectors.

Consider the Poynting vector

N=ExA=1(ExB .
y7i

Since the electric field is a vector while the metgm field is a pseudovector, their
cross product on the right-hand side must be aovetiterefore so is the Poynting
vector on the left. This was to be expected, stheedirection of flow of electromag-
netic energy is independent of whether our cootdisgstem is right-handed or left-

handed.

% In general, a force is a physically measurablentityathat cannot depend on the handedness of our
coordinate system.
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3. Theinclusion of magnetic chargesand currents
Although magnetic charges and magnetic currente Ima¥ been observed so far in
Nature, their existence cannot be precluded incjpie. If such quantities are as-

sumed to exist, the Maxwell equations must be gdized accordingly, as follows
(the indexe stands fof‘electric” while the indexm stands fofmagnetic”):

(@ V-E=f=

(b) V-B=up,

. - B 19
(© VxE=-pd,-22 49

(@) FxB=pp I+ aotte s

As discussed previoushyE is a vector whileB is a pseudovector. Moreover, the
electric charge densipg is a scalar function while the electric currenhslgy je is a

vector function. Since theiv of the magnetic field is a pseudoscalar, it fobofnom
(19%) that

e the magnetic charge densjiy; is a pseudoscalar.
Also, since theot of the electric field is a pseudovector, it follivom (12) that

¢ the magnetic current densitilm Is a pseudovector.

By taking thediv of (19d) and (12) and by using (18 and (19), respectively, we
find two equations of continuity:

7.3 +%_g (20)
ot

7.3 +%m_g (21)
ot

The physical meaning of these relations is thatelleetric and the magnetic charge
are separately conserved. Notice that (20) is Erseguation while (21) is a pseudo-
scalar equation [thdiv of a vector (pseudovector) is a scalar (pseudag¢aOn the
other hand, by taking thet of (1) and (1@l) and by using the vector identity

Vx(VxA) =V(V-A-VZ?A

together with the Maxwell system (19), we derivpasate non-homogeneous wave
equations for the electric and the magnetic field:
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_ 0°E 1 - N
V2E - g tg——=—Vp + u,| VxJ_+—=2 22
OILIO atz 50 pe /’lo{ m at j ( )
0B (. o
V?B - Eo g ot = ,Uo(me -Vx ‘]e+5oﬂo?j (23)

Notice that (22) is a vector equation while (23aipseudovector equation [recall that
therot of a vector (pseudovector) function is a pseudrgeector) function].

Technically, the two wave equations (22) arg®),(Bogether with the two continuity
equations (20) and (21), constitute consistencyditimms for the Maxwell system
(19). This system may be regarded as a sort ofIBadkransformation relating fields
and sources.

3 Seehttps://arxiv.org/abs/1901.080%&dhttp://metapublishing.org/index.php/MP/catalog/bt6ak
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Several aspects of the motion of a charged paitickeuniform magnetic field
are examined, both by physical arguments and byic#xgolution of the
differential equation of motion.

Problem

A particle of massn and chargep0 enters a uniform magnetic fiel with initial
velocity V,, perpendicular to the field. The magnetic fieldigsumed to be oriented in

the positivez-direction.

1. Show that the particle will execute unifocircular motion on thexyplane and
determine the radiusof this motion.

2. Show that the larger the momentum of theigdey the smaller the curvature of
the path. Interpret this physically.

3. Determine the angular velocity of the particle and show that the period of
revolution is independent of the size of the orbit.

4. Suppose that the magnituglef the magnetic field increases with time, althoug
the field remains uniform (i.espatially constant) at all times. Show that the increase
of B produces a decrease of the size of the orbit.

5. Assume now that the particle enters the mgiield in a direction that isot
perpendicular to the field. Show that the motiorihaf particle will be uniform, while
the projection of this motion onto theplane will be uniform circular with angular
velocity w equal to that found in part 3. Describe the patbngetrically.

6. Show that the radiation losses due to ac@® become more significant the
smaller the mass of the patrticle.

7. By solving the differential equation of nwti of the charged particle, derive
explicit expressions for the coordinatesy( z) of the particle as functions of tinte
Demonstrate that the projection of the motion dhxy-plane is uniform circular, as
found previously, and verify the expression for grgyular velocityw. Explain why

this planar motion is clockwise for the given dtien of B.
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Solution

~

Both thez-axis and the magnetic field are normal to the Eagkdirected toward the reader;
the direction of motion is clockwise (why?).

1. The charged patrticle is subject to a magneticeforc
F=q(Vx B Q)
where, in componentsy =v, i+ v, U+ vu and B= By (B | B). Then,

F=agB(y,U-v1) (2)

which is a vector in they-plane; the same is true, therefore, with regardht®
acceleration of the particle (assuming no othecdsract on it). Given that, by
assumption, the initial velocity also is a vectorthe xy-plane, we conclude that the
motion of the particle takes place on that plane.

As seen in (1), the total force on the partislaormal to the particle’s velocity, i.e.,
normal to the trajectory of the particle. This me#mat the particle moves ebnstant
speedinside the magnetic field (see, e.g., Sectiond®.fil] and Sec. 7.1 of [2]). In
other words, the particle executesiform curvilinear motion. We must now show
that this motion igircular. Indeed, the magnitude of the magnetic force is

F = qvB = constant 3)

wherev is the (constant) speed of the particle, equ#théanitial speedyp, and where
we have taken into account that the velocity ve@soalways perpendicular to the
magnetic field. Now, since the motion is unifornmettotal force (1) is purely
centripetal. HenceF=mV?/p , wherep is the radius of curvature at any point of the
trajectory (see Sec. 3.6 of [1]). Given that bet#indF are constant, it follows that

Is constant also; that is, the motion is circulN8e may place the center of the circle at
the originO of our coordinate system (in particular, of #yeplane) so that the radius
p of the circle equals the distancef the particle fromO. From F=mV/r , and by
using (3), we find:
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_mv

[ =—
gB

(4)

2. Let p=mv be the (constant) magnitude of the momentum op#récle. Relation
(4) may then be rewritten asp/qB. We observe thatis an increasing function qf
the larger the momentum, the larger the radius dherefore, the smaller the
curvature of the path. Physically, this means #mtthe momentum increases it
becomes more difficult for the magnetic field t@guce a change in the direction of
motion of the patrticle.

3. We writev=wr, wherew is the angular velocity. Substituting this intg,(#e
find

w=— (5)

We notice thato is independent of the radiu®f the orbit; so is, therefore, the period
T=2rn/w of the circular motion.

4. Sincev=Vvp=constant, independent of the magnetic-field stieBgta change of
B will not affect the speed of the particle. Fron itdthen follows that an increase of
B will produce a decrease nfi.e., of the size of the orbit. This means thatparticle
will revolve closer to thez-axis. This effect is used in fusion reactors toieah
plasma heating and confinement.

5. As argued in part 1 of the problem, since thel tot@e on the particle is normal
to the particle’s velocity, the speadof the particle is constant, equal to the initial
speedy,, and the motion igniform curvilinear Furthermore, the total force, given by
(1) and (2), is a vector parallel to thkgplane, and so is the acceleration of the
particle. These results are independent of thectilire of the initial velocity of the
charge upon its entrance into the magnetic fielotid¢ also that Eq. (2) is valid even
if the velocity has a-component.

The motion, however, is no longer expected @optanar if the direction of the
velocity has &-component, as will now be assumed to be the cateid write

v=V+v U whereV =vi+y,U = vector parallel to they-plane (6)

Since thez-component of the acceleration is zero, the velabitgs not change in the
z-direction; that isy~=vo~=constant Hence, along the-axis (which is parallel to the

magnetic field) the motion is uniform rectiline&egarding the motion parallel to the
xy-slane, we note the following:

—

F-v=F-(V-vQ)=0,

since by (1) the total force is normal to the véaigowhile by (2) the force is also
normal to thez-axis. Alternatively, by using (2) and (6) we have:
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F-V=0B(\U-vYy)-(Vy+ Y= gByy yy=0.

It follows that the motion parallel to the/plane is uniform curvilinear, with speed
equal to

V=(V- vzz)l/2 =(v*- \622)1/2 = constan
where we have used the facts b, andv~=vg,. Furthermore,
UxB=(V+vl)x(Bu)="ix E,
so that, by (1),
F =q|Vx B|= qVB= constan (7)

If p”is the radius of curvature of the projection of thajectory onto they-plane,
then, given thaF is purely centripetal, we have:

VrZ 2
F=m— = p'=m— =constan (8)
- F

(since bothv” andF are constant). This means that the projectiomefmotion onto
the xy-plane is uniform circular. Overall, the motion betcharge is the resultant of a
uniform rectilinear motion parallel to the magnefield, and a uniform circular
motion on a plane perpendicular to the field. Tiagettory is aelix (uniform helical
motion. By (7) and (8) we get the radius of the circydesjection of the motion:

, mv

“ B 9

P

Then, by writingv'=wp’, we find that the angular velocity is again given by (5);
that is, w=gqB/m.

6. The total power radiated by a slowly moving acadlag charge is given by
Larmor’s formula(see Sec. 10.12 of [2])

2,2
p=d2
67g,C

(10)

wherea is the magnitude of the acceleration. Assuming tha charged particle is
moving circularly on a plane normal to the magnéigtd, and taking Eg. (3) into
account, we havea=F/m=qvB/m , wherev is the constant speed of the particle. We
observe that, for given values @fv andB, the smaller the mass of the particle, the
greater the radiated powerand hence the greater the power losses. Thatdgtion
losses become increasingly significant as the robHse particle decreases. Thus, for
example, protons radiate far less than electromascyclical accelerator.
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7. The equation of motion of the charged particle is

dv R
m—=q(Vv .
ol e

By expanding the left-hand side into componentsudsing Eq. (2) for the right-hand
side, and by equating corresponding componenti@mwo sides of the equation, we
obtain the following system of differential equaiso

dv
N v, Ny, Mg (11)
dt y dt dt

where we have putw=gB/m. Notice that the expression far is the same as that
found previously for the angular velocity of theccilar projection of the motion on
thexy-plane.

