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Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual 
subtleties that may cause some confusion to the deep-thinking student. These subtle-
ties concern fundamental issues such as, e.g., the number of independent laws needed 
to formulate the theory, or, the distinction between genuine physical laws and deriva-
tive theorems. This article attempts to clarify these issues for the benefit of the stu-
dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor-
ous axiomatic approach to the subject. This theoretical scheme is built upon two fun-
damental postulates, namely, conservation of momentum and superposition property 
for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are 
shown to follow from these basic principles.  

 
 
1.  Introduction  
 
Teaching introductory mechanics can be a major challenge, especially in a class of 
students that are not willing to take anything for granted! The problem is that, even 
some of the most prestigious textbooks on the subject may leave the student with 
some degree of confusion, which manifests itself in questions like the following:  
 

• Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is 
it a statement of existence (of inertial reference frames)?  

• Are the first two of Newton’s laws independent of each other? It appears that 
the first law is redundant, being no more than a special case of the second law!  

• Is the second law a true law or a definition (of force)?  
• Is the third law more fundamental than conservation of momentum, or is it the 

other way around?  
• Does the “parallelogram rule” for composition of forces follow trivially from 

Newton’s laws, or is an additional, independent principle required?  
• And, finally, what is the minimum number of independent laws needed in or-

der to build a complete theoretical basis for mechanics?  
 
      In this article we describe an axiomatic approach to introductory mechanics that is 
both rigorous and pedagogical. It purports to clarify issues like the ones mentioned 
above, at an early stage of the learning process, thus aiding the student to acquire a 
deep understanding of the basic ideas of the theory. It is not the purpose of this article, 
of course, to present an outline of a complete course of mechanics! Rather, we will 
focus on the most fundamental concepts and principles, those that are taught at the 
early chapters of dynamics (we will not be concerned with kinematics, since this sub-
ject confines itself to a description of motion rather than investigating the physical 
laws governing this motion).  
                                                 
1  See Note at the end of the article.  
2  papachristou@snd.edu.gr  
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      The axiomatic basis of our approach consists of two fundamental postulates, pre-
sented in Section 3. The first postulate (P1) embodies both the existence of inertial 
reference frames and the conservation of momentum, while the second one (P2) ex-
presses a superposition principle for interactions. The law of inertia is deduced from 
P1.  
      In Sec. 4, the concept of force on a particle subject to interactions is defined (as in 
Newton’s second law) and P2 is used to show that a composite interaction of a particle 
with others is represented by a vector sum of forces. Then, P1 and P2 are used to de-
rive the action-reaction law. Finally, a generalization to systems of particles subject to 
external interactions is made.  
      For completeness of presentation, certain derivative concepts such as angular 
momentum, work, kinetic energy, etc., are discussed in Sec. 5. To make the article 
self-contained, proofs of all theorems are included.  
 
 
2.  A critical look at Newton’s theory  
 
There have been several attempts to reexamine Newton’s laws even since Newton’s 
time. Probably the most important revision of Newton’s ideas – and the one on which 
modern mechanics teaching is based – is that due to Ernst Mach (1838-1916) (for a 
beautiful discussion of Mach’s ideas, see the classic article by H. A. Simon [1]). Our 
approach differs in several aspects from those of Mach and Simon, although all these 
approaches share common characteristics in spirit. (For a historical overview of the 
various viewpoints regarding the theoretical basis of classical mechanics, see, e.g., the 
first chapter of [2].)  
      The question of the independence of Newton’s laws has troubled many genera-
tions of physicists. In particular, still on this day some authors assert that the first law 
(the law of inertia) is but a special case of the second law. The argument goes as fol-
lows:  
 

“According to the second law, the acceleration of a particle is proportional to 
the total force acting on it. Now, in the case of a free particle the total force 
on it is zero. Thus, a free particle must not be accelerating, i.e., its velocity 
must be constant. But, this is precisely what the law of inertia says!”  

 
      Where is the error in this line of reasoning? Answer: The error rests in regarding 
the acceleration as an absolute quantity independent of the observer that measures it. 
As we well know, this is not the case. In particular, the only observer entitled to con-
clude that a non-accelerating object is subject to no net force is an inertial observer, 
one who uses an inertial frame of reference for his/her measurements. It is precisely 
the law of inertia that defines inertial frames and guarantees their existence. So, with-
out the first law, the second law becomes indeterminate, if not altogether wrong, since 
it would appear to be valid relative to any observer regardless of his/her state of mo-
tion. It may be said that the first law defines the “terrain” within which the second 
law acquires a meaning. Applying the latter law without taking the former one into 
account would be like trying to play soccer without possessing a soccer field!  
      The completeness of Newton’s laws is another issue. Let us see a significant ex-
ample: As is well known, the principle of conservation of momentum is a direct con-
sequence of Newton’s laws. This principle dictates that the total momentum of a sys-
tem of particles is constant in time, relative to an inertial frame of reference, when the 
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total external force on the system vanishes (in particular, this is true for an isolated 
system of particles, i.e., a system subject to no external forces). But, when proving 
this principle we take it for granted that the total force on each particle is the vector 
sum of all forces (both internal and external) acting on it. This is not something that 
follows trivially from Newton’s laws, however! In fact, it was Daniel Bernoulli who 
first stated this principle of superposition after Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a total of four – rather than just three – basic 
laws.  
      The question now is: can we somehow “compactify” the axiomatic basis of New-
tonian mechanics in order for it to consist of a smaller number of independent princi-
ples? At this point it is worth taking a closer look at the principle of conservation of 
momentum mentioned above. In particular, we note the following:  
 

• For an isolated “system” consisting of a single particle, conservation of mo-
mentum reduces to the law of inertia (the momentum, thus also the velocity, 
of a free particle is constant relative to an inertial frame of reference).  

• For an isolated system of two particles, conservation of momentum takes us 
back to the action-reaction law (Newton’s third law).  

 
      Thus, starting with four fundamental laws (the three laws of Newton plus the law 
of superposition) we derived a new principle (conservation of momentum) that yields, 
as special cases, two of the laws we started with. The idea is then that, by taking this 
principle as our fundamental physical law, the number of independent laws necessary 
for building the theory would be reduced.  
      How about Newton’s second law? We take the view, adopted by several authors 
including Mach himself (see, e.g., [1,3-7]) that this “law” should be interpreted as the 
definition of force in terms of the rate of change of momentum.  
      We thus end up with a theory built upon two fundamental principles, i.e., the con-
servation of momentum and the principle of superposition. In the following sections 
these ideas are presented in more detail.  
 
 
3.  The fundamental postulates and their consequences  
 
We begin with some basic definitions.  
 
      Definition 1. A frame of reference (or reference frame) is a system of coordinates 
(or axes) used by an observer to measure physical quantities such as the position, the 
velocity, the acceleration, etc., of any particle in space. The position of the observer 
him/herself is assumed fixed relative to his/her own frame of reference.  
 
      Definition 2. An isolated system of particles is a system of particles subject only 
to their mutual interactions, i.e., subject to no external interactions. Any system of 
particles subject to external interactions that somehow cancel one another in order to 
make the system’s motion identical to that of an isolated system will also be consid-
ered “isolated”. In particular, an isolated system consisting of a single particle is 
called a free particle.  
 
      Our first fundamental postulate of mechanics is stated as follows:  
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      Postulate 1. A class of frames of reference (inertial frames) exists such that, for 
any isolated system of particles, a vector equation of the following form is valid:  
 

        constant in timei i
i

m v =∑ �

                                             (1) 

 
where iv

�

 is the velocity of the particle indexed by i ( 1,2,i = ⋯ ) and where im  is a 

constant quantity associated with this particle, which quantity is independent of the 
number or the nature of interactions the particle is subject to.  
 
      We call im  the mass and i i ip m v=

� �

 the momentum of the ith particle. Also, we call  

 

         i i i
i i

P m v p= =∑ ∑
�

� �

                                                 (2) 

 
the total momentum of the system relative to the considered reference frame. Postulate 
1, then, expresses the principle of conservation of momentum: the total momentum of 
an isolated system of particles, relative to an inertial reference frame, is constant in 
time. (The same is true, in particular, for a free particle.)  
 
      Corollary 1. A free particle moves with constant velocity (i.e., with no accelera-
tion) relative to an inertial reference frame.  
 
      Corollary 2. Any two free particles move with constant velocities relative to each 
other (their relative velocity is constant and their relative acceleration is zero).  
 
      Corollary 3. The position of a free particle may define the origin of an inertial 
frame of reference.  
 
      We note that Corollaries 1 and 2 constitute alternate expressions of the law of in-
ertia (Newton’s first law).  
      By inertial observer we mean an “intelligent” free particle, i.e., one that can per-
form measurements of physical quantities such as velocity or acceleration. By 
convention, the observer is assumed to be located at the origin of his/her own inertial 
frame of reference.  
 
      Corollary 4. Inertial observers move with constant velocities (i.e., they do not ac-
celerate) relative to one another.  
 
      Consider now an isolated system of two particles of masses 1 2andm m . Assume 

that the particles are allowed to interact for some time interval ∆t. By conservation of 
momentum relative to an inertial frame of reference, we have:  
 
                   1 2 1 2 1 1 2 2( ) 0p p p p m v m v∆ ∆ ∆ ∆ ∆+ = ⇒ = − ⇒ = −

� � � � � �

 .   

 
We note that the changes in the velocities of the two particles within the (arbitrary) 
time interval ∆t must be in opposite directions, a fact that is verified experimentally. 
Moreover, these changes are independent of the particular inertial frame used to 
measure the velocities (although, of course, the velocities themselves are frame-
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dependent!). This latter statement is a consequence of the constancy of the relative 
velocity of any two inertial observers (the student is invited to explain this in detail). 
Now, taking magnitudes in the above vector equation, we have:  
 

           21

2 1

constant
mv

v m

∆
∆

= =
�

�                                              (3) 

 
regardless of the kind of interaction or the time ∆t (which also is an experimentally 
verified fact). These demonstrate, in practice, the validity of the first postulate. Equa-
tion (3) allows us to specify the mass of a particle numerically, relative to the mass of 
some other particle (which particle may arbitrarily be assigned a unit mass), by letting 
the two particles interact for some time. As argued above, the result will be independ-
ent of the specific inertial frame used by the observer who makes the measurements. 
That is, in the classical theory, mass is a frame-independent quantity.  
      So far we have examined the case of isolated systems and, in particular, free parti-
cles. Consider now a particle subject to interactions with the rest of the world. Then, 
in general (unless these interactions somehow cancel one another), the particle’s mo-
mentum will not remain constant relative to an inertial reference frame, i.e., will be a 
function of time. Our second postulate, which expresses the superposition principle 
for interactions, asserts that external interactions act on a particle independently of 
one another and their effects are superimposed.  
 
      Postulate 2. If a particle of mass m is subject to interactions with particles 

1 2, ,m m ⋯ , then, at each instant t, the rate of change of this particle’s momentum rela-

tive to an inertial reference frame is equal to  
 

     
i i

d p d p

dt dt

 
=  

 
∑

� �

                                                       (4) 

 
where ( )/

i
d p dt
�

 is the rate of change of the particle’s momentum due solely to the 

interaction of this particle with the particle im  (i.e., the rate of change of p
�

 if the par-

ticle m interacted only with im ).  

 
 
4.  The concept of force and the Third Law  
 
We now define the concept of force, in a manner similar to Newton’s second law:  
 
      Definition 3. Consider a particle of mass m that is subject to interactions. Let 

( )p t
�

 be the particle’s momentum as a function of time, as measured relative to an 
inertial reference frame. The vector quantity  
 

          
d p

F
dt

=
�

�

                                                             (5) 

 
is called the total force acting on the particle at time t.  
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      Taking into account that, for a single particle, p mv=
� �

 with fixed m, we may re-
write Eq. (5) in the equivalent form,  
 

        
dv

F ma m
dt

= =
�

�
�

                                                       (6) 

 
where a

�

 is the particle’s acceleration at time t. Given that both the mass and the ac-
celeration (prove this!) are independent of the inertial frame used to measure them, we 
conclude that the total force on a particle is a frame-independent quantity.  
 
      Corollary 5. Consider a particle of mass m subject to interactions with particles 

1 2, ,m m ⋯ . Let F
�

 be the total force on m at time t, and let iF
�

 be the force on m due 

solely to its interaction with im . Then, by the superposition principle for interactions 

(Postulate 2) as expressed by Eq. (4), we have:  
 

        i
i

F F= ∑
� �

                                                              (7) 

 

      Theorem 1. Consider two particles 1 and 2. Let 12F
�

 be the force on particle 1 due 

to its interaction with particle 2 at time t, and let 21F
�

 be the force on particle 2 due to 

its interaction with particle 1 at the same instant. Then,  
 

      12 21F F= −
� �

                                                             (8) 
 
      Proof. By the independence of interactions, as expressed by the superposition 

principle, the forces 12F
�

 and 21F
�

 are independent of the presence or not of other parti-

cles in interaction with particles 1 and 2. Thus, without loss of generality, we may as-
sume that the system of the two particles is isolated. Then, by conservation of mo-
mentum and by using Eq. (5),  
 

                      ( ) 1 2
1 2 12 210

d p d pd
p p F F

dt dt dt
+ = ⇒ = − ⇒ = −

� �
� �

� �

 .   

 
Equation (8) expresses the action-reaction law (Newton’s third law).  
 

      Theorem 2. The rate of change of the total momentum ( )P t
�

 of a system of parti-
cles, relative to an inertial frame of reference, equals the total external force acting on 
the system at time t.  
 

      Proof. Consider a system of particles of masses ( 1,2, )im i = ⋯ . Let iF
�

 be the total 

external force on im  (due to its interactions with particles not belonging to the sys-

tem), and let i jF
�

 be the internal force on im  due to its interaction with jm  (by con-

vention, 0i jF =
�

 when i=j ). Then, by Eq. (5) and by taking into account Eq. (7),  
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                                                     i
i i j

j

d p
F F

dt
= + ∑

�
� �

.   

 
By using Eq. (2) for the total momentum, we have:  
 

                                          i
i i j

i i i j

d pdP
F F

dt dt
= = +∑ ∑ ∑
�

�
� �

.   

But,  

                                   ( )1
0

2i j ji i j ji
i j j i i j

F F F F= = + =∑ ∑ ∑
� � � �

,    

 
where the action-reaction law (8) has been taken into account. So, finally,  
 

         i ext
i

dP
F F

dt
= =∑
�

� �

                                                      (9) 

 

where extF
�

 represents the total external force on the system.  
 
 
5.  Derivative concepts and theorems  
 
Having presented the most fundamental concepts of mechanics, we now turn to some 
useful derivative concepts and related theorems, such as those of angular momentum 
and its relation to torque, work and its relation to kinetic energy, and conservative 
force fields and their association with mechanical-energy conservation.  
 
      Definition 4. Let O be the origin of an inertial reference frame, and let r

�

 be the 
position vector of a particle of mass m, relative to O. The vector quantity  
 

      ( )L r p m r v= × = ×
�
� � � �

                                                 (10) 

 
(where p mv=

� �

 is the particle’s momentum in the considered frame) is called the an-
gular momentum of the particle relative to O.  
 
      Theorem 3. The rate of change of the angular momentum of a particle, relative to 
O, is given by  
 

       
dL

r F T
dt

= × ≡

�

� �
�

                                                    (11) 

 
where F

�

 is the total force on the particle at time t and where T
�

 is the torque of this 
force relative to O, at this instant.  
 
      Proof. Equation (11) is easily proven by differentiating Eq. (10) with respect to 
time and by using Eq. (5).  
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      Corollary 6. If the torque of the total force on a particle, relative to some point O, 
vanishes, then the angular momentum of the particle relative to O is constant in time 
(principle of conservation of angular momentum).  
 
      Under appropriate conditions, the above conservation principle can be extended to 
the more general case of a system of particles (see, e.g., [2-8]).  
 

      Definition 5. Consider a particle of mass m in a force field ( )F r
�
�

, where r
�

 is the 
particle’s position vector relative to the origin O of an inertial reference frame. Let C 
be a curve representing the trajectory of the particle from point A to point B in this 
field. Then, the line integral  
 

       ( )
B

AB A
W F r dr= ⋅∫

�
� �

                                                 (12) 

 
represents the work done by the force field on m along the path C. (Note: This defini-
tion is valid independently of whether or not additional forces, not related to the field, 

are acting on the particle; i.e., regardless of whether or not ( )F r
�
�

 represents the total 
force on m.)  
 

      Theorem 4. Let ( )F r
�
�

 represent the total force on a particle of mass m in a force 
field. Then, the work done on the particle along a path C from A to B is equal to  
 

       , ,( )
B

AB k B k A kA
W F r dr E E E∆= ⋅ = − =∫

�
� �

                                 (13) 

 
where  

                      
2

21

2 2k
p

E mv
m

= =                                                    (14) 

 
is the kinetic energy of the particle.  
 
      Proof. By using Eq. (6), we have:  
 

               21 1
( ) ( )

2 2

dv
F dr m dr mv dv m d v v m d v mvdv

dt
⋅ = ⋅ = ⋅ = ⋅ = =

�
�
� � � � � �

,   

 
from which Eq. (13) follows immediately.  
 

      Definition 6. A force field ( )F r
�
�

 is said to be conservative if a scalar function 

( )pE r
�

 (potential energy) exists, such that the work on a particle along any path from 

A to B can be written as  
 

    , ,( )
B

AB p A p B pA
W F r dr E E E∆= ⋅ = − = −∫

�
� �

                               (15) 
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      Theorem 5. If the total force ( )F r
�
�

 acting on a particle m is conservative, with an 

associated potential energy ( )pE r
�

, then the quantity  

 

        21
( )

2k p pE E E mv E r= + = +
�

                                         (16) 

 
(total mechanical energy of the particle) remains constant along any path traced by 
the particle (conservation of mechanical energy).  
 
      Proof. By combining Eq. (13) (which is generally valid for any kind of force) with 
Eq. (15) (which is valid for conservative force fields) we find:  
 
                  ( ) 0 .k p k p k pE E E E E E const∆ ∆ ∆= − ⇒ + = ⇒ + =    

 
      Theorems 4 and 5 are readily extended to the case of a system of particles (see, 
e.g., [2-8]).  
 
 
6.  Some conceptual problems  
 
After establishing our axiomatic basis and demonstrating that the standard Newtonian 
laws are consistent with it, the development of the rest of mechanics follows familiar 
paths. Thus, as we saw in the previous section, we can define concepts such as angu-
lar momentum, work, kinetic and total mechanical energies, etc., and we can state de-
rivative theorems such as conservation of angular momentum, conservation of me-
chanical energy, etc. Also, rigid bodies and continuous media can be treated in the 
usual way [2-8] as systems containing an arbitrarily large number of particles.  
      Despite the more “economical” axiomatic basis of Newtonian mechanics sug-
gested here, however, certain problems inherent in the classical theory remain. Let us 
point out a few:  
 
      1. The problem of “inertial frames”  
 
      An inertial frame of reference is only a theoretical abstraction: such a frame can-
not exist in reality. As follows from the discussion in Sec. 3, the origin (say, O) of an 
inertial frame coincides with the position of a hypothetical free particle and, more-
over, any real free particle moves with constant velocity relative to O. However, no 
such thing as an absolutely free particle may exist in the world. In the first place, 
every material particle is subject to the infinitely long-range gravitational interaction 
with the rest of the world. Furthermore, in order for a supposedly inertial observer to 
measure the velocity of a “free” particle and verify that this particle is not accelerat-
ing relative to him/her, the observer must somehow interact with the particle. Thus, 
no matter how weak this interaction may be, the particle cannot be considered free in 
the course of the observation.  
 
      2. The problem of simultaneity  
 
      In Sec. 4 we used our two postulates, together with the definition of force, to de-
rive the action-reaction law. Implicit in our arguments was the requirement that action 
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must be simultaneous with reaction. As is well known, this hypothesis, which sug-
gests instantaneous action at a distance, ignores the finite speed of propagation of the 
field associated with the interaction and violates causality.  
 
      3. A dimensionless “observer”  
 
      As we have used this concept, an “observer” is an intelligent free particle capable 
of making measurements of physical quantities such as velocity or acceleration. Such 
an observer may use any convenient (preferably rectangular) set of axes  
(x, y, z) for his/her measurements. Different systems of axes used by this observer 
have different orientations in space. By convention, the observer is located at the ori-
gin O of the chosen system of axes.  
      As we know, inertial observers do not accelerate relative to one another. Thus, the 
relative velocity of the origins (say, O and O΄) of two different inertial frames of ref-
erence is constant in time. But, what if the axes of these frames are in relative rota-
tion (although the origins O and O΄ move uniformly relative to each other, or even 
coincide)? How can we tell which observer (if any) is an inertial one?  
      The answer is that, relative to the system of axes of an inertial frame, a free parti-
cle does not accelerate. In particular, relative to a rotating frame, a free particle will 
appear to possess at least a centripetal acceleration. Such a frame, therefore, cannot be 
inertial.  
      As mentioned previously, an object with finite dimensions (e.g., a rigid body) can 
be treated as an arbitrarily large system of particles. No additional postulates are thus 
needed in order to study the dynamics of such an object. This allows us to regard 
momentum and its conservation as more fundamental than angular momentum and its 
conservation, respectively. In this regard, our approach differs significantly from, 
e.g., that of Simon [1] who, in his own treatment, places the aforementioned two con-
servation laws on an equal footing from the outset.  
 
 
7.  Summary  
 
Newtonian mechanics is the first subject in Physics an undergraduate student is ex-
posed to. It continues to be important even at the intermediate and advanced levels, 
despite the predominant role played there by the more general formulations of La-
grangian and Hamiltonian dynamics.  
      It is this author’s experience as a teacher that, despite its apparent simplicity, 
Newtonian mechanics contains certain conceptual subtleties that may leave the deep-
thinking student with some degree of confusion. The average student, of course, is 
happy with the idea that the whole theory is built upon three rather simple laws attrib-
uted to Newton’s genius. In the mind of the more demanding student, however, puz-
zling questions often arise, such as, e.g., how many independent laws we really need 
to fully formulate the theory, or, which ones should be regarded as truly fundamental 
laws of Nature, as opposed to others that can be derived as theorems.  
      This article suggested an axiomatic approach to introductory mechanics, based on 
two fundamental, empirically verifiable laws; namely, the principle of conservation of 
momentum and the principle of superposition for interactions. We showed that all 
standard ideas of mechanics (including, of course, Newton’s laws) naturally follow 
from these basic principles. To make our formulation as economical as possible, we 
expressed the first principle in terms of a system of particles and treated the single-
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particle situation as a special case. To make the article self-contained for the benefit of 
the student, explicit proofs of all theorems were given.  
      By no means do we assert, of course, that this particular approach is unique or 
pedagogically superior to other established methods that adopt different viewpoints 
regarding the axiomatic basis of classical mechanics. Moreover, as noted in Sec. 6, 
this approach is not devoid of the usual theoretical problems inherent in Newtonian 
mechanics (see also [9,10]).  
      In any case, it looks like classical mechanics remains a subject open to discussion 
and re-interpretation, and more can always be said about things that are usually taken 
for granted by most students (this is not exclusively their fault, of course!). Happily, 
some of my own students do not fall into this category. I appreciate the hard time they 
enjoy giving me in class!  
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Abstract.  The concept of electromotive force (emf) may be introduced in various ways in 
an undergraduate course of theoretical electromagnetism. The multitude of alternate 
expressions for the emf is often the source of confusion to the student. We summarize the 
main ideas, adopting a pedagogical logic that proceeds from the general to the specific. 
The emf of a “circuit” is first defined in the most general terms. The expressions for the 
emf of some familiar electrodynamical systems are then derived in a rather straightforward 
manner. A diversity of physical situations is thus unified within a common theoretical 
framework.  

1.  INTRODUCTION 

The difficulty in writing this article was not just due to the subject itself: we had to first 
overcome some almost irreconcilable differences in educational philosophy between an 
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer. 
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.  

Having taught intermediate-level electrodynamics courses for several years, we have come 
to realize that, in the minds of many of our students, the concept of electromotive force (emf ) is 
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC 
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the 
electric field along a closed path? And what if a magnetic rather than an electric field is present?  

Generally speaking, the problem with the emf lies in the diversity of situations where this 
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is 
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the 
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas, 
choosing a pedagogical approach that proceeds from the general to the specific. We begin by 
defining the concept of emf of a “circuit” in the most general way possible. We then apply this 
definition to certain electrodynamic systems in order to recover familiar expressions for the emf. 
The main advantage of this approach is that a number of different physical situations are treated 
in a unified way within a common theoretical framework.  

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5) 
application is made to particular cases, such as motional emf, the emf due to a time-varying 
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6, 
the connection between the emf and Ohm’s law is discussed.  
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2.  THE GENERAL DEFINITION OF EMF 

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general 
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the 
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or 
any other elements whose presence may contribute to the e/m field).  

We arbitrarily assign a positive direction of traversing the loop C, and we consider an element 

dl
���

 of C oriented in the positive direction. Imagine now a test charge q located at the position of 

dl
���

, and let F
�

 be the force on q at time t :  

 

                                               

dl
���

•

C

+

q

F
�

      
 
This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources 

(e.g., batteries) that can interact electrically with q. The force per unit charge at the position of 

dl
���

 at time t, is  

 

                   
F

f
q

=

�
�

                                                                (1) 

 

Note that f
�

 is independent of q, since the force by the e/m field and/or the sources on q is 

proportional to the charge. In particular, reversing the sign of q will have no effect on f
�

 

(although it will change the direction of F
�

).  
      We now define the electromotive force (emf ) of the circuit C at time t as the line integral 

of f
�

 along C, taken in the positive sense of C :  

 

                            E
C

f dl= ⋅∫
����

�                                                             (2) 

 
Note that the sign of the emf is dependent upon our choice of the positive direction of 

circulation of C: by changing this convention, the sign of E is reversed.  

We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial 

observers since at this limit the force F
�

 is invariant under a change of frame of reference.  
In the following sections we apply the defining equation (2) to a number of specific 

electrodynamic situations that are certainly familiar to the student.  
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3.  MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC 
FIELD 

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic 

field ( )B r
� �

. Let υ
�

 be the velocity of the element dl
���

 of C relative to our inertial frame of 

reference. A charge q (say, a free electron) at the location of dl
���

 executes a composite motion, 

due to the motion of the loop C itself relative to our frame, as well as the motion of q along C. 

The total velocity of q relative to us is totυ υ υ′= +
� � �

, where υ′
�

 is the velocity of q in a direction 

parallel to dl
���

. The force from the magnetic field on q is  

 

                               

( ) ( ) ( )

( ) ( )

totF q B q B q B

F
f B B

q

υ υ υ

υ υ

′= × = × + × ⇒

′= = × + ×

� � � �� � �

�
� � �� �            

 
By (2), then, the emf of the circuit C is  
 

                           E ( ) ( )
C C C

f dl B dl B dlυ υ ′= ⋅ = × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� �

� � �      

 

But, since υ′
�

 is parallel to dl
���

, we have that ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

           E ( )
C

B dlυ= × ⋅∫
�����

�                                                         (3) 

 
Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note 

also that the velocity υ
�

 may vary around the circuit.  
      By using (3), it can be proven (see Appendix) that  
 

      E 
d

dt

Φ
= −                                                                 (4) 

 

where B daΦ= ⋅∫
����

 is the magnetic flux through the wire C at time t. Note carefully that (4) 

does not express any novel physical law: it is simply a direct consequence of the definition of 
the emf !  

4.  EMF DUE TO A TIME-VARYING MAGNETIC FIELD 

Consider now a closed wire C that is at rest inside a time-varying magnetic field ( , )B r t
� �

. As 

experiments show, as soon as B
�

 starts changing, a current begins to flow in the wire. This 
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And, 
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed 

experimentally that, if the magnetic field B
�

 stops varying in time, the current in the wire 
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disappears. The only field that can put an initially stationary charge in motion and keep this 
charge moving is an electric field.  

      We are thus compelled to conclude that a time-varying magnetic field is necessarily 
accompanied by an electric field. (It is often said that “a changing magnetic field induces an 
electric field”. This is somewhat misleading since it gives the impression that the “source” of an 
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of 
any e/m field are the electric charges and the electric currents!)  

      So, let ( , )E r t
� �

 be the electric field accompanying the time-varying magnetic field B
�

. 

Consider again a charge q at the position of the element dl
���

 of the wire. Given that the wire is 

now at rest (relative to our inertial frame), the velocity of q will be due to the motion of the 

charge along the wire only, i.e., in a direction parallel to dl
���

: totυ υ′=
� �

 (since 0υ =
�

). The force on 

q by the e/m field is  
 

                             

[ ( )] [ ( )]

( )

totF q E B q E B

F
f E B

q

υ υ

υ

′= + × = + × ⇒

′= = + ×

� � � � �� �

�
� � ��       

 
The emf of the circuit C is now  
 

                              E ( )
C C C

f dl E dl B dlυ ′= ⋅ = ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � ��

� � �        

 

But, as explained earlier, ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

         E 
C

dlΕ= ⋅∫
����

�                                                                (5) 

 
      Equation (4) is still valid. This time, however, it is not merely a mathematical 

consequence of the definition of the emf ; rather, it is a true physical law deduced from 
experiment! Let us examine it in some detail.  

      In a region of space where a time-varying e/m field ( , )E B
� �

 exists, consider an arbitrary 

open surface S bounded by the closed curve C :  
 

                                                               

S

C

da
���

da

dl
���

     
 

(The relative direction of dl
���

 and the surface element da
���

, normal to S, is determined 

according to the familiar right-hand rule.) The loop C is assumed stationary relative to the inertial 
observer; hence the emf along C at time t is given by (5). The magnetic flux through S at this 
instant is  
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                                                  ( )m
S

t B daΦ = ⋅∫
����

        

 

(Note that the signs of E and Φm depend on the chosen positive direction of C.) Since the field 

B
�

 is solenoidal, the value of Φm for a given C is independent of the choice of the surface S. 
That is, the same magnetic flux will go through any open surface bounded by the closed curve 
C.  