The system (11) may be integrated by emplotiegmethods described in [3] (cf.,
in particular, Sec. 4.1 and 5.1). The solutionhef $ystem is

Ww=Acojwt—-a), w=-Asin(wt—-a), Vv,=41 (12)
where theA>0, a, A are arbitrary constants. We notice that the spédle particle is
constant, equal ta=(A%+22)Y?; the motion is thus uniform. The constaAts, A can

be expressed in terms of the componewss, {.y , Vo) Of the initial velocity. Setting
t=0in (12), we find:

A= (ol + Vo )2, A=Ve , a= arctanVoy Vo) .
Relations (12) are rewritten as a system of difféa¢ equations:
dx/dt= A cogwt —a) , dy/dt=—Asin(wt—a), dzZdt=2
the solution of which system is (by ignoring arditr constants)
x (Alw) sin(wt —a) , y= (Alw) codwt—a), z=it (13)

Equations (13) express the coordinates of thegbaudis functions of time.

Projected to they-plane, the motion of the particle is uniform cienubf radius
r=Al/ew and with angular velocityp=qB/m. Define now the functiofi(t) by

O)=a—-owt+7n/2 < wt—a=7n2-60(1).
Equations (13) are then rewritten as

X=rcoh(t) , y=rsini(t).
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We observe that the pair, 0) represents polar coordinates onxligolane, describing
the circler=A/w=const. We also notice that, by its definitiofi(t) is a decreasing
function oft ; that is, the polar angleé decreases with time. This suggests that the
circular projection of the path on tixgplane is traversed in theegativedirection,
l.e., clockwise

It also follows from (13) that the motion inetl-direction is uniform rectilinear.
The overall path of the particle idhalix and the motion is, thereforgniform helical
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1. Definition of the center of mass

Consider a system of particles of massesny,, mg,... Assume that at some particu-
lar moment the particles are located at the pahgpace with corresponding position
vectorst, r,,l,, -, relative to a reference poidt which is typically chosen to be

the origin of an inertidlframe of reference (see figure).

The total mass of the system is
M=m+m+m+-=3m (1)

Thecenter of massf the system is defined as the pdndf space having the position
vector

= 1 _ _ 1 -
fc=ﬁ(mlr1+mzfz+'“)=ﬁsz (2)

In relation (2) the position vectors of thartcles and of the center of mass are
defined with respect to the fixed origd of our coordinate system. If we choose a
different reference poir®’, these position vectors will, of course, changewelver,
as will be shown below, theositionof the center of magss relative to the system of
particleswill remain the same, regardless of the choiceefe#frence point.

1 At least, insofar as Newton's laws are to be used.
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If ,yi,z) and &c, Yc, Zc) are the coordinates af andC, respectively, we can
replace the vector relation (2) with three scatpragions:

1 1 1 .
xc—Vime, x—ﬁiva, @—WZ m: (3)

As an example, consider two particles of reasg=m and m,=2m, located at
pointsx; andx, of thex-axis. Call a= x,—x; the distance between these particles:

e} m C 2m

. ° . o X
Xl XC X2
D —— a B ———

The total mass of the systemNi=m;+m,=3m. From relations (3) it follows that the
center of mas€ of the system is located on tkexis. Indeedy,=z;=0 (i=1,2) so that
yc=zc=0 (they andz-axes have not been drawn). Furthermore,

Xc=ﬁ(nl>i+ nw)=—;( X+2 %)= >1<+—§ i

where we have used the fact that x;+a . Thus, the center of ma€sis located at a
distance 3/3 from m. Note that the position d@ relative to the system of particles
does notdepend on the choice of the reference pointith respect to which the co-
ordinates of the particles are determined.

As the above example demonstrates, the positi the center of mass does not
necessarily coincide with the position of a paetiof the system. (Give examples of
systems in which a particle is locatedCatas well as of systems where no such coin-
cidence occurs.)

2. Independence from the point of reference

We must now show that the location©fin space does not depend on the choice of
the reference poir®. Let us assume for the moment, however, that ts&ipn ofC
doesdepend on the choice of reference point. ScClahdC” be two different posi-
tions of the center of mass, corresponding to éherence point® andO’. We call

r. andf.’ the position vectors af andC" with respect t@ andO’, respectively, and
we let and T’ be the position vectors of the particte relative toO and O'. For

convenience, we denote Ithe vectorOO' (see figure).
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The defining equation (2), expressed suceelysior O andO’, yields

— 1 — - ! 1 !
o=y 2ME = > mE

wheref’ =F —b . Now,

CC'=CO+ 00+ OC=-g+ b7 =
CC=— Y mp+be ¥ mit= b3 mir- )
=5—ﬁ2m5= B—ﬁl(z mj b- b= Mb-0

which suggests that the pointsand C" coincide. Hence, the center of mass of the
system is a uniquely determined point of spacegpeddent of the origin of our coor-
dinate system.

3. Center of mass and Newton’s laws

We define thdotal (linear) momentunof the system at timeg, relative to an inertial
reference frame, as the vector sum

P=YR=my @
Let IfI be theexternalforce acting onrm at this instant. Theotal external forceacting

on the system at timeis F,,, = ZIE, . By Newton’s 2nd and 3rd laws we find that
i

b
_t = I:ext (5)

[see, e.qg., Papachristou (2020)]. We now provédiewing:
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1. The total momentum of the system is equal tonttreentum of a hypothetical
particle having mass equal to the total massf the system and moving with
the velocity of the center of mass of the system.

2. The equation of motion of the center of magbefsystem is that of a hypo-
thetical particle of mass equal to the total magsf the system, subject to the

total external forceF,,, acting on the system.

Proof:

1. Differentiating (2) with respect to timee find the velocity of the center of
mass of the system:

o1 B
Vo= 2 MY =120 P (6)

P=MV, (7
2. Differentiating (7), we have:
dP d dy,
—=—(MV.)=M—=M3a
dt dt( c) dt %

whered. is the acceleration of the center of mass. Hdne ),

Fou =M & @)

A system of particles is said to iselatedif (a) it is not subject to any external
interactions (a situation that is only theoretiggdossible) or if) the total external
force on the system is zer@;ext =0. In this case, relations (5) and (7) lead to tile f

lowing conclusions:

1. The total momentum of an isolated system ofgbestretains a constant value
relative to an inertial frame of reference (printgpof conservation of momen-
tum).

2. The center of mass C of an isolated system nicleg moves with constant
velocity relative to an inertial reference frame.

As an example, consider two massgsnd m, connected to each other with a
spring. The masses can move on a frictionless twatdt plane, as shown in the fig-
ure:
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k
m FN\AANNNA M

The system may be considered isolated since thedwternal force on it is zero (ex-
plain this!). Thus, the total momentum of the syst&nd the velocity of the center of
massC remain constant while the two masses move onldreepNote that thenter-
nal force Fin=kAl, whereAl is the deformation of the spring relative to ietural
length,cannotproduce any change to the total momentum andeloeiy of C.

4. Center of mass and angular momentum

The total angular momenturof the system at timg relative to an arbitrary poir@,
is defined as

L=2L =2 m(FxV) 9

In particular, the total angular momentum relativghe center of ma<s of the sys-
temis

L'=>"m(F'=Y) oj1

where primed quantities are measured with respect ¥We have:

— —!

— — — ! —

Substituting these into (9) and using (1) and (@) get:
L=L"+M(f; xVg) + HZmi ﬁ'jxvc} + {?szmv’} :
i i

But, >m ¥ =0 andXmV =0, since these quantities are proportional to thsition
vector and the velocity, respectively, of the cenfemassC relative toC itself. Thus,
finally,

L=L"+M (. xV,) 11§
We may interpret this result as follows:

The total angular momentum of the system, witha@s a point O, is the
sum of the angular momentum relative to the ceoteanass (“spin angular
momentum”) and the angular momentum relative t@iC3 hypothetical par-
ticle of mass equal to the total mass of the systeoving with the center of
mass (“orbital angular momentum”).
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Now, suppos® is the origin of annertial reference frame. Leli?i be the external

force acting omm at timet. Thetotal external torquexcting on the system at this time,
relative toO, is given by

fext = Z ﬁ X 'E; (12)

If we make the assumption that aiternal forces in the system apentral (as the
case is in most physical situations of interesigntthe following relation exists be-
tween the total angular momentum and the totalreat¢orque, both quantities meas-
ured relative td [see, e.g., Papachristou (2020)]:

di -
E = Text (13)

Equation (13) is strictly valid relative tbet originO of aninertial frame. If the
system of particles issolated the center of mas€ moves with constant velocity
(relative toO) thus is a proper choice of point of referencetlfier vector relation (13).
That is, (13) is valid with respect to the centémmass of an isolated system. But,
what if the system of particles mot isolated? Thel€ is accelerating(relative toO)
and it would appear that (13) is not valid relatteeC in this case. This is not so,
however:

Equation (13) is always valid with respect to tlemter of mass C, even when
C is accelerating (i.e., even if the system ofipkes is not isolated)!

Indeed, by differentiating (11) with resp&ztime and by using (13), (12) and (8),
we have:

% _ %+ M (F, xac) (+M (Vg x Vo) which vanishe} =

- - odr . -
TextEZriXFi = dt +(rCXFext) =
i

PP —(rexZF?j = 20— )F

= !/

whereT,,; is the total external torque relative to the cenfanass.

This observation justifies using (13) to guel e.g., the motion of a rolling body
on an inclined plane by choosing an axis of rotatltat passes through thecelerat-
ing center of mass of the body.
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5. Center of mass and kinetic energy

Thetotal kinetic energyf the system relative to an external obse®és
1 - >
B =25mY 14]
|
The total kinetic energy with respect to the cenfenas<C is
’ 1 12
B =2.5my 15]
|
(as before, primed quantities are measured withextsoC). We have:

=Y+ = V=V V= VY2V

Substituting this into (14) and using (1) and (1%3, get:

E =B+ MVC (Zm\(j

But, as noted previously, the sum in the last teamishes, being proportional to the
velocity of the center of massrelative toC. Thus, finally,

E . =E + % Mv.2 6§1

This may be interpreted as follows:

The total kinetic energy of the system, relativarimbserver O, is the sum of
the kinetic energy relative to the center of mass the kinetic energy relative
to O, of a hypothetical particle of mass equalhie total mass of the system,
moving with the center of mass.

6. Adding a particle at — or removing a particle fom — the center of mass
We now prove the following:

@ Consider a system of particles of massa®s;, m,, ... ,my. Let C be the cen-
ter of mass of the system. If a new patrticle, obsma, is placed aC, the center of
mass of the enlarged system Mift(l) particles will still be aC.

) Consider a system &f particles of masses;, my, ... ,my. It is assumed that
the location of one of the particles, saywf, coincides with the center of maSsof
the system. If we now remove this particle from $lgstem, the center of mass of the
remaining system ofN-1) particles will still be aC.
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Proof:

@ The total mass of the original systemNbparticles isM=m;+my+...+Hny . The
center of mass of this system is located at thet@with position vector

-1 - - -
o= (MG MLt M)

relative to some fixed reference pofdt For the additional particle, which we name
My+1, We are given thatmy.;=m andry,, = .. The total mass of the enlarged sys-

tem of (N+1) particlesmy, m,, ... ,my, My+1 IS M'= M+m, and the center of mass
of this system, relative tO, is located at

— !

1 . S -
M = (M 4+ myTy+ mTp) .

Now, mT%+---+ myTy = MT;, so that

;1
i = MFe+mrg) = e .
Cc M+m( C C) Cc

) Although this statement is obviously a corollafypart @), we will prove this
independently. Here we are given tiigt=r. Thus,

i( L+-+MT)=T
M m My In)=Th -

The mass of the reduced systemM£)) particlesm , my, ... ,mMy4y is M'= M-y,
while the center of mass of this system is located

— !

1 " "
e = IV (MA+-+my Ty o) -

mu+-+m_ = (M-m) Ty = MTy.

Thus, finally,

> —

1.,
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7. Center of mass of a continuous mass distributio

A rigid bodyis a physical object the structure of which exisita continuousmass
distribution. Such an object can be considered sstem consisting of an enormous
(practically infinite) number of particles of inftesimal massedm, placed in such a
way that the distance between any two neighborartjgbes is zero. The total mass of
the body is

M :de :jdrr

where the sum has been replaced by an integralodilne fact that them are infini-
tesimal and the distribution of mass is continuous.

A point in a rigid body can be specified by/position vectorr , or its coordinates
(X, Y, 2), relative to the origir® of some frame of reference. L& be an infinitesimal
volume centered at = (X, Y, z), and letdmbe the infinitesimal mass contained in this

volume element. Thdensityp of the body at point is defined by

p(F) = p(X. Y, z):j—{j‘ .

Then,
dm= p(T) dV

and the total mass of the body is written
M = j o(F)dV

where the integration takes place over the enttame of the body. (The integral is
in fact atriple one since, in Cartesian coordinatd#g=dxdydz) The center of ma<s
of the body is found by using (2):

=— (@ )E=—t [fdm =
mT=

= ﬁ j F p(r)dV (17)

where ther and . are measured relative to the originof our coordinate system.

(Remember, however, that the location®iwvith respect to the body uniquely de-
terminedand is independent tiie choice of the reference poiny)

In ahomogeneou$ody the density has a constant vghyendependent ofr .
Then,

M :jpdvzpjdvzpv
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whereV is the total volume of the body. Also, from (17) heve:
rczﬁjrdvzijrdv (18)
M \Y

Imagine now that, instead of a mass distiilbuin space, we havelaear distri-
bution of mass (e.g., a very thin rod) along xkexis. We define thénear densityof
the distribution by

dm
X)=—o.
p(X) ™

The total mass of the distribution is
M :jdm:jp(x) dx .
The position of the center of mass of the distrdiuts given by
xczﬁj-xdmzﬁlj- xo( ¥ d (19)
If the density is constant, independentxfthen
M :'[de:p'[dX:pI
wherel is the total length of the distribution. Furthermor
x =L [xdx=7 [ xb (20)

As an example, consider a thin, homogeneod®f lengthl, placed along the-
axisfrom x=a to x=a+l , as shown in the figure:

O C
. X
x=0 a Xc a+l
By equation (20),
xC:} a+|xdx:—[(aﬁt )&= ar
5

That is, the center of mag&sof the rod is located at the center of the rod.eNbat the
location of C on the rod is uniquely determined, independentlyhef choice of the
origin O of thex-axis (although the value of the coordingtedoes, of course, depend
on this choice).

10



CENTER OF MASS OF A SYSTEM OF PARTICLES

8. Center of mass and center of gravity

We have seen that the center of mass a system of particles moves in space as if it
were a particle of mass equal to the total nissf the system, subject to the total
external force acting on the system. The sameuesfor a rigid body. Let us assume
that the only external forces that act on the sy<iar the rigid body) are those due to
gravity. The total external force is then equahetotal weightof the system:

W=iZVV.=Z(m@=[iZ mj 9=

W=Mg where M=>m .

The acceleration of gravitg is constant in a region of space where the griawital
field may be considered uniform.

Note thatw is a sum of forces that act on separate part{oleslementary masses
dm in the case of a rigid body) located at various{soof space. The question now is
whether there exists some specific point of appboaof the total weightw of the
system and, in particular, of a rigid body. A rassade assumption is that this point
could be the center of ma€wf the body, given that, as mentioned above, thet b
behaves as if it concentrates the entire Mass the body and the total external force
acting on it. And, in our casey is indeed the total external force due to gravity.

There is a subtle point here, however: Intiamt to a point particle (such as the
hypothetical “particle” of mas#! moving with the center of mas3) that simply
changes its location in space, a rigid body maygebeea more complex motion, spe-
cifically, a combination of translation and rotatiol hetranslational motion of the
body under the action of gravity is indeed represginy the motion of the center of
massC, if this point is regarded as a “particle” of mag®on which the total forcav
is applied. For theotational motion of the body, however, it is therquesof the ex-
ternal forces, rather than the forces themselWes,are responsible. Where should we
place the total forcav in order that the rotational motion it producestioa body be
the same as that caused by the simultaneous auftitme elementary gravitational
forcesd W = (dm) g? Equivalently, where should we plagein order that its torque

with respect to any point 8e equal to the total torque of thl&y with respect t® ?

You may have guessed the answer alreadeatdanter of mass! [See, e.g., Pa-
pachristou (2020).] In conclusion:

By placing the total weighiv of the body at the center of mass C we manage
to describe not only the translational but also tl¢ational motion of the
body under the action of gravity.

It is for this reason that is frequently called theenter of gravityof the body. Note

that this point doesiot necessarilybelong to the body (consider, for example, the
cases of a ring and a spherical shell).

11
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9. Mechanical energy of a rigid body

Consider a rigid body rotating with angular velgait about an axis passing from a
fixed pointO of space:

N

During rotation, every elementary magsn the body moves circularly about the axis
of rotation, with the common angular velocity If R is the perpendicular distance of
m from the axis (thus, the radius of the circularhpat m), the speed of this mass
element isv,= R w . The totalkinetic energy of rotatioms the sum of the kinetic en-

ergies of all elementary massascontained in the body:

Ek,rot :Z(%MYZJZZ(% m Rza) Zj:_;a) ZZ rln iI:s =

%lwz 21]

where

I => mR?

is themoment of inertiaf the body relative to the axis of rotation.

Relation (21) represents the total kinetiergg of the body when the latter exe-
cutespure rotationabout a fixed axis. A more general kind of motignai rotation
about an axis that is moving in space. Specificalisume that the axis of rotation
passes from the center of m&sf the body, whileC itself moves in space with ve-

locity V.. The body thus executes a composite motion camgist atranslation of

the center of masS and arotation aboutC. According to equation (16), the total ki-
netic energy of the body is the sum of two quaagitekinetic energy of translatign

1

k,trans — ~
2

E MvZ

12



CENTER OF MASS OF A SYSTEM OF PARTICLES

(whereM is the mass of the body ang is the speed of the center of m&sand a
kinetic energy of rotation about,C

2

Ek,rot = lCa)

N |

(wherew is the angular velocity of rotation about an axas$ng fromC, while I¢ is
the moment of inertia of the body relative to thids’). Hence, the total kinetic en-
ergy of the body is

Ek = Ek,trans+ Ek rot: % M VC2 +% ICa) ? (22)

If the body is subject to external forcest #u@ conservative, we can defineea
ternal potential energ¥, as well as @otal mechanical energy, Ehe latter assuming
a constant value during the motion of the body:

1y

E:Ek+Ep=§MvC+—;|Ca)2+ E,= const (23)

For example, if the body moves under the sole adfaravity, its potential energy is
Ep = M g yC

where yc is the vertical distance (the height) of the centanassC with respect to an
arbitrary horizontal plane of reference. Indeedrddgition (3),

1
w—ﬁZmy

wherey; is the height of the point of location of the elerta@y massn in the body.
The total gravitational potential energy of the ypoelqual to the sum of the potential
energies of all elementary masses is then

E, =2 (mgy)= g my= Mgy.

The total mechanical energy of the body is consaadtequal to

E:%Mvczdr—ilca)%ngc (24)

2 The moment of inerti& relative to an axis parallel to this axis is giventheparallel-axis theorem
[see, e.g., Papachristou (2020)]. Specificdlty+Ma? wherea is the perpendicular distance between
the two axes.

13
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In textbooks in electromagnetism the principle @bexrposition is usually referred to
in the context of electrostatics and is justifigd@oulomb’s law and by the superpo-
sition principle for forces postulated in classicaéchanics. At a deeper level of
analysis, the superposition principle for time-degEnt electromagnetic fields is a
direct consequence of the linearity of Maxwell’stgyn of equations. The analogous
principle for forces is a separate axiom in mect@rnndependent of Newton's laws.

In textbooks in electromagnetism, both of internagel{1-5] and advanced [6-8] level,
the principle of superposition is usually refertedin the chapter on electrostatics.
The idea is very simple: As experiment shows, titeraction of any two charges is
unaffected by the presence of other charges. Thu€oulomb’s law and by the su-
perposition principle for forces postulated in slaal mechanics [9] the electric field
created by a system of charges equals the veatoro$ihe fields due to each charge
separately.