      According to the Faraday-Henry law,  
 

               E m
d

dt

Φ
= −                                                                        (6) 

or explicitly,  
 

  
C S

d
E dl B da

d t
⋅ = − ⋅∫ ∫
��� ���� �

�                                                           (7) 

 
(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)  
      Equation (7) can be re-expressed in differential form by using Stokes’ theorem,  
 

                                           ( )
C S

E dl E da⋅ = ∇× ⋅∫ ∫
��� ���� � �

�             

 
and by taking into account that the surface S may be arbitrarily chosen. The result is  
 

B
E

t

∂
∇× = −

∂

�
� �

                                                                (8) 

 

We note that if / 0B t∂ ∂ ≠
�

, then necessarily 0E ≠
�

. Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B
�

 is static (

/ 0B t∂ ∂ =
�

), then E
�

 is irrotational: 0 0E E dl∇× = ⇔ ⋅ =∫
���� � �

� , which allows for the possibility 

that 0E =
�

.  

      Corollary:  The emf around a fixed loop C inside a static e/m field ( )( ) , ( )E r B r
� �� �

 is  E = 0  

(the student should explain this).  

5.  EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR 

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance) 
connected to an external resistor. As shown below, the emf of the circuit in the direction of the 
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the 
work per unit charge done by the source (battery).  
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i i+_
a b

I

I

0
f
�

E
�

                 
 
      We recall that, in general, the emf of a circuit C at time t is equal to the integral  
 

                                                      E 
C

f dl= ⋅∫
����

�                        

 

where /f F q=
� �

 is the force per unit charge at the location of the element dl
���

 of the circuit, at 

time t. In essence, we assume that in every element dl
���

 we have placed a test charge q (this 

could be, e.g., a free electron of the conducting part of the circuit). The force F
�

 on each q is 
then measured simultaneously for all charges at time t. Since here we are dealing with a static 
(time-independent) situation, however, we can treat the problem somewhat differently: The 

measurements of the forces F
�

 on the charges q need not be made at the same instant, given 
that nothing changes with time, anyway. So, instead of placing several charges q around the 

circuit and measuring the forces F
�

 on each of them at a particular instant, we imagine a single 
charge q making a complete tour around the loop C. We may assume, e.g., that the charge q is 
one of the (conventionally positive) free electrons taking part in the constant current Ι flowing in 

the circuit. We then measure the force F
�

 on q at each point of C.  
      We thus assume that q is a positive charge moving in the direction of the current Ι. We 

also assume that the direction of circulation of C is the same as the direction of the current 

(counterclockwise in the figure). During its motion, q is subject to two forces: (1) the force 
0

F
�

 by 

the source (battery) that carries q from the negative pole a to the positive pole b through the 

source, and (2) the electrostatic force 
eF q E=
� �

 due to the electrostatic field E
�

 at each point of 

the circuit C (both inside and outside the source). The total force on q is  
    

                        
0

0 0 0e

F F
F F F F qE f E f E

q q
= + = + ⇒ = = + ≡ +

� �
� �� � � � � � �

      

Then,  
 

   E 
0 0

C C C C
f dl f dl E dl f dl= ⋅ = ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫
��� ��� ��� ���� � ��

� � � �                                    (9) 

 

since 0
C

E dl⋅ =∫
����

�  for an electrostatic field. However, the action of the source on q is limited to 

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence, 

0
0f =

�
 outside the source, so that (9) reduces to  

 

  E
0

b

a
f dl= ⋅∫
����

                                                               (10) 
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Now, since the current Ι is constant, the charge q moves at constant speed along the circuit. 
This means that the total force on q in the direction of the path C is zero. In the interior of the 

resistor, the electrostatic force 
eF q E=
� �

 is counterbalanced by the force on q due to the 

collisions of the charge with the positive ions of the metal (this latter force does not contribute to 
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however, 

where there is no resistance, the electrostatic force 
eF
�

 must be counterbalanced by the 

opposing force 
0

F
�

 exerted by the source. Thus, in the section of the circuit between a and b,  

 

                     0 0 0
0 0

e

F
F F F f f E f E

q
= + = ⇒ = = + = ⇒ = −

�
� � �� � � � �

         

 
Equation (10) then takes the final form,  
 

  E
b

b a
a

E dl V V V= − ⋅ = − =∫
����

                                                     (11) 

 
where Va and Vb are the electrostatic potentials at a and b, respectively. This is, of course, 

what every student knows from elementary e/m courses!  
      The work done by the source on q upon transferring the charge from a to b is  
 

       
0 0

b b

a a
W F dl q f dl q= ⋅ = ⋅ =∫ ∫

��� �����
E                                                (12) 

 

[where we have used (10)]. So, the work of the source per unit charge is W/q= E . This work is 

converted into heat in the resistor, so that the source must again supply energy in order to carry 
the charges once more from a to b. This is something like the torture of Sisyphus in Greek 
mythology!  

6.  EMF AND OHM’S LAW 

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery) 
and may also be in motion relative to our inertial frame of reference. Let q be a test charge at 

the location of the element dl
���

 of C, and let F
�

 be the total force on q (due to the e/m field 

and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-

independent quantity.) The force per unit charge at the location of dl
���

 at time t, then, is 

/f F q=
� �

. According to our general definition, the emf of the circuit at time t is  

 

         E
C

f dl= ⋅∫
����

�                                                       (13) 

 
Now, if σ is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p. 

285 of [1]) we have:  
 

            J fσ=
��

                                                           (14) 
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where J
�

 is the volume current density at the location of dl
���

 at time t. (Note that the more 

common expression J Eσ=
� �

, found in most textbooks, is a special case of the above formula. 

Note also that J
�

 is measured relative to the wire, thus is the same for all inertial observers.) By 
combining (13) and (14) we get:  

 

          E
1

C
J dl

σ
= ⋅∫

����

�                                                     (15) 

 

Taking into account that J
�

 is in the direction of dl
���

 at each point of C, we write:  

 

                                               
I

J dl J dl dl
S

⋅ = =
����

     

 
where S is the constant cross-sectional area of the wire. If we make the additional assumption 
that, at each instant t, the current I is constant around the circuit (although I may vary with time), 
we finally get:  

 

          E 
l l

I I I R
S S

ρ
σ

= = =                                                 (16) 

 
where l is the total length of the wire,  ρ=1/σ  is the resistivity of the material, and R is the total 

resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.  
      As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery 

with internal resistance r. Let R0 be the external resistance connected to the battery. The total 
resistance of the circuit is R=R0+r. As before, we call V=Vb –Va the potential difference between 
the terminals of the battery, which is equal to the voltage across the external resistor. Hence, 
V=IR0 , where I is the current in the circuit. The emf of the circuit (in the direction of the current) 
is  

 

                                          E = I R = I (R0 + r) = V + I r    

 
Note that the potential difference V  between the terminals a and b equals the emf only when 

no current is flowing (I= 0) .  
      As another example, consider a circuit C containing an ideal battery of voltage V and 

having total resistance R and total inductance L :  

                                 

V

R
L

I
 

 
In this case, the emf of C in the direction of the current flow is  
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                                    E (t) ( )L

dI
V V V L I t R

dt
= + = − =            

 
To understand why the total emf of the circuit is V +VL , we think as follows: On its tour around 

the circuit, a test charge q is subject to two forces (ignoring collisions with the positive ions in the 
interior of the wire): a force inside the source, and a force by the non-conservative electric field 
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the 
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry 
law (6). The latter emf is precisely VL ; it has a nonzero value for as long as the current I is 
changing.  

Some interesting energy considerations are here in order. The total power supplied to the 
circuit by the battery at time t is  

 

                                         
2 d I

P I V I R L I
dt

= = +                                  

 
The term  I

 2R  represents the power irreversibly lost as heat in the resistor (energy, per unit 
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to 
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the 
source in order to maintain the current against dissipative losses in the resistor. On the other 
hand, the term  LI (dI/dt)  represents the energy per unit time required to build up the current 
against the “back emf ” VL . This energy is retrievable and is given back to the source when the 
current decreases. It may also be interpreted as energy per unit time required in order to 
establish the magnetic field associated with the current. This energy is “stored” in the magnetic 
field surrounding the circuit.  

7.  CONCLUDING REMARKS 

In concluding this article, let us highlight a few points of importance:  
1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”) 

in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain 
sources such as batteries.  

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of 
reference with respect to which it is measured.  

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence 
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present, 
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).  

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of 
the battery and represents work per unit charge done by the source.  

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s 
law can be expressed in terms of the emf by equation (16).  
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APPENDIX 

Here is an analytical proof of equation (4) of Sec.3:  
Assume that, at time t, the wire describes a closed curve C that is the boundary of a plane 

surface S. At time t΄= t+dt, the wire (which has moved in the meanwhile) describes another 

curve C΄ that encloses a surface S΄. Let d l
���

 be an element of C in the direction of circulation of 

the curve, and let υ
�

 be the velocity of this element relative to an inertial observer (the velocity 
of the elements of C may vary along the curve):  

                        

υ
�

dl
��� dl

���

S

S′

S′′ S′′da
���

da′
����

da′′
����

da′′
����

dtυ
�

C

C′ C′

C
      

The direction of the surface elements da
���

 and da′
����

 is consistent with the chosen direction of 

d l
���

, according to the right-hand rule. The element of the side (“cylindrical”) surface S΄΄ formed 

by the motion of C, is equal to  
 

                                       ( ) ( )da d l d t d l d tυ υ′′ = × = ×
���� ��� ���� �

     

 
Since the magnetic field is static, we can view the situation in a somewhat different way: 

Rather than assuming that the curve C moves within the time interval dt so that its points 
coincide with the points of the curve C΄ at time t΄, we consider two constant curves C and C΄ at 

the same instant t. In the case of a static field B
�

, the magnetic flux through C΄ at time t΄= t+dt 
(according to our original assumption of a moving curve) is the same as the flux through this 
same curve at time t, given that no change of the magnetic field occurs within the time interval 

dt. Now, we note that the open surfaces S1=S and S2= S΄ ∪ S΄΄ share a common boundary, 
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux Φm passes 
through S1 and S2 at time t. That is,  

 

                  
1 2

1 2
S S S S΄ S΄΄

B da B da B da B da B da′ ′′⋅ = ⋅ ⇒ ⋅ = ⋅ + ⋅∫ ∫ ∫ ∫ ∫
���� ���� ��� ���� ����� � � � �

       

 
But, returning to our initial assumption of a moving curve, we note that  
 

        ( )m
S
B da tΦ⋅ = =∫
����

magnetic flux through the wire at time t    

 
and  
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   ( )m
S΄

B da t dtΦ′⋅ = + =∫
�����

 magnetic flux through the wire at time t+dt    

 
Hence,  
 

            

( ) ( )

( ) ( ) ( )

( ) ( )

m m
S΄΄

m m m
S΄΄ C

m

C C

t t dt B da

d t dt t B da dt B dl

d
B dl B dl

dt

Φ Φ

Φ Φ Φ υ

Φ
υ υ

′′= + + ⋅ ⇒

′′= + − = − ⋅ = − ⋅ × ⇒

− = ⋅ × = × ⋅ =

∫

∫ ∫

∫ ∫

�����

���� ���� � �

��� ���� �� �

�

� � E

 

 
in accordance with (3) and (4).  
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Abstract 

In the literature of Electromagnetism, the electromotive 
force of a “circuit” is often defined as work done on a unit 
charge during a complete tour of the latter around the circuit. 
We explain why this statement cannot be generally regarded 
as true, although it is indeed true in certain simple cases. 
Several examples are used to illustrate these points.  
 

1.   Introduction 
 
In a recent paper [1] the authors suggested a pedagogical 
approach to the electromotive force (emf) of a “circuit”, a 
fundamental concept of Electromagnetism. Rather than 
defining the emf in an ad hoc manner for each particular 
electrodynamic system, this approach begins with the most 
general definition of the emf and then specializes to certain 
cases of physical interest, thus recovering the familiar ex-
pressions for the emf.  
      Among the various examples treated in [1], the case of a 
simple battery-resistor circuit was of particular interest 
since, in this case, the emf was shown to be equal to the 
work, per unit charge, done by the source (battery) for a 
complete tour around the circuit. Now, in the literature of 
Electrodynamics the emf is often defined as work per unit 
charge. As we explain in this paper, this is not generally true 
except for special cases, such as the aforementioned one.  
      In Section 2, we give the general definition of the emf, E, 

and, separately, that of the work per unit charge, w, done by 
the agencies responsible for the generation and preservation 
of a current flow in the circuit. We then state the necessary 
conditions in order for the equality E=w to hold. We stress 

that, by their very definitions, E and w are different concepts. 

Thus, the equation E=w suggests the possible equality of the 

values of two physical quantities, not the conceptual identi-
fication of these quantities!  
      Section 3 reviews the case of a circuit consisting of a 
battery connected to a resistive wire, in which case the 
equality E=w is indeed valid.  

      In Sec. 4, we study the problem of a wire moving 
through a static magnetic field. A particular situation where 
the equality E=w is valid is treated in Sec. 5.  

       Finally, Sec. 6 examines the case of a stationary wire 
inside a time-varying magnetic field. It is shown that the 

equality E=w is satisfied only in the special case where the 

magnetic field varies linearly with time.  
 

2.   The general definitions of emf and work per 
unit charge 

 
Consider a region of space in which an electromagnetic 
(e/m) field exists. In the most general sense, any closed path 
C (or loop) within this region will be called a “circuit”  
(whether or not the whole or parts of C consist of material 
objects such as wires, resistors, capacitors, batteries, etc.). 
We arbitrarily  assign a positive direction of traversing the 

loop C, and we consider an element dl
��

 of C oriented in the 

positive direction (Fig. 1).  
 

dl
���

•

C

+

q

F
�

 
 

Figure 1: An oriented loop representing a circuit.  
 
      Imagine now a test charge q located at the position of 

dl
��

, and let F
�

 be the force on q at time t. This force is ex-

erted by the e/m field itself, as well as, possibly, by addi-
tional energy sources (e.g., batteries or some external me-
chanical action) that may contribute to the generation and 
preservation of a current flow around the loop C. The force 

per unit charge at the position of dl
��

 at time t, is  

 

        
F

f
q

=

�
�

                                 (1) 

 

Note that f
�

 is independent of q, since the electromagnetic 

force on q is proportional to the charge. In particular, revers-

ing the sign of q will have no effect on f
�

 (although it will 

change the direction of F
�

).  
      In general, neither the shape nor the size of C is required 
to remain fixed. Moreover, the loop may be in motion rela-
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tive to an external inertial observer. Thus, for a loop of (pos-
sibly) variable shape, size or position in space, we will use 
the notation C(t) to indicate the state of the curve at time t.  
      We now define the electromotive force (emf) of the 

circuit C at time t as the line integral of f
�

 along C, taken in 

the positive sense of C :  
 

        E (t) 
( )

( , )
C t

f r t d l= ⋅∫
� �

��

�                    (2) 

 

(where r
�

 is the position vector of dl
��

 relative to the origin 

of our coordinate system). Note that the sign of the emf is 
dependent upon our choice of the positive direction of circu-
lation of C: by changing this convention, the sign of E is 

reversed.  
      As mentioned above, the force (per unit charge) defined 
in (1) can be attributed to two factors: the interaction of q 
with the e/m field itself and the action on q due to any addi-
tional energy sources. Eventually, this latter interaction is 
electromagnetic in nature even when it originates from some 
external mechanical action. We write:  
 

        em appf f f= +
� � �

                          (3) 

 

where emf
�

 is the force due to the e/m field and appf
�

 is the 

applied force due to an additional energy source. We note 
that the force (3) does not include any resistive (dissipative) 
forces that oppose a charge flow along C; it only contains 
forces that may contribute to the generation and preservation 
of such a flow in the circuit.  
      Now, suppose we allow a single charge q to make a full 
trip around the circuit C under the action of the force (3). In 
doing so, the charge describes a curve C′  in space (not 
necessarily a closed one!) relative to an external inertial 

observer. Let d l′
���

 be an element of C′  representing an in-

finitesimal displacement of q in space, in time dt. We define 
the work per unit charge for this complete tour around the 
circuit by the integral:  
 

        
C

w f d l
′

′= ⋅∫
� ���

                           (4) 

 
For a stationary circuit of fixed shape, C′  coincides with the 
closed curve C and (4) reduces to  
 

        ( )
C

w f d l fixed C= ⋅∫
� ��

�                 (5) 

 
      It should be noted carefully that the integral (2) is evalu-
ated at a fixed time t, while in the integrals (4) and (5) time 
is allowed to flow! In general, the value of w depends on the 
time t0 and the point P0 at which q starts its round trip on C. 
Thus, there is a certain ambiguity in the definition of work 
per unit charge. On the other hand, the ambiguity (so to 

speak) with respect to the emf is related to the dependence 
of the latter on time t.  
      The question now is: can the emf be equal in value to the 
work per unit charge, despite the fact that these quantities 
are defined differently? For the equality E=w to hold, both E 

and w must be defined unambiguously. Thus, E must be 

constant, independent of time (dE/dt=0) while w must not 

depend on the initial time t0 or the initial point P0 of the 
round trip of q on C. These requirements are necessary con-

ditions in order for the equality E=w to be meaningful.  

      In the following sections we illustrate these ideas by 
means of several examples. As will be seen, the satisfaction 
of the above-mentioned conditions is the exception rather 
than the rule!  
 

3.   A resistive wire connected to a battery 
 
Consider a circuit consisting of an ideal battery (i.e., one 
with no internal resistance) connected to a metal wire of 
total resistance R (Fig. 2). As shown in [1] (see also [2]), the 
emf of the circuit in the direction of the current is equal to 
the voltage V of the battery. Moreover, the emf in this case 
represents the work, per unit charge, done by the source 
(battery). Let us review the proof of these statements.  
 

i i+
_

a b

I

I

E
�

appf
� +

R

 
Figure 2: A battery connected to a resistive wire.  

 
      A (conventionally positive) moving charge q is subject to 
two forces around the circuit C: an electrostatic force 

eF qE=
� �

 at every point of C and a force appF
�

 inside the 

battery, the latter force carrying q from the negative pole a 
to the positive pole b through the source. According to (3), 
the total force per unit charge is  
 

        e app appf f f E f= + = +
� � � ��

 .   

 
The emf in the direction of the current (i.e., counterclock-
wise), at any time t, is  
 

        E
C

f dl= ⋅∫
� ��

�  

          
appC C

b

appa

E dl f dl

f d l

= ⋅ + ⋅

= ⋅

∫ ∫

∫

��

�

�� ��

��

� �
               (6) 
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where we have used the facts that 0
C

E dl⋅ =∫
� �

�  for an elec-

trostatic field and that the action of the source on q is limited 
to the region between the poles of the battery.  
      Now, in a steady-state situation (Ι = constant) the charge 
q moves at constant speed along the circuit. This means that 
the total force on q in the direction of the path C is zero. In 

the interior of the wire, the electrostatic force 
e

F qE=
� �

 is 

counterbalanced by the resistive force on q due to the colli-
sions of the charge with the positive ions of the metal (as 
mentioned previously, this latter force does not contribute to 
the emf). In the interior of the (ideal) battery, however, 
where there is no resistance, the electrostatic force must be 
counterbalanced by the opposing force exerted by the 
source. Thus, in the section of the circuit between a and b, 

app ef f E= − = −
� � �

. By (6), then, we have:  

 

        E
b

b aa
E dl V V V= − ⋅ = − =∫
� ��

                (7) 

 
where Va and Vb are the electrostatic potentials at a and b, 
respectively. We note that the emf is constant in time, as 
expected in a steady-state situation.  
      Next, we want to find the work per unit charge for a 
complete tour around the circuit. To this end, we allow a 
single charge q to make a full trip around C and we use 
expression (5) (since the wire is stationary and of fixed 
shape). In applying this relation, time is assumed to flow as 
q moves along C. Given that the situation is static (time-
independent), however, time is not really an issue since it 
doesn’t matter at what moment the charge will pass by any 
given point of C. Thus, the integration in (5) will yield the 
same result (7) as the integration in (6), despite the fact that, 
in the latter case, time was assumed fixed. We conclude that 
the equality w=E is valid in this case: the emf does represent 

work per unit charge.  
 

4.   Moving wire inside a static magnetic field 
 
Consider a wire C moving in the xy-plane. The shape and/or 
size of the wire need not remain fixed during its motion. A 

static magnetic field ( )B r
� �

 is present in the region of space 

where the wire is moving. For simplicity, we assume that 
this field is normal to the plane of the wire and directed into 
the page.  
      In Fig. 3, the z-axis is normal to the plane of the wire and 

directed towards the reader. We call da
��

 an infinitesimal 
normal vector representing an element of the plane surface 
bounded by the wire (this vector is directed into the plane, 
consistently with the chosen clockwise direction of travers-

ing the loop C ). If ˆ
zu  is the unit vector on the z-axis, then 

ˆ( ) zda da u= −
��

 and ˆ( ) zB B r u= −
� �

, where ( ) | ( ) |B r B r=
�� �

.  

 

r
�

dl
���

cυ
�

x

y
+

( )rυ
� �

( )C t

da⊗
���

( )B r⊗
� �

z⊙
 

Figure 3: A wire C moving inside a static magnetic 
field.  

      Consider an element dl
��

 of the wire, located at a point 

with position vector r
�

 relative to the origin of our inertial 
frame of reference. Call ( )rυ

� �
 the velocity of this element 

relative to our frame. Let q be a (conventionally positive) 
charge passing by the considered point at time t. This charge 

executes a composite motion, having a velocity cυ
�

 along 

the wire and acquiring an extra velocity ( )rυ
� �

 due to the 

motion of the wire itself. The total velocity of q relative to 

us is tot cυ υ υ= +
� � �

.  

 

θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�( )B r⊗

� �

m totf υ⊥
� �

app cf υ⊥
� �

r cf υ↑↓
� �

 
Figure 4: Balance of forces per unit charge.  

 
      The balance of forces acting on q is shown in the dia-
gram of Fig. 4. The magnetic force on q is normal to the 

charge’s total velocity and equal to ( )m totF q Bυ= ×
� ��

. 

Hence, the magnetic force per unit charge is m totf Bυ= ×
� ��

. 

Its component along the wire (i.e., in the direction of dl
��

) is 

counterbalanced by the resistive force rf
�

, which opposes 

the motion of q along C (this force, as mentioned previously, 
does not contribute to the emf). However, the component of 
the magnetic force normal to the wire will tend to make the 
wire move “backwards” (in a direction opposing the desired 
motion of the wire) unless it is counterbalanced by some 
external mechanical action (e.g., our hand, which pulls the 
wire forward). Now, the charge q takes a share of this action 
by means of some force transferred to it by the structure of 
the wire. This force (which will be called an applied force) 
must be normal to the wire (in order to counterbalance the 
normal component of the magnetic force). We denote the 
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applied force per unit charge by appf
�

. Although this force 

originates from an external mechanical action, it is delivered 
to q through an electromagnetic interaction with the crystal 
lattice of the wire (not to be confused with the resistive 
force, whose role is different!).  
      According to (3), the total force contributing to the emf 

of the circuit is m appf f f= +
� � �

. By (2), the emf at time t is  

 

        E (t) 
( ) ( )m appC t C t

f d l f d l= ⋅ + ⋅∫ ∫
� ��� ��

� �  .   

 
The second integral vanishes since the applied force is nor-
mal to the wire element at every point of C. The integral of 
the magnetic force is equal to  
 

     ( ) ( ) ( )tot cC C C
B dl B d l B d lυ υ υ× ⋅ = × ⋅ + × ⋅∫ ∫ ∫
� � �� � �
�� �� ��

� � �  .  

 
The first integral on the right vanishes, as can be seen by 
inspecting Fig. 4. Thus, we finally have:  
 

        E (t) 
( )

[ ( ) ( )]
C t

r B r d lυ= × ⋅∫
�� � �

��

�              (8) 

 
      As shown analytically in [1, 2], the emf of C is equal to  
 

        E (t) ( )m

d
t

d t
= − Φ                      (9) 

 
where we have introduced the magnetic flux through C,  
 

        
( ) ( )

( ) ( ) ( )m S t S t
t B r da B r daΦ = ⋅ =∫ ∫

� � �
��

      (10) 

 
[By S(t) we denote any open surface bounded by C at time t; 
e.g., the plane surface enclosed by the wire.]  
      Now, let C′  be the path of q in space relative to the 
external observer, for a full trip of q around the wire (in 
general, C′  will be an open curve). According to (4), the 
work done per unit charge for this trip is  
 

        m appC C
w f dl f d l

′ ′
′ ′= ⋅ + ⋅∫ ∫

� ���� ���

 .   

 
The first integral vanishes (cf. Fig. 4), while for the second 
one we notice that  
 

        app app app appf d l f d l f d l f d l′ ′′ ′′⋅ = ⋅ + ⋅ = ⋅
� � � ���� �� ��� ���

 

 
(since the applied force is normal to the wire element eve-
rywhere; see Fig. 4). Thus we finally have:  
 

        appC
w f dl

′
′= ⋅∫

� ���

         (11a) 

 
with  

        app app appf d l f d l f d tυ′ ′′⋅ = ⋅ = ⋅
� � � �
��� ���

        (11b) 

 

where d l dtυ′′ =
�

���

 is the infinitesimal displacement of the 

wire element in time dt. 
 

5.   An example: Motion inside a uniform  
magnetic field 

 
Consider a metal bar (ab) of length h, sliding parallel to 
itself with constant speed υ on two parallel rails that form 
part of a U-shaped wire, as shown in Fig. 5. A uniform mag-

netic field B
�

, pointing into the page, fills the entire region.  
 

x

y

O
z⊙

x

h

I

+

.constυ =
�

dl
���

a

bc

d
B⊗
�

da
���

⊙

 
Figure 5: A metal bar (ab) sliding on two parallel rails 
that form part of a U-shaped wire.  

 
      A circuit C(t) of variable size is formed by the rectangu-
lar loop (abcda). The field and the surface element are writ-

ten, respectively, as ˆ
zB B u= −

�
 (where | | .B B const= =

�
) 

and ˆ( ) zda da u=
��

 (note that the direction of traversing the 

loop C is now counterclockwise).  
      The general diagram of Fig. 4, representing the balance 
of forces, reduces to the one shown in Fig. 6. Note that this 
latter diagram concerns only the moving part (ab) of the 
circuit, since it is in this part only that the velocity υ

�
 and 

the applied force appf
�

 are nonzero.  

θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�B⊗

�

cυ υ⊥
� �

x
 

 
Figure 6: Balance of forces per unit charge.  

 
      The emf of the circuit at time t is, according to (8),   
 

        E (t) 
( )

( )
C t

B dlυ= × ⋅∫
��
��

�  
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b b

a a
B dl B d l B hυ υ υ= = =∫ ∫  .   

 
Alternatively, the magnetic flux through C is  
 

        ( ) ( ) ( )
( ) ( )m S t S t S t
t B r da B da B da

Bhx

Φ = ⋅ = − = −

= −

∫ ∫ ∫
� �

��

 

(where x is the momentary position of the bar at time t), so 
that  
 

        E (t) ( )m

d d x
t B h Bh

dt dt
υ= − Φ = =  .   

 
We note that the emf is constant (time-independent).  
      Next, we want to use (11) to evaluate the work per unit 
charge for a complete tour of a charge around C. Since the 
applied force is nonzero only on the section (ab) of C, the 
path of integration, C′  (which is a straight line, given that 
the charge moves at constant velocity in space) will corre-
spond to the motion of the charge along the metal bar only, 
i.e., from a to b. (Since the bar is being displaced in space 
while the charge is traveling along it, the line C′  will not be 
parallel to the bar.) According to (11),  
 

        appC
w f d l

′
′= ⋅∫

� ���

    with     

        app app app appf d l f d l f d l f d tυ′ ′′ ′′⋅ = ⋅ = =
� ���� ���

   

 
(cf. Fig. 6). Now, the role of the applied force is to counter-
balance the x-component of the magnetic force in order that 
the bar may move at constant speed in the x direction. Thus,  
 

        cos cosapp m tot cf f B Bθ υ θ υ= = =    

 
and  
 

        app cf d t B d t B dlυ υυ υ= =    

 
(since υc dt represents an elementary displacement dl of the 
charge along the metal bar in time dt). We finally have:  
 

        
b b

a a
w B dl B d l B hυ υ υ= = =∫ ∫  .   

 
We note that, in this specific example, the value of the work 
per unit charge is equal to that of the emf, both these quanti-
ties being constant and unambiguously defined. This would 
not have been the case, however, if the magnetic field were 
nonuniform!  
 
 
 
 
 

6.   Stationary wire inside a time-varying  
magnetic field 

 
Our final example concerns a stationary wire C inside a 
time-varying magnetic field of the form 

ˆ( , ) ( , ) zB r t B r t u= −
� � �

 (where ( , ) | ( , ) |B r t B r t=
�� �

), as shown 

in Fig. 7.  
 

r
�

dl
���

cυ
�

x

y
+

da⊗
���

z⊙

C

( , )B r t⊗
� �

 
Figure 7: A stationary wire C inside a time-varying 
magnetic field.  

 
      As is well known [1-7], the presence of a time-varying 

magnetic field implies the presence of an electric field E
�

 as 
well, such that  
 

        
B

E
t

∂
∇× = −

∂

�
� �

                        (12) 

 
As discussed in [1], the emf of the circuit at time t is given 
by  
 

        E (t) ( , ) ( )
mC

d
r t dl t

d t
Ε Φ= ⋅ = −∫
� �

�

�         (13) 

 
where  
 

        ( ) ( , ) ( , )m S S
t B r t da B r t daΦ = ⋅ =∫ ∫

� � �
��

        (14) 

 
is the magnetic flux through C at this time.  
      On the other hand, the work per unit charge for a full trip 

around C is given by (5): 
C

w f dl= ⋅∫
� ��

� , where 

( )em cf f E Bυ= = + ×
� � � ��

,  so that  

 

        ( )cC C
w E dl B dlυ= ⋅ + × ⋅∫ ∫

� ��
�� ��

� �  .   