Indeed, let ¢ (k=1,2,...) be a set of stationargharges and le{E,(F)}
(k=1,2,...) be the corresponding electrostatic fieltsated separately by each of these
charges. We consider a test chaggénot belonging to the setyf}) placed at some
point I of space and we caFfk the force orgy due to the fieIdEk created by . By
the superposition principle for forces, the totaick onqp by the electric field of the

entire system g is the vector sumF = > F . Consider now a vector field whose

|
value at the location afp is

L E oF
E(f)=—=) L.
o Zi:qo

By Coulomb’s law, the force oy due tog; is proportional tayy, so that the quotient
lfi/q0 is independent afly and uniquely defines the electric fieE;l due tog; at the
location ofqo. Hence, the vector sum

E(N) =2 E(M

is independent of the test chamgeand represents the electric field produced by the
entire collection of charges}.

! Relative to an inertial observer [9].
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Notice that the above proof rests critically two assumptionsa) the force ex-
erted by a chargex onqp is independent of the forces exertedgemy other charges;
(b) Coulomb’s law is valid. As mentioned above, asgtiom (@) is related to the prin-
ciple of superposition for force§one might call it “Newton’s fourth law”); namely,
the total force on a particle due to its simultareemteraction with several objects is
equal to the vector sum of the forces due to e&phcbacting independently on the
particle. As for Coulomb’s law, it is the physi@ntent of Gauss’ law for the electric
field, the latter law constituting the first of Marll’s equations for the electromag-
netic (e/m) field. It is thus an interesting exeecto check that the Maxwell system of
equations is consistent with the principle of sppsition in its most general form.

The Maxwell equations for the e/m fie(&, B) is a system of linear first-order
partial differential equations:

V.E-L  §xgE--98
& ot )
¥.8-0 wg:uojwoﬂo‘z—f

where the charge and current densi(imr”,t), j(f,t)) are subject to the equation of

continuity

7.3+ g (2)
required for charge conservation.
Consider a regiof? of space and Ie(tpk(f,t), jk (F,t)) (k=1,2,...) be a collection
of charge and current distributions withih Each pair(pk,jk) is subject to the con-
dition

- = Op
J +—%£=0 3
Koot ®)

<

We assume that there are no charges and/or cuiretite exterior of2, so that the
e/m field inQ is due exclusively to the sources contained in . Each individual distri-

bution (p,J,) will give rise to a corresponding e/m fielE,,B,) satisfying the
Maxwell system:

V.E =A< 9xE -
& ot
. (4)
L B , OE,
V-B =0 vXBk:/uo‘-]k+50,uoE

2 First stated by Daniel Bernoulli after Newton'satte
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We now define a total distributiq, J) in Q by
pED=2 A, JFEH=2JFL) (5)
i i

By using (3) and by taking into account the lingaaf thediv ando/ot operators, the
continuity equation (2) may easily be verified foe total distribution (5). We also

define the pair of vector function&, B) in Q by
EF.HD=>EFt), Brt)=>BF.1) (6)
i i

where (E,,B,) is the e/m field produced by the distribution, , J, ). We propose to
show that(E, B) is the e/m field in@ produced by the total distributiofp, J). For
this to be the case it is sufficient that the pditB) satisfy the Maxwell system (1)
for the distribution(p, J), given that, by assumption, there are no souroeside 2
that might contribute to the e/m field insite

By substituting the sums (6) for the vectamdtions (E, B) into Maxwell’'s equa-

tions (1) and by taking relations (4) and (5) iattwount, it is not hard to show that the
system (1) is indeed satisfied. For example,

.o - _ I C - =
VszVxZ&zZVxBI=Z(yo\]i+80uo%]
i i i

- 0 = - OE
= ,Uoz J; +8°’UOEZ E =uod +50,UOE
| |

We conclude that

if the distributions (pk,jk) independently produce the corresponding e/m

fields (E.,B,) (k=1,2,...) in a region2, then the e/m field i®2 produced by
the total distribution (5) is given by the vectanss in (6).

Notice that this generalized form of the sppsition principle for time-dependent
e/m fields rests on the linearity of Maxwell’s difential equations. Thus, in electro-
magnetism the principle of superposition is “bunlto” the fundamental equations of
the theory from the outset, which is not the cagk Wewtonian mechanics where the
analogous principle for forces must be addembsteriori to the system of basic laws
(see, e.g., [9]).
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Galilean invariance of the wor k-energy theorem
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Abstract: The Galilean invariance of the work-energy theomNewtonian
Mechanics is explicitly demonstrated.

Definition: A physical statement of Newtonian Mechanics isl gaibeGalilean in-
variant if it is valid with respect to alinertial observergcf. Sec. 3.1 of [1]). If this
statement is expressible by means of a mathematigsdtion, this equation must as-
sume thesame formin all inertial frames of reference

Consider any two inertial observedsandO” with corresponding coordinate systems

(or systems of axes¥,(y, 2) and &’,y’,Z). LetV be the velocity oD’ relative toO.
Clearly, this velocity is constant in time.

Consider also a particle of mass moving with velocityv and acceleratiod with
respect td, and with velocityv' and acceleratio@’ with respect t@’. As shown in
Sec. 2.8 of [1],

'=v-V

<l
I

a=a W
By Newton’s 29 law, the total force om according ta®© andO’ is
F=dp/dt=ma and F'=dp Mdt= ma,
respectively, whergd = mv and p’'= mv . In view of (1), then,
E-F @)

Assume now that the particie is inside a force field® () and moves from poirA

to pointB along some curve in space. The inertial obser@easndO” will generally
perceivedifferenttrajectories om from A to B. Both observers, however, define force
according to Newton's™ law. Given that the work-energy theorem is a dicemse-
guence of that law (see Sec. 4.3 of [1]), this tteomust be valid for both observers.
That is,W=AE and, independentlyV'=AEy’, whereW is the work done om by the
field along the patiAB, while AEx = Exg —Exa is the change in the particle’s kinetic
energy along that path.

Let us now verify explicitly thatif W=AEx for observerO, then W'=AEy" for any
other inertial observed'.

! Email: papachristou@snd.edu.gr




At time t the particlem passes through the trajectory point with positrentor r'(t)
relative to observe®, or r'(t) relative to observe®’. By (2), both observers record
the same force om at this instant, i.e.,

F'(F't))=F (rt)) orsimply F't{ }=F ] 3)

(Careful: a prime doesot denote a derivative with respectttp Now, let W andW’
be the works done am from A to B according tdD andO’, respectively. We have:

W= F(r)-dr=] ﬁ(?(t))-%dt:ﬁﬁ(t).vm dit

and, similarly,
W= ["F(F)-dF = [ F/()-v() dt
A A )
Taking (1) and (3) into account, we have:
W= ["F()- Wy d- [ () Vdt= W= ¥[ ) d
A A A '
By using Newton’s ¥ law, we have:

W' = W- mVﬁ% dt= W- rﬁvjf =

W'=W- mV: (¥-"y) 4)
On the other hand, the change in kinetic energp#do B is, according t®,

1 1
AE, = =my’— = my’
(=5 Me — 5 MY

while according t@” and in view of (1),

A =2m(w) =S n{ W) =S NP1 F) = e V- T V).
By using the identity
V-V f= (v=V)- (V= V)= ¥+ V-2V \

atA andB, we find:



_1 2 2 <, \ Y
AE, _Em(\@ -V -2 V27 \a =

AE, = AE,~mV- (- (5)

Subtracting (5) from (4), we havé/'—AE, = W-AE,. So,if W-AE=0 < W= AE
(i.e., if the work-energy theorem is valid in tBeframe) thenW'= AE," (the theorem
is valid in theO’-frame also). In other words, the work-energy theoie Galilean
invariant.

Exercise:Demonstrate in a similar way the Galilean invac&amf the angular mo-
mentum — torque relation

where L = mTxV is the angular momentum of the partioleelative toO, and where
F is the total force om (see Sec. 3.7 of [1]).

[Hint: Assume thaf’ =F -Vt (this means that the origi®andO’ of the two inertial
frames coincide at=0; as beforeV is the constant velocity d®’ relative toO).
EvaluateL' =m7 xV and, by using Newton's"2law, show that

9t _ 2 (UxE (6)

T'=T-tVxF 7

Finally, subtract (7) from (6).]
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The cases of conservative and oscillatory Newtosisiems in one dimension are
studied. Certain unique properties of simple hatimorotion are noted.

A. One-dimensional conservative systems

1. The general solution to the problem
Consider a particle of mass, moving along thec-axis under the action of a total
force F(X). The positiorx(t) of the particle as a function of time is foundibtegrat-
ing the second-order differential equation (Newsosecond law)
md?x/dt? = F(x) 1)
for given initial conditionsx(tp)=Xo, V(tg)=Vo, where v=dx/dt is the velocity of the

particle.
Define the auxiliary functiod(x) (potential energy of the particle) by

U(x):—joxF(x)dx & H)=- dU d )
Then (1) is written
md*x/dt*+dU/dx =0 .

We multiply by v=dx/dt , which plays the role of an integrating factor:

(dx/dt) (md>x/dt?+dU/dx) = 0.
By noticing that

(dx/ dt) (md?x/dt?) = v (mdv/dt) = (d/dt) (mV?*/2)

and that @x/dt) (dU/dx) = dU/dt, we have: d/dt) (mv?/2 +U)=0 =

mv4/2 +U(X) =T+ U = E = const. (3)

(whereT =kinetic energy) which expresses conservation @il toechanical energy.
From relation (3) we get

(dx/ dt)? = (2im) [E-UX)] = dx/dt = +{(2/m) [E-UX)]} 2.

Integrating this first-order differential equatiand taking into account the initial con-
dition x=x, for t=to, we have:
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'[X +dx _t-t, (4)

K {i[E—U(x)]}llz

where the plus sign is chosen for motion inghbsitivedirection (>0, x>X) while the
minus sign applies to motion in thegativedirection {<0, X<xo).

The value of the constalatmay be determined by applying the given initiah-co
ditions to (3):

E = mvo?/2+ U(xo) )
(although, as we will see, other physical consiti@na may also be used).
2. The case of periodic motion
Let us now assume that the potential en&i@y has the form of a U-shaped potential
well (Fig. 1) such that(0)=0 andU(x)>0 for x=0 (this arrangement is always possi-
ble because of the arbitrariness in the definibbthe zero-level of the potential en-

ergy). In general, the graph tf(x) need not be symmetric with respect to the axis
x=0.

Fig. 1

LetE be the total mechanical energy of the particlacSE=T+U with T >0, it
follows thatE >U(x) for any physical motion. The motion is thbsundedbetween
the pointsx, andx, of thex-axis, these points beirigrning pointsat which the parti-
cle stops momentarilygEU = T=0 = v,=vp,=0). The time it takes for a complete
journey fromx, to X, and back to, is found by using (4) with the appropriate sign fo
each direction of motion:

d -d
Lol

p=2[" d (6)

. {ri[E—U(x)]}llz

SinceP is fixed for givenx, andx,, the motion igeriodic with period P. Generally,
the period depends on the limits of integratigrandx, and therefore it depends on
the total energ¥ of the particle. An exception wheRedoesnot depend ork is sim-
ple harmonic motionas we now show.
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3. Simple harmonic motion (SHM)

In SHM the potential energy is @arabolic form: U(X)=kx%/2 , which is symmetric
with respect to the axis=0 (see Fig. 1). The total force isestoring forcegiven by

F(x) = — dU/dx = —kx ) (7

If frictional (damping) forces are present, theatdiorce also contains a velocity-
dependent term-iv= —1dx/dt and the system is no longer conservative.

According to Fig. 1 the motion takes placéaaenx,= —A andx,=A, whereA>0
is theamplitudeof oscillation. At the two extreme points the KineenergyT van-
ishes momentarily and the total energy, which isaé¢p E=T+U and which retains a
fixed value during the motion, is equal to the ptigd energyE=U(+A)=kA%2. Since
E is the same at all points we conclude that

E=mV?/2+kx*/2=kA?/2 (8)

The period of oscillation is found by usirgg:(
A2 -1/2
P=2f {— (E- kx2/2)} d>x.
—-A m

Substituting forE from (8), we find:

p=2[" (#-%)" ax

1/2

where we have seb=(k/m)~“ (angular frequency). Putting/A=u and using the in-

tegral formula

J' du = arcsinu + C

V1-u?

we finally find (see Appendix):
P=2r/w=21(mK¥.

We conclude that, if the potential energgfiparabolic formU(x)=kx%2, the pe-
riod P of motion is independent of the amplitullethus independent of the total en-
ergyE=kA?/2.

But, what ifU(x) is like that in Fig. 1 buhot parabolic? For example, let be of
the formU(X)=Ax"/4 , so thatF(x)= —dU/dx = —1x°. SinceU(X) is symmetric with re-
spect to the axig=0, the periodic motion will take place between plognts x,= —A
andx,=A and the total energy will be equalEsU(+A)=1A%4. The period is

p-2f’{2 (E—zx“/4)}_de= (A=

-1/2

du

Ji-u?

2 1
*= lu_Aj-l
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where we have set=x/A andu=(/2m)*. Obviously,P depends on the amplitude
thus on the total enerdy. (A more general proof regarding non-paraboliceptal
energies, in general, is given in the Appendix.)

Returning to SHM, we may obtain the equatbmotionx=x(t) by using (4) with
U(X)=kx?/2 andE=kA?/2. Let us assume first that the motion is in tbsiive direc-
tion, so that>xo . Settingw=(k/m)*?, we have:

[ (=) " dx=w(t- p).

Xo
Using the integral formula
2 o\~1/2 .
I(A - X ) dx= arcsin(x/A)+ C
and making appropriate substitutions for constamésfind an equation of the form
arcsini/A) = otta = Xx=Asin(wt+a) .
For motion in the negative directiox<{p) we choose the minus sign in (4), so that

[ ()" dx=—w(t- ).

Xo

This yields a result of the form
arcsini/A) = —wt+ff = x=-Asin(wt-p) .

Since the constautis arbitrary (being dependent on the arbitrarystamtsx, andt)
we may set-f=n+a, SO thatx= Asin(wt+a), as before.

Thus, the general solution for SHMx§) = Asin(wt+a) . Physically A is theam-
plitude of oscillation,w is theangular frequencyanda is theinitial phase(i.e., the
phase wt+a att=0).

4. Motion under a constant force of gravity

A projectile of massn is fired straight upward at tintg=0 from the point=0 of the
vertical x-axis, with initial velocityvo>0 (we choose the positive direction of the
axis to be upward). The constant acceleration a¥igyr is directed downward, so that
a=dv/dt= —g. The total force on the particle (assuming naesistance) and the cor-
responding potential energy of the particle aregiky

F(X)=ma=-mg < U(X)=mgx [we assume th&i(0)=0] .
Relation (4) (with the plus sign for upwar@tmon) is written

[ X _ oimpet

0 (E_ mg)91/2

L Explicitly: a = arcsinky/A) —oto.
2 Explicitly: £ = arcsingy/A) + wt,.
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By (5) and by using the initial conditions we hakiat E=mw?/2+U (0)=mvo%/2 (since
U=0 for x=0). Thus, the requiremeti—mgx> 0 yields x < v’/2g. Physically this
means that the particle will reach a maximum helghi,%/2g where it will stop mo-
mentarily before it starts to move downward (i@ the negative direction).

With this restriction on the acceptable valwé x, the integration may be per-
formed to give

(E _ mgxllz — E1/2_ (m/2)l/2 gt )
Squaring this, we find:
x = (2E/m)*2t—gt?/2 .
But, E = mv%/2 = (2E/m)¥?= v, (since vo>0). Thus, finally,
X = Vot — gt4/2

which is, of course, a familiar result.
5. Phase curves of a one-dimensional conservative system

Newton’s law for one-dimensional motiomd®x/dt?=F (x), a second-order differential
equation, may be rewritten as a system of firsepetjuations:

dx/dt=v, mdv/dt=F(x) (9)
Dividing these equations in order to elimindtewe have:

mvdv = F(x) dx = - dU
where

U(x)=—joxF(>()dx o HX=- dU d

Thus, mvdv+dU =d (mv#2 +U)=0 =
mv%/2 +U(X) = E = const. (10)

For each value of the const&n(total energy), Eq. (10) defines a curve in the 2-
dimensionalphase spaceavith coordinatesX v). This curve is called phase curve
The value ofE is uniquely determined by the initial conditiorfstloe system, accord-
ing to (5). Since the solution of the system (Qumsque for given initial conditions,
no two phase curves may intersgcphase space. Let us see two examples:

1. Simple harmonic motion (cf. Sec. 3)

Conservation of mechanical energy in SHM is exmedy m#/2+kxX/2=E =

2 2

2I)E(/k " 2;// - =1 (equation of asllipsg
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Fig. 2

Figure 2 shows a family of ellipses in phase spacggesponding to different values
of E. Notice that, fov=0 = x= +(2E/K)"?= + A, so thatE=kA%2 . Note also that the
equations of motion,dx/dt=v, dvdt=-kx'm}, endow the phase curves with a sense
of direction for increasing (i.e., fordt >0). Indeed, the velocity is positive (nega-
tive) for increasing (decreasing) while v decreases (increasealgebraically for
positive (negative). This indicates that the phase curves are desbribekwise

2. Vertical motion under the force of gra\ity. Sec. 4)
Conservation of mechanical energy is expressethify2 + mgx= E =

V?= (2Im) (E-mg¥ (equation of parabolg

Fig. 3

SinceV? > 0, we must hav& — mgx> 0 = x < E/mg. Physically, this means that the
particle will reach a maximum height=E/mg where it will stop momentarily and
then its direction of motion will be reversed. e ther hand, at=0 the velocity is
+Vo (see Fig. 3) wherey’=2E/m = E=mw?/2. The maximum height is thirsvo%/2g.
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B. Oscillatory motion of (generally) non-conservative systems

1. Second-order linear differential equations

A second-order linear differential equation (DE} hiae general form
y'+al)y +bXx)y="f(X 1)

wherey=y(x) and wherea(x), b(x), f(x) are given functions. Iff (x)=0, the DE (1) is
calledhomogeneous linear

y’+axy +b(x)y=0 (2

As is easy to prove, if a functigi(x) is a solution of (2), then so is the function
y2(X)=Cy1(X) (C=const.). More generally, the following is true:

Theorem 11f y1(X), y2(X),... are solutions of the homogeneous DE (2), thenyever
linear combination of the forg=C; y1(X)+C; y»(X)+... (whereC,, C,,... are con-
stants) also is a solution of (2).

Proof: By substituting fory on the left-hand side of (2) and by taking intcamt
that each of thgi(X), y=(X),... satisfies this DE, we have:

y'+aX)y +b(X)y=Ci(ya”"+ayi + by)) +Ca(y2""+ay."+ byy)+... =0,

Lety;(X) andyx(X) be two non-vanishing solutions of the homogenedHs(2)
[notice that the zero functioy(xX)=0 is a particular solution of (2)]. We say that the
functionsy; andy, arelinearly independenif one is not a scalar multiple of the other.
To put it in more formal terms, linear independeatyg; andy, means that a relation
of the form Cyy;1(X)+C,y2(X)=0 can only be true i€;=C,=0.

If we manage to find two linearly independsalutionsy;(x) andy,(x) of the ho-
mogeneous DE (2) (I can assure you that no othHeti@o linearly independent of the
former two exists!) then thgeneral solutiorof (2) is the linear combination

y =C1yi(x) + C2y2(X) )3

whereC;, C, are arbitrary constants.

Theorem 2:The general solution of the non-homogeneous DHEs(ihe sum of
the general solution (3) of the corresponding hoenegus equation (2) arahy par-
ticular solutionof (1).