 
As is easy to see (cf. Fig. 7), the second integral vanishes, 
thus we are left with  
 

        
C

w E dl= ⋅∫
� ��

�                         (15) 
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      The similarity of the integrals in (13) and (15) is decep-
tive! The integral in (13) is evaluated at a fixed time t, while 
in (15) time is allowed to flow as the charge moves along C. 
Is it, nevertheless, possible that the values of these integrals 
coincide? As mentioned at the end of Sec. 2, a necessary 
condition for this to be the case is that the two integrations 
yield time-independent results. In order that E be time-

independent (but nonzero), the magnetic flux (14) – thus the 
magnetic field itself – must increase linearly with time. On 
the other hand, the integration (15) for w will be time-
independent if so is the electric field. By (12), then, the 
magnetic field must be linearly dependent on time, which 
brings us back to the previous condition.  
      As an example, assume that the magnetic field is of the 
form  
 

        0 0
ˆ ( .)zB B t u B const= − =

�
.   

 

A possible solution of (12) for E
�

 is, in cylindrical coordi-
nates,  
 

        0 ˆ
2

B
E uϕ

ρ
=
�

 .   

 
[We assume that these solutions are valid in a limited region 
of space (e.g., in the interior of a solenoid whose axis coin-
cides with the z-axis) so that ρ is finite in the region of inter-
est.] Now, consider a circular wire C of radius R, centered at 

the origin of the xy-plane. Then, given that ˆ( )d l d l uϕ= −
��

 ,  

 

        E 20
0

2C C

B R
E dl d l B Rπ= ⋅ = − = −∫ ∫
� ��

� � .   

 
Alternatively,  
 

        2

0m S
Bda B R tπΦ = =∫ ,    

 

so that  E 2

0/md dt B Rπ= − Φ = − . We anticipate that, due 

to the time constancy of the electric field, the same result 
will be found for the work w by using (15).  
 

7.   Concluding remarks 
 
No single, universally accepted definition of the emf seems 
to exist in the literature of Electromagnetism. The definition 
given in this article (as well as in [1]) comes close to those 
of [2] and [3]. In particular, by using an example similar to 
that of Sec. 5 in this paper, Griffiths [2] makes a clear dis-
tinction between the concepts of emf and work per unit 
charge. In [4] and [5] (as well as in numerous other text-
books) the emf is identified with work per unit charge, in 
general, while in [6] and [7] it is defined as a closed line 
integral of the non-conservative part of the electric field that 
accompanies a time-varying magnetic flux.  

      The balance of forces and the origin of work in a con-
ducting circuit moving through a magnetic field are nicely 
discussed in [2, 8, 9]. An interesting approach to the relation 
between work and emf, utilizing the concept of virtual work, 
is described in [10].  
      Of course, the list of references cited above is by no 
means exhaustive. It only serves to illustrate the diversity of 
ideas concerning the concept of the emf. The subtleties in-
herent in this concept make it an interesting subject of study 
for both the researcher and the advanced student of classical 
Electrodynamics.  
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Certain aspects of the concept of the electromotive force (emf) of a “circuit”, as 
this concept was defined in recent publications, are discussed. In particular, the 
independence of the emf from the conductivity of the circuit is explained and the 
role of the applied force in motional emf is analyzed.  

 
 
1.  Definition and analytical expression of the emf  
 
In recent articles [1,2] we studied the concept of the electromotive force (emf ) of a 
“circuit” and examined the extent to which the emf represents work per unit charge 
for a complete tour around the circuit. This educational note contains some additional 
remarks regarding the emf; it may be regarded as an addendum to the aforementioned 
publications.  
      We consider a closed path C (or loop) in a region of space where an electromag-
netic (e/m) field exists (Fig. 1). Generally speaking, this loop will be called a “cir-
cuit”  if a charge flow can be sustained on it. We arbitrarily  assign a positive direction 

of traversing the loop C and we consider an element dl
���

 of C oriented in the positive 
direction.  
 

dl
���

•

C

+

q

F
�

 
 

Figure 1 
 

      Let q be a test charge, which at time t is located at the position of dl
���

, and let F
�

 

be the force on q at this time. The force F
�

 is exerted by the e/m field itself as well as, 
possibly, by additional energy sources (such as batteries or some external mechanical 
action) that may contribute to the generation and preservation of a current around the 

loop C. The force per unit charge at the position of dl
���

, at time t, is /f F q=
� �

. We 

note that f
�

 is independent of q since the e/m force on a charge is proportional to the 
charge.  
      Since, in general, neither the shape nor the size of C is required to remain fixed, 
and since the loop may also be in motion relative to an external observer, we will use 
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the notation C(t) to indicate the state, at time t, of a circuit of generally variable shape, 
size or position in space.  
      The electromotive force (emf ) of the circuit C at time t is defined as the line inte-

gral of f
�

 along C, taken in the positive sense of C :  
 

           E (t) 
( )

( , )
C t

f r t d l= ⋅∫
���� �

�                                                (1) 

 

where r
�

 is the position vector of dl
���

 relative to the origin of our coordinate system. 
Obviously, the sign of the emf is dependent upon our choice of the positive direction 
of circulation of C. It should be noted carefully that the integral (1) is evaluated at a 

given time t. Thus, the force f
�

 must be measured simultaneously, at time t, at all 
points of C.  

      The force f
�

 can be attributed to two factors: (a) the interaction of q with the ex-
isting e/m field itself; and (b) the action on q by any additional energy sources that 
may be necessary in order to maintain a steady flow of charge on C. (This latter inter-
action also is electromagnetic in nature, even when it originates from some external 
mechanical action.) We write  
 

      em appf f f= +
� � �

                                                      (2) 

 

where emf
�

 is the force due to the e/m field and appf
�

 is the applied force due to an ad-

ditional energy source.  
      Two familiar cases of emf-driven circuits where an additional applied force is re-
quired are the following:  
      1. In a battery-resistor circuit [1-3] an applied force is necessary in order to carry a 
(conventionally positive) mobile charge from the negative to the positive pole of the 
battery, through the source. This force is provided by the battery itself.  
      2. In the case of a closed metal wire C moving in a time-independent magnetic 
field [2-5] the current on C is sustained for as long as the motion of C continues. This, 
in turn, necessitates the action of an external force on C (say, by our hand), as will be 
explained in Sec. 4.  
      Now, by (1) and (2),  
 

     E (t) 
( ) ( )em appC t C t

f d l f d l= ⋅ + ⋅ ≡∫ ∫
��� ���� �

� �   Eem (t) + Eapp (t)                        (3) 

 

We would like to find an analytical expression for Eem(t). So, let ( )( , ) , ( , )E r t B r t
� �� �

 be 

the e/m field in the region of space where the loop C(t) is lying. Let q be a test charge 

located, at time t, at the position of dl
���

 and let totυ
�

 be the total velocity of q in space, 

relative to some inertial frame of reference. We write  
 

tot cυ υ υ= +
� � �
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where cυ
�

 is the velocity of q along C (i.e., in a direction parallel to dl
���

) while υ
�

 is the 

velocity of dl
���

 itself due to a possible motion in space, or just a deformation over 
time, of the loop C(t) as a whole. The total e/m force on q is  
 

[ ( )]em totF q E Bυ= + ×
� � ��

 ,  

 
so that   
 

[( ) ]em c
F

f E B
q

υ υ= = + + ×

�
� � �� �

 . 

 
Hence,  
 

Eem (t) 
( ) ( ) ( )

( ) ( )cC t C t C t
E dl B dl B dlυ υ= ⋅ + × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� �

� � �  . 

 

Given that cυ
�

 is parallel to dl
���

, the last integral on the right vanishes. Thus, finally,  

 

Eem (t) 
( ) ( )

( , ) [ ( , ) ( , )]
C t C t

E r t dl r t B r t dlυ= ⋅ + × ⋅ ≡∫ ∫
��� ���� ��� � �

� �   Ee (t) + Em (t)           (4)    

 
      We note that, in our definition of the emf, the force per unit charge was defined as 

/f F q=
� �

, assuming that a replica of a test charge q is placed at every point of the cir-

cuit and that the forces F
�

 on all test charges are measured simultaneously at time t. 
Now, in the case of a conducting loop C (say, a metal wire) it is reasonable to identify 
q with one of the (conventionally positive) mobile free electrons. This particular iden-
tification, although logical for practical purposes, is nevertheless not necessary, given 

that the force f
�

 is eventually independent of q. Thus, in general, q may just be con-
sidered as a hypothetical test charge that is not necessarily identified with an actual 
mobile charge.  
 
 
2.  Independence from conductivity  
 
Let C(t) be a conducting loop (say, a metal wire) inside a given e/m field. The emf of 
C at time t is given by (3) and (4). We note from (4) that the part Eem of the total emf is 

independent of the velocity cυ
�

 of q along C (where q may be conveniently – although 

not necessarily – assumed to be a mobile free electron of the conductor, convention-
ally considered as a positive charge). We may physically interpret this as follows:  
      The e/m field creates an emf Eem that tends to generate a charge flow on C. How-

ever, this emf does not by itself determine how fast the mobile charges move along C. 
Presumably, this will depend on physical properties of the path C that are associated 
with its conductivity. (For example, in a battery-resistance circuit the potential differ-
ence at the ends of the resistance – thus the value of the electric field inside the con-
ductor – does not by itself determine the velocity cυ

�
 of the mobile charges along the 
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circuit, since this velocity is related to the current generated by the source, which cur-
rent depends, in turn, on the resistance of the circuit, according to Ohm’s law.)  
      Now, the role of the part Eapp of the total emf (3) is to maintain the charge flow on 

C(t) that is generated by Eem . We thus anticipate that Eapp will also be independent of 

cυ
�

 (this is, e.g., the case in our previous example, where Eapp is equal to the voltage of 

the battery [1-3]). In conclusion,  
 

the total emf E(t) of a conducting loop C(t) is not dependent upon the velocity 

of motion of the mobile charges q along the loop.  
 
      This leads us to a further conclusion:  
 

The total emf E(t) of a conducting loop C(t) inside an e/m field is not depend-

ent upon the conductivity of the loop.  
 
This can be justified by noting that, by its definition, the force (2) does not include 
contributions from resistive forces that oppose a charge flow on C; it only contains 
e/m interactions that may contribute to the generation and preservation of a current in 
the circuit. Note, however, that the current itself does depend on the conductivity σ of 

C, according to Ohm’s law (J fσ=
��

) [3].  

      Alternatively, as argued above, the emf does not depend on cυ
�

. Now, in a steady-

state situation under given electrodynamic conditions (thus, for a given f
�

) this veloc-
ity is a linear function of the mobility µ of q, according to the empirical relation 

c fυ µ=
��

 (by which Ohm’s law is deduced). On the other hand, the conductivity of C 

is given by σ=qnµ. The density n of mobile charges, as well as the value of q, cannot 
affect the value of the emf since that quantity is defined per unit charge. We thus con-
clude that the emf of C cannot depend on µ, as well as on n and q; hence, E is inde-

pendent of σ.  
 
 
3.  Emf and the Faraday-Henry law  
 

Consider a region of space in which a (generally time-dependent) e/m field ( , )E B
� �

 
exists. Let C be a fixed conducting loop in this region. There is no additional applied 
force on C, so (3) reduces to E(t)=Eem(t). Furthermore, since C is stationary, ( , )r tυ

� �
 

vanishes identically and, by (4), Em(t)=0 and Eem(t)=  Ee(t). Thus, finally,  

 

E (t) ( , )
C

E r t dl= ⋅∫
���� �

�                                                (5) 

 
      By Stokes’ theorem,  
 

( )
C S

E dl E da⋅ = ∇× ⋅∫ ∫
��� ���� � �

�  
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where S is any open surface bounded by C (Fig. 2).  
 

S

C

da
���

da

dl
���

 
 

Figure 2 
 
Moreover, by the Faraday-Henry law,  
 

B
E

t

∂
∇× = −

∂

�
� �

                                                    (6) 

 
So, (5) yields  
 

E (t) Φ ( )mS

d d
B da t

dt dt
= − ⋅ = −∫

����
                                    (7) 

 
where  
 

Φ ( ) ( , )m S
t B r t da= ⋅∫

���� �
 

 
is the magnetic flux through C at time t. As commented in [1], relation (7) expresses a 
genuine physical law, not a mere consequence of the definition of the emf.  
 
 
4.  Motional emf due to a static magnetic field  
 

Let C(t) be a conducting loop inside a static magnetic field ( )B r
� �

 (Fig. 3). The time 
dependence of C indicates a motion and/or a deformation of the loop over time. We 
will show that the emf of C at time t is given by the expression  
 

E (t) = Em (t) = 
( )

[ ( ) ( )]
C t

r B r dlυ × ⋅∫
����� � �

�                                  (8) 
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r
�

dl
���

cυ
� +

( )rυ
� �

( )C t

O

( )B r
� �

 
 

Figure 3 
 
      Let q be a mobile charge (say, a conventionally positive free electron) located at 

the position r
�

 (relative to our coordinate system) of the loop element dl
���

 at time t. As 

in Sec. 1, we denote the velocity of dl
���

 with respect to our frame of reference by 

( )rυ
� �

, the velocity of q along C by cυ
�

, and the total velocity of q relative to our frame 

by tot cυ υ υ= +
� � �

.  

      Since there is no electric field in the region of interest,  
 

Ee (t) ( , ) 0
C

E r t dl≡ ⋅ =∫
���� �

�     and    Eem (t) =  Em (t)                            (9) 

 

Also, if appf
�

 is the applied force per unit charge at the position of q, at time t,  

 

Eapp (t) 
( )

( , )appC t
f r t d l= ⋅∫

���� �

�                                             (10) 

 
The role of the applied force is to keep the current flowing. This will happen for as 
long as the loop C is moving or/and deforming, so that ( )rυ

� �
 is not identically zero for 

all t. Why is an external force needed to keep C moving or deforming? Let us care-
fully analyze the situation.  
      The magnetic force on q is  
 

( )m totF q Bυ= ×
� ��

    so that    m totf Bυ= ×
� ��

 . 

 
Now, imagine a temporary, local 3-dimensional rectangular system of axes (x, y, z) at 
the location r

�
 of q at time t. We assume, without loss of generality, that the z-axis is 

in the direction of dl
���

. (The orientation of the mutually perpendicular x and y-axes on 
the plane normal to the z-axis may be chosen arbitrarily.) Then we may write  
 

, , ,m m x m y m z cf f f f f f⊥= + + ≡ +
� � � � � �

 

 

where ,c m zf f=
� �

 is the component of the magnetic force along the loop (i.e., in a 

direction parallel to dl
���

) while , ,m x m yf f f⊥ = +
� � �

 is the component normal to the loop 

(thus to dl
���

).  
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      In a steady-state situation (steady current flow) cf
�

 is counterbalanced by the resis-

tive force that opposes charge motion along C (as mentioned before, this latter force 
does not contribute to the emf). However, to counterbalance the normal component 

f⊥
�

 some external action (say, by our hand that moves or deforms the loop C) is 
needed in order for C to keep moving or deforming. This is precisely what the applied 

force appf
�

 does. Clearly, this force must be normal to C at each point of the loop. 

From (10) we then conclude that  
 

Eapp(t) = 0 . 

 
Combining this with (3), (4) and (9), we finally verify the validity of (8).  
      It can be shown [1,3] directly from (8) that  
 

E (t) Φ ( )m

d
t

dt
= −                                                  (11) 

 
where Φm(t) is the magnetic flux through C at time t. This looks like (7) for a fixed 
geometrical loop in a time-dependent e/m field, although the origins of the two rela-
tions are different. Indeed, equation (11) is a direct consequence of the definition of 
the emf and may be derived from (8) essentially by mathematical manipulation (see, 
e.g., the Appendix in [1]). On the contrary, to derive (7) the Faraday-Henry law (6) 
was used. This is an experimental law, hence so is the expression (7) for the emf. In 
other words, relation (7) is not a mere mathematical consequence of the definition of 
the emf.  
 
 
5.  An example  
 
Consider a metal bar (ab) of length h, sliding parallel to itself with constant speed υ 
on two parallel rails that form part of a U-shaped wire, as shown in Fig. 4. A uniform 
magnetic field B

�
, pointing into the page, fills the entire region. A circuit C(t) of vari-

able size is formed by the rectangular loop (abcda).  
 

x

y

O
z⊙

x

h

I

+

.constυ =
�

dl
���

a

bc

d
B⊗
�

da
���

⊙

 
 

Figure 4 
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      In Fig. 4, the z-axis is normal to the plane of the wire and directed toward the 

reader. We call da
���

 an infinitesimal normal vector representing an element of the 
plane surface bounded by the wire (this vector is directed toward the reader, consis-
tently with the chosen counterclockwise direction of traversing the loop C). If ˆzu  is 

the unit vector on the z-axis, then the field and the surface element are written, respec-

tively, as ˆzB Bu= −
�

 (where | | .B B const= =
�

) and ˆ( ) zda da u=
���

.  

      The balance of forces is shown in Fig. 5 (by rf
�

 we denote the resistive force per 

unit charge, which does not contribute to the emf). Note that this diagram concerns 
only the moving part (ab) of the circuit, since it is in this part only that the velocity υ

�
 

and the applied force appf
�

 are nonzero.  

 

θ
θ

dl
���

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�B⊗

�

cυ υ⊥
� �

x
 

 
Figure 5 

 
      The emf of the circuit at time t is, according to (8),   
 

E (t) 
( )

( )
b b

C t a a
B dl B dl B dl Bhυ υ υ υ= × ⋅ = = =∫ ∫ ∫
�����

�  . 

 
Alternatively, the magnetic flux through C is  
 

( ) ( ) ( )
( )m S t S t S t
t B da B da B da BhxΦ = ⋅ = − = − = −∫ ∫ ∫

����
 

 
(where x is the momentary position of the bar at time t) so that, by (11),  
 

E (t) ( )m
d d x

t Bh Bh
dt dt

υ= − Φ = =  . 

 
      Now, the role of the applied force is to counterbalance the x-component of the 
magnetic force in order that the bar may move at constant speed in the x direction. 
Thus,  
 

cos cosapp m tot cf f B Bθ υ θ υ= = =  . 

 
We note that, although fapp depends on the speed υc of a mobile charge along the bar, 
the associated part of the emf is itself independent of υc ! Specifically, as argued in 
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Sec. 4, Eapp(t)=0. On the other hand, in this particular example the work w of fapp for a 

complete tour around the circuit is equal to the total emf (cf. [2]): w=E=Bhυ. This 

equality, however, is accidental and does not reflect a more general relation between 
the work per unit charge and the emf. (Another such “accidental” case is the battery-
resistance circuit [1-3].)  
 
 
6.  Summary  
 
This article is an addendum to our study of the concept of the electromotive force 
(emf), as this concept was pedagogically approached in previous publications [1,2]. 
We have focused on some particular aspects of the subject that we felt are important 
enough to merit further discussion. Let us review them:  
      1. For a conducting loop C inside an e/m field, we explained why the emf of C 
does not depend on the conductivity of the loop. As “obvious” as this statement may 
seem, one still needs to justify it physically and to demonstrate its consistency with 
Ohm’s law.  
      2. We expressed the Faraday-Henry law in terms of the emf of a closed conduct-
ing curve inside a time-dependent e/m field.  
      3. We studied the case of motional emf in some detail (see also [2-5]). Particularly 
important is the role of the applied force in this case. In addition to analyzing this role 
and, in the process, deriving an explicit expression for the emf, we explained why the 
physics of the situation is different from that of the Faraday-Henry law, despite the 
similar-looking forms of the emf in the two cases. Of course, as Relativity has shown, 
this similarity is anything but coincidental!  
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Abstract 
 
Certain subtleties concerning the work done by a time-dependent force field are discussed. In 
particular, it is explained why such a field cannot be conservative even if it is irrotational and 
its region of action has the proper topological properties.  
 
 

1.  Introduction 
 
In a previous article [1] a common misconception regarding the electromotive force 
(emf) of electrodynamics was discussed. Specifically, it was explained why it is incor-
rect to define the emf as work (per unit charge), in general. In simple terms, the emf is 
always determined for a given instant of time, whereas in determining the work of a 
force field on a particle (here, an electric charge) moving along a space curve, time is 
allowed to flow during the motion. Of course, there are exceptional situations where 
the emf of a circuit does indeed coincide in value with work per unit charge for a 
complete tour around the circuit [1].  
      From the point of view of classical mechanics the case of time-dependent forces 
and their work constitutes an interesting problem. In the present article we highlight 
certain aspects of this problem, focusing on subtleties that arise when one goes be-
yond the comfortable case of static force fields. Of course, the subject of time-
dependent forces and associated potentials is discussed in many standard textbooks of 
mechanics (see, e.g., [2-5]). Our aim here is to extend the discussion in these sources 
by adding a few comments that may help the student to further clarify the situation.  
      In Section 2 we define the work done by a time-dependent force field on a test 
particle and point out certain subtle points of this definition.  
      In Sec. 3 we discuss the relation between irrotational and conservative force 
fields. We explain why time-dependent fields cannot be conservative and do not lead 
to conservation of total mechanical energy.  
 

2.  Work along a space curve  
 
Consider a test particle of mass m moving in a region of space permeated by a force 
field F

�
. The particle is assumed to move along a space curve L extending from point 

A to point B (Fig. 1). We call r
�

 the position vector of m on L at time t, relative to the 
origin O of some inertial reference frame, and we denote by d r

�
 the elementary dis-

placement of m along L in an infinitesimal time interval dt.  
 

                                                 
1 This article is an addendum to the published article [1].  
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• •

L

O

r
�

dr
�

A B

 
 

Figure 1 
 
      The work done by the field F

�
 on m from A to B is  

 

                                                          
L

W F d r= ⋅∫
� �

        (1) 

 
To compute the line integral in (1) one needs to have a mathematical description of 
the curve L. Of course, a parametric representation of L is possible by using any con-
venient parameter whose values correspond to the various points r

�
 of L. However, a 

mere geometrical description of L may not be sufficient in order to specify the work 
W, since it may be important to take into account the time at which the particle m 
passes through any given point of the curve. Thus, the most faithful parameterization 
of L in this regard is provided by the equation of motion of m, connecting the position 
r
�

 of the particle with the time t at which the particle passes from that position.  
      Let us assume the following mathematical description of the motion of m along 
the trajectory L:  
 

                          0 1( ) ;r t t t tφ= ≤ ≤
��

   with   0 1( ) , ( )A Bt r t rφ φ= =
� �� �

      (2) 

 

Then, ( ) ( )d r d t t dtφ φ ′= =
� ��

. The complexity of the integration (1) now depends on the 

nature of the force field F
�

; specifically, the dependence or not of this field on time.  

      For a static force field ( )F r
� �

, we have:  
 

                                                 ( )( )1

0

( )
t

t
W F t t dtφ φ′= ⋅∫

� ��
                 (3) 

 
This quantity is independent of the parameterization of the curve L, i.e., independent 
of the specific functional dependence of r

�
 on t as expressed by (2). Indeed, the sub-

stitution ( )t rφ =
� �

 transforms the integral (3) into  
 

                                                       ( )
B

A
W F r d r= ⋅∫

� � �
          (4) 

 
Evidently, the integral on the right depends only on the geometry of the space curve L, 
not on the specific parameterization of this curve. In conclusion,  
 

in a static force field, work is a well-defined quantity depending on the path 
followed by the particle in the field.  

 
      Things become a lot more complicated in the case of a time-dependent force field 

( , )F r t
� �

. The work on the particle m along the curve L is written  
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                                              ( , )
B

L A
W F d r F r t d r= ⋅ = ⋅∫ ∫

� �� � �
       (5) 

 
It should be noted carefully that, inside the integral, the variables r

�
 and t are not in-

dependent of each other since the former is a function of the latter through the param-
eterization (2) of L, i.e., in accordance with the specific equation of motion of m along 
L. Relation (5) is written  
 

                                                ( )( )1

0

, ( )
t

t
W F t t t dtφ φ′= ⋅∫

� ��
               (6) 

 

This time the substitution ( )t rφ =
� �

 will not eliminate t in favor of r
�

. Thus, the work 
W is no longer independent of the parameterization of the curve L by the equation of 
motion of m. The sole geometry of L is not sufficient in order to determine W !  

      To understand this better, consider the elementary work dW F d r= ⋅
� �

. In the case 

of a static force field, this is written ( )dW F r d r= ⋅
� � �

. For a given equation of motion 

of the form (2), dW depends only implicitly on t through the relation ( )r tφ=
��

. Thus, 
for a given elementary displacement of the particle along L, dW depends solely on the 
position r

�
 of m on the curve, not on the time at which the particle passes by that posi-

tion. As t varies from t0 to t1 , the position vector r
�

 traces out all curve points from A 
to B. Eventually, the total work W, given by (4), has a well-defined value independent 
of the parameterization of L. This work depends only on the geometry of the trajec-
tory L connecting A and B.  
      On the other hand, in the case of a time-dependent force field the elementary work 

is of the form ( , )dW F r t d r= ⋅
� � �

. Here, dW depends explicitly on t. Thus, for a given 
elementary displacement along L, dW depends not only on the position of the particle 
on L but also on the time the particle passes from that position. This, in turn, depends 

on the equation of motion ( )r tφ=
��

, i.e., on the specific parameterization of L. There-
fore the total work (5) is not a uniquely defined quantity but depends on the equation 
of motion along L.  
 

3.  Conservative and irrotational fields 
 

Let ( )F r
� �

 be a static force field. Generally speaking, this field is conservative if the 
work it does on a test particle m is path-independent, or equivalently, if  
 

                                                       ( ) 0
C

F r d r⋅ =∫
� � �

�                (7) 

 
for any closed path C within the field.  
      Let S be an open surface bounded by a given closed curve C in the field (Fig. 2). 
By Stokes’ theorem and by Eq. (7),  
 

                                          ( ) ( ) 0
C S

F r d r F da⋅ = ∇× ⋅ =∫ ∫
���� � �� �

�         (8) 
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In order for this to be true for every S bounded by C, the field ( )F r
� �

 must be irrota-
tional :  
 

                                                             0F∇× =
� �

            (9) 
 

S

C

dr
�

da
da
���

 
 

Figure 2 
 

      Conversely, an irrotational force field ( )F r
� �

 will also be conservative in a region 
of space that is simply connected [6,7]. Indeed, given any closed curve C in such a 
region, it is always possible to find an open surface S having C as its boundary. Then, 
if (9) is valid, the force is conservative in view of (8).  

      Given a conservative force field ( )F r
� �

, there exists a function ( )U r
�

 (potential en-
ergy of the particle m) such that  
 

                                                            F U= − ∇
� �

                   (10) 
 
The work W from point A to point B in the field is then equal to  
 

                                       ( ) ( ) ( )
B

A BA
W F r d r U r U r= ⋅ = −∫

� � � � �
                 (11) 

 
      As is well known (and as will be shown analytically below) the total mechanical 
energy of m is constant during the particle’s motion inside the force field. This energy 
is the sum E=T+U of the kinetic energy T=mv2/2 (where v is the speed of the particle) 
and the potential energy U.  

      Consider now a time-dependent force field ( , )F r t
� �

 in a simply connected region Ω 
of space. This field is assumed to be irrotational for all values of t :  
 

                                                          ( , ) 0F r t∇× =
� � �

                  (12) 
 
Can we conclude that the field F

�
 is conservative?  

      It is tempting but incorrect (!) to argue as follows: Let C be an arbitrary closed 
curve in Ω. Since Ω is simply connected, there is always an open surface S bounded 
by C. By Stokes’ theorem,  
 

                                         ( , ) ( ) 0
C S

F r t d r F da⋅ = ∇× ⋅ =∫ ∫
���� � �� �

�                    (13) 

 
for all values of t. This appears to imply that F

�
 is conservative. This is not so, how-

ever, for the following reason: For any fixed value of t, the integral  
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( ) ( , )
C

I t F r t d r= ⋅∫
� � �

�  

 
does not represent work. Indeed, I(t) expresses the integration of a function of two 
independent variables, r

�
 and t, over one of these variables (namely, r

�
), the other 

variable (t) playing the role of a “parameter” of integration which remains fixed. 
Thus, I(t) is evaluated for a given instant of time t and all values of F

�
, at the various 

points of C, must be recorded simultaneously at t.  
      On the other hand, in the integral representation of work,  
 

( , )
C

W F r t d r= ⋅∫
� � �

�  , 

 
time is assumed to flow as the test particle m travels along the closed curve C. In this 
case, r

�
 and t are no longer independent of each other but are connected through the 

equation of motion of m on C, which equation mathematically endows C with a cer-
tain parameterization. This complication never arises in the case of static fields, as we 
saw previously. We may thus conclude that  
 

a force field that is both static and irrotational in a simply connected region of 
space is conservative; a time-dependent force field cannot be conservative 
even if it is irrotational and its region of action is simply connected.  

 
      Finally, let us explain why a time-dependent force field does not lead to conserva-

tion of total mechanical energy. Consider again an irrotational force field ( , )F r t
� �

 [as 
defined according to (12)] in a simply connected region Ω. Then there exists a time-
dependent potential energy ( , )U r t

�
 of m, such that, for any value of t,  

 

                                                    ( , ) ( , )F r t U r t= − ∇
� �� �

                     (14) 
 

This time we will assume that ( , )F r t
� �

 is the total force on m. By Newton’s 2nd law, 
then,  

(where / ) 0
dv dv

m F v d r dt m U
dt dt

= = ⇒ +∇ =
� �
� �� �

 . 