Analytically: Lety;(X), y2(X) be two linearly independent solutions of the hgeto
neous DE (2), and lgt(x) be any particular solution of (1). Then, the gahsolution
of (1) is

y = C1yi(¥) + Caya(X) +Yo(X) (4)
This practically means that, for any choggnany other particular solution of (1) can

be derived from (4) by properly choosing the comist&; andC, . Since (4) contains
the totality of particular solutions of (1), it ntuse the general solution of (1).
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2. Homogeneous linear equation with constant coefficients
This DE has the form
y’'+ay'+by=0 ®)

with constant andb. It will be assumed tha andb are real numbers.

Theorem 3:If the complex functiony=u(x)+iv(X) satisfies the DE (5), then the
same is true for each of the real functigrsu(x) andy,=v(x) (real and imaginary
part ofy, respectively).

Proof: Putting y=u+iv into (5), we find:
(u'+au'+bu)+i(v'+av'+bv)=0,

which is true iffu”+au+bu=0 andv’'+av+bv=0.

The standard method for solving (5) is théofing: We try an exponential solu-
tion of the formy=e**. Then,y'=ke**, y"'=k’e* and (5) yields (after eliminatiref):

K>+ ak +b =0 (characteristic equation (6)

We distinguish the following cases:

1. Eq. (6) has real and distinct rokisk, . Then, the functiond* ande'“* are line-
arly independent and, according to (3), the gersaaition of (5) is of the form

y = C €% + C @)

2. Eq. (6) has real and equal rodtss k. =k. The general solution of (5) is, in this
case (check!),

y = (C1+Cox) €% (8)

3. Eq. (6) has complex conjugate roktso+if, ko=a—if (wherea, S are real). The
general solution of (5) is

y = CL ¥+ C "= e™(Cre™ + C,e ™) .

+ifx

By Euler's formula,e™" = cospx + i sin fx . We thus have:

y = e”[(Cy+C)cospx +i (C1—Cy) sinpx] .

Since the (generally complex) constaftsand C, are arbitrary, we may put; in
place of C;+C, andC; in place ofi (C;—C,), so that, finally,

y = e”(Crcospx + C,sinpx) 9)
In any case, the general solution of (5) amsttwo arbitrary constan@ andC,.

Upon assigning specific values @ and C, we get aparticular solutionof (5). The
values ofC; and C, (and thus the particular solution itself) are deieed from the
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general solution if we are given twwitial conditionsthat the sought-for particular
solution must obey. There are two kinds of initahditions:

(@) We are given the values gfx) andy’(x) for some value=x; of x.

(b) We are given the values gfx) for x=x; andx=x.
Examples:

1. y'-y-2y=0 = a=-1, b=-2. The characteristic equation (6) is written:
K~k —2 =0, with real root¥;=2, ko= —1. The general solution (7) is
y = C;e® + C,e™*. Assume the initial conditions=2 andy = -5 whenx=0. Then,
Ci= -1, C,=3 (show it!) and we get thgarticular solution y = —e* +3¢e™*.

2. y'-6y+9y=0 = a=-6, b=9. The characteristic equation (6) is written:
K¥—6k +9 =0, with real and equal roots=k,=3. The general solution (8) is
y = (C1+C,ox) ¥

3. y—=4y'+13y=0 = a=-4, b=13. The characteristic equation (6) is written:
K¥—4k +13 = 0, with complex conjugate rooks=2+3, k:=2-3. The general solu-
tion (9) is (witha=2, f=3): y = e%(C,cos3x + C,sin3x). (Show that essentially the
same result is found by making the alternative ahe+2, f=-3.)

3. Harmonic oscillation
In a harmonic oscillation along theaxis the total force on the oscillating body (of
massm) is F= —kx (k>0), wherex is the momentary displacement of the body from the
position of equilibrium X=0). By Newton’s second law we have tliratma, wherea
is the acceleration of the body=d *x/dt?. Therefore,

md*x/ dt*= —kx
or, settingk/m= w? (Wwhere we assume that-0),
X+ w?x=0 (10)

Eq. (10) is a homogeneous linear DE of thhenf(b) with x in place ofy andt in
place of x (notice that the first-derivative term is missimg this case). The
characteristic equation (6) is writtekf+»?=0 (or, analytically k*+0k+w?=0), with
complex rootk=+iw (analytically,ki=0+w, ko.=0-iw). The general solution of (10)
is given by (9), withv=0 andf=w:

x= Ccoswt+ C,sinwt (11)

where we assume that the constant coeffici€ndC, are real in order for the solu-
tion (11) to have physical meaning.
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The general solution (11) can be put in déife but equivalent form by setting
Ci=Asing, C,=Acosp (A>0) < A=(C;*+C,)Y?, tanp=C,/C,.

Then,
x=Asin(wt+ @) 12)

The positive constart is called theamplitudeof the oscillation, while the angleis
called theinitial phase(the value of thgphasewt+¢ at timet=0). The positive con-
stantw is theangular frequencyof oscillation, to be called jusfrequency” in the
sequel.

Notice that, if we se€;=A cosgp, C,= —Asing in (11), we will get the general
solution of (10) in the form

x= Acos(wt+ ¢) (13)

which is equivalent to (12). Indeed, equation (fidlows directly from (12) by put-
ting ¢+ (7/2) in place ofp (which is arbitrary anyway) in the latter equation

4. Damped oscillation
In a damped oscillation, in addition to the restgrforce—kx opposite to the dis-
placementx from the equilibrium position, there is a frictanforce Av= —-idx/dt
(#>0) opposite to the velocity. The total force on the body’i§= —kx-idx/dt. By
Newton’s law,F=md?x/dt® Hence,

md?x/ dt?=—kx — dx/dt .
We set

k/m=w¢® (wo= natural frequency of oscillatiowithout damping), /m= 2y,

so that
X+ 2yX + wg Xx=0 (14)

Eq. (14) is a homogeneous linear DE. Theatttaristic equation (6) is
I+ 2)k+ 0’=0 = k= -+ ()P—wo?)2.

We distinguish the following cases:

1.Large damping< y >wo. We have two real solutions:
k]_= —y + (yZ_a)OZ)l/Z' k2= —— (yZ_a)OZ)l/Zl
The general solution of (14) is of the form (7):

X = Cy e + C, € 15

% Note that a velocity-dependent forcenist conservative. Thus, conservation of energy metldadsot
apply in this case.

10
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Let us assume th&;>0 andC,>0. Given thak;<0 andk,<0 (why?) we see that>0

at all timest ka1, moreover x—0 ast—o. That is, as the timeincreases, the moving
object approaches the equilibrium positiei® without ever crossing it. The motion is
thereforenon-oscillatory

2.Critical damping < y =wo. Then, ki= k, = —y, and the general solution of
(14) is of the form (8):

X = (C1+Cot) €'= (C,+Cot) e (16)

If we assume thaf;>0 andC,>0, we see again that-0 at allt and thatx—0 ast—oo.
(For the termt e = t / &' we may use L’'Hospital’s rule for the indetermin&tem
oofoo; show this!) Thus, there is no oscillation in thése either.

3.Small dampinge y <wo. We have two complex conjugate solutions:
k=—+iw where wi= (wo’—y*)"2.
The general solution will be of the form (9), witls = and f=w :
x= e (Cicoswit + Cysinmit) ,
or, by settingCy = Asing, C,=Acosp (A>0),
x=Ae™ sin(wit+ ¢) (17)

We notice that the amplitudée™ decreases exponentially with time (Fig. 1). Thus,
strictly speaking, damped oscillatory motioma periodic.

Fig. 1

11
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5. Forced oscillation

In a forced oscillation, in addition to the restgyiforce—kx and the frictional force
—Av=-1dx/dt the body is subject to an external force of thenfor

F(t) = Fosinwst (Fo>0) .

The total force on the body 5= —kx-Adx/dt+F( sinwst. By Newton’s lawwe have
that

md2x/dt? = —kx —A dx/dt + FoSinawst .
We set

k'm=w¢® (wo= natural frequency A/m=2y, Fo/m=fy,

so that
X'+ 2yX + we’ x= fosinwst (18)
Eq. (18) is a non-homogeneous linear DE. Adiog to Theorem 2 of Sec. 1, its

general solution is the sum of the general solubibthe corresponding homogeneous
equation,

X+ 2px'+ a)ozx= 0,

andany particular solutiorof (18). For small damping € wg) the general solution of
the homogeneous equation is given by (17):

x=Are " sin(wit+ p1) where wi= (wo®—y*)"?.
As can be verified, a particular solution of (18}he following:
X =Asin(wst+ @) 19)
where
fo 2y wy

A= and tan@ =

: L (20)

The general solution of (18) is, therefore,

x=Are7 sin(wit+ ¢1) +AsiIn(wst+ ) (21)
with arbitrary Aq, @1 . The first term on the right in (21) decreasesoexgntially with
time and dies out quickly. In a steady-state sibmattherefore, what remains is the

particular solution (19):

x=Asin(wst+¢).

12
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The amplitud@ of oscillation is a function of the applied freeqeg s, according
to (20). This amplitude attains a maximum value nkiee denominator in the first
relation (20) becomes minimum. This occurs when

ot = (wo?=2y°)? = wa (22)
Proof: We setw; = w, for simplicity, and we consider the function
Y(w) = (0°— 0ed)? + H*w?,
so that A= fo / [¥(»)]*2% We can show that
¥'(w) =0 for w = (we*=2y*)"> =wa and ¥ (wp) =8wa>>0 .

Thus, for small damping {2 < wo?) the function¥(w) is minimum hence the ampli-
tudeA is maximumwhen ws=wa . This situation is calledmplitude resonance

In Fig.2 it is assumed that<i, < y1<y» . This means that, in accordance with
(22), wa1> wa2 . In the case of no damping=0 < y=0) Eq. (22) yieldsva=wg. In
other words, in amndampedorced oscillation the amplitude becomes maximim (
fact, infinite) when the applied frequeney is equal to the natural frequen@y of
oscillation.