 
Taking the dot product with v

�
, we have:  

 

0
dv

mv v U
dt

⋅ + ⋅∇ =
�

�� �
 . 

Now,  
21 1

( ) ( ) ( | | )
2 2

dv d d
v v v v v v

dt dt dt
⋅ = ⋅ = =
�

� � � �
 

and  
U

dU dt
U d r dU Ut

v U
dt dt dt t

∂
−

∇ ⋅ ∂∂
⋅∇ = = = −

∂

� �
��
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where we have used the fact that ( , )
U

dU r t U d r dt
t

∂
= ∇ ⋅ +

∂

�� �
. Hence, finally,  

 

21
0

2

d dU U
mv

dt dt t

∂  + − = ⇒  ∂ 
 

 

                                                       ( )
d U

T U
dt t

∂
+ =

∂
                      (15) 

 
where T=mv2/2. As seen from (15), the total mechanical energy (T+U) of m is not 
conserved unless ∂U/∂t=0, i.e., unless the force field is static.  
      Note that, for a time-dependent irrotational force field [defined according to (12)] 
the quantity  
 

                                       ( , ) ( , ) ( , )
B

A BA
F r t d r U r t U r t⋅ = −∫
� � � � �

,     

 
defined for any fixed t, does not represent the work done by this field on a particle m 
from A to B [comp. (11) for the case of a static force field]. That is,  
 

the work of a time-dependent irrotational force field cannot be expressed as 
the (negative) difference of the values of the corresponding time-dependent 
potential energy at the end points of the trajectory of a particle.  

 

4.  Summary 
 
Let us summarize our main conclusions:  
      1. In a static force field, the work done on a test particle is a well-defined quantity 
that depends on the geometrical characteristics of the particle’s trajectory in the field.  
      2. In a time-dependent force field, the geometry of the trajectory is not sufficient 
in order to determine work: one must also know the precise equation of motion of the 
particle along this trajectory, connecting the position of the particle with time. Thus, 
work is not a uniquely defined quantity in this case.  
      3. A static force field that is irrotational in a simply connected region of space is 
conservative.  
      4. A time-dependent force field cannot be conservative even if it is irrotational and 
its region of action has the proper topology.  
      5. The work of a time-dependent irrotational force field cannot be expressed as the 
difference of the values of the time-dependent potential energy at the end points of the 
trajectory of a particle.  
      6. Time-dependent force fields are incompatible with conservation of total me-
chanical energy.  
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Abstract. The charging capacitor is used as a standard paradigm for illustrating 
the concept of the Maxwell “displacement current”. A certain aspect of the  
problem, however, is often overlooked. It concerns the conditions for satisfaction 
of the Faraday-Henry law both in the interior and in the exterior of the capacitor. 
In this article the situation is analyzed and a recursive process is described for  
obtaining (at least approximate) solutions of Maxwell’s equations inside and out-
side the capacitor.  

 
1.  Introduction 

 
The charging capacitor is used as a standard paradigm for demonstrating the signifi-
cance of the Maxwell “displacement current” (see, e.g., [1-7]). The point is correctly 
made that, without this “current” term the static Ampère’s law would be incomplete 
with regard to explaining the conservation of charge as well as the existence of elec-
tromagnetic radiation. Furthermore, the line integral of the magnetic field around a 
closed curve would be an ill-defined concept (see Appendix II).  
      A certain aspect of the problem, however, is often overlooked in the educational 
literature. It concerns the satisfaction of the Faraday-Henry law both inside and out-
side the capacitor. Indeed, although care is taken to ensure that the expressions used 
for the electromagnetic (e/m) field satisfy the Ampère-Maxwell law, no such care is 
exercised with regard to the Faraday-Henry law. As it turns out, the usual formulas for 
the e/m field satisfy this latter law only in the special case where the capacitor is being 
charged at a constant rate. But, if the current responsible for charging the capacitor is 
time-dependent, this will also be the case with the magnetic field outside the capaci-
tor. This, in turn, implies the existence of an “induced” electric field in that region, 
contrary to the usual assertion that the electric field outside the capacitor is zero. 
Moreover, the time dependence of the magnetic field inside the capacitor is not com-
patible with the assumption that the electric field in that region is uniform, as the case 
would be in a static situation. Thus, the expressions usually given in the literature for 
the e/m field inside and outside a charging capacitor fail to satisfy the Faraday-Henry 
law in the case of a time-dependent current.  
      In this article we describe a method for finding expressions for the e/m field that 
properly satisfy the full set of Maxwell’s equations (including, of course, the Faraday-
Henry law) both inside and outside the capacitor. These solutions depend on two sca-
lar functions of space and time, which functions satisfy a certain system of partial dif-
ferential equations (PDEs). The time-dependent current that charges the capacitor ap-
pears as a sort of parametric function in this system.  
      We suggest a mathematical process for obtaining solutions of the above-
mentioned system of PDEs in the form of power series with respect to time. This al-
lows one to find approximate expressions for the e/m field in certain situations. For 
example, a slowly varying (thus almost time-independent) current allows for the 

                                                 
* This article extends the results of the published article [9].  
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“classical” (albeit incorrect in precise terms) solutions given in the literature, while a 
current that is almost linearly dependent on time (as may be assumed, in general, for 
any smoothly varying current in a very short time period) allows for new solutions 
that correct the standard expressions for the electric field while retaining the corre-
sponding expressions for the magnetic field.  
 

2.   Solutions of Maxwell’s equations inside the capacitor 
 
We consider a parallel-plate capacitor with circular plates of radius a, thus of area 
A=πa2. The space in between the plates is assumed to be empty of matter. The capaci-
tor is being charged by a time-dependent current I(t) flowing in the +z direction (see 
Fig. 1). The z-axis is perpendicular to the plates (the latter are therefore parallel to the 
xy-plane) and passes through their centers, as seen in the figure (by ̂ zu  we denote the 

unit vector in the +z direction).  

I I

Q+Q−

ˆzu

z

 
 

Figure 1 
 
      The capacitor is being charged at a rate dQ/dt=I(t), where +Q(t) is the charge on 
the right plate (as seen in the figure) at time t. If σ(t)=Q(t)/πa2=Q(t)/A is the surface 
charge density on the right plate, then the time derivative of σ is given by  
 

        
( ) ( )

( )
Q t I t

t
A A

σ
′

′ = =             (1) 

 
      We assume that the plate separation is very small compared to the radius a, so that 
the e/m field inside the capacitor is practically independent of z, although it does de-
pend on the normal distance ρ from the z-axis. In cylindrical coordinates (ρ, φ, z) the 
magnitude of the e/m field at any time t will thus only depend on ρ (due to the sym-
metry of the problem, this magnitude will not depend on the angle φ).  
      We assume that the positive and the negative plate of the capacitor of Fig. 1 are 
centered at z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the 
plate separation d is much smaller than the radius a of the plates. The interior of the 
capacitor is then the region of space with  0 ≤ ρ < a  and  0 < z < d.  

      The magnetic field inside the capacitor is azimuthal, of the form ˆ( , )B B t uϕρ=
�

. A 

standard practice in the literature is to assume that, at all t, the electric field in this re-
gion is uniform, of the form  
 

        
0

( )
ˆz

t
E u

σ
ε

=
�

                (2) 

 
while everywhere outside the capacitor the electric field vanishes. With this assump-
tion the magnetic field inside the capacitor is found to be [2,3,6]  
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        0 0
2

( ) ( )
ˆ ˆ

22

I t I t
B u u

Aa
ϕ ϕ

µ ρ µ ρ
π

= =
�

             (3) 

 
      Expressions (2) and (3) must, of course, satisfy the Maxwell system of equations 
in empty space, which system we write in the form [1,8]  
 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇⋅ = ∇× =

∂

�
� � � �

�
� � � �

           (4) 

 
By using cylindrical coordinates (see Appendix I) and by taking (1) into account, one 
may show that (2) and (3) satisfy three of Eqs. (4), namely, (a), (b) and (d). This is not 
the case with the Faraday-Henry law (4c), however, since by (2) and (3) we find that 

0E∇× =
� �

, while  
 

        0 ( )
ˆ

2

I tB
u

t A ϕ
µ ρ′∂

=
∂

�

 .  

 
An exception occurs if the current I is constant in time, i.e., if the capacitor is being 
charged at a constant rate, so that I΄(t)=0. This is actually the assumption silently or 
explicitly made in many textbooks (see, e.g., [2], Chap. 21). But, for a current I(t) 
with arbitrary time dependence, the pair of fields (2) and (3) does not satisfy the third 
Maxwell equation.  
      To remedy the situation and restore the validity of the full set of Maxwell’s equa-
tions in the interior of the capacitor, we must somehow correct the above expressions 
for the e/m field. To this end we employ the following Ansatz, taking into account 
Lemma 1 in Appendix III:  
 

        

0

0

( )
ˆ( , ) ,

( )
ˆ( , ) ;

2

( ) ( ) /

z
t

E f t u

I t
B g t u

A

t I t A

ϕ

σ
ρ

ε

µ ρ
ρ

σ

 
= + 

 

 = + 
 

′ =

�

�
             (5) 

 
where f (ρ,t) and g(ρ,t) are functions to be determined consistently with the given cur-
rent function I(t) and the given initial conditions. It can be checked that the solutions 
(5) automatically satisfy the first two Maxwell equations (4a) and (4b). By the Fara-
day-Henry law (4c) and the Ampère-Maxwell law (4d) we get the following system of 
PDEs:  
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0

0 0

( )

2

1 ( )

I tf g

t A

g f

t

µ ρ
ρ

ρ
ε µ

ρ ρ

′∂ ∂
= +

∂ ∂

∂ ∂
=

∂ ∂

               (6) 

 
Note in particular that the “classical” solution with f (ρ,t)≡0 and g(ρ,t)≡0 is possible 
only if I΄(t)=0, i.e., if the current I is constant in time, which means that the capacitor 
is being charged at a constant rate.  
      The quantity (1/ρ)∂(ρg)/∂ρ in the second equation, having its origin at the expres-

sion for B∇×
� �

 in cylindrical coordinates, must tend to a finite limit for ρ→0 in order 
that the rot of the magnetic field be finite at the center of the capacitor. For this to be 
the case, ∂(ρg)/∂ρ must only contain terms of at least first order in ρ. This, in turn, re-
quires that g itself must be of at least first order (i.e., linear with no constant term) in ρ 
for all t, or else g must be identically zero. We must, therefore, require that  
 
        g (ρ,t) → 0  for  ρ→0              (7) 
 
for all t. Keeping this condition in mind, we can rewrite the system (6) in a more 
symmetric form:  
 

        

0

0 0

( )

2

( ) ( )

I tf g

t A

g f

t

µ ρ
ρ
ρ ρ

ε µ
ρ

′∂ ∂
= +

∂ ∂

∂ ∂
=

∂ ∂

              (8) 

 
      In principle, one needs to solve the system (8) for a given current I(t) and for 
given initial conditions. An alternative approach, leading to approximate solutions of 
various forms, is to expand all functions (i.e., f, g and I) in powers of time, t. We thus 
write:  
 

        
0

( ) n
n

n

I t I t
∞

=

=∑                                     (9a) 

        
0

( , ) ( ) n
n

n

f t f tρ ρ
∞

=

=∑                          (9b) 

        
0

( , ) ( ) n
n

n

g t g tρ ρ
∞

=

=∑                          (9c) 

 
Then, for example,  
 

        1
1

1 0

( ) ( 1)n n
n n

n n

I t nI t n I t
∞ ∞

−
+

= =

′ = = +∑ ∑ ,  etc.  

 
Obviously, In has dimensions of current × (time)–n, while fn and gn have dimensions of 
field intensity (electric and magnetic, respectively) × (time)–n.  
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      Substituting the series expansions (9) into the system (8), and equating coeffi-
cients of similar powers of t on both sides of the ensuing equations, we get a recursion 
relation in the form of a system of PDEs:  
 

        

[ ]

0
1 1

0 0 1

( ) ( 1) ( )
2

( ) ( 1) ( )

n n n

n n

f n g I
A

g n f

µ ρ
ρ ρ

ρ ρ ε µ ρ ρ

+ +

+

 ′ = + + 
 

′ = +

                       (10) 

 
for n=0,1,2,... All non-vanishing functions gn(ρ) are required to satisfy the boundary 
condition (7); i.e., gn(ρ)→0 for  ρ→0.  
      An obvious solution of the system (10) is the trivial solution fn(ρ)≡0 and gn(ρ)≡0 
for all n=0,1,2,..., corresponding to f(ρ,t)≡0 and g(ρ,t)≡0. For this to be the case, we 
must have In+1=0 for all n=0,1,2,..., which means that I(t)=I 0=constant (independent 
of t). This is the case typically treated in the literature, although the condition I=const. 
is usually not stated explicitly.  
      The simplest nontrivial solution of the problem is found by assuming that f and g 
are time-independent, i.e., are functions of ρ only. Then, by (9b) and (9c), f=f0(ρ) and 
g=g0(ρ), while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (10) for n=0 gives  
 

        [ ]0 1
0 0( ) and ( ) 0

2

I
f g

A

µ ρ
ρ ρ ρ ′′ = =      

 
with solutions  
 

        
2

0 1
0( )

4

I
f C

A

µ ρ
ρ = +    and   0( )g

λ
ρ

ρ
=  ,     

 
respectively. The boundary condition g0(ρ)→0 for  ρ→0 cannot be satisfied for λ≠0; 
we are thus compelled to set λ=0. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution 
of the system (8) is  
 

        
2

0 1( , ) , ( , ) 0
4

I
f t C g t

A

µ ρ
ρ ρ= + ≡                     (11) 

 
      As is easy to check, by the first of Eqs. (10) it follows that In=0 for n>1. Therefore 
I(t) is linear in t, i.e., is of the form I(t)=I 0+I1t. By assuming the initial condition 
I(0)=0, we have that I0=0 and  
 
        I(t) = I1 t                           (12) 
 
On the other hand, by integrating Eq. (1): σ΄(t)=I (t)/A, and by assuming that the ca-
pacitor is initially uncharged [σ(0)=0], we get:  
 

        
2

1( )
2

I t
t

A
σ =                          (13) 
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      Finally, by Eqs. (5), (11), (12) and (13) the e/m field in the interior of the capaci-
tor is  
 

        

2 2
1 0 1

0

0 1

ˆ ,
2 4

ˆ
2

z

I t I
E u

A A

I t
B u

A ϕ

µ ρ

ε

µ ρ

 
= + 

 
 

=

�

�

                       (14) 

 
where we have set C=0 since, in view of the assumed initial conditions, there is no 
electric field inside the capacitor if I1=0. In order for the solution (14) to be valid, the 
current I(t) charging the capacitor must vary linearly with time, according to (12).  
 

3.   Solutions of Maxwell’s equations outside the capacitor 
 
We recall that the positive and the negative plate of the capacitor of Fig. 1 are cen-
tered at z=0 and z=d, respectively, on the z-axis, where the plate separation d is much 
smaller than the radius a of the plates. The space exterior to the capacitor consists of 
points with  ρ > 0  and  z∉(0,d ), as well as points with  ρ > a  and  0 < z < d. (In the for-
mer case we exclude points on the z-axis, with ρ=0, to ensure the finiteness of our 
solutions in that region.) We assume that the current I(t) is of “infinite” extent and 
hence the magnitude of the e/m field is practically z-independent.  
      The e/m field outside the capacitor is usually described mathematically by the 
equations [2,3,6]  
 

        0 ( )
ˆ0 ,

2

I t
E B uϕ

µ
πρ

= =
� �

                       (15) 

 
As the case is with the standard solutions in the interior of the capacitor, the solutions 
(15) fail to satisfy the Faraday-Henry law (4c) (although they do satisfy the remaining 

three Maxwell equations), since 0E∇× =
� �

 while  
 

        0 ( )
ˆ

2

I tB
u

t ϕ
µ

πρ
′∂

=
∂

�

 .       

 
As before, an exception occurs if the current I is constant in time, i.e., if the capacitor 
is being charged at a constant rate, so that I΄(t)=0.  
      To find more general solutions that satisfy the entire set of the Maxwell equations, 
we work as in the previous section. Taking into account Lemma 2 in Appendix III, we 
assume the following general form of the e/m field everywhere outside the capacitor:  
 

        
0

ˆ( , ) ,

( )
ˆ( , )

2

zE f t u

I t
B g t uϕ

ρ

µ
ρ

πρ

=

 
= + 

 

�

�                         (16) 

 



 MAXWELL EQUATIONS FOR A CHARGING CAPACITOR 

 7 

where f and g are functions to be determined consistently with the given current func-
tion I(t). The solutions (16) automatically satisfy the first two Maxwell equations (4a) 
and (4b). By Eqs. (4c) and (4d) we get the following system of PDEs:  
 

        

0

0 0

( )

2

( ) ( )

I tf g

t

g f

t

µ
ρ πρ
ρ ρ

ε µ
ρ

′∂ ∂
= +

∂ ∂

∂ ∂
=

∂ ∂

                          (17) 

 
Again, the usual solution with f (ρ,t)≡0 and g(ρ,t)≡0 is possible only if I΄(t)=0, i.e., if 
the capacitor is being charged at a constant rate. Note also that, since now ρ≠0, the 
boundary condition (7) for g no longer applies.  
      As we did in the previous section, we seek a series solution of the system (17) in 
powers of t. We thus expand f, g and I as in Eqs. (9), substitute the expansions into the 
system (17), and compare terms with equal powers of t. The result is a new recursive 
system of PDEs:  
 

        

[ ]

0
1 1

0 0 1

( ) ( 1) ( )
2

( ) ( 1) ( )

n n n

n n

f n g I

g n f

µ
ρ ρ

πρ

ρ ρ ε µ ρ ρ

+ +

+

 ′ = + + 
 

′ = +

                     (18) 

 
for n=0,1,2,... Again, an obvious solution is the trivial solution fn(ρ)≡0 and gn(ρ)≡0 for 
all n=0,1,2,..., corresponding to f(ρ,t)≡0 and g(ρ,t)≡0. This requires that In+1=0 for all 
n=0,1,2,..., so that I(t)=I 0=constant (independent of t).  
      As in Sec. 2, we seek time-independent solutions for f and g, so that f=f0(ρ) and 
g=g0(ρ) while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (18) for n=0 gives  
 

        [ ]0 1
0 0( ) and ( ) 0

2

I
f g

µ
ρ ρ ρ

πρ
′′ = =     

 
with solutions  
 

        0 1
0( ) ln( )

2

I
f

µ
ρ κρ

π
=    and   0( )

2
g

λ
ρ

πρ
=  ,     

 
respectively (remember that ρ>0), where κ is a positive constant quantity having di-
mensions of inverse length, and where a factor of 2π has been put in g0(ρ) for future 
convenience. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution of the system (17) 
is  
 

        0 1( , ) ln( ) , ( , )
2 2

I
f t g t

µ λ
ρ κρ ρ

π πρ
= =                     (19) 

 
      By the first of Eqs. (18) it follows that In=0 for n>1. Therefore I(t) is linear in t, of 
the form I(t)=I 0+I1t. By assuming the initial condition I(0)=0, we have that I0=0 and  
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        I(t) = I1 t                           (20) 
 
In view of the above results, the e/m field (16) in the exterior of the capacitor is  
 

        

0 1

0 1

ˆln( ) ,
2

ˆ
2

z

I
E u

I t
B uϕ

µ
κρ

π
µ λ

πρ

=

+
=

�

�
                      (21) 

 
For this solution to be valid, the current I(t) must vary linearly with time.  
      By comparing Eqs. (14) and (21) we observe that the value of the electric field 
inside the capacitor does not match the value of this field outside for ρ=a, where a is 
the radius of the capacitor. This discontinuity of the electric field at the boundary of 
the space occupied by the capacitor is a typical characteristic of capacitor problems, in 
general. On the other hand, in order that the magnetic field in the strip 0 < z < d be 
continuous for ρ=a, the expression for B

�
 in (21) must match the corresponding ex-

pression in (14) upon substituting ρ=a and by taking into account that A=πa2. This 
requires that we set λ=0 in (21), so that this equation finally becomes  
 

        

0 1

0 1

ˆln( ) ,
2

ˆ
2

z

I
E u

I t
B uϕ

µ
κρ

π
µ

πρ

=

=

�

�
                      (22) 

 
4.   Discussion 

 
As we have seen, expressions for the e/m field inside and outside a charging capacitor 
may be sought in the general form given by Eqs. (5) and (16), respectively. These ex-
pressions contain two unknown functions f(ρ,t) and g(ρ,t) which, in view of Max-
well’s equations, satisfy the systems of PDEs (8) and (17). These PDEs, in turn, admit 
series solutions in powers of t, of the form (9), where it is assumed that the current I(t) 
itself may be expanded in this fashion.  
      The coefficients of expansion of f and g may be determined, in principle, by 
means of the recursion relations (10) and (18), both of which are of the general form  
 

        
[ ]

[ ]
1 1

0 0 1

( ) ( 1) ( ) ( )

( ) ( 1) ( )

n n n

n n

f n g h I

g n f

ρ ρ ρ

ρ ρ ε µ ρ ρ

+ +

+

′ = + +

′ = +
                     (23) 

 
This is not an easy system to integrate, so we are compelled to make certain ad hoc 
assumptions. Suppose, e.g., that we seek a solution such that fn(ρ)=0 and gn(ρ)=0 for 
n>k (k≥0). It then follows from the first of Eqs. (23) that In+1=0 for n>k or, equiva-
lently, In=0 for n>k+1. Thus, if k=0, I(t) must be linear in t; if k=1, I(t) must be quad-
ratic in t; etc.  
      For a current varying sufficiently slowly with time, we may approximately assume 
that In=0 for n>0, so that I(t)=I 0=const. This allows for the possibility that f and g 
vanish identically, as is effectively assumed (though not always stated explicitly) in 
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the literature. On the other hand, any smoothly varying I(t) may be assumed to vary 
linearly with time for a very short time period. Then, a solution of the form (14) and 
(22) is admissible.  
      There are several aspects of the solutions described by Eqs. (14) and (22) that may 
look unphysical: (a) the electric field in (22) apparently diverges for ρ→∞; (b) the 
magnetic field in both (14) and (22) diverges for t→∞; (c) although, by assumption, 
there are no charges at the interface between the interior and the exterior of the ca-
pacitor (i.e., on the cylindrical surface defined by 0< z < d and ρ=a) the electric field is 
non-continuous on that surface, contrary to the general boundary conditions required 
by Maxwell’s equations; (d) the constant κ in (22) appears to be arbitrary. We may 
thus use the above solutions only as approximate ones for values of ρ not much larger 
than the radius a of the plates, as well as for short time intervals. (Note that ρ has to be 
much smaller than the length of the wire that charges the capacitor if this wire is to be 
considered of “infinite” length, hence if the external e/m field is to be regarded as z-
independent.) We may smoothen the discontinuity problem of the electric field for 
ρ=a by assuming that this field is continuous at t=0, i.e., at the moment when the 
charging of the capacitor begins. By setting ρ=a in (14) and (22) and by equating the 
corresponding expressions for E

�

 we may then determine the value of the constant κ in 
(22). The result is:  κ=e1/2/a.  
      For an enlightening discussion of the subtleties concerning the e/m field produced 
by an infinitely long straight current, the reader is referred to Example 7.9 of [1].  
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Appendix I. Vector operators in cylindrical coordinates 

 
Let A
�

 be a vector field, expressed in cylindrical coordinates (ρ, φ, z) as  
 

        ˆ ˆ ˆ( , , ) ( , , ) ( , , )z zA A z u A z u A z uρ ρ ϕ ϕρ ϕ ρ ϕ ρ ϕ= + +
�

 . 

 
The div and the rot of this field in this system of coordinates are written, respectively, 
as follows:  
 

        
1 1

( ) z
A A

A A
z

ϕ
ρρ

ρ ρ ρ ϕ

∂ ∂∂
∇⋅ = + +

∂ ∂ ∂

��
 , 

 

        
1 1

ˆ ˆ ˆ( )z z
z

A A AA A
A u u A u

z z
ϕ ρ ρ

ρ ϕ ϕρ
ρ ϕ ρ ρ ρ ϕ

∂ ∂ ∂     ∂ ∂ ∂
∇× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     

��
 . 

 
In particular, if the vector field is of the form  
 

        ˆ ˆ( ) ( )z zA A u A uϕ ϕρ ρ= +
�

 ,    

 

then  0A∇⋅ =
��

.   



 C. J. PAPACHRISTOU 

 10 

Appendix II.  Charging capacitor: The “textbook” ap proach 
 
When writing the Ampère-Maxwell law in its integral form, one must carefully define 
the concept of the total current through a loop C (where by “loop” we mean a closed 
curve in space).  

      Proposition. Consider a region R of space within which the distribution of charge, 
expressed by the volume charge density, is time-independent. Let C be an oriented 
loop in R, and let S be any open surface in R bordered by C and oriented accordingly. 

We define the total current through C as the surface integral of the current density J
�

 
over S :  
 

        in S
I J da= ⋅∫

����
                        (A.1) 

 
Then, the quantity I in has a well-defined value independent of the particular choice of 
S (that is, I in is the same for all open surfaces S bounded by C ).  

      Proof. By the equation of continuity for the electric charge (see, e.g., [8], Chap. 6) 
and by the fact that the charge density inside the region R is static, we have that 

0J∇⋅ =
� �

. Therefore, within this region of space the current density has the properties 

of a solenoidal field. In particular, the value of the surface integral of J
�

 will be the 
same for all open surfaces S sharing a common border C.  

      As an example, let us consider a circuit carrying a time-dependent current I(t). If 
the circuit does not contain a capacitor, no charge is piling up at any point and the 
charge density at any elementary segment of the circuit is constant in time. Moreover, 
at each instant t, the current I is constant along the circuit, its value changing only 
with time. Now, if C is a loop encircling some section the circuit, as shown in Fig. 2, 
then, at each instant t, the same current I(t) will pass through any open surface S bor-
dered by C. Thus, the integral in (A.1) is well defined for all t, assuming the same 
value I in=I (t) for all S.  
 

I I

C S

 
 

Figure 2 
 
      Things change if the circuit contains a capacitor that is charging or discharging. It 
is then no longer true that the current I(t) is constant along the circuit; indeed, I(t) is 
zero inside the capacitor and nonzero outside. Thus, the value of the integral in (A.1) 
depends on whether the surface S does or does not contain points belonging to the in-
terior of the capacitor.  
      Figure 3 shows a simple circuit containing a capacitor that is being charged by a 
time-dependent current I(t). At time t, the plates of the capacitor, each of area A, carry 
charges ±Q(t).  
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I I

C

1S

2S

Q+Q−

û

 

Figure 3 
 
      Assume that we encircle the current I by an imaginary plane loop C parallel to the 
positive plate and oriented in accordance with the “right-hand rule”, consistently with 
the direction of I (this direction is indicated by the unit vector û ). The “current 
through C ” is here an ill-defined notion since the value of the integral in Eq. (A.1) is 
I in=I  for the flat surface S1 and I in=0 for the curved surface S2. This, in turn, implies 
that Ampère’s law of magnetostatics [1-4,8] cannot be valid in this case, given that, 

according to this law, the integral of the magnetic field B
�

 along the loop C, equal to 
µ0I in , would not be uniquely defined but would depend on the choice of the surface S 
bounded by C.  

      Maxwell restored the single-valuedness of the closed line integral of B
�

 by intro-
ducing the so-called displacement current, which is essentially the rate of change of a 
time-dependent electric field:  
 

        0 0d d dS S

E E
J I J da da

t t
ε ε

∂ ∂
= ⇔ = ⋅ = ⋅

∂ ∂∫ ∫
� �

��� ���� �
                 (A.2) 

 
The Ampère-Maxwell law reads:  
 

        
0 0 0

0 0 0 0( )in d inC S

E
B J

t

E
B dl I da I I

t

µ ε µ

µ ε µ µ

∂
∇× = + ⇔

∂

∂
⋅ = + ⋅ ≡ +

∂∫ ∫

�
� � �

�
��� ����

�

                 (A.3) 

 
where I in is given by Eq. (A.1).  
      Now, the standard “textbook” approach to the charging capacitor problem goes as 
follows: Outside the capacitor the electric field vanishes everywhere, while inside the 
capacitor the electric field is uniform – albeit time-dependent – and has the static-
field-like form  
 

        
0 0

( ) ( )
ˆ ˆ

t Q t
E u u

A

σ
ε ε

= =
�

                     (A.4) 
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where σ(t)=Q(t)/A is the surface charge density on the positive plate at time t. This 
density is related to the current I that charges the capacitor by  
 

        
( ) ( )

( )
Q t I t

t
A A

σ
′

′ = =                        (A.5) 

 
(the prime indicates differentiation with respect to t). Thus, inside the capacitor,  
 

        
0 0

( ) ( )
ˆ ˆ

E t I t
u u

t A

σ
ε ε
′∂

= =
∂

�

                       (A.6) 

 
Outside the capacitor the time derivative of the electric field vanishes everywhere and, 
therefore, so does the displacement current.  
      Now, on the flat surface S1 the total current through C is (I+I d)in =  I+0 =  I(t). The 
Ampère-Maxwell law (A.3) then yields:  
 

        0 ( )
C

B dl I tµ⋅ =∫
����

                       (A.7) 

 
On the curved surface S2 the total current through C is (I+I d)in =  0+Id,in =  Id,in , where 
the quantity on the right assumes a nonzero value only for the portion S2΄ of S2 that 
lies inside the capacitor. This quantity is equal to  
 

        
2 2

, 0
( )

ˆd in S S

E I t
I da u da

t A
ε

′ ′

∂
= ⋅ = ⋅

∂∫ ∫
�
��� ���

                   (A.8) 

 

2S

da
��� û

ˆda u da⊥ = ⋅
��� plate of area 

  (side view)

A

Q+

û

 
Figure 4 

 
The dot product in the integral on the right of (A.8) represents the projection of the 

surface element da
���

 onto the axis defined by the unit vector û  (see Fig. 4). This is 
equal to the projection da⊥ of an elementary area da of S2΄ onto the flat surface of the 
plate of the capacitor. Eventually, the integral on the right of (A.8) equals the total 
area A of the plate. Hence, Id,in=I (t) and, given that I in=0 on S2 , the Ampère-Maxwell 
law (A.3) again yields the result (A.7).  
      So, everything works fine with regard to the Ampère-Maxwell law, but there is 
one law we have not taken into account so far; namely, the Faraday-Henry law! Ac-
cording to that law, a time-changing magnetic field is always accompanied by an elec-
tric field (or, as is often said, “induces” an electric field). So, the electric field outside 
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the capacitor cannot be zero, as claimed previously, given that the time-dependent 
current I(t) is expected to generate a time-dependent magnetic field. For a similar rea-
son, the electric field inside the capacitor cannot have the static-field-like form (A.4) 
(there must also be a contribution from the rate of change of the magnetic field be-
tween the plates).  
      An exception occurs if the current I that charges the capacitor is constant in time 
(i.e., if the capacitor is being charged at a constant rate) since in this case the magnetic 
field will be static everywhere. But, in the general case where I(t)≠constant, the pre-
ceding discussion regarding the charging capacitor problem needs to be revised in or-
der to take into account the entire set of Maxwell’s equations; in particular, the Am-
père-Maxwell law as well as the Faraday-Henry law.  
 

Appendix III. General form of the electric field 
 
To justify the general expression for the electric field implied in the Ansatz (5) used to 
find solutions of Maxwell’s equations inside the capacitor, we need to prove the fol-
lowing:  
 
      Lemma 1. If the magnetic field inside the capacitor is azimuthal, of the form  
 

        ˆ( , )B B t uϕρ=
�

                        (A.9) 

 
then the electric field (also assumed dependent on ρ and t) is of the form  
 

        ˆ( , ) zE E t uρ=
�

                        (A.10) 

 
      Proof. Let  
 

        ˆ ˆ ˆ( , ) ( , ) ( , )z zE E t u E t u E t uρ ρ ϕ ϕρ ρ ρ= + +
�

                  (A.11)    

 
Then (cf. Appendix I) from Gauss’ law (4a) it follows that  
 

        
( )

( ) 0
t

E Eρ ρ
α

ρ
ρ ρ
∂

= ⇒ ≡
∂

                      (A.12) 

 
In order for the electric field to be finite at the center of the capacitor (i.e., for ρ=0) 
we must set α(t)≡0, so that Eρ(ρ,t)=0. On the other hand, the z-component of Fara-
day’s law (4c) yields  
 

        
( )

( ) 0
t

E Eϕ ϕ
β

ρ
ρ ρ
∂

= ⇒ ≡
∂

                     (A.13) 

 
Again, finiteness of the electric field for ρ=0 dictates that β(t)≡0, so that Eφ(ρ,t)=0. 
Eventually, only the z-component of the electric field is non-vanishing, in accordance 
with (A.10).  
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      The solutions outside the capacitor are subject to the restriction ρ>0. The expres-
sion for the electric field implied in the Ansatz (16) is based on the following observa-
tion:  
 
      Lemma 2. If the magnetic field outside the capacitor is azimuthal, of the form 
(A.9), then the electric field (also assumed dependent on ρ and t) is again of the form 
(A.10).  
 
      Proof. Let the electric field be of the form (A.11). Then from Gauss’ law (4a) and 
from the z-component of Faraday’s law (4c) we get (A.12) and (A.13), respectively. 
On the other hand, from the ρ- and φ-components of the fourth Maxwell equation (4d) 
we find that ∂Eρ/∂t=0 and ∂Eφ/∂t=0, which means that α and β are actually constants. 
Thus the general form of the electric field outside the capacitor should be  
 

        ˆ ˆ ˆ( , ) zE u u f t uρ ϕ
α β

ρ
ρ ρ

= + +
�

 .     

 
Obviously, the function f (ρ,t) is related to the time-change of the magnetic field and is 
expected to vanish if the current I that charges the capacitor is constant. If the electric 
field itself is to vanish when I=constant, both constants α and β must be zero. Eventu-
ally, the electric field outside the capacitor must be of the general form (A.10).  
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Abstract. It is now widely accepted that the Maxwell equations of Electrodynamics 
constitute a self-consistent set of four independent partial differential equations.  
According to a certain school of thought, however, half of these equations – namely, 
those expressing the two Gauss’ laws for the electric and the magnetic field – are  
redundant since they can be “derived” from the remaining two laws and the principle 
of conservation of charge. The status of the latter principle is thus elevated to a law of 
Nature more fundamental than, say, Coulomb’s law. In this note we examine this line 
of reasoning and we propose an approach according to which the Maxwell equations 
may be viewed as a Bäcklund transformation relating fields and sources. The 
conservation of charge and the electromagnetic wave equations then simply express 
the integrability conditions of this transformation.  
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1.  Is Gauss’ law of Electrodynamics redundant? 
 
As we know, the Maxwell equations describe the behavior (that is, the laws of change 
in space and time) of the electromagnetic (e/m) field. This field is represented by the 

pair ( , )E B
 

, where E


 and B


 are the electric and the magnetic field, respectively. The 
Maxwell equations additionally impose certain boundary conditions at the interface of 
two different media, while certain other physical demands are obvious (for example, 
the e/m field must vanish away from its localized “sources”, unless these sources emit 
e/m radiation).  
      The Maxwell equations are a system of four partial differential equations (PDEs) 
that is self-consistent, in the sense that these equations are compatible with one 
another. The self-consistency of the system also implies the satisfaction of two 
important conditions that are physically meaningful:  
 

 the equation of continuity, related to conservation of charge; and  

 the e/m wave equation in its various forms.  
 
We stress that these conditions are necessary but not sufficient for the validity of the 

Maxwell system. Thus, although every solution ( , )E B
 

 of this system obeys a wave 
equation separately for the electric and the magnetic field, an arbitrary pair of fields 
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( , )E B
 

, each field satisfying the corresponding wave equation, does not necessarily 
satisfy the Maxwell system itself. Also, the principle of conservation of charge cannot 
replace any one of Maxwell’s equations. These remarks are justified by the fact that 
the aforementioned two necessary conditions are derived by differentiating the 
Maxwell system and, in this process, part of the information carried by this system is 
lost. [Recall, similarly, that cross-differentiation of the Cauchy-Riemann relations of 
complex analysis yields the Laplace equation (see Sec. 2) by which, however, we 
cannot recover the Cauchy-Riemann relations.]  
      The differential form of the Maxwell equations is  
 

        0

0 0 0

( ) ( )

( ) 0 ( )

B
a E c E

t

E
b B d B J

t




  


     




     



   

    
            (1) 

 

where , J


 are the charge and current densities, respectively (the “sources” of the 
e/m field). Both the fields and the sources are functions of the spacetime variables 
(x,y,z,t). Equations (1a) and (1b), which describe the div of the e/m field at any 
moment, constitute Gauss’ law for the electric and the magnetic field, respectively. In 
terms of physical content, (1a) expresses the Coulomb law of electricity, while (1b) 
rules out the possibility of existence of magnetic poles analogous to electric charges. 
Equation (1c) expresses the Faraday-Henry law (law of e/m induction) and Eq. (1d) 
expresses the Ampère-Maxwell law. Equations (1a) and (1d), which contain the 
sources of the e/m field, constitute the non-homogeneous Maxwell equations, while 
Eqs. (1b) and (1c) are the homogeneous equations of the system.  
      By taking the div of (1d) and by using (1a), we obtain the equation of continuity, 
which physically expresses the principle of conservation of charge (see, e.g., [1], Sec. 
9.6):  
 

        0J
t


   



 
                    (2) 

 
Although the charge and current densities on the right-hand sides of (1a) and (1d) are 
chosen freely and are considered known from the outset, relation (2) places a severe 
restriction on the associated functions. A different kind of differentiation of the 
Maxwell system (1), by taking the rot of (c) and (d), leads to separate wave equations 
(or modified wave equations, depending on the medium) for the electric and the 
magnetic field (see, e.g., [1], Sec. 10.4).  
      In most textbooks on electromagnetism (e.g., [2–6] and many more) the Maxwell 
equations (1) are treated as a consistent set of four independent PDEs. A number of 
authors, however, have doubted the independence of this system. Specifically, they 
argue that (1a) and (1b) – the equations for the div of the e/m field, expressing Gauss’ 
law for the corresponding fields – are redundant since they “may be derived” from 
(1c) and (1d) in combination with the equation of continuity (2). If this is true, 
Coulomb’s law – the most important experimental law of electricity – loses its status 
as an independent law and is reduced to a derivative theorem. The same can be said 
with regard to the non-existence of magnetic poles in Nature.  
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      As far as we know, the first who doubted the independent status of the two Gauss’ 
laws in electrodynamics was Julius Adams Stratton in his 1941 famous (and, 
admittedly, very attractive) book [7]. His reasoning may be described as follows:  
      By taking the div of (1c), the left-hand side vanishes identically while on the right-
hand side we may change the order of differentiation with respect to space and time 
variables. The result is:  
 

          0B
t


  



 
                 (3) 

 
On the other hand, by taking the div of (1d) and by using the equation of continuity 
(2), we find that  
 

        
0

0E
t




 
      

 
                        (4) 

 
And the line of argument continues as follows: According to (3) and (4), the 

quantities B
 

 and ( 0/E    
 

) are constant in time at every point (x,y,z) of the 

region Ω of space that concerns us. If we now assume that there has been a period of 
time during which no e/m field existed in the region Ω, then, in that period,  
 

        0B 
 

    and    0/ 0E     
 

                (5) 

 
identically. Later on, although an e/m field did appear in Ω, the left-hand sides in (5) 
continued to vanish everywhere within this region since, as we said above, those 
quantities are time constant at every point of Ω. Thus, by the equations for the rot of 
the e/m field and by the principle of conservation of charge – the status of which was 
elevated from derivative theorem to fundamental law of the theory – we derived Eqs. 
(5), which are precisely the first two Maxwell equations (1a) and (1b)!  
      According to this reasoning, the electromagnetic theory is not based on four 
independent Maxwell equations but rather on three independent equations only; 
namely, the Faraday-Henry law (1c), the Ampère–Maxwell law (1d), and the principle 
of conservation of charge (2).  
      What makes this view questionable is the assumption that, for every region Ω of 
space there exists some period of time during which the e/m field in Ω vanishes. This 
hypothesis is arbitrary and is not dictated by the theory itself. (It is likely that no such 
region exists in the Universe!) Therefore, the argument that led from relations (3) and 
(4) to relations (5) is not convincing since it was based on an arbitrary and, in a sense, 
artificial initial condition: that the e/m field is zero at some time t=0 and before.  
      Let us assume for the sake of argument, however, that there exists a region Ω 
within which the e/m field is zero for t < t0 and nonzero for t > t0 . The critical issue is 
what happens at t=t0 ; specifically, whether the functions expressing the e/m field are 
continuous at that moment. If they indeed are, the field starts from zero and gradually 
increases to nonzero values; thus, the line of reasoning that led from (3) and (4) to (5) 
is acceptable. There are physical situations, however, in which the appearance of an 
e/m field is so abrupt that it may be considered instantaneous. (For instance, the 
moment we connect the ends of a metal wire to a battery, an electric field suddenly 
appears in the interior of the wire and a magnetic field appears in the exterior. An 
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even more “dramatic” example is pair production in which a charged particle and the 
corresponding antiparticle are created simultaneously, thus an e/m field appears at that 
moment in the region.) In such cases the e/m field is non-continuous at t=t0 and its 
time derivative is not defined at this instant. Therefore, the line of reasoning that leads 
from (3) and (4) to (5) again collapses.  
      Note, finally, a circular reasoning in Stratton’s approach. It is assumed that, in a 
region Ω where no e/m field exists, the second of relations (5) is valid identically. 
This means that the vanishing of the electric field in Ω automatically implies the 
absence of electric charge in that region. This fact, however, follows from Gauss’ law 
(1a); thus it may not be used a priori as a tool for proving the law itself!  
      Regarding charge conservation, we mentioned earlier that Eq. (2) is derived from 
the two non-homogeneous Maxwell equations, namely, Gauss’ law (1a) for the 
electric field, and the Ampère–Maxwell law (1d). This means that the principle of 
conservation of charge is a necessary condition in order for the Maxwell system to be 
self-consistent. This condition is not sufficient, however, in the sense that it cannot 
replace any one of the system equations. Indeed, by the Ampère–Maxwell law and the 
conservation of charge there follows the time derivative of Gauss’ law for the electric 
field [Eq. (4)]; this, however, does not imply that Gauss’ law itself is valid. Of course, 
the reverse is true: because Gauss’ law is valid, the same is true for its time derivative.  
      Our view, therefore, is that the Maxwell equations form a system of four 
independent PDEs that express respective laws of Nature. Moreover, the self-
consistency of this system imposes two necessary (but not sufficient) conditions that 
concern the conservation of charge and the wave behavior of the time-dependent e/m 
field. In the next section the problem is re-examined from the point of view of 
Bäcklund transformations.  
 
 

2.  A Bäcklund-transformation view of Maxwell’s equations 
 
In previous articles [8,9] we suggested that, mathematically speaking, the Maxwell 
equations in empty space may be viewed as a Bäcklund transformation (BT) relating 
the electric and the magnetic field to each other. Let us briefly summarize a few key 
points regarding this idea. To begin with, let us see the simplest, perhaps, example of 
a BT.  
      The Cauchy-Riemann relations of complex analysis,  
 
        ux = vy    (a)        uy = – vx    (b)               (6) 

 
(where subscripts denote partial derivatives with respect to the indicated variables) 
constitute a BT for the Laplace equation,  
 
        wxx + wyy = 0                (7) 

 
Let us explain this: Suppose we want to solve the system (6) for u, for a given choice 
of the function v(x,y). To see if the PDEs (6a) and (6b) match for solution for u, we 
must compare them in some way. We thus differentiate (6a) with respect to y and 
(6b) with respect to x, and equate the mixed derivatives of u. That is, we apply the 
integrability condition (or consistency condition) (ux)y= (uy)x . In this way we 
eliminate the variable u and we find a condition that must be obeyed by v(x,y):  
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                        vxx + vyy = 0.       
 
Similarly, by using the integrability condition (vx)y= (vy)x to eliminate v from the 
system (6), we find the necessary condition in order that this system be integrable for 
v, for a given function u(x,y):  
 
                       uxx + uyy = 0.      
 
In conclusion, the integrability of system (6) with respect to either variable requires 
that the other variable satisfy the Laplace equation (7).  
      Let now v0(x,y) be a known solution of the Laplace equation (7). Substituting 
v=v0 in the system (6), we can integrate this system with respect to u. It is not hard to 
show (by eliminating v0 from the system) that the solution u will also satisfy the 
Laplace equation. As an example, by choosing the solution v0(x,y)=xy of (7), we find 
a new solution  u(x,y)= (x

2 –y2)/2 +C .  
      Generally speaking, a BT is a system of PDEs connecting two functions (say, u 
and v) in such a way that the consistency of the system requires that u and v 
independently satisfy the respective, higher-order PDEs F[u]=0 and G[v]=0. 
Analytically, in order that the system be integrable for u, the function v must be a 
solution of G[v]=0; conversely, in order that the system be integrable for v, the 
function u must be a solution of F[u]=0. If F and G happen to be functionally 
identical, as in the example given above, the BT is said to be an auto-Bäcklund 
transformation (auto-BT).  
      Classically, BTs are useful tools for finding solutions of nonlinear PDEs. In [8,9], 
however, we suggested that BTs may also be useful for solving linear systems of 
PDEs. The prototype example that we used was the Maxwell equations in empty 
space:  
 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


     




    



   

   
             (8) 

 
Here we have a system of four PDEs for two vector fields that are functions of the 
spacetime coordinates (x,y,z,t). We would like to find the integrability conditions 
necessary for self-consistency of the system (8). To this end, we try to uncouple the 

system to find separate second-order PDEs for E


 and B


, the PDE for each field 
being a necessary condition in order that the system (8) be integrable for the other 
field. This uncoupling, which eliminates either field (electric or magnetic) in favor of 
the other, is achieved by properly differentiating the system equations and by using 
suitable vector identities, in a manner similar in spirit to that which took us from the 
first-order Cauchy-Riemann system (6) to the separate second-order Laplace 
equations (7) for u and v.  
      As discussed in [8,9], the only nontrivial integrability conditions for the system 
(8) are those obtained by using the vector identities  
 

        2( ) ( )E E E      
      

                                            (9) 
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        2( ) ( )B B B     
      

                                                      (10) 
 
By these we obtain separate wave equations for the electric and the magnetic field:  
 

        
2

2
0 0 2

0
E

E
t

  
  




                                                          (11) 

 

        
2

2
0 0 2

0
B

B
t

  
  




                                                           (12) 

 
We conclude that the Maxwell system (8) in empty space is a BT relating the e/m 
wave equations for the electric and the magnetic field, in the sense that the wave 
equation for each field is an integrability condition for solution of the system in terms 
of the other field.  
      The case of the full Maxwell equations (1) is more complex due to the presence of 

the source terms , J


 in the non-homogeneous equations (1a) and (1d). As it turns 
out, the self-consistency of the BT imposes restrictions on the terms of non-
homogeneity as well as on the fields themselves. Before we get to this, however, let 
us see a simpler “toy” example that generalizes that of the Cauchy-Riemann relations.  
      Consider the following non-homogeneous linear system of PDEs for the functions 
u and v of the variables x, y, z, t :  
 
          ux = vy       (a)        uz = vz + p (x, y, z, t)     (c)     
                     (13) 
        uy = – vx    (b)         ut = vt + q (x, y, z, t)     (d)       
 
where p and q are assumed to be given functions. The necessary consistency 
conditions for this system are found by cross-differentiation of the system equations 
with respect to the variables x, y, z, t . In particular, by cross-differentiating (a) and (b) 
with respect to x and y we find that uxx+uyy=0 and vxx+vyy=0; hence both u and v must 
satisfy the Laplace equation (7). On the other hand, cross-differentiation of (c) and (d) 
with respect to z and t eliminates the fundamental variables u and v, yielding a 
necessary condition for the terms of non-homogeneity, p and q; that is,  pt – qz = 0. This 
means that the functions p and q cannot be chosen arbitrarily from the outset but must 
conform to this latter condition in order for the system (13) to have a solution.  
      As an application, let us take v=xy+zt (which satisfies the Laplace equation 
vxx+vyy=0) and let us choose p=2t and q=2z (so that pt – qz = 0). It is not hard to show 
that the solution of the system (13) for u is then given by  
 
          u (x, y, z, t) = (x2 – y2 ) / 2 + 3zt + C .   
 
Notice that  uxx+uyy=0, as expected.  
      Let us now return to the full Maxwell equations (1), which we now view as a BT 
relating the electric and the magnetic field and containing additional terms in which 
only the sources appear. As can be checked, there are now three nontrivial 
integrability conditions, namely, those found by applying the vector identities (9) and 
(10), as well as the identity  
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          0B  
  

                                 (14) 

 

(the corresponding one for E


 is trivially satisfied in view of the Maxwell system). By 
(9) and (10) we get the non-homogeneous wave equations  
 

        
2

2
0 0 02

0

1E J
E

t t
   


 

    
 

  
                                          (15) 

 

        
2

2
0 0 02

B
B J

t
  

    


  
                                               (16) 

 
Additionally, the integrability condition (14) yields the equation of continuity (2),  
 

        0J
t


   



 
                                   (17) 

 
expressing conservation of charge. Notice that, unlike (15) and (16), the condition 
(17) places a priori restrictions on the sources rather than on the fields themselves!  
      In any case, the three relations (15) – (17) are necessary conditions imposed by 
the requirement of self-consistency of the BT (1). As explained in Sec. 1, however, 
these conditions are not sufficient, in the sense that none of them may replace any 
equation in the system (1). In particular, the equation of continuity (17) may not be 
regarded as more fundamental than the Gauss law (1a) for the electric field.  
 
 

3.  Conclusions 
 
Let us summarize our main conclusions:  
      1. The Maxwell equations (1) express four separate laws of Nature. These 
equations are mathematically consistent with one another but constitute a set of 
independent vector relations, in the sense that no single equation may be deduced by 
the remaining three. In particular, the physical arguments that attempt to render the 
two Gauss' laws “redundant” are seen to be artificial and unrealistic.  
      2. We consider the Maxwell equations as physically acceptable simply because 
the system (1) and all conclusions mathematically drawn from it represent 
experimentally verifiable situations in Nature. Among these conclusions are the 
conservation of charge and the conservation of energy (Poynting’s theorem). It should 
be kept in mind, however, that conservation laws appear as consequences of the 
fundamental equations of a theory, and not vice versa. In particular, conservation of 
charge, in the form of the continuity equation (17), is a physically verifiable 
mathematical conclusion drawn from the Maxwell system (1) but it may not be 
regarded as more fundamental than any equation in the system. The same can be said 
with regard to the existence of e/m waves, expressed mathematically by Eqs. (11) and 
(12).  
      3. From a mathematical perspective, the Maxwell system (1) may be viewed as a 
Bäcklund transformation (BT) the integrability conditions of which (i.e., the 
necessary conditions for self-consistency of the system) yield separate (generally non-
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homogeneous) wave equations (15) and (16) for the electric and the magnetic field, 
respectively, as well as the equation of continuity (17). These integrability conditions 
are derived by differentiating the BT in different ways; hence they carry less 
information than the BT itself. Consequently, none of the integrability conditions may 
replace any equation in the Maxwell system.  
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Abstract 
 

Bäcklund transformations (BTs) are traditionally regarded as a tool for integrat-
ing nonlinear partial differential equations (PDEs). Their use has been recently 
extended, however, to problems such as the construction of recursion operators 
for symmetries of PDEs, as well as the solution of linear systems of PDEs. In this 
article, the concept and some applications of BTs are reviewed. As an example of 
an integrable linear system of PDEs, the Maxwell equations of electromagnetism 
are shown to constitute a BT connecting the wave equations for the electric and 
the magnetic field; plane-wave solutions of the Maxwell system are constructed 
in detail. The connection between BTs and recursion operators is also discussed.  

 
 

1.  Introduction 
 
Bäcklund transformations (BTs) were originally devised as a tool for obtaining solu-
tions of nonlinear partial differential equations (PDEs) (see, e.g., [1] and the refer-
ences therein). They were later also proven useful as recursion operators for con-
structing infinite sequences of nonlocal symmetries and conservation laws of certain 
PDEs [2–6].  
      In simple terms, a BT is a system of PDEs connecting two fields that are required 
to independently satisfy two respective PDEs [say, (a) and (b)] in order for the system 
to be integrable for either field. If a solution of PDE (a) is known, then a solution of 
PDE (b) is obtained simply by integrating the BT, without having to actually solve 
the latter PDE (which, presumably, would be a much harder task). In the case where 
the PDEs (a) and (b) are identical, the auto-BT produces new solutions of PDE (a) 
from old ones.  
      As described above, a BT is an auxiliary tool for finding solutions of a given (usu-
ally nonlinear) PDE, using known solutions of the same or another PDE. But, what if 
the BT itself is the differential system whose solutions we are looking for? As it turns 
out, to solve the problem we need to have parameter-dependent solutions of both 
PDEs (a) and (b) at hand. By properly matching the parameters (provided this is 
possible) a solution of the given system is obtained.  
      The above method is particularly effective in linear problems, given that paramet-
ric solutions of linear PDEs are generally not hard to find. An important paradigm of 
a BT associated with a linear problem is offered by the Maxwell system of equations 
of electromagnetism [7,8]. As is well known, the consistency of this system demands 
that both the electric and the magnetic field independently satisfy a respective wave 
equation. These equations have known, parameter-dependent solutions; namely, 
monochromatic plane waves with arbitrary amplitudes, frequencies and wave vectors 
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(the “parameters” of the problem). By inserting these solutions into the Maxwell sys-
tem, one may find the appropriate expressions for the “parameters” in order for the 
plane waves to also be solutions of Maxwell’s equations; that is, in order to represent 
an actual electromagnetic field.  
      This article, written for educational purposes, is an introduction to the concept of 
a BT and its application to the solution of PDEs or systems of PDEs. Both “classical” 
and novel views of a BT are discussed, the former view predominantly concerning 
integration of nonlinear PDEs while the latter one being applicable mostly to linear 
systems of PDEs. The article is organized as follows:  
      In Section 2 we review the classical concept of a BT. The solution-generating 
process by using a BT is demonstrated in a number of examples.  
      In Sec. 3 a different perception of a BT is presented, according to which it is the 
BT itself whose solutions are sought. The concept of conjugate solutions is intro-
duced.  
      As an example, in Secs. 4 and 5 the Maxwell equations in empty space and in a 
linear conducting medium, respectively, are shown to constitute a BT connecting the 
wave equations for the electric and the magnetic field. Following [7], the process of 
constructing plane-wave solutions of this BT is presented in detail. This process is, of 
course, a familiar problem of electrodynamics but is seen here under a new perspec-
tive by employing the concept of a BT.  
      Finally, in Sec. 6 we briefly review the connection between BTs and recursion 
operators for generating infinite sequences of nonlocal symmetries of PDEs.  
 
 

2.  Bäcklund Transformations: Classical Viewpoint 
 
Consider two PDEs P[u]=0 and Q[v]=0 for the unknown functions u and v, respec-
tively. The expressions P[u] and Q[v] may contain the corresponding variables u and 
v, as well as partial derivatives of u and v with respect to the independent variables. 
For simplicity, we assume that u and v are functions of only two variables x, t. Partial 
derivatives with respect to these variables will be denoted by using subscripts: ux , ut , 
uxx , utt , uxt , etc.  
      Independently, for the moment, also consider a pair of coupled PDEs for u and v:  
 

    1 2[ , ] 0 ( ) [ , ] 0 ( )B u v a B u v b= =                                          (1) 

 
where the expressions Bi [u,v] (i= 1,2) may contain u, v as well as partial derivatives 
of u and v with respect to x and t. We note that u appears in both equations (a) and 
(b). The question then is: if we find an expression for u by integrating (a) for a given 
v, will it match the corresponding expression for u found by integrating (b) for the 
same v? The answer is that, in order that (a) and (b) be consistent with each other for 
solution for u, the function v must be properly chosen so as to satisfy a certain consis-
tency condition (or integrability condition or compatibility condition).  
      By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for 
solution for v, for some given u, the function u must now itself satisfy a correspond-
ing integrability condition.  
      If it happens that the two consistency conditions for integrability of the system (1) 
are precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a 
Bäcklund transformation (BT) connecting solutions of P[u]=0 with solutions of 
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Q[v]=0. In the special case where P≡Q, i.e., when u and v satisfy the same PDE, the 
system (1) is called an auto-Bäcklund transformation (auto-BT) for this PDE.  
      Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able 
to find a BT connecting solutions u of this equation with solutions v of the PDE 
Q[v]=0 (if P≡Q , the auto-BT connects solutions u and v of the same PDE) and let 
v=v0(x,t) be some known solution of Q[v]=0. The BT is then a system of PDEs for the 
unknown u,  
 

0[ , ] 0 , 1,2iB u v i= =                                                (2) 

 
The system (2) is integrable for u, given that the function v0 satisfies a priori the re-
quired integrability condition Q[v]=0. The solution u then of the system satisfies the 
PDE P[u]=0. Thus a solution u(x,t) of the latter PDE is found without actually solving 
the equation itself, simply by integrating the BT (2) with respect to u. Of course, this 
method will be useful provided that integrating the system (2) for u is simpler than 
integrating the PDE P[u]=0 itself. If the transformation (2) is an auto-BT for the PDE 
P[u]=0, then, starting with a known solution v0(x,t) of this equation and integrating 
the system (2), we find another solution u(x,t) of the same equation.  
      Let us see some examples of the use of a BT to generate solutions of a PDE:  
 
      1. The Cauchy-Riemann relations of Complex Analysis,  
 

        ( ) ( )x y y xu v a u v b= = −                                         (3) 

 
(here, the variable t has been renamed y) constitute an auto-BT for the Laplace equa-
tion,  
 

        [ ] 0xx yyP w w w≡ + =                                                 (4) 

 
Let us explain this: Suppose we want to solve the system (3) for u, for a given choice 
of the function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we 
must compare them in some way. We thus differentiate (a) with respect to y and (b) 
with respect to x, and equate the mixed derivatives of u. That is, we apply the inte-
grability condition (ux)y=  (uy)x . In this way we eliminate the variable u and find the 
condition that must be obeyed by v(x,y):  
 

[ ] 0xx yyP v v v≡ + =  . 

 
Similarly, by using the integrability condition (vx)y=  (vy)x to eliminate v from the sys-
tem (3), we find the necessary condition in order that this system be integrable for v, 
for a given function u(x,y):  
 

[ ] 0xx yyP u u u≡ + =  . 

 
In conclusion, the integrability of system (3) with respect to either variable requires 
that the other variable must satisfy the Laplace equation (4).  
      Let now v0(x,y) be a known solution of the Laplace equation (4). Substituting 
v=v0 in the system (3), we can integrate this system with respect to u. It is not hard to 
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show (by eliminating v0 from the system) that the solution u will also satisfy the 
Laplace equation (4). As an example, by choosing the solution v0(x,y)=xy , we find a 
new solution  u(x,y)=  (x

2 –y2)/2 +C .  
 