=

P - — —

Fig. 2
By differentiating (19) we find the velocity the oscillating body:
vV = dxdt = ws Acos(wst+ @) =Vp cos(wst+ @)

where, by (20),

13
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The velocity amplitude/, becomes maximum when the denominator on the rgght
minimum, which occurs fowr =wo (Fig. 3). The kinetic energmw?2 then reaches
its maximum value and thereasergy resonance

Fig. 3

Note that, in contrast to amplitude resonatice frequencys; for energy reso-
nance is independent of the damping fadtand is always equal to thmatural fre-
guencywy of the oscillator. At this frequency the work slip@ by the external force
F(t) to the oscillator per unit time is maximum. Tgtthe oscillator absorbs the larg-
est possible power from the external agent thattexiee forcd-.

Notice also that, in the case of zero damgir® < y=0) the velocity amplitude
Vo becomesnfinite at energy resonance, i.e., tof=wgo. This rather unphysical situa-
tion is, of course, purely theoretical since a na@ital motion with no friction what-
soever is practically impossible!

14
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Appendix: Amplitude dependence of period

As we have shown, the general solution to the omeaisional conservative Newto-
nian problem is

'[X + dx _t-t, (1)

" {i[E—U(x)]}llz

where the plus sign is chosen for motion in thatp@sdirection ¢>0, x>Xo) while the
minus sign applies to motion in the negative diogc{v<0, X<Xo).

Let us assume that the potential en&i@) has the form of a U-shaped potential
well (Fig. 1) such that)(0)=0 andU(x)>0 for x~0. The graph ot(x) is assumed to be
symmetric with respect to the axis0, which means thdd(x) is anevenfunction:

U (—)=U (X).

-A O +A
Fig. 1

If E is the total mechanical energy of the particlenthaccording to Fig. 1, the
motion is bounded between the poirts and+A of the x-axis, which are turning
points at which the particle stops momentarily.c8i& is constant, its value at all
points equals its value at the turning points; i.e.

E=U(@A) (2)

The time it takes for a complete journey frefito +A and back te-Ais found by
using (1) with the appropriate sign for each dimtbf motion:

d -A —d
P:IAA{..})i/Z * IA:: 3 1)/(2

A dx
A{;[E—U(x)]}

SinceP is fixed for a giverA, the motion is periodic about the pokstO, with ampli-
tude equal tA and with periodP. It follows from (2) and (3) that the periddlde-
pends oA and thus on the total energyof the particle. We will now show that an
exception wher® doesnot depend oA (thus onE also) is simple harmonic motion.

7z = (22" [E- U M o 3)

15
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SinceU(x) is an even function witkl(0)=0, it can be expanded into a Maclaurin
series of the form

Ux=>ax (4)
=1
where the coefficients are not necessarily all different from zero. Fr@hwe have

E:U(J_rA):iar A
1=1
so that

E—U(x):ia(A@'— >5’).
1=1

Equation (3) then yields

By setting X/A=u < x=Au, we get:

P= (2m)1/2AJ'_11{2 a A (1- &‘)TIZ d (5)

It is obvious that, in generd, depends oi\. The only exception where is not
dependent o\ is the case where the following condition is $egiis a =0 for | #1.
That is, the only nonvanishing coefficieatin the series (4) ia;. By settinga; = k/2
the potential energy (4) reduces Wgx) = kx/2 , which corresponds to a restoring
force of the form

F(X) = — dU/dx = —kx (6)

The periodic motion is thesimple harmonic motioSHM) and the period (5) re-
duces to

P=2(m/ K2 jfl(l— uz)ll2 du= 2(m R arcsin fi,

_ 12| % | %
=2(m/k) {2 ( zﬂ =N

1/2 1/2
P= Zﬂ(mj _z where o _Z (kj :
k 0] P m

We notice that the period of SHM is amplitude-inelegeent, hence also energy-
independent.

16
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It is of interest to examine a one-dimensigperiodic motion that follows a
curvedpath (where by “one-dimensional” we now mean thaingle generalized co-
ordinate — such as, e.g., an angle or a distaiocg dhe curve — is needed in order to
specify the location of the particle). A nice exdenis that of an oscillating pendulum
(Fig. 2; see also Sec. 5.5 and Problem 25 of kg position of the masa is speci-
fied by the arc lengt®A=s=I6 or, equivalently, by the angte(in rad). The algebraic
value of the velocity ofn is v=dg/dt=Id@/dt; it may be positive or negative, depend-
ing on the direction of motion relative to the uaibgent vector, .

Fig. 2

The motion is governed by the tangential congmtw; = —mgsind (algebraic
value) of the weightv. The tangential equation of motionrofis

mdv/dt = —-mgsind = dv/dt=—gsind (7)

We seek a conserved quantity that associates tbeityev with the positiond. We
could, of course, work with (7) directly, but thesean easier way; namely, conserva-
tion of mechanical energy. This principle may belegal in view of the fact that the
massm is subject to the conservative force of gravitg dne tensiorf of the string
which, being normal to the velocity, produces nakn@f. Sec. 4.5 of [1]). The poten-
tial energy ofm at pointA (Fig. 2) is

U@ =mg(l — I cog)) =mgl(1-co9) ,

where we have assumed thHD)=0 (i.e.,U is zero at the lowest poi@). If a is the
angular amplitude of oscillation (i.e., the maximamgle of deflection of the string
from the vertical) then d@= +a the kinetic energy¥ vanishes and the total mechanical
energyE is equal toU(xa). Applying conservation of mechanical energy beman
arbitrary angleg and the maximum anglé=o , we have:

mv?/2 +mgl (1—co¥) = 0 +mgl(1—cosx) = (after eliminatingm)
V2 = 2g| (co¥ —cosy) (8)
Exercise:By differentiating (8) with respect toand by using the fact thetldo/dt,

recover the equation of motion (7). Converselywsiizat (8) is a direct consequence
of (7). [Hint: Multiply (7) byv.]

17
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Settingv=Id#/dt in (8), we get a first-order differential equation:
do/ dt = +[(29/l ) (co®) —cos)] 2,

which is integrated to give

0 2 -1/2
jg i[l—g(cosﬁ— cosx i do=t-t, .

0

The period of oscillation is [cf. Eq. (3)]

) -1/2
P= Zj {_g (cosf - cow } do

L 9)
=2 /g)" zj'_a (cos? — cos )?d6

Obviously,P depends on the angular amplitudeLet us assume, however, that this
amplitude is very smalkz <<1. We may then make the approximations

co¥)~1-60%2 and cas~1—d?/2.

Furthermore, we set/o=u <> 6=au. It is then a straightforward exercise to showt tha
(9) reduces to

-1/2
P=2( /g)l’zj_ll(l— u?) du= 2(1/ g/ arcsind’,

_ 1207 [ 7
or{3(5)) -

P=2x(/g)"?,
which is the familiar expression for the periodostillation of a pendulum executing
simple harmonic motion for small angles of deflestirom the vertical. Once again,

the SHM is seen to be the only one-dimensionalbperimotion in which the period
does not depend on the amplitude of oscillation.

Reference

[1] C. J. Papachristointroduction to Mechanics of Particles and SystéBringer, 20205.

4 Manuscript: http://metapublishing.org/index.php/MP/catalog/btsak
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Conservation of mechanical energy furnishes a nest to formally evaluate the
period of a one-dimensional periodic motion. Isfown that the only such motion
where the period does not depend on the amplitbidsallation — thus on the total
energy of the oscillating body — is simple harmanution.

Consider a particle of masgs, moving along thex-axis under the action of a total

force F(x). The positionx(t) of the particle as a function of time is found by
integrating the second-order differential equafidawton’s second law)

md?x/ dt? = F(x) 1)
for given initial conditions(tg)=xo and v(to)=vo, wherev=dx/dt is the velocity of the

particle.
Newton’s law (1) may be rewritten as a systéiirst-order equations:

dx/dt=v, mdv/dt=F(x) (2)
Dividing these equations in order to elimindtewe have:

mvdv = F(x) dx = - dU
where

U(x):—jOXF(X)dX o HR=-dU d
Thus, mvdv+dU =d (m?/2+U)=0 =
mv?/2 +U(X) =T+ U = E = const. (3)

(whereT =kinetic energy) which expresses conservation @il toechanical energy.
From relation (3) we get

(dx/ dt)? = (2/m) [E-U(¥)] = dx/dt = +{(2/m) [E-Ux)]} 2.

Integrating this first-order differential equati@nd taking into account the initial
conditionx=x, for t=ty, we have:

=t—t, (4)
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where the plus sign is chosen for motion inghbsitivedirection (>0, X>X) while the
minus sign applies to motion in tmegativedirection <0, X<X). The value of the
constantE in (4) may be determined by applying the initi@nditions to (3):
E=mw*/2+U (xo) , or by other physical considerations pertaininth®problem.

Let us now assume that the potential enéify has the form of a U-shaped
potential well (Fig. 1) such thdd(0)=0 andU(x)>0 for x=0 (this arrangement is
always possible because of the arbitrariness ird#ifimition of the zero-level of the
potential energy). The graph bf(x) is assumed to be symmetric with respect to the
axisx=0, which means thai(x) is anevenfunction:U (—X)=U (X).