      2. The Liouville equation is written  
 

        [ ] 0u u
xt xtP u u e u e≡ − = ⇔ =                                       (5) 

 
Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus 
sought by means of a BT. We consider an auxiliary function v(x,t) and an associated 
PDE,  
 

        [ ] 0xtQ v v≡ =                                                       (6) 

 
We also consider the system of first-order PDEs,  
 

        ( ) / 2 ( ) /22 ( ) 2 ( )u v u v
x x t tu v e a u v e b− ++ = − =                       (7) 

 
Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and 
eliminating (ut −vt) and (ux+vx) in the ensuing equations with the aid of (a) and (b), 
we find that u and v satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is 
a BT connecting solutions of (5) and (6). Starting with the trivial solution v=0 of (6), 
and integrating the system  
 

/ 2 /22 , 2 ,x t
u uu e u e= =  

 
we find a nontrivial solution of (5):  
 

( , ) 2 ln
2

x t
u x t C

+ 
=− − 

 
 . 

 
      3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., 
in the study of crystalline solids, in the transmission of elastic waves, in magnetism, 
in elementary-particle models, etc. The equation (whose name is a pun on the related 
linear Klein-Gordon equation) is written  
 

        [ ] sin 0 sinxt xtP u u u u u≡ − = ⇔ =                                    (8) 

 
The following system of equations is an auto-BT for the nonlinear PDE (8):  
 

        
1 1 1

( ) sin , ( ) sin
2 2 2 2x t

u v u v
u v a u v

a

− +   + = − =   
   

                    (9) 

 
where a (≠0) is an arbitrary real constant. [Because of the presence of a, the system 
(9) is called a parametric BT.] When u is a solution of (8) the BT (9) is integrable for 
v, which, in turn, also is a solution of (8): P[v]=0; and vice versa. Starting with the 
trivial solution  v=0  of  vxt=  sin v , and integrating the system  
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2
2 sin , sin ,

2 2x t
u u

u a u
a

= =  

 
we obtain a new solution of (8):  
 

( , ) 4arctan exp
t

u x t C ax
a

  = +  
  

 . 

 
 

3.  Conjugate Solutions and Another View of a BT 
 
As presented in the previous section, a BT is an auxiliary device for constructing so-
lutions of a (usually nonlinear) PDE from known solutions of the same or another 
PDE. The converse problem, where solutions of the differential system representing 
the BT itself are sought, is also of interest, however, and has been recently suggested 
[7,8] in connection with the Maxwell equations (see subsequent sections).  
      To be specific, assume that we need to integrate a given system of PDEs connect-
ing two functions u and v:  
 

        [ , ] 0 , 1,2iB u v i= =                                                (10) 

 
Suppose that the integrability of the system for both functions requires that u and v 
separately satisfy the respective PDEs  
 

        [ ] 0 ( ) [ ] 0 ( )P u a Q v b= =                                        (11) 
 
That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, 
that these PDEs possess known (or, in any case, easy to find) parameter-dependent 
solutions of the form  
 

        ( , ; , , ) , ( , ; , , )u f x y v g x yα β κ λ= =… …                                (12) 
 
where α, β, κ, λ, etc., are (real or complex) parameters. If values of these parameters 
can be determined for which u and v jointly satisfy the system (10), we say that the 
solutions u and v of the PDEs (11a) and (11b), respectively, are conjugate through the 
BT (10) (or BT-conjugate, for short). By finding a pair of BT-conjugate solutions one 
thus automatically obtains a solution of the system (10).  
      Note that solutions of both integrability conditions P[u]=0 and Q[v]=0 must now 
be known in advance! From the practical point of view the method is thus most appli-
cable in linear problems, since it is much easier to find parameter-dependent solu-
tions of the PDEs (11) in this case.  
      Let us see an example: Going back to the Cauchy-Riemann relations (3), we try 
the following parametric solutions of the Laplace equation (4):  
 

2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

α β γ

κ λ µ

= − + +

= + +
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Substituting these into the BT (3), we find that κ=2α, µ=β and λ= –γ. Therefore, the 
solutions  
 

2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

α β γ

α γ β

= − + +

= − +
 

 
of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination:  
 

( , ) , ( , ) .u x y xy v x y xyα β= =  
 
Inserting these into the system (3) and taking into account the independence of x and 
y, we find that the only possible values of the parameters α and β are α=β=0, so that 
u(x,y)= v(x,y)=0. Thus, no non-trivial BT-conjugate solutions exist in this case.  
 
 

4.  Example: The Maxwell Equations in Empty Space 
 
An example of an integrable linear system whose solutions are of physical interest is 
furnished by the Maxwell equations of electrodynamics. Interestingly, as noted re-
cently [7], the Maxwell system has the property of a BT whose integrability condi-
tions are the electromagnetic (e/m) wave equations that are separately valid for the 
electric and the magnetic field. These equations possess parameter-dependent solu-
tions that, by a proper choice of the parameters, can be made BT-conjugate through 
the Maxwell system. In this and the following section we discuss the BT property of 
the Maxwell equations in vacuum and in a conducting medium, respectively.  
      In empty space, where no charges or currents (whether free or bound) exist, the 
Maxwell equations are written (in S.I. units) [9]  
 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�

� � � �

�

� � � �

                           (13) 

 
where E

�

 and B
�

 are the electric and the magnetic field, respectively. Here we have a 
system of four PDEs for two fields. The question is: what are the necessary condi-
tions that each of these fields must satisfy in order for the system (13) to be self-
consistent? In other words, what are the consistency conditions (or integrability con-
ditions) for this system?  
      Guided by our experience from Sec. 2, to find these conditions we perform vari-
ous differentiations of the equations of system (13) and require that certain differen-
tial identities be satisfied. Our aim is, of course, to eliminate one field (electric or 
magnetic) in favor of the other and find some higher-order PDE that the latter field 
must obey.  
      As can be checked, two differential identities are satisfied automatically in the 
system (13):  
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( ) 0 , ( ) 0 ,E B∇⋅ ∇× = ∇⋅ ∇× =
� � � � � �

 
 

( ) , ( ) .t t t tE E B B∇⋅ = ∇⋅ ∇ ⋅ = ∇ ⋅
� � � � � � � �

 

 
Two others read  
 

        2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

                                        (14) 
 

        2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

                                        (15) 
 
Taking the rot of (13c) and using (14), (13a) and (13d), we find  
 

        
2

2
0 0 2

0
E

E
t

ε µ
∂

∇ − =
∂

�

�

                                            (16) 

 
Similarly, taking the rot of (13d) and using (15), (13b) and (13c), we get  
 

        
2

2
0 0 2

0
B

B
t

ε µ
∂

∇ − =
∂

�

�

                                             (17) 

 
No new information is furnished by the remaining two integrability conditions,  
 

( ) , ( ) .t t t tE E B B∇× = ∇× ∇× =∇×
� � � � � � � �

 

 
      Note that we have uncoupled the equations for the two fields in the system (13), 
deriving separate second-order PDEs for each field. Putting  
                           

        0 0 2
0 0

1 1
c

c
ε µ

ε µ
≡ ⇔ =                                          (18) 

 
(where c is the speed of light in vacuum) we rewrite (16) and (17) in wave-equation 
form:  
 

        
2

2
2 2

1
0

E
E

c t

∂
∇ − =

∂

�

�

                                                (19) 

 

        
2

2
2 2

1
0

B
B

c t

∂
∇ − =

∂

�

�

                                                 (20) 

 
      We conclude that the Maxwell system (13) is a BT relating solutions of the e/m 
wave equations (19) and (20), these equations representing the integrability condi-
tions of the BT. It should be noted that this BT is not an auto-BT! Indeed, although 
the PDEs (19) and (20) are of similar form, they concern different fields with differ-
ent physical dimensions and physical properties.  
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      The e/m wave equations admit plane-wave solutions of the form ( )F k r tω⋅ −
��

�

, 
with  
 

        where | |c k k
k

ω
= =

�

                                           (21) 

 
The simplest such solutions are monochromatic plane waves of angular frequency ω, 

propagating in the direction of the wave vector k
�

:  
 

        0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

ω

ω

= ⋅ −

= ⋅ −

�� �

� �

�� �

� �

                                   (22) 

 

where 0E
�

 and 0B
�

 are constant complex amplitudes. The constants appearing in the 
above equations (amplitudes, frequency and wave vector) can be chosen arbitrarily; 
thus they can be regarded as parameters on which the plane waves (22) depend.  
      We must note carefully that, although every pair of fields ( , )E B

� �

 satisfying the 
Maxwell equations (13) also satisfies the wave equations (19) and (20), the converse 
is not true. Thus, the plane-wave solutions (22) are not a priori solutions of the Max-
well system (i.e., do not represent actual e/m fields). This problem can be taken care 
of, however, by a proper choice of the parameters in (22). To this end, we substitute 
the general solutions (22) into the BT (13) to find the extra conditions the latter sys-
tem demands. By fixing the wave parameters, the two wave solutions in (22) will be-
come BT-conjugate through the Maxwell system (13).  
      Substituting (22a) and (22b) into (13a) and (13b), respectively, and taking into 

account that i k r i k re i k e⋅ ⋅∇ =
� �

� �
��

, we have  
 

( )
0 0

( )
0 0

( ) 0 ( ) 0 ,

( ) 0 ( ) 0 ,

i t i k r i k r t

i t i k r i k r t

E e e k E e

B e e k B e

ω ω

ω ω

− ⋅ ⋅ −

− ⋅ ⋅ −

⋅∇ = ⇒ ⋅ =

⋅∇ = ⇒ ⋅ =

� �

� �

� �

� �

�� � �

�� � �
 

 
so that  

        0 00 , 0k E k B⋅ = ⋅ =
� �� �

.                                            (23) 

 
Relations (23) reflect the fact that that the monochromatic plane e/m wave is a trans-
verse wave.  
      Next, substituting (22a) and (22b) into (13c) and (13d), we find  
 

( )
0 0

( ) ( )
0 0

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e E i B e

k E e B e

ω ω

ω ω

ω

ω

− ⋅ ⋅ −

⋅ − ⋅ −

∇ × = ⇒

× =

� �

� �

� �

� �

� � �

� � �
 

 
( )

0 0 0 0

( ) ( )
0 02

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e B i E e

k B e E e
c

ω ω

ω ω

ω ε µ

ω

− ⋅ ⋅ −

⋅ − ⋅ −

∇ × = − ⇒

× = −

� �

� �

� �

� �

� � �

� � �
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so that  

        0 0 0 02
,k E B k B E

c

ω
ω× = × = −

� �� � � �

                                  (24) 

 
We note that the fields E

�

 and B
�

 are normal to each other, as well as normal to the 
direction of propagation of the wave. We also remark that the two vector equations in 
(24) are not independent of each other, since, by cross-multiplying the first relation 

by k
�

, we get the second relation.  

      Introducing a unit vector τ̂  in the direction of the wave vector k
�

,  
 

ˆ / ( | | / )k k k k cτ ω= = =
� �

 , 
 
we rewrite the first of equations (24) as  
 

0 0 0
1

ˆ ˆ( ) ( )
k

B E E
c

τ τ
ω

= × = ×
� � �

 . 

 
The BT-conjugate solutions in (22) are now written  
 

        
0

0

( , ) exp{ ( )} ,

1 1
ˆ ˆ( , ) ( )exp{ ( )}

E r t E i k r t

B r t E i k r t E
c c

ω

τ ω τ

= ⋅ −

= × ⋅ − = ×

�� �

� �

�� � �

� �

                           (25) 

 
      As constructed, the complex vector fields in (25) satisfy the Maxwell system (13). 
Since this system is homogeneous linear with real coefficients, the real parts of the 
fields (25) also satisfy it. To find the expressions for the real solutions (which, after 
all, carry the physics of the situation) we take the simplest case of linear polarization 
and write  
 

        0 0,
i

RE E e α=
� �

                                                   (26) 

 

where the vector 0,RE
�

 as well as the number α are real. The real versions of the fields 

(25), then, read  
 

        
0,

0,

cos ( ) ,

1 1
ˆ ˆ( )cos ( )

R

R

E E k r t

B E k r t E
c c

ω α

τ ω α τ

= ⋅ − +

= × ⋅ − + = ×

�� �

�

�� � �

�

                          (27) 

 
We note, in particular, that the fields E

�

 and B
�

 “oscillate” in phase.  
      Our results for the Maxwell equations in vacuum can be extended to the case of a 
linear non-conducting medium upon replacement of ε0 and µ0 with ε and µ, respec-
tively. The speed of propagation of the e/m wave is, in this case,  
 

1

k

ω
υ

εµ
= =   . 
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In the next section we study the more complex case of a linear medium having a finite 
conductivity.  
 
 

5.  Example: The Maxwell System for a Linear Conducting Medium 
 
Consider a linear conducting medium of conductivity σ. In such a medium, Ohm’s 

law is satisfied: fJ Eσ=
� �

, where fJ
�

 is the free current density. The Maxwell equa-

tions take on the form [9]  
 

        

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
µσ ε µ

∂
∇⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

                       (28) 

 
By requiring satisfaction of the integrability conditions  
 

2

2

( ) ( ) ,

( ) ( ) ,

E E E

B B B

∇× ∇× = ∇ ∇⋅ −∇

∇× ∇× = ∇ ∇⋅ −∇

� � � � � � �

� � � � � � �  

 
we obtain the modified wave equations  
 

        

2
2

2

2
2

2

0

0

E E
E

t t

B B
B

t t

ε µ µσ

ε µ µσ

∂ ∂
∇ − − =

∂ ∂

∂ ∂
∇ − − =

∂ ∂

� �

�

� �

�

                                      (29) 

 
which must be separately satisfied by each field. As in Sec. 4, no further information 
is furnished by the remaining integrability conditions.  
      The linear differential system (28) is a BT relating solutions of the wave equa-
tions (29). As in the vacuum case, this BT is not an auto-BT. We now seek BT-
conjugate solutions. As can be verified by direct substitution into equations (29), 
these PDEs admit parameter-dependent solutions of the form  
 

        

0

0

0

0

ˆ( , ) exp{ ( )}

exp exp( ) ,

ˆ( , ) exp{ ( )}

exp exp( )

E r t E s r i k r t

s
E i k r i t

k

B r t B s r i k r t

s
B i k r i t

k

τ ω

ω

τ ω

ω

= − ⋅ + ⋅ −

  = − ⋅ −  
  

= − ⋅ + ⋅ −

  = − ⋅ −  
  

�� �

� � �

��

�

�� �

� � �

��

�

                          (30) 

 

where τ̂  is the unit vector in the direction of the wave vector k
�

:  
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ˆ / ( | | / )k k k kτ ω υ= = =
� �

 
 
(υ is the speed of propagation of the wave inside the conducting medium) and where, 
for given physical characteristics ε, µ, σ of the medium, the parameters s, k and ω sat-
isfy the algebraic system  
 

        2 2 2 0 , 2 0s k skε µω µσω− + = − =                                (31) 
 

      We note that, for arbitrary choices of the amplitudes 0E
�

 and 0B
�

, the vector fields 

(30) are not a priori solutions of the Maxwell system (28), thus are not BT-conjugate 
solutions. To obtain such solutions we substitute expressions (30) into the system 
(28). With the aid of the relation  
 

s s
i k r i k r

k ks
e i k e

k

   − ⋅ − ⋅   
    ∇ = − 

 

� �

� �

��

 

 
one can show that (28a) and (28b) impose the conditions  
 

        0 00 , 0k E k B⋅ = ⋅ =
� �� �

                                             (32) 

 
As in the vacuum case, the e/m wave in a conducting medium is a transverse wave.  
      By substituting (30) into (28c) and (28d), two more conditions are found:  
 

        0 0ˆ( )k is E Bτ ω+ × =
� �

                                              (33) 
 

        0 0ˆ( ) ( )k is B i Eτ εµω µσ+ × = − +
� �

                                     (34) 

 
Note, however, that (34) is not an independent equation since it can be reproduced by 
cross-multiplying (33) by ̂τ , taking into account the algebraic relations (31).  
      The BT-conjugate solutions of the wave equations (29) are now written  
 

        

ˆ ( )
0

ˆ ( )
0

( , ) ,

ˆ( , ) ( )

s r i k r t

s r i k r t

E r t E e e

k is
B r t E e e

τ ω

τ ωτ
ω

− ⋅ ⋅ −

− ⋅ ⋅ −

=

+
= ×

�

� �

�

� �

� �

�

� �

�

                                  (35) 

 
To find the corresponding real solutions, we assume linear polarization of the wave, 
as before, and set  
 

0 0,
i

RE E e α=
� �

. 

 
We also put  
 

2 2| | ; tan /i ik i s k i s e k s e s kϕ ϕ ϕ+ = + = + = . 
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Taking the real parts of equations (35), we finally have:  
 

ˆ
0,

2 2
ˆ

0,

( , ) cos( ) ,

ˆ( , ) ( ) cos( ) .

s r
R

s r
R

E r t E e k r t

k s
B r t E e k r t

τ

τ

ω α

τ ω α ϕ
ω

− ⋅

− ⋅

= ⋅ − +

+
= × ⋅ − + +

�

�

�� �

� �

�� �

� �

 

 
      As an exercise, the student may show that these results reduce to those for a linear 
non-conducting medium (cf. Sec. 4) in the limit σ→0.  
 
 

6.  BTs as Recursion Operators 
 
The concept of symmetries of PDEs was discussed in [1]. Let us review the main 
facts:  
      Consider a PDE F[u]=0, where, for simplicity, u=u(x,t). A transformation  
 

u (x,t)  →  u΄ (x,t) 
 
from the function u to a new function u΄ represents a symmetry of the given PDE if the 
following condition is satisfied: u΄(x,t) is a solution of F[u]=0 if u(x,t) is a solution. 
That is,  
 

    [ ] 0 [ ] 0F u when F u′ = =                                         (36) 
 
      An infinitesimal symmetry transformation is written  
 

    [ ]u u u u Q uδ α′ = + = +                                             (37) 
 
where α is an infinitesimal parameter. The function Q[u]≡Q(x, t, u, ux , ut ,...) is called 
the symmetry characteristic of the transformation (37).  
      In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it 
must satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We 
write, symbolically,  
 

   ( ; ) 0 [ ] 0S Q u when F u= =                                        (38) 
 
where the expression S depends linearly on Q and its partial derivatives. Thus, (38) is 
a linear PDE for Q, in which equation the variable u enters as a sort of parametric 
function that is required to satisfy the PDE F[u]=0.  
      A recursion operator R̂  [10] is a linear operator which, acting on a symmetry 

characteristic Q, produces a new symmetry characteristic ˆQ RQ′ = . That is,  
 

  ˆ( ; ) 0 ( ; ) 0S RQ u when S Q u= =                                    (39) 
 
It is not too difficult to show that any power of a recursion operator also is a recur-
sion operator. This means that, starting with any symmetry characteristic Q, one may 
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in principle obtain an infinite set of characteristics (thus, an infinite number of sym-
metries) by repeated application of the recursion operator.  
      A new approach to recursion operators was suggested in the early 1990s [2,3] (see 
also [4-6]). According to this view, a recursion operator is an auto-BT for the linear 
PDE (38) expressing the symmetry condition of the problem; that is, a BT producing 
new solutions Q΄ of (38) from old ones, Q. Typically, this type of BT produces nonlo-
cal symmetries, i.e., symmetry characteristics depending on integrals (rather than de-
rivatives) of u.  
      As an example, consider the chiral field equation  
 

   1 1[ ] ( ) ( ) 0x x t tF g g g g g− −≡ + =                                        (40) 

 
(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued func-
tion of x and t (i.e., an invertible complex n×n matrix, differentiable for all x, t).  
      Let Q[g] be a symmetry characteristic of the PDE (40). It is convenient to put  
 

Q [g] = g Φ[g] 
 
and write the corresponding infinitesimal symmetry transformation in the form  
 

    [ ]g g g g g gδ α′ = + = + Φ                                          (41) 
 
The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in Φ also. 
As can be shown [4], this PDE is  
 

  1 1( ; ) [ , ] [ , ] 0xx t t x x t tS g g g g g− −Φ ≡ Φ + Φ + Φ + Φ =                      (42) 

 
which must be valid when F[g]=0  (where, in general,  [A, B]  ≡ AB–BA  denotes the 
commutator of two matrices A and B).  
      For a given g satisfying F[g]=0, consider now the following system of PDEs for 
the matrix functions Φ and Φ΄:  
 

     
1

1

[ , ]

[ , ]

x t t

t x x

g g

g g

−

−

′Φ = Φ + Φ

′− Φ = Φ + Φ
                                              (43) 

 
The integrability condition ( ) ( )x t t x′ ′Φ = Φ , together with the equation F[g]=0, require 

that Φ be a solution of (42):  S (Φ ; g) = 0.  Similarly, by the integrability condition 
( ) ( )t x x tΦ = Φ  one finds, after a lengthy calculation:  S (Φ΄; g) = 0.  

      In conclusion, for any g satisfying the PDE (40), the system (43) is a BT relating 
solutions Φ and Φ΄ of the symmetry condition (42) of this PDE; that is, relating dif-
ferent symmetries of the chiral field equation (40). Thus, if a symmetry characteristic 
Q=gΦ of (40) is known, a new characteristic Q΄=gΦ΄ may be found by integrating the 
BT (43); the converse is also true. Since the BT (43) produces new symmetries from 
old ones, it may be regarded as a recursion operator for the PDE (40).  
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      As an example, for any constant matrix M the choice Φ=M  clearly satisfies the 
symmetry condition (42). This corresponds to the symmetry characteristic Q=gM. By 
integrating the BT (43) for Φ΄, we get Φ΄=[X, M] and Q΄=g[X, M], where X is the “po-
tential” of the PDE (40), defined by the system of PDEs  
 

1 1,x t t xX g g X g g− −= − =                                           (44) 

 
Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of 
the potential X. Indeed, as seen from (44), in order to find X one has to integrate the 
chiral field g with respect to the independent variables x and t. The above process can 
be continued indefinitely by repeated application of the recursion operator (43), lead-
ing to an infinite sequence of increasingly nonlocal symmetries.  
 
 

7.  Summary  
 
Classically, Bäcklund transformations (BTs) have been developed as a useful tool for 
finding solutions of nonlinear PDEs, given that these equations are usually hard to 
solve by direct methods. By means of examples we saw that, starting with even the 
most trivial solution of a PDE, one may produce a highly nontrivial solution of this 
(or another) PDE by integrating the BT, without solving the original, nonlinear PDE 
directly (which, in most cases, is a much harder task).  
      A different use of BTs, that was recently proposed [7,8], concerns predominantly 
the solution of linear systems of PDEs. This method relies on the existence of pa-
rameter-dependent solutions of the linear PDEs expressing the integrability condi-
tions of the BT. This time it is the BT itself (rather than its associated integrability 
conditions) whose solutions are sought.  
      An appropriate example for demonstrating this approach to the concept of a BT is 
furnished by the Maxwell equations of electromagnetism. We showed that this system 
of PDEs can be treated as a BT whose integrability conditions are the wave equations 
for the electric and the magnetic field. These wave equations have known, parameter-
dependent solutions – monochromatic plane waves – with arbitrary amplitudes, fre-
quencies and wave vectors playing the roles of the “parameters”. By substituting 
these solutions into the BT, one may determine the required relations among the pa-
rameters in order that these plane waves also represent electromagnetic fields (i.e., in 
order that they be solutions of the Maxwell system). The results arrived at by this 
method are, of course, well known in advanced electrodynamics. The process of de-
riving them, however, is seen here in a new light by employing the concept of a BT.  
      BTs have also proven useful as recursion operators for deriving infinite sets of 
nonlocal symmetries and conservation laws of PDEs [2-6] (see also [11] and the ref-
erences therein). Specifically, the BT produces an increasingly nonlocal sequence of 
symmetry characteristics, i.e., solutions of the linear equation expressing the symme-
try condition (or “linearization”) of a given PDE.  
      An interesting conclusion is that the concept of a BT, which has been proven use-
ful for integrating nonlinear PDEs, may also have important applications in linear 
problems. Research on these matters is in progress.  
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Abstract 

 
In electrodynamics courses and textbooks, the properties of plane electromag-
netic waves in both conducting and non-conducting media are typically studied 
from the point of view of the prototype case of a monochromatic plane wave. In 
this note an approach is suggested that starts from more general considerations 
and better exploits the independence of the Maxwell equations.  

 
1.  Introduction 

 
Plane electromagnetic (e/m) waves constitute a significant type of solution of the 
time-dependent Maxwell equations. A standard educational approach in courses and 
textbooks (at both the intermediate [1-4] and the advanced [5,6] level; see also [7,8]) 
is to examine the prototype case of a monochromatic plane wave in both a conducting 
and a non-conducting medium.  
      In this note a more general approach to the problem is described that makes 
minimal initial assumptions regarding the specific functional forms of the plane 
waves representing the electric and the magnetic field. The only assumption one does 
need to make from the outset is that both fields (electric and magnetic) are expressible 
in integral form as linear superpositions of monochromatic waves. In particular, it is 
not even necessary to a priori require that the plane waves representing the two fields 
travel in the same direction.  
      In Section 2 we review the case of a monochromatic plane e/m wave in empty 
space. A more general (non-monochromatic) treatment of the plane-wave propagation 
problem in empty space is then described in Sec. 3. In Sec. 4 this general approach is 
extended to plane-wave solutions in the case of a conducting medium; an interesting 
difference from the monochromatic case is noted.  
 

2.  The monochromatic-wave description for empty space 
 
In empty space, where no charges or currents (whether free or bound) exist, the Max-
well equations are written (in S.I. units)   

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�

� � � �

�

� � � �

                           (1) 

where E
�

 and B
�

 are the electric and the magnetic field, respectively. By applying the 
identities  
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2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

 , 

2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

, 
 
we obtain separate wave equations for E

�

 and B
�

:  
 

        
2

2
2 2

1
0

E
E

c t

∂
∇ − =

∂

�

�

                                                (2) 

        
2

2
2 2

1
0

B
B

c t

∂
∇ − =

∂

�

�

                                                (3) 

where  

            
0 0

1
c

ε µ
=                                                       (4) 

 
      We try monochromatic plane-wave solutions of (2) and (3), of angular frequency 

ω, propagating in the direction of the wave vector k
�

:  
 

        0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

ω

ω

= ⋅ −

= ⋅ −

�� �

� �

�� �

� �

                                   (5) 

 

where 0E
�

 and 0B
�

 are constant complex amplitudes, and where  

        ( | | )c k k
k

ω
= =

�

                                               (6) 

 
      The general solutions (5) do not a priori represent an e/m field. To find the extra 
constraints required, we must substitute Eqs. (5) into the Maxwell system (1). By tak-

ing into account that i k r i k re i k e⋅ ⋅∇ =
� �

� �
��

, the div equations (1a) and (1b) yield  
 

        0 ( ) 0 ( )k E a k B b⋅ = ⋅ =
� �� �

                                       (7) 
 
while the rot equations (1c) and (1d) give  
 

        
2

( ) ( )k E B a k B E b
c

ω
ω× = × = −

� �� � � �

                                (8) 

 
      Now, we notice that the four equations (7)–(8) do not form an independent set 
since (7b) and (8b) can be reproduced by using (7a) and (8a). Indeed, taking the dot 

product of (8a) with k
�

 we get (7b), while taking the cross product of (8a) with k
�

, 
and using (7a) and (6), we find (8b).  
      So, from 4 independent Maxwell equations we obtained only 2 independent 
pieces of information. This happened because we “fed” our trial solutions (5) with 
more information than necessary, in anticipation of results that follow a posteriori 
from Maxwell’s equations. Thus, we assumed from the outset that the two waves 
(electric and magnetic) have similar simple functional forms and propagate in the 
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same direction. By relaxing these initial assumptions, our analysis acquires a richer 
and much more interesting structure.  
 

3.  A more general approach for empty space 
 
Let us assume, more generally, that the fields E

�

 and B
�

 represent plane waves propa-
gating in empty space in the directions of the unit vectors ̂τ  and σ̂ , respectively:  
 

ˆ ˆ( , ) ( ) , ( , ) ( )E r t F r ct B r t G r ctτ σ= ⋅ − = ⋅ −
�� � �

� � � �

                              (9) 
 

Furthermore, assume that the functions F
�

 and G
�

 can be expressed as linear combi-
nations of monochromatic plane waves of the form (5), for continuously varying val-
ues of k and ω, where ω=ck, according to (6). Then E

�

 and B
�

 can be written in Fou-
rier-integral form, as follows:  
 

      

ˆ( )
0

ˆ( )
0

( )

( )

ik r ct

ik r ct

E E k e dk

B B k e dk

τ

σ

⋅ −

⋅ −

=

=

∫
∫

�

�

� �

� �
                                              (10) 

 
In general, the integration variable k is assumed to run from 0 to +∞. For notational 
economy, the limits of integration with respect to k will not be displayed explicitly.  
      By setting  
 

     ˆ ˆ,u r ct v r ctτ σ= ⋅ − = ⋅ −
� �

                                         (11) 
 
we write  

     
0

0

( ) ( )

( ) ( )

iku

ikv

E u E k e dk

B v B k e dk

=

=

∫
∫

� �

� �
                                              (12) 

We note that  
 

ˆ ˆ,iku iku ikv ikve ik e e i k eτ σ∇ = ∇ =
� �

                                     (13) 
 
      By using (12) and (13) we find that  
 

0ˆ ( ) ikuE ik E k e dkτ∇⋅ = ⋅∫
� � �

,    0ˆ ( ) ikvB ik B k e dkσ∇⋅ = ⋅∫
� � �

, 

0ˆ ( ) ikuE i k E k e dkτ∇× = ×∫
� � �

,    0ˆ ( ) ikvB i k B k e dkσ∇× = ×∫
� � �

. 