U

O +A
Fig. 1

LetE be the total mechanical energy of the particlac€E=T+U with T >0, it
follows thatE >U(x) for any physical motion. The motion is thibsundedbetween
the points—A and+A of the x-axis (see Fig. 1), these points betngning pointsat
which the particle stops momentarifeU = T=0 = v=0). Now, sinceE is
constant, its value at all points equals its valughe turning points; i.e.,

E=U(®A) (5)

The time it takes for a complete journey frefito +A and back te-Ais found by
using (4) with the appropriate sign for each dimtbf motion:

d -A —d
P:IAA{..})i/Z * IA:: 3 1)/(2

p=2[" X = (2 [E- U (6)

A{;[E—U(x)]}

[SinceE-U(x) is an even function,J'_AA(E—U)‘”de: ZJ'OA( E- U)y "2 dx]

Given thatP is fixed for a giverA, the motion is periodic about the potO,
with amplitude equal t& and with periodP. It follows from (6) that the perio&
depends o\ and, therefore, on the total enekgpf the particle, according to (5). We
will now show that an exception wheRedoesnot depend orA (thus onE also) is
simple harmonic motion
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SinceU(x) is an even function witkl(0)=0, it can be expanded into a Maclaurin
series of the form

U= 4 x (7)
=1
where the coefficients are not necessarily all different from zero. Fr@nwe have

E=U(iA)=iar A
=1
so that

E—U(x):iq(&'—i-‘).
1=1

Equation (6) then yields

By setting X/A=u < x=Au, we get:

P= (2m)1/2A'[11Lé a R (1- G‘)T/z du (8)

It is obvious that, in generd, depends oi\. The only exception where is not
dependent o is the case where the following condition is desiis a =0 for | #1.
That is, the only nonvanishing coefficieatin the series (7) ia;. By settinga; = k/2

the potential energy (7) reduces Wgx) = kx?/2 , which corresponds to a restoring
force of the form

F(X) = — dU/dx = —kx 9)

The periodic motion is thesimple harmonic motiofSHM) and the period (8)
reduces to

P=2(m/ k)2 j_ll(l- uz)_ll2 du= 2(n/ B arcsin i,

_ (T [ 7
=2(m/K) {2 ( ZH =

1/2 1/2
P= ZW(EJ = 2z where o _2r _ (Ej _
k w P m

We notice that the period of SHM mmplitude-independenthence alsenergy-
independent



Amplitude dependence of period in one-dimensioesioalic motion

We may obtain the equation of motiamx(t) for SHM by using (4) with
U(X)=kx?/2 andE=U(+A)=kA?%/2. Let us assume first that the motion is in thsitpce
direction, so thax>xo . Settingw=(k/m)*?, we have:

[ (=) " dx=w(t- p).

Xo

Using the integral formula
2 2 -1/2 .
J'(A - X ) dx= arcsin(x/A)+ C

and making appropriate substitutions for constamésfind an equation of the form
arcsink/A) = ot+a = x=Asin(wt+a) .

For motion in the negative directiox<{g) we choose the minus sign in (4), so that
-1/2
j (A2-x) " dx=-a(t- ).

This yields a result of the form
arcsing/A) = —ot+f = x=-Asin(@t-p) .

Since the constautis arbitrary (being dependent on the arbitrarystamtsx, andt)
we may set-f=r+a, SO thatx= Asin(wt+a), as before.

We conclude that the general solution of difeerential equation (1) for SHM
under the action of a force (9), is

X(t) = Asin(wt+a) .
Physically,A is theamplitudeof oscillation,w=(k/m)*/
a is theinitial phase(i.e., thephase wt+a att=0).

It is of interest to examine a one-dimensigoeriodic motion that follows a
curved path (where by “one-dimensional” we now mean thatingle generalized
coordinate — such as, e.g., an angle or a dist@oog the curve — is needed in order
to specify the location of the particle). A niceaexple is that of an oscillating
pendulum, shown in Fig. 2 (see also [1-3]). Thatmmsof the massn is specified by
the arc lengttODA=s=l6 or, equivalently, by the angte(in rad). The algebraic value
of the velocity ofm is v=dg/dt=Idd/dt; it may be positive or negative, depending on
the direction of motion relative to the unit tangeector U, .

is theangular frequencynd

L Explicitly: a = arcsinky/A) —oto.
2 Explicitly: £ = arcsingy/A) + wt,.
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Fig. 2

The motion is governed by the tangential congmtw; = —mgsind (algebraic
value) of the weightv. The tangential equation of motionrofis

mdv/dt = —-mgsind = dv/dt=—gsind (10)

We seek a conserved quantity that associates theityes with the positiord, in the
spirit of Eq. (3). We could, of course, work withOj directly but there is an easier
way; namely, conservation of mechanical energys Tgrinciple may be applied in
view of the fact that the massis subject to the conservative force of gravity éme
tensionf of the string which, being normal to the velocpypduces no work (cf. Sec.
4.5 of [1]). The potential energy of at pointA (Fig. 2) is

U@ =mg(l — I cog)) =mgl(1-co9) ,
where we have assumed thHD)=0 (i.e.,U is zero at the lowest poi@). If a is the
angular amplitude of oscillation (i.e., the maximamgle of deflection of the string
from the vertical) then d&= +a the kinetic energy¥ vanishes and the total mechanical

energyE is equal toU(xa). Applying conservation of mechanical energy bemean
arbitrary angleg and the maximum anglé=o , we have:

mv?/2 +mgl (1—co¥) = 0 +mgl(1—cosx) = (after eliminatingm)
V2 = 2g| (co¥ — cosy) (11)
Exercise: By differentiating (11) with respect tb and by using the fact that
v=Idé/dt, recover the equation of motion (10). Converselpvsithat (11) is a direct
consequence of (10H[nt: Multiply (10) byv.]
Settingv=Idé/dt in (11), we get a first-order differential equation

do/ dt = +[(2g/1 ) (cos — cosn)] V2,

which is integrated to give

0 2 -1/2
jg i[l—g(cosﬁ— cosx i do=t-t, .

0
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The period of oscillation is [cf. Eq. (6)]

-1/2
P= ZJ'a {E (cosf — cost } do
L (12)

= (2 1g)¥? jf‘ (cosd— cos )26

Obviously,P depends on the angular amplitudelLet us assume, however, that this
amplitude is very smalkz <<1. We may then make the approximations

co¥)~1-6%2 and cas~1-—d/2.

Furthermore, we seél/a=u < f=qu. It is then a straightforward exercise to show tha
(12) reduces to

-1/2
P=2( /g)l’zj_ll(l— u?) du= 2(1/ g} arcsind’,

_ 1207 [ 7
or{3(5)) -

P=2x(/g)"?,

which is the familiar expression for the periodostillation of a pendulum executing
simple harmonic motion for small angles of deflestirom the vertical. Once again,
the SHM is seen to be the only one-dimensionalbperimotion in which the period
does not depend on the amplitude of oscillation.

As another example, consider a body of nrmgsshich is moving back and forth
on a U-shaped, frictionless roller-coaster tracklom verticalxyplane, where the-
axis is horizontal while thg-axis is vertical (Fig. 3). The shape of the traghijch is
symmetric with respect to theaxis, is described mathematically by an equation of
the formy=f (x), wheref (x) is anevenfunction and wherd (0)=0. We want to
determine the period of the oscillatory motion,egivthe total mechanical energyof
m (equivalently, the maximum heighteached by the body).

-A O +A
Fig. 3

Let us first take a look at the physics oé throblem. The bodyn is sliding
without friction on the roller-coaster track, mogirback and forth between two
extreme points at heightabove the-axis (Fig. 3). The projections of these points on
this axis are—A and+A. The body is subject to the gravitational forog and the
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normal force from the track. The latter force proglsino work, hence does not affect
the conservation of mechanical energy (see Sec.oft.fl]). The gravitational
potential energy om is U(y)=mgy. Along the track, wherg=f (x), the values ol
may be expressed in termsxof

U (X) = mg f(x) (13)
LetE be the total mechanical energyrof SinceE is constant along the path, its
value will be equal to the value of the potentiakmgy at the extreme positions
corresponding tox= —A and x=+A (at which positions the kinetic energy of
vanishes). That is,
E=U(@A) =mg f(xA) = mgh (14

The kinetic energy of the body is
1 1 .o .
TW:Ernf::Erd %+ ﬁ)

(dots indicate differentiation with respecttjahere, fory=f (x),

df(® dx_ .,
ax gt Xf'(% (15)

d,
y=3 19 =

Hence,
T :% m {1+ F(3]°) (16)

The total mechanical ener@#T+U is constant along the path. By (13), (14) and (16)
we have:

%mx2 {1+[ f'( >¢]2}+ mg{ X= mgl (17)

The position ofn on the track is specified by a single coordingtevhich plays
the role of a generalized coordinate in the serfséagrangian dynamics. The
Lagrangian function is

L(x %)= T— U:% m# {1+ [ £( 32— mg¢ X (18)

The Lagrange equation fat) is

&S -o (19)
dt\ox) o0x

We note that the time-derivative ahy function ofx is defined by the rule used in
(15) for f (x). With this in mind, it is a somewhat long butasghtforward exercise to
show that (18) and (19) yield the differential etipra
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{1+ [FOO1°}+ 2 () (3 + gf( =0 (20)

Presumably, the first-order differential etma (17) for X, expressing
conservation of mechanical energy, ifirat integral of the second-order differential
equation (20). (In general, a first integral of ifedlential equation is a lower-order
differential equation — or an algebraic relatiamthe case of a first-order equation —
that gives us the information that some mathematigantity retains a constant value
as a consequence of the original differential eqoatsee, e.g., [4].) To prove the
validity of the above statement, we need to intieg(20) once with respect toin
order to derive (17). It is easier, however, to kvior reverse order. We thus take the
time-derivative of (17), keeping the rule (15) innch Not surprisingly, the result is
again the differential equation (20) (show this)!

The equation of motion oh on the track is a functior(t) that satisfies the
differential equation (20). In principle, this sedsorder equation has “already” been
integrated once to obtain the first-order equabf) [which is a first integral of (20),
expressing conservation of mechanical energy]. Rt we have:

(2 _ 291h- f(]
LR

This yields a first-order differential equation #gt):

1/2
%:i{%} =+ A(X; h) (21)

By assuming the initial condition=xo for t=ty , the differential equation (21) is
integrated to give

IX + dx _
% A(X; h)

where the plus sign is chosen for motion in theitp@sdirection &>xg), while the
minus sign applies to motion in the negative dicec{x<xp). This formally solves the
problem of determining the position mwfon the track as a function of time.

The periodP of the oscillatory motion o is the time it takes for a complete
journey from the extreme position wixs —A to the extreme position witk= +A and
back to the original positior= —A. To find P we use (22) with the appropriate sign
for each direction of motion:

P_IA dx +J-*A —dx —ZIA dx
ClAAGGh) YA A T AA(x B

We observe thaP depends on the maximum heidghtthus on the total enerdy of
the body (notice that both the integrasad the limits of integration depend du).
However, P is independent of the mass of the body, as exgeftie a motion
governed by the sole action of gravity.
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