 
Moreover, we have that  
 

0( ) ikuE
i E k e dk

t
ω

∂
= −

∂ ∫
�

�

,    0( ) ikvB
i B k e dk

t
ω

∂
= −

∂ ∫
�

�

 

 
where, as always, ω=ck.  
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      The two Gauss’ laws (1a) and (1b) yield  
 

0ˆ ( ) 0ikuk E k e dkτ ⋅ =∫
�

   and   0ˆ ( ) 0ikvk B k e dkσ ⋅ =∫
�

, 

 
respectively. In order that these relations be valid identically for all u and all v, re-
spectively, we must have  
 

     0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kσ ⋅ =
�

,  for all k                              (14) 

 
From Faraday’s law (1c) and the Ampère-Maxwell law (1d) we obtain two more in-
tegral equations:  
 

    0 0ˆ ( ) ( )iku ikvk E k e dk B k e dkτ ω× =∫ ∫
� �

                                  (15) 

   0 02
ˆ ( ) ( )ikv ikuk B k e dk E k e dk

c

ω
σ × = −∫ ∫
� �

                                 (16) 

 
where we have taken into account Eq. (4).  
      Taking the cross product of (15) with σ̂  and using (16), we find the integral rela-
tion  

0 0 0ˆ ˆ ˆ ˆ[( ) ( ) ] iku ikuk E E e dk k E e dkσ τ σ τ⋅ − ⋅ = −∫ ∫
� � �

. 

 
This is true for all u if  
 

0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( 1) ( )E E E E Eσ τ σ τ σ τ σ τ⋅ − ⋅ = − ⇒ ⋅ − = ⋅
� � � � �

. 

 

Given that, by (14), 0E
�

 and τ̂  are mutually perpendicular, the above relation can only 

be valid if ˆ ˆ 1σ τ⋅ =  and 0ˆ 0Eσ ⋅ =
�

. This, in turn, can only be satisfied if ˆ ˆσ τ= . The 

same conclusion is reached by taking the cross product of (16) with τ̂  and by using 

(15) as well as the fact that 0B
�

 is normal to ̂σ . From (11) we then have that  

ˆu v r ctτ= = ⋅ −
�

 

so that relations (12) become  
 

    

ˆ( )
0 0

ˆ( )
0 0

( , ) ( ) ( )

( , ) ( ) ( )

iku ik r ct

iku ik r ct

E r t E k e dk E k e dk

B r t B k e dk B k e dk

τ

τ

⋅ −

⋅ −

= =

= =

∫ ∫
∫ ∫

�

�

� � �

�

� � �

�

                           (17) 

 
      Equations (14) are now rewritten as  
 

      0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kτ ⋅ =
�

,  for all k                                  (18) 

 
Furthermore, in order that (15) and (16) (with u and τ̂  in place of v and σ̂ , respec-
tively) be identically valid for all u, we must have  
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  0 0 0 0ˆ ˆ( ) ( ) ( ) ( )k E k B k E k cB kτ ω τ× = ⇔ × =
� � � �

                               (19) 

and  

   0 0 0 02

1
ˆ ˆ( ) ( ) ( ) ( )k B k E k B k E k

cc

ω
τ τ× = − ⇔ × = −
� � � �

                           (20) 

 
for all k, where k=ω/c. Notice, however, that (19) and (20) are not independent equa-
tions, since (20) is essentially the cross product of (19) with τ̂ .  
      In summary, the general plane-wave solutions to the Maxwell system (1) are 
given by relations (17) with the additional constraints (18) and (19). This is, of 
course, a well-known result, derived here by starting with more general assumptions 
and by best exploiting the independence [9] of the Maxwell equations.  
      Let us summarize our main findings:  
      1. The fields E

�

 and B
�

 are plane waves traveling in the same direction, defined 
by the unit vector ̂τ ; these fields satisfy the Maxwell equations in empty space.  

      2. The e/m wave ( , )E B
� �

 is a transverse wave. Indeed, from equations (17) and the 
orthogonality relations (18) it follows that  
 

    ˆ ˆ0 and 0E Bτ τ⋅ = ⋅ =
� �

                                             (21) 
 

      3. The fields E
�

 and B
�

 are mutually perpendicular. Moreover, the ˆ( , , )E B τ
� �

 define 
a right-handed rectangular system. Indeed, by cross-multiplying (17) with τ̂  and by 
using (19) and (20), we find:  
 

     
1

ˆ ˆ,E cB B E
c

τ τ× = × = −
� � � �

                                          (22) 

 
      4. Taking real values of (21) and (22), we have:  
 

ˆ ˆRe 0 , Re 0E Bτ τ⋅ = ⋅ =
� �

    and    ̂ Re ReE c Bτ × =
� �

                        (23) 
 
The magnitude of the last vector equation in (23) gives a relation between the instan-
taneous values of the electric and the magnetic field:  
 

      | Re | | Re |E c B=
� �

                                                 (24) 
 
      The above results for empty space can be extended in a straightforward way to the 
case of a linear, non-conducting, non-dispersive medium upon replacement of ε0 and 
µ0 with ε and µ, respectively [3]. The (frequency-independent) speed of propagation 
of the plane e/m wave in this case is  υ=1/(εµ)1/2.  
 

4.  The case of a conducting medium 
 
The Maxwell equations for a conducting medium of conductivity σ may be written as 
follows [1,3]:  
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( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
µσ ε µ

∂
∇⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

                       (25) 

 
By using the vector identities  
 

2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

 , 

2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

, 
 
the relations (25) lead to the modified wave equations  
 

       
2

2
2

0
E E

E
t t

ε µ µσ
∂ ∂

∇ − − =
∂ ∂

� �

�

                                       (26) 

       
2

2
2

0
B B

B
t t

ε µ µσ
∂ ∂

∇ − − =
∂ ∂

� �

�

                                       (27) 

 
      Guided by our monochromatic-wave approach to the problem in [7,8], we now try 
a more general, integral form of solution of the above wave equations:  
 

   
{ }

{ }

ˆ ˆ( )
0 0

ˆ ˆ( )
0 0

ˆ( , ) ( ) ( )exp ( )

ˆ( , ) ( ) ( )exp ( )

s r i k r t

s r i k r t

E r t E k e e dk E k ik s r i t dk

B r t B k e e dk B k ik s r i t dk

τ τ ω

τ τ ω

τ ω

τ ω

− ⋅ ⋅ −

− ⋅ ⋅ −

= = − ⋅ −

= = − ⋅ −

∫ ∫
∫ ∫

� �

� �

� � �

� �

� � �

� �

          (28) 

 
where s is a real parameter related to the conductivity of the medium. As in the vac-
uum case, the unit vector τ̂  indicates the direction of propagation of the wave. Notice 
that we have assumed from the outset that both waves – electric and magnetic – 
propagate in the same direction, in view of the fact that our results must agree with 
those for a non-conducting medium (in particular, for the vacuum) upon setting s=0.  
      It is convenient to set  
 

          { }ˆexp ( ) ( , )i k s r i t A r tτ ω− ⋅ − ≡
� �

                                    (29) 

 
Then, Eq. (28) takes on the form  
 

      
0

0

( , ) ( ) ( , )

( , ) ( ) ( , )

E r t E k A r t dk

B r t B k A r t dk

=

=

∫
∫

� �

� �

� �

� �

                                         (30) 

 
The following relations can be easily proven:  
 

    ˆ( , ) ( ) ( , )A r t i k s A r tτ∇ = −
�

� �

                                          (31) 
 

         2 2 2( , ) ( 2 ) ( , )A r t s k isk A r t∇ = − −
� �

                                  (32) 



PLANE-WAVE SOLUTIONS OF MAXWELL EQUATIONS 
 

 7  

Moreover,  

( , ) ( , )A r t i A r t
t

ω
∂

= −
∂

� �

    and    
2

2
2

( , ) ( , )A r t A r t
t

ω
∂

= −
∂

� �

. 

 
      From (26) we get  
 

2 2 2
0[( ) ( 2 )] ( ) ( , ) 0s k i sk E k A r t dkε µω µσω− + + − =∫
�

�

 

 
[a similar integral relation is found from (27)]. This will be identically satisfied for all 
r
�

 and t if  
 

        2 2 2 0 and 2 0s k skε µω µσω− + = − =                            (33) 
 
By using relations (33), ω and s can be expressed as functions of k, as required in or-
der that the integral relations (28) make sense. Notice, in particular, that, by the sec-
ond relation (33), s=0 if σ=0 (non-conducting medium). Then, by the first relation, 
ω/k=1/(εµ)1/2, which is the familiar expression for the speed of propagation of an e/m 
wave in a non-conducting medium [3].  
      From the two Gauss’ laws (25a) and (25b) we get the corresponding integral rela-
tions  
 

0

0

ˆ( ) ( ) ( , ) 0 ,

ˆ( ) ( ) ( , ) 0 .

ik s E k A r t dk

ik s B k A r t dk

τ

τ

− ⋅ =

− ⋅ =

∫
∫

�

�

�

�

 

 
These will be identically satisfied for all r

�

 and t if  
 

      0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kτ ⋅ =
�

,  for all k                                (34) 

 
From (25c) and (25d) we find  
 

0 0ˆ( ) ( ) ( , ) ( ) ( , )ik s E k A r t dk i B k A r t dkτ ω− × =∫ ∫
� �

� �

 

and  

0 0ˆ( ) ( ) ( , ) ( ) ( ) ( , )ik s B k A r t dk i E k A r t dkτ µσ εµω− × = −∫ ∫
� �

� �

, 

 
respectively. To satisfy these for all r

�

 and t, we require that  
 

      0 0ˆ( ) ( ) ( )k is E k B kτ ω+ × =
� �

                                        (35) 

and  

       0 0ˆ( ) ( ) ( ) ( )k is B k i E kτ εµω µσ+ × = − +
� �

                               (36) 

 
Note, however, that (36) is not an independent equation since it can be reproduced by 
cross-multiplying (35) with ̂τ  and by taking into account Eqs. (33) and (34).  
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      We note the following:  
      1. From (30) and (34) we have that  
 

                   ̂ ˆ0 and 0E Bτ τ⋅ = ⋅ =
� �

                                            (37) 
 

or, in real form, ̂ ˆRe 0 and Re 0E Bτ τ⋅ = ⋅ =
� �

. This means that both ReE
�

 and ReB
�

 
are normal to the direction of propagation of the wave.  
      2. From (30) and (35) we get  
 

       0ˆ ( ) ( , )E B k A r t dk
k is

ω
τ × =

+∫
� �

�

                                       (38) 

The integral on the right-hand side of (38) is, generally, not a vector parallel to B
�

. 
Now, in the limit of negligible conductivity (σ=0) the relations (33) give s=0 and 
ω/k=1/(εµ)1/2. The ratio ω/k represents the speed of propagation υ in the non-
conducting medium, for the frequency ω. If the medium is non-dispersive, the speed 
υ=ω/k  is constant, independent of frequency. Then Eq. (38) (with s=0) becomes  
 

0ˆ ( ) ( , )E B k A r t dk Bτ υ υ× = =∫
� � �

�

 

 

and, in real form, it reads ̂ Re ReE Bτ υ× =
� �

. Geometrically, this means that the 

ˆ(Re , Re , )E B τ
� �

 define a right-handed rectangular system.  

      3. As shown in [7,8], the E
�

 and B
�

 are always mutually perpendicular in a mono-
chromatic e/m wave of definite frequency ω, traveling in a conducting medium. Such 
a wave is represented in real form by the equations  
 

ˆ
0

2 2
ˆ

0

ˆ( , ) cos( ) ,

ˆ ˆ( , ) ( ) cos( )

s r

s r

E r t E e k r t

k s
B r t E e k r t

τ

τ

τ ω α

τ τ ω β
ω

− ⋅

− ⋅

= ⋅ − +

+
= × ⋅ − +

�

�

� �

� �

� �

� �

 

where 0E
�

 is a real vector and where  tan(β–α)=s/k. This perpendicularity between E
�

 

and B
�

 ceases to exist, however, in a non-monochromatic wave of the form (28).  
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The concepts of active and passive transformations on a vector space are discussed. 
Orthogonal coordinate transformations and matrix representations of linear operators 
are considered in particular.  

 
 

1. Introduction 
 
A physical situation may appear changing for two reasons: the physical system itself 
may pass from one state to another, or, the same state of the system may be viewed 
from two different points of view (e.g., by two different observers, using different 
frames of reference). The former case corresponds to an “active”  view of the situa-
tion, while the latter one to a “passive” view.  
      Given that many physical quantities are vectors, of particular interest in Physics 
are linear transformations on vector spaces. Starting with the prototype transformation 
of rotation on a plane, we study both the active and the passive view of these trans-
formations. In the case of a Euclidean space with Cartesian coordinates, a passive 
transformation corresponding to a change of basis is an orthogonal transformation. On 
the other hand, an active transformation on a vector space is produced by a linear op-
erator, which is represented by a matrix in a given basis. A change of basis, leading to 
a different representation, is a passive transformation on this space.  
 
 

2. Active view of transformations 
 
Consider the xy-plane with Cartesian coordinates (x, y) and basis unit vectors 

ˆ ˆ{ , }x yu u . We call R(θ) the rotation operator on this plane, i.e., the operator which ro-

tates any vector A
�

 on the plane by an angle θ (see Fig. 2.1; by convention, θ>0 for 
counterclockwise rotation while θ<0 for clockwise rotation). This operator is linear, 
given that adding two vectors and then rotating the sum is the same as first rotating 
the vectors and then adding them.  
 

θ

O
x

y

ˆxu

ˆyu
A
�

A′
�

 
 

Figure 2.1 
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      Imagine, in particular, that we rotate each vector in the basis ̂ ˆ{ , }x yu u  by an angle 

θ to obtain a new set of vectors ̂ ˆ{ , }x yu u′ ′  (Fig. 2.2). The transformation equations 

describing these rotations are  
 

          
ˆ ˆ ˆ ˆ( ) cos sin

ˆ ˆ ˆ ˆ( ) sin cos

x x x y

y y x y

u u u u

u u u u

θ θ θ

θ θ θ

′ = = +

′ = = − +

R

R
                                  (2.1) 

 

θ

θ

x

y

ˆxu

ˆyu
ˆxu ′ˆyu ′

O

 
 

Figure 2.2 
 

      Now, let ˆ ˆx x y yA A u A u= +
�

 be a vector on the xy-plane (see Fig. 2.1). The rotation 

operator R(θ) will transform it into a new vector  
 

ˆ ˆ( ) x x y yA A A u A uθ ′ ′′ = = +R
� �

                                         (2.2) 

 
We want to express the components Ax΄ and Ay΄ in terms of Ax , Ay and θ. By the line-
arity of R(θ) and by using (2.1), we have:  
 

( )
( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆcos sin sin cos

x x y y x x y y

x y x x y y

A A u A u A u A u

A A u A A u

θ θ θ

θ θ θ θ

′ = + = +

= − + +

R R R
�

 

 
By comparing this with (2.2), we get:  
 

        
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ = −

′ = +
                                              (2.3) 

 
      We define the matrix  
 

            
cos sin

sin cos
M

θ θ
θ θ

− 
=  
 

                                                 (2.4) 
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The systems (2.1) and (2.3) are then rewritten in the form of matrix equations as  
 

      
ˆ ˆ

ˆˆ

x xT

yy

u u
M

uu

 ′  
  =  
 ′   

      and      
x x

yy

A A
M

AA

 ′  
  =  
 ′   

                          (2.5) 

 
respectively, where M T is the transpose of M.  

      We note that the vectors A
�

 and ( )A Aθ′ = R
� �

 are different geometrical objects, the 
latter one being a transformation of the former. On the other hand, the components of 
these vectors, connected by (2.3), are referred to the same basis ˆ ˆ{ , }x yu u . This is the 

general idea of the active view of a linear transformation.  
      In a more abstract sense, we consider an n-dimensional vector space Ω with basis 
vectors { } { }1 2ˆ ˆ ˆ ˆ, ,..., n ke e e e≡ , and we let R be a linear operator on Ω. We assume that 

the basis vectors transform under R as follows:  
 

         ˆ ˆ ˆ (sum on )j
i i j ie e e R j′ = =R                                       (2.6) 

 
where the familiar summation convention for repeated upper and lower indices has 
been used. Thus, for each value of i, the right-hand side of (2.6) is actually a sum over 
all values of  j, i.e., from  j= 1  to  j=n . Explicitly,  
 

              

1 2
1 1 1 2 1 1

1 2
2 1 2 2 2 2

1 2
1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

n
n

n
n

n
n n n n n

e e R e R e R

e e R e R e R

e e R e R e R

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                                    (2.7) 

 
      Now, let  
 

           1 2
1 2ˆ ˆ ˆ ˆn i

n iV V e V e V e V e= + + + ≡
�

⋯                                   (2.8) 

 

be a vector in Ω, and let V V′ = R
� �

. We have:  
 

ˆ ˆ ˆ ˆ( )j j j i i
j j i j iV V e V e V e R V e′′ = = = ≡R R

�
 . 

 
Therefore the components of the original and the transformed vector are related by  
 

                       i i j
jV R V′ =                                                    (2.9) 

 
or, explicitly,  
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1 1 1 1 2 1
1 2

2 2 1 2 2 2
1 2

1 2
1 2

n
n

n
n

n n n n n
n

V R V R V R V

V R V R V R V

V R V R V R V

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                               (2.10) 

 
      Define the n×n matrix  

              i
jM R =       with   i

i j jM R=                                     (2.11) 

 
The basis transformations (2.6) are then written as  
 

       
1 1ˆ ˆ

ˆˆ

T

nn

e e

M

ee

 ′  
   =   
   ′    

⋮ ⋮                                                  (2.12) 

 
while the component transformations (2.9) become  
 

                

1 1

nn

V V

M

VV

 ′  
   

=   
   ′    

⋮ ⋮                                                  (2.13) 

 
 

3. Passive view of transformations 
 
Imagine that our previous x-y system of axes on the plane, with basis unit vectors 

ˆ ˆ{ , }x yu u , is rotated counterclockwise by an angle θ to obtain a new system of axes x΄ 

and y΄ with corresponding basis ̂ ˆ{ , }x yu u′ ′  (Fig. 3.1). As before, the two bases are re-

lated by the system of equations  

             
ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

x x y

y x y

u u u

u u u

θ θ

θ θ

′ = +

′ = − +
                                        (3.1) 

 

  

θ

θ

O
x

y

x′

y′

ˆxu

ˆyu

ˆxu ′
ˆyu ′

A
�

 Figure 3.1        
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      A vector A
�

 on the plane can be expressed in both these bases, as follows:  
 

                  ˆ ˆ ˆ ˆx x y y x x y yA A u A u A u A u′ ′ ′ ′= + = +
�

                                  (3.2) 

 
Substituting the basis transformations (3.1) into the right-hand side of (3.2), and 
equating coefficients of similar unprimed basis vectors, we find:  
 

            
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ ′= −

′ ′= +
                                          (3.3) 

 
Solving this for the primed components, we get:  
 

          
cos sin

sin cos

x x y

y x y

A A A

A A A

θ θ

θ θ

′ = +

′ = − +
                                          (3.4) 

 
Notice that, in contrast to what we did in the previous section, here we keep the geo-
metrical object A

�
 fixed and simply expand it in two different bases. This is the 

adopted practice in the passive view of a transformation.  
      Introducing the matrix  
 

cos sin

sin cos
M

θ θ
θ θ

− 
=  
 

 

 
we rewrite our previous equations in the matrix forms  
 

          
ˆ ˆ

ˆˆ

x xT

yy

u u
M

uu

 ′  
  =  
 ′   

                                               (3.5) 

and 

       
x x

y y

A A
M

A A

 ′ 
 = 
 ′   

      ⇒      1x x

yy

A A
M

AA

−
 ′  
  =  
 ′   

                           (3.6) 

 
where  

           1 cos sin

sin cos
TM M

θ θ
θ θ

−  
= = − 

                                       (3.7) 

 
Notice that the transformation matrix M is orthogonal. As will be shown below, this is 
related to the fact that the transformation (rotation of axes) relates two Cartesian bases 
in a Euclidean space.  
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      By comparing (2.3) and (3.4) it follows that the transformation equations of the 
passive view reduce to those of the active view upon replacing θ with –θ. Physically 
this means that a passive transformation in which the vector A

�
 is fixed and the basis 

of our space is rotated counterclockwise is equivalent to an active transformation in 
which the basis is fixed and the vector A

�
 is rotated clockwise.  

      Let us generalize to the case of an n-dimensional vector space Ω with basis 

{ } { }1 2ˆ ˆ ˆ ˆ, ,..., n ke e e e≡ . Let ˆ{ }ke ′  be another basis related to the former one by  

 

                ̂ ˆ j
i j ie e ′
′ = Λ                                                       (3.8) 

 

(note sum on j ). A vector V
�

 in Ω may be expressed in both these bases, as follows:  
 

ˆ ˆ ˆi j j i
i j i jV V e V e V e ′

′ ′ ′= = = Λ
�

 

 
where use has been made of (3.8). This yields  
 

              i i j
jV V′ ′= Λ                                                     (3.9) 

      Introducing the n×n matrix  

 

         i
jM ′ = Λ      with   i

i j jM ′= Λ                                      (3.10) 

we write  

          
1 1ˆ ˆ

ˆˆ

T

nn

e e

M

ee

 ′  
   =   
   ′    

⋮ ⋮                                                     (3.11) 

and  

          

1 1

n n

V V

M

V V

 ′ 
  

=   
   ′    

⋮ ⋮      ⇒     

1 1

1

nn

V V

M

VV

−

 ′  
   

=   
   ′    

⋮ ⋮                         (3.12) 

 
 

4. Orthogonal transformations in a Euclidean space 
 
In this section the passive view of transformations will be adopted. Let Ω be an n-
dimensional Euclidean space with Cartesian1 coordinates (x1, x2,...,xn) ≡ (xk) and cor-
responding Cartesian basis { }ˆke . Let (xk

΄) be another Cartesian coordinate system for 

                                                 
1 Cartesian systems of coordinates exist only in Euclidean spaces. For example, you can define a sys-
tem of Cartesian coordinates on a plane but you cannot define such coordinates on the surface of a 
sphere, which is a non-Euclidean space.  
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Ω, with corresponding basis ̂{ }ke ′ . We assume that the two coordinate systems have a 

common origin O≡(0,0,...,0). Both Cartesian bases are orthonormal, in the sense that  
 

          ˆ ˆ ˆ ˆi j i j i je e e e δ′ ′⋅ = ⋅ =                                               (4.1) 

 
Assuming that the handedness of the two coordinate systems is the same (e.g., for 
n=3, both coordinate systems are right-handed) it is apparent that a linear transforma-
tion from one basis to the other is a “rotation” in Ω. Let us explore this in more detail.  
 
      Definition: A linear transformation from a Cartesian basis to another is said to be 
an orthogonal transformation.  
 
      Proposition 4.1: An orthogonal transformation is represented by an orthogonal 
matrix M:  
 

           1 T T TM M M M MM− = ⇔ = = 1                                  (4.2) 
 

      Proof: Assume a linear basis transformation of the form (3.8): ˆ ˆ j
i j ie e ′
′ = Λ . Also, 

let M be the transformation matrix defined in (3.10). We have:  
 

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆk l k l k k
i j k i l j k l i j i j

k

T T
k i k j k ji k i j

k k

e e e e

M M M M M M

δ′ ′ ′ ′ ′ ′
′ ′⋅ = Λ ⋅ Λ = Λ Λ = Λ Λ

= = =

∑

∑ ∑
 

 
where we have taken into account that the original (unprimed) basis is orthonormal. 
Given that the same is true for the transformed (primed) basis, we have:  
 

( )T T
i ji j

M M M Mδ= ⇔ = 1 . 

 

      The magnitude of a vector V
�

 is a non-negative quantity whose square is ex-
pressed in a Cartesian basis in terms of the scalar (dot) product, as follows:  
 

             ( ) ( )2
ˆ ˆ ˆ ˆi j i j i j
i j i j i jV V V V e V e V V e e V Vδ= ⋅ = ⋅ = ⋅ =

� � �
                      (4.3) 

 

[Obviously, the last term in (4.3) is the sum of the squares of the components of V
�

.]  
 
      Proposition 4.2: An orthogonal transformation preserves the Cartesian form (4.3) 
of the magnitude of a vector.  
 
      Proof: By using the transformation formula (3.9) for components of vectors, de-
rived in the previous section, we have:  
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( )( )

( )

( )

i j i k j l i i k l
i j i j k l k l

i

k l T k l
ik il i lk i

i i

T k l k l
k lk l

V V V V V V

M M V V M M V V

M M V V V V

δ δ

δ

′ ′ ′ ′
 ′ ′ ′ ′= Λ Λ = Λ Λ 
 

   ′ ′ ′ ′= =   
   

′ ′ ′ ′= =

∑

∑ ∑  

 
For a more compact proof, define the matrices  
 

1

k

n

V

V

V

 
   ≡   
 
 

⋮      and     1Tk nV V V   ≡   ⋯  

 
and similarly for the corresponding primed quantities. Then, in the unprimed basis,  
 

2 Tk kV V V   =    
�

. 

 

Using the fact that, by (3.12), k kV M V ′  =   
, we have:  

 

( )T TTk k k k k T k

T
k k

V V M V M V V M M V

V V

       ′ ′ ′ ′    = =           

   ′ ′=
   

 

      
      Comment: The above proof suggests an alternate definition of an orthogonal trans-
formation as a linear transformation in a Euclidean space that preserves the Cartesian 
form of the magnitude of vectors. In fact, this is the way orthogonal transformations 
are usually defined in textbooks.  
 
      Now, let P be a point in Ω, with Cartesian coordinates (x1, x2,...,xn) ≡ (xk). In this 

system of coordinates the position vector of P can be written as ˆi
ir x e=

�
. Since this 

vector is a geometrical object independent of the system of coordinates, we can write:  
 

ˆ ˆi j
i jr x e x e′ ′= =

�
. 

 
By using (3.8) we find, as in Sec. 3,  
 

i i j
jx x′ ′= Λ                                                     (4.4) 

 
which is the analog of (3.9). If M is the matrix defined in (3.10), and if [xk] is the col-
umn vector of the xk, then by the general matrix relation (3.12) we have:  
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        1k k k k T kx M x x M x M x−   ′ ′     = ⇒ = =        
                     (4.5) 

 
where the orthogonality condition (4.2) has been used. Let us call  
 

               withT j
i j j i iM L L M ′≡ = = Λ                                     (4.6) 

 
Then the matrix relation (4.5) can be written as a system of n linear equations of the 
form  
 

              

1 1 2
11 12 1

2 1 2
21 22 2

1 2
1 2

n
n

n
n

n n
n n nn

x L x L x L x

x L x L x L x

x L x L x L x

′ = + + +

′ = + + +

′ = + + +

⋯

⋯

⋮

⋯

                                      (4.7) 

 
which equations represent an orthogonal coordinate transformation in Ω.  
      As an example for n=2, let Ω be a plane with Cartesian coordinates (x1, x2) ≡ (x, y). 
A position vector in Ω is written: ˆ ˆx yr xu yu= +

�
. As seen in Sec. 3, the transformation 

matrix M for a rotation of the basis vectors by an angle θ is  
 

cos sin cos sin

sin cos sin cos
TM L M

θ θ θ θ
θ θ θ θ

−   
= ⇒ = =   −   

. 

 
The coordinate transformation equations (4.7) are written here as  
 

cos sin

sin cos

x x y

y x y

θ θ

θ θ

′ = +

′ = − +
 

 

      Exercise: By using the relations ˆj
jV V e=

�
 and ˆ ˆ l

j l je e ′
′ = Λ , together with (3.10) 

and (4.1), show the following:  
 

ˆi
iV e V= ⋅
�

, 

ˆ ˆi j i jM e e′= ⋅ . 

 
      Under an orthogonal transformation from one Cartesian system of coordinates to 
another, the components V k of a vector transform like the coordinates xk themselves. 
That is,  

i j
i jV L V′ = . 

From (4.7) we have that  
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i

i j j

x
L

x

′∂
=
∂

. 

Therefore,  

          and, conversely,
i i

i j i j
j j

x x
V V V V

x x

′∂ ∂′ ′= =
′∂ ∂

                        (4.8) 

 
 

5. Active and passive view combined 
 
Let Ω be an n-dimensional vector space with basis ˆ{ } ( 1,2, , )ke k n= … . Let A be a lin-

ear operator on Ω. The action of A on the basis vectors is given by  
 

           ˆ ˆ ˆj i i j i i j
i

e e A e A= ≡∑A                                           (5.1) 

 
(Note a slight change in the summation convention; in this section subscripts only will 
be used.) The n×n matrix A=[Aij] is the matrix representation of the operator A in the 
basis ˆ{ }ke .  

      A vector in Ω is written:  
 

                 ˆ ˆi i i i
i

x x e x e= ≡∑�                                                (5.2) 

 
Let y x= A
� �

. If ˆi iy y e=
�

, then, by the linearity of A and by using (5.1) and (5.2) we 

find that  
 

               (sum on )i i j jy A x j=                                           (5.3) 

 
which represents a system of n linear equations for i= 1,...,n. In matrix form,  
 

                [ ] [ ]k ky A x=                                                   (5.4) 

 
where [xk] and [yk] are column vectors.  
      Now, let A and B be linear operators on Ω. We define their product C=AB by  
 

           ( ) ( ) ,x x x x= ≡ ∀ ∈ΩC AB A B
� � � �

                                    (5.5) 
 
Then, in the basis ̂{ }ke ,  

 
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )j j l l j l j l i l l j i i i je e e B B e A B e e C= = = = ≡C A B A A  

where  

                 or, in matrix form,i j i l l jC A B C AB= =                              (5.6) 
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That is, in any basis of Ω,  
 

the matrix of the product of two operators is the product of the matrices of 
these operators.  

 
      Consider now a change of basis (passive transformation) with transformation ma-
trix T=[Tij]:  
 

                   ̂ ˆj i i je e T′ =                                                       (5.7) 

 
The inverse transformation is  
 

         ( )1ˆ ˆj i i j
e e T−′=                                                    (5.8) 

 

The same vector may be expressed in both these bases as ˆ ˆi i j jx x e x e′ ′= =
�

, from 

which we get, by using (5.7) and (5.8),  
 

       ( )1andi i j j i ji j
x T x x T x−′ ′= =                                     (5.9) 

 
In matrix form,  
 

          1[ ] [ ] and [ ] [ ]k k k kx T x x T x−′ ′= =                                 (5.10) 

 
      How do the matrix elements of a linear operator A transform under a change of 
basis of the form (5.7)? In other words, how does the matrix of an active transforma-
tion transform under a passive transformation? Let y x= A

� �
. By combining (5.10) 

with (5.4), we have:  
 

1 1 1[ ] [ ] [ ] [ ] [ ]k k k k ky T y T A x T AT x A x− − −′ ′ ′′= = = ≡ ⇒  

 
       A΄ = Τ  –1

Α Τ                                                    (5.11) 
 
For an alternative proof, note that  
 

( )
( )

1

1 1

ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ

j i i j i j i i j l li li i j k k l

k k k jk j

e e T T e T e A A T e T

T AT e e A A T AT

−

− −

′ ′= = = =

′ ′ ′ ′= ≡ ⇒ =

A A A
 

as before. A transformation of the form (5.11) is called a similarity transformation.  
      By applying the properties of the trace and the determinant of a matrix to (5.11) it 
is not hard to show that, under basis transformations, the trace and the determinant of 
the matrix representation of an operator remain unchanged: trA=trA΄, detA=detA΄. 
This means that the trace and the determinant are basis-independent quantities that are 
properties of the operator itself, rather than properties of its representation.  
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      Definition: A vector 0x ≠
�

 is said to be an eigenvector of the linear operator A if a 
constant λ exists such that  
 

                 x xλ=A
� �

                                                    (5.12) 
 
The constant λ is an eigenvalue of A, to which eigenvalue this eigenvector belongs. 
Note that, in general, more than one eigenvector may belong to the same eigenvalue.  
 
      In a given basis ̂{ }ke , the linear system (5.3) corresponding to the eigenvalue 

equation (5.12) takes on the form  
 

       Ai  j  xj = λ xi      or      (Ai  j  – λ δi  j ) xj  = 0                              (5.13) 
 
where [Aij]=A is the matrix of the operator A in the given basis. This is a homogene-
ous linear system of equations, which has a nontrivial solution for the eigenvector 
components iff  
 

          det [Ai  j   – λ δi  j ] = 0     or     det (Α – λ1) = 0                            (5.14) 
 
where 1 here is the n-dimensional unit matrix. This polynomial equation determines 
the eigenvalues λi (not necessarily all different from each other) of the operator A.  
      Now, in general, for any value of the constant λ the matrix (Α–λ1) is the represen-
tation of the operator (A–λ1) in the considered basis ̂{ }ke . Under a basis transforma-

tion to ˆ{ }ke ′  this matrix transforms according to (5.11):  

 
(Α–λ1)́  = Τ  –1 (Α–λ1) Τ = Τ  –1A T – λ1 ≡ Α΄– λ1 . 

 
On the other hand, by the invariance of the determinant under this transformation,  
 

det (Α΄– λ1) = det (Α – λ1) . 
 
In particular, if λ is an eigenvalue of the operator A, the right-hand side of the above 
equation vanishes in view of (5.14) and, therefore, the same must be true for the left-
hand side for the same value of λ. That is, the polynomial equation (5.14) determines 
the eigenvalues of A uniquely, regardless of the chosen representation. We conclude 
that  

the eigenvalues of an operator are a property of the operator itself and do not 
depend on the choice of basis of the space Ω.  

 
      If we can find n linearly independent eigenvectors { }kx

�
 of A, belonging to the 

corresponding eigenvalues λk (not necessarily all different) we can use these vectors to 
define a basis of Ω. The matrix representation of A in this basis is given by (5.1): 

j i i jx x A=A
� �

. On the other hand, if λj ≡ λ΄, then j j i j ix x xλ λ δ′ ′= =A
� � �

. Therefore, since 

the kx
�

 are linearly independent, we must have Aij=λ΄δij . We conclude that, in the ei-

genvector basis the matrix representation of the operator A has the diagonal form  
 

A = diag (λ1 , λ2 , ... , λn ) . 
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Moreover, by the above formula and by the fact that the quantities trA, detA and λk are 
basis-independent (i.e., invariant under basis transformations) it follows that, in any 
basis of Ω,  

       tr A = λ1 + λ2 + ... + λn   ,      det A = λ1 λ2 ... λn                       (5.15) 
 
      Proposition 5.1: Let A and B be two linear operator on Ω. We assume that A and 
B have a common set of n linearly independent eigenvectors { }kx

�
. Then the operators 

A and B commute:  

AB = BA    ⇔    [A, B] ≡ AB – BA = 0 
 
where [A, B] denotes the commutator of A and B.  
 
      Proof: Since the n vectors { }kx

�
 are linearly independent, they define a basis of Ω. 

By assumption, for each value of k the vector kx
�

 is an eigenvector of both A and B, 

with corresponding eigenvalues, say, α and β. Then,  
 

( ) ( ) ( ) ( )k k k k kx x x x xβ β βα≡ = = =AB A B A A
� � � � �

 

 
and similarly, ( ) k kx xαβ=BA

� �
. Thus,  

 
( ) ( ) [ , ] 0k k kx x x= ⇔ =AB BA A B

� � �
, 

 

for all k=1,...,n. Now, let i ixξΨ =
� �

 be an arbitrary vector in Ω. Then,  

 

[ , ] [ , ]( ) [ , ] 0,i i i ix xξ ξΨ = = = ∀Ψ∈ΩA B A B A B
� �� �

. 

 
This means that [A, B]=0.  
 
      Definition: An operator A is said to be nonsingular if detA≠0 (note that this is a 
basis-independent property). A nonsingular operator is invertible, in the sense that an 
inverse linear operator A–1 on Ω exists such that AA–1 =A–1A =1op , where 1op is the 
unit operator. This allows us to write  
 

1y x x y−= ⇔ =A A
� � � �

. 
 
      By (5.4) it follows that, if A is the matrix representation of the nonsingular opera-
tor A in some basis, then the matrix of the inverse operator A–1 is the inverse A–1 of A. 
As is well known, the matrix A may have an inverse iff detA≠0, whence the definition 
of a nonsingular operator. In view of the second relation in (5.15),  
 

all eigenvalues of a nonsingular operator are nonzero.  
 
Indeed, if even one eigenvalue vanishes, then detA=0 in any representation.  
 
 
 



 C. J. PAPACHRISTOU 

 14 

6. Comments 
 
Both the active and the passive view are of importance in Physics. Let us see some 
examples:  
      1. The Galilean transformation of Classical Mechanics and the Lorentz transfor-
mation of Relativity2 are passive transformations connecting different inertial frames 
of reference. When expressed in terms of mathematical equations, all physical laws 
are required to be invariant in form upon passing from one inertial frame to another.  
      2. The operators of Quantum Mechanics3 are active transformations from a quan-
tum state to a new state. On the other hand, both states and operators may be repre-
sented by matrices in different bases, the transformation from one basis to another be-
ing a passive transformation. Typically, the basis vectors of the quantum-mechanical 
space are chosen to be eigenvectors of linear operators representing physical quanti-
ties such as energy, angular momentum, etc. In such a basis the related operator is 
represented by a diagonal matrix, the diagonal elements being the eigenvalues of the 
operator. Physically, these eigenvalues give the possible values that a measurement of 
the associated physical quantity may yield in an experiment.  
 
 
 

                                                 
2 H. Goldstein, Classical Mechanics, 2nd Ed. (Addison-Wesley, 1980).  
3 E. Merzbacher, Quantum Mechanics, 3rd Ed. (Wiley, 1998).  
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Vectors and pseudovectors in electromagnetism 
 

Costas J. Papachristou 
 

Department of Physical Sciences, Hellenic Naval Academy, Piraeus, Greece 
 

papachristou@hna.gr 
 
 

The concept of pseudovectors is simply explained. Application is made to the Max-
well equations of electromagnetism, including the case where hypothetical magnetic 
charges and currents are present.  

 
 

1. True vectors and pseudovectors 
 
Perhaps the simplest way to distinguish vectors from pseudovectors is to examine the 
way each type of object transforms under space inversion.  
 

1x 2x

3x

1x ′2x ′

3x ′

1̂u 2û

3û

1̂u ′
2û ′

3û ′

i P

 
 
    Let (x1, x2, x3) be an orthogonal system of coordinates, with corresponding unit vec-
tors 1̂u , 2û , 3û . This coordinate system is said to be right-handed, since  

 
                                  1 2 3ˆ ˆ ˆu u u× =  ,    2 3 1ˆ ˆ ˆu u u× =  ,    3 1 2ˆ ˆ ˆu u u× =        (1) 

 
where the vector (cross) product is defined by the usual right-hand-rule convention.  
 
    Imagine now that we invert the directions of all three axes, thus obtaining a new 
coordinate system (x1΄, x2΄, x3΄) with corresponding unit vectors  
 

                                                   ˆ ˆ ( 1,2,3)i iu u i′ = − =            (2) 

 
If we insist on using the right-hand convention, then  
 

                         1 2 1 2 1 2 3 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )u u u u u u u u′ ′ ′× = − × − = × = = −     (etc).     

 
If, however, we employ the left-hand convention, then  
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                              1 2 3ˆ ˆ ˆu u u′ ′ ′× =  ,    2 3 1ˆ ˆ ˆu u u′ ′ ′× =  ,    3 1 2ˆ ˆ ˆu u u′ ′ ′× =       (3) 

 
We say that the system (xi΄ ) is left-handed.1 Thus,  
 

• the inversion of a right-handed coordinate system is a left-handed system.  
 
    Let P be a point in space. The position of P does not depend, of course, on whether 
we choose a right-handed or a left-handed system to specify it. However, the coordi-
nates of P do depend on this choice. Write:  
 

P ≡ (x1, x2, x3) ≡ (x1΄, x2΄, x3΄) . 
 
The two systems of coordinates are related by the set of equations  
 
                                                    xi΄ = – xi    (i= 1,2,3)       (4) 
 
Now, consider a physical object that is described by a vector (e.g., velocity, force, 
electric or magnetic field, etc.). Assume that in the system (xi) it is mathematically 
represented by  
 

                                        1 1 2 2 3 3ˆ ˆ ˆ ˆi i
i

A A u A u A u A u= + + ≡∑
�

          (5) 

 
while in the system (xi΄ ) it is represented by  
 

                                   1 1 2 2 3 3ˆ ˆ ˆ ˆi i
i

A A u A u A u A u′ ′ ′ ′ ′ ′ ′ ′′ = + + ≡∑
�

           (6) 

 
A (true) vector is a geometrical object independent of whether the coordinate system 
we use is right-handed or left-handed (that is, independent of the “handedness” of the 
underlying coordinate system). Hence,  
 
                                                          A A′ =

� �

                (7) 
 
In view of (2), (5), (6) and (7), the components of a vector transform under space in-
version according to the relations  
 
                                             Ai΄ = – Ai    (i= 1,2,3)                (8)    
 
    A pseudovector (or axial vector), on the other hand, transforms differently:  
 
                                                      A A′ = −

� �

                (9) 
 
so that, by (2), (5), (6) and (9), its components transform as follows under space in-
version:  
 

                                                 
1 Note that if only two axes of a right-handed coordinate system are inverted, the resulting system is 
still right-handed; if only one axis is inverted, the system is left-handed.  
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                                                     Ai΄ = Ai    (i= 1,2,3)                          (10) 
 
Obviously, a pseudovector is not an invariant geometrical object since it is dependent 
upon the handedness of the coordinate system.  
 
    Example 1. Let each of A

�

 and B
�

 be a vector or a pseudovector. Define the vector 
(cross) product of these objects in the coordinate systems (xi) and (xi΄ ) as follows:  
 

                          
1 2 3

1 2 3

1 2 3

ˆ ˆ ˆu u u

A B A A A

B B B

× =
� �

  ,     

1 2 3

1 2 3

1 2 3

ˆ ˆ ˆu u u

A B A A A

B B B

′ ′ ′

′ ′ ′′ ′× =

′ ′ ′

� �

                   (11) 

 
By taking into account relations (2) and (7) – (10), we conclude the following:  
 

• If both A
�

 and B
�

 are vectors or both are pseudovectors, then A B A B′ ′× = − ×
� �� �

 
so that the cross product is a pseudovector.  

• If either A
�

 or B
�

 is a vector, the other being a pseudovector, A B A B′ ′× = ×
� �� �

 
so that the cross product is a vector.  

 
    Example 2. Consider the del operator, expressed in the coordinate systems (xi) and  
(xi΄ ) as follows:  
 

                                            
3

1

ˆi
i i

u
x=

∂
∇ =

∂∑
�

  ,    
3

1

ˆi
i i

u
x=

∂′′∇ =
′∂

∑
�

                     (12) 

 
We notice that  
 

3

1

ˆ( )
( )i

i i

u
x=

∂
′∇ = − = ∇

∂ −∑
� �

. 

 
Thus, according to (7), the del operator is a (true) vector operator. Then, according to 
Example 1,  
 

• if A
�

 is a vector, its rot A∇×
��

 is a pseudovector, while  

• if B
�

 is a pseudovector, its rot B∇×
� �

 is a vector.  
 
    Definition. A quantity Φ is a (true) scalar if its value remains invariant under space 
inversion:  
 
                                                               Φ΄ = Φ                      (13) 
 
A quantity Φ is a pseudoscalar if it changes sign under space inversion:  
 
                                                             Φ΄ = – Φ                           (14) 
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    Example 3. Let each of A
�

 and B
�

 be a vector or a pseudovector. Define the scalar 
(dot) product of these objects in the coordinate systems (xi) and (xi΄ ) as follows:  
 

                                     
3

1
i i

i

A B A B
=

⋅ =∑
� �

 ,     
3

1
i i

i

A B A B
=

′ ′′ ′⋅ =∑
� �

                 (15) 

 
We observe the following:  
 

• If both A
�

 and B
�

 are vectors or both are pseudovectors, then A B A B′ ′⋅ = ⋅
� �� �

 so 
that the dot product is a scalar.  

• If either A
�

 or B
�

 is a vector, the other being a pseudovector, A B A B′ ′⋅ = − ⋅
� �� �

 
so that the dot product is a pseudoscalar.  

 

    Example 4. Let A
�

, B
�

, C
�

 be (true) vectors. Then B C×
��

 is a pseudovector, so that 

( )A B C⋅ ×
� ��

 is a pseudoscalar.  
 
    Example 5. Regarding the divergence of a vector quantity, we have the following:  
 

• If A
�

 is a (true) vector, its div A∇ ⋅
��

 is a (true) scalar, while  

• if B
�

 is a pseudovector, its div B∇ ⋅
� �

 is a pseudoscalar.  
 
    Example 6. The Laplace operator  
 

                                                    
23

2
2

1i ix=

∂
∇ ≡ ∇ ⋅∇ =

∂
∑

� �

                    (16) 

 
is a scalar operator. Thus, if Φ is either a scalar or a pseudoscalar function, transform-
ing under space inversion according to the general rule  
 
                                        Φ΄ (x1΄, x2΄, x3΄ ) = ± Φ (x1, x2, x3)                         (17) 
 
(where the plus sign corresponds to a scalar while the minus sign to a pseudoscalar), 
then ∇2

Φ is a scalar or a pseudoscalar function, respectively. Note also that  
 

• the grad ∇Φ
�

 of a scalar (pseudoscalar) function is a vector (pseudovector) 
function.  
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2. Applications in electromagnetism 
 

By its definition, /eE F q=
� �

, and by the fact that the electric force eF
�

 is a (true) vec-
tor,2 we see that  
 

• the electric field is a vector.  
 

On the other hand, since both the magnetic force ( )mF q v B= ×
� ��

 and the velocity v
�

 of 

a charged particle are vectors, we conclude that  
 

• the magnetic field is a pseudovector  
 
(cf. Example 1 in Sec. 1).  
 
    Consider the Maxwell equations:  
 

                                         

0

0 0 0

( )

( ) 0

( )

( )

a E

b B

B
c E

t

E
d B J

t

ρ
ε

µ ε µ

∇ ⋅ =

∇ ⋅ =

∂
∇× = −

∂

∂
∇× = +

∂

� �

� �

�

� �

�

� � �

                       (18) 

 
Equation (18a) is consistent with the fact that the electric field is a vector and the 
charge density ρ is a scalar function. In (18c) the electric field is a vector, thus its rot 
on the left-hand side is a pseudovector (cf. Example 2 in Sec. 1); this is consistent 
with the fact that the magnetic field is a pseudovector. In (18d) the magnetic field is a 
pseudovector, thus its rot on the left-hand side is a vector; this is consistent with the 
fact that both the electric field and the current density are vectors.  
 
    Consider the Poynting vector  
 

1
( )N E H E B

µ
= × = ×
� � � � �

 . 

 
Since the electric field is a vector while the magnetic field is a pseudovector, their 
cross product on the right-hand side must be a vector; therefore so is the Poynting 
vector on the left. This was to be expected, since the direction of flow of electromag-
netic energy is independent of whether our coordinate system is right-handed or left-
handed.  
 
 

                                                 
2 In general, a force is a physically measurable quantity that cannot depend on the handedness of our 
coordinate system.  
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3. The inclusion of magnetic charges and currents 
 
Although magnetic charges and magnetic currents have not been observed so far in 
Nature, their existence cannot be precluded in principle. If such quantities are as-
sumed to exist, the Maxwell equations must be generalized accordingly, as follows 
(the index e stands for “electric”  while the index m stands for “magnetic”  ):  
 

                                         

0

0

0

0 0 0

( )

( )

( )

( )

e

m

m

e

a E

b B

B
c E J

t

E
d B J

t

ρ
ε

µ ρ

µ

µ ε µ

∇ ⋅ =

∇ ⋅ =

∂
∇× = − −

∂

∂
∇× = +

∂

� �

� �

�

� � �

�

� � �

                       (19) 

 
As discussed previously, E

�

 is a vector while B
�

 is a pseudovector. Moreover, the 

electric charge density ρe is a scalar function while the electric current density eJ
�

 is a 

vector function. Since the div of the magnetic field is a pseudoscalar, it follows from 
(19b) that  
 

• the magnetic charge density ρm is a pseudoscalar.  
 
Also, since the rot of the electric field is a pseudovector, it follows from (19c) that  
 

• the magnetic current density mJ
�

 is a pseudovector.  

 
    By taking the div of (19d) and (19c) and by using (19a) and (19b), respectively, we 
find two equations of continuity:  
 

                                                        0e
eJ

t

ρ∂
∇ ⋅ + =

∂

� �

                     (20) 

 

                                                       0m
mJ

t

ρ∂
∇ ⋅ + =

∂

� �

                      (21) 

 
The physical meaning of these relations is that the electric and the magnetic charge 
are separately conserved. Notice that (20) is a scalar equation while (21) is a pseudo-
scalar equation [the div of a vector (pseudovector) is a scalar (pseudoscalar)]. On the 
other hand, by taking the rot of (19c) and (19d) and by using the vector identity  
 

                                           2( ) ( )A A A∇ × ∇ × = ∇ ∇ ⋅ − ∇
� � � � � � �

  
 
together with the Maxwell system (19), we derive separate non-homogeneous wave 
equations for the electric and the magnetic field:  
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2

2
0 0 02

0

1 e
e m

JE
E J

t t
ε µ ρ µ

ε

 ∂∂
∇ − = ∇ + ∇× + 

∂ ∂ 

��

� � � �

                 (22) 

 

                           
2

2
0 0 0 0 02

m
m e

JB
B J

t t
ε µ µ ρ ε µ

 ∂∂
∇ − = ∇ −∇× + 

∂ ∂ 

��

� � � �

                (23) 

 
Notice that (22) is a vector equation while (23) is a pseudovector equation [recall that 
the rot of a vector (pseudovector) function is a pseudovector (vector) function].  
 
    Technically, the two wave equations (22) and (23), together with the two continuity 
equations (20) and (21), constitute consistency conditions for the Maxwell system 
(19). This system may be regarded as a sort of Bäcklund transformation relating fields 
and sources.3  
 
 

                                                 
3 See https://arxiv.org/abs/1901.08058 and http://metapublishing.org/index.php/MP/catalog/book/62.  
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Several aspects of the motion of a charged particle in a uniform magnetic field  
are examined, both by physical arguments and by explicit solution of the 
differential equation of motion.  

 

 
Problem 

 
A particle of mass m and charge q>0 enters a uniform magnetic field B

�
 with initial 

velocity 0v
�

 perpendicular to the field. The magnetic field is assumed to be oriented in 

the positive z-direction.  
 
    1. Show that the particle will execute uniform circular motion on the xy-plane and 
determine the radius r of this motion.  
 
    2. Show that the larger the momentum of the particle, the smaller the curvature of 
the path. Interpret this physically.  
 
    3. Determine the angular velocity ω of the particle and show that the period of 
revolution is independent of the size of the orbit.  
 
    4. Suppose that the magnitude B of the magnetic field increases with time, although 
the field remains uniform (i.e., spatially constant) at all times. Show that the increase 
of B produces a decrease of the size of the orbit.  
 
    5. Assume now that the particle enters the magnetic field in a direction that is not 
perpendicular to the field. Show that the motion of the particle will be uniform, while 
the projection of this motion onto the xy-plane will be uniform circular with angular 
velocity ω equal to that found in part 3. Describe the path geometrically.  
 
    6. Show that the radiation losses due to acceleration become more significant the 
smaller the mass of the particle.  

    7. By solving the differential equation of motion of the charged particle, derive 
explicit expressions for the coordinates (x, y, z) of the particle as functions of time t. 
Demonstrate that the projection of the motion onto the xy-plane is uniform circular, as 
found previously, and verify the expression for the angular velocity ω. Explain why 
this planar motion is clockwise for the given direction of B

�
.  
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Solution 
 
 

x

y

z
O
i
⊙

⊙B
�

ω

 
 
Both the z-axis and the magnetic field are normal to the page and directed toward the reader; 

the direction of motion is clockwise (why?). 
 
 
    1. The charged particle is subject to a magnetic force  
 

                                                          ( )F q v B= ×
� ��

           (1) 
 

where, in components,  ˆ ˆ ˆ ˆand ( | | )x x y y z z zv v u v u v u B Bu B B= + + = =
� ��

. Then,  

 

                                                  ˆ ˆ( )y x x yF qB v u v u= −
�

                (2) 

 
which is a vector in the xy-plane; the same is true, therefore, with regard to the 
acceleration of the particle (assuming no other forces act on it). Given that, by 
assumption, the initial velocity also is a vector in the xy-plane, we conclude that the 
motion of the particle takes place on that plane.  
 
    As seen in (1), the total force on the particle is normal to the particle’s velocity, i.e., 
normal to the trajectory of the particle. This means that the particle moves at constant 
speed inside the magnetic field (see, e.g., Section 2.4 of [1] and Sec. 7.1 of [2]). In 
other words, the particle executes uniform curvilinear motion. We must now show 
that this motion is circular. Indeed, the magnitude of the magnetic force is  
 
                                                  F = qvB = constant          (3) 
 
where v is the (constant) speed of the particle, equal to the initial speed v0 , and where 
we have taken into account that the velocity vector is always perpendicular to the 
magnetic field. Now, since the motion is uniform, the total force (1) is purely 
centripetal. Hence, F=mv2/ρ , where ρ is the radius of curvature at any point of the 
trajectory (see Sec. 3.6 of [1]). Given that both v and F are constant, it follows that ρ 
is constant also; that is, the motion is circular. We may place the center of the circle at 
the origin O of our coordinate system (in particular, of the xy-plane) so that the radius 
ρ of the circle equals the distance r of the particle from O. From F=mv2/r , and by 
using (3), we find:  
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mv

r
qB

=                (4) 

 
    2. Let p=mv be the (constant) magnitude of the momentum of the particle. Relation 
(4) may then be rewritten as r=p /qB. We observe that r is an increasing function of p: 
the larger the momentum, the larger the radius and, therefore, the smaller the 
curvature of the path. Physically, this means that as the momentum increases it 
becomes more difficult for the magnetic field to produce a change in the direction of 
motion of the particle.  
 
    3. We write v=ωr, where ω is the angular velocity. Substituting this into (4), we 
find  
 

                                                          
qB

m
ω =                 (5) 

 
We notice that ω is independent of the radius r of the orbit; so is, therefore, the period 
T=2π/ω  of the circular motion.  
 
    4. Since v=v0=constant, independent of the magnetic-field strength B, a change of 
B will not affect the speed of the particle. From (4) it then follows that an increase of 
B will produce a decrease of r, i.e., of the size of the orbit. This means that the particle 
will revolve closer to the z-axis. This effect is used in fusion reactors to achieve 
plasma heating and confinement.  
 
    5. As argued in part 1 of the problem, since the total force on the particle is normal 
to the particle’s velocity, the speed v of the particle is constant, equal to the initial 
speed v0 , and the motion is uniform curvilinear. Furthermore, the total force, given by 
(1) and (2), is a vector parallel to the xy-plane, and so is the acceleration of the 
particle. These results are independent of the direction of the initial velocity of the 
charge upon its entrance into the magnetic field. Notice also that Eq. (2) is valid even 
if the velocity has a z-component.  
 
    The motion, however, is no longer expected to be planar if the direction of the 
velocity has a z-component, as will now be assumed to be the case. Let us write  
 

        ˆz zv v v u′= +
� �

   where  ˆ ˆx x y yv v u v u′ = + ≡
�

 vector parallel to the xy-plane     (6) 

 
Since the z-component of the acceleration is zero, the velocity does not change in the 
z-direction; that is, vz=v0z=constant. Hence, along the z-axis (which is parallel to the 
magnetic field) the motion is uniform rectilinear. Regarding the motion parallel to the 
xy-plane, we note the following:  
 

( )ˆ 0z zF v F v v u′⋅ = ⋅ − =
� �� �

, 

 
since by (1) the total force is normal to the velocity, while by (2) the force is also 
normal to the z-axis. Alternatively, by using (2) and (6) we have:  
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ˆ ˆ ˆ ˆ( ) ( ) ( ) 0y x x y x x y y y x x yF v qB v u v u v u v u qB v v v v′⋅ = − ⋅ + = − =
� �

. 

 
It follows that the motion parallel to the xy-plane is uniform curvilinear, with speed 
equal to  
 

( ) ( )
1/2 1/22 2 2 2

0 0 constantz zv v v v v′ = − = − ≡  

 
where we have used the facts that v=v0 and vz=v0z . Furthermore,  
 

ˆ ˆ( ) ( )z z zv B v v u Bu v B′ ′× = + × = ×
� �� � �

 , 

 
so that, by (1),  
 

                                           | | constantF q v B qv B′ ′= × = ≡
��

     (7) 
 
If  ρ΄ is the radius of curvature of the projection of the trajectory onto the xy-plane, 
then, given that F is purely centripetal, we have:  
 

                                     
2 2

constant
v v

F m m
F

ρ
ρ

′ ′
′= ⇒ = ≡

′
   (8) 

 
(since both v΄ and F are constant). This means that the projection of the motion onto 
the xy-plane is uniform circular. Overall, the motion of the charge is the resultant of a 
uniform rectilinear motion parallel to the magnetic field, and a uniform circular 
motion on a plane perpendicular to the field. The trajectory is a helix (uniform helical 
motion). By (7) and (8) we get the radius of the circular projection of the motion:  
 

                                                             
mv

qB
ρ

′
′ =               (9) 

 
Then, by writing v΄=ωρ΄, we find that the angular velocity ω is again given by (5); 
that is,  ω=qB/m.  
 
    6. The total power radiated by a slowly moving accelerating charge is given by 
Larmor’s formula (see Sec. 10.12 of [2])  
 

                                                         
2 2

3
06

q a
P

cπε
=                      (10) 

 
where a is the magnitude of the acceleration. Assuming that the charged particle is 
moving circularly on a plane normal to the magnetic field, and taking Eq. (3) into 
account, we have: a=F/m=qvB/m , where v is the constant speed of the particle. We 
observe that, for given values of q, v and B, the smaller the mass m of the particle, the 
greater the radiated power P and hence the greater the power losses. That is, radiation 
losses become increasingly significant as the mass of the particle decreases. Thus, for 
example, protons radiate far less than electrons in a cyclical accelerator.  
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    7. The equation of motion of the charged particle is  
 

( )
dv

m q v B
dt

= ×

�
��

. 

 
By expanding the left-hand side into components, by using Eq. (2) for the right-hand 
side, and by equating corresponding components on the two sides of the equation, we 
obtain the following system of differential equations:  
 

                                    , , 0yx z
y x

dvdv dv
v v

dt dt dt
ω ω= = − =                       (11) 

 
where we have put  ω=qB/m . Notice that the expression for ω is the same as that 
found previously for the angular velocity of the circular projection of the motion on 
the xy-plane.  
 
    The system (11) may be integrated by employing the methods described in [3] (cf., 
in particular, Sec. 4.1 and 5.1). The solution of the system is  
 
                           vx = A cos (ωt – α) ,    vy = – A sin (ωt – α) ,    vz = λ               (12) 
 
where the A>0, α, λ are arbitrary constants. We notice that the speed of the particle is 
constant, equal to  v=(A2+λ2)1/2 ; the motion is thus uniform. The constants A, α, λ can 
be expressed in terms of the components (v0x , v0y , v0z) of the initial velocity. Setting 
t=0 in (12), we find:  
 

A = (v0x
2
 + v0y

2)1/2  ,    λ = v0z  ,    α = arctan (v0y /v0x) . 
 
Relations (12) are rewritten as a system of differential equations:  
 

dx/dt = A cos (ωt – α) ,    dy/dt = – A sin (ωt – α) ,    dz/dt = λ     
 
the solution of which system is (by ignoring arbitrary constants)  
 
                        x = (A/ω) sin (ωt – α) ,    y = (A/ω) cos (ωt – α) ,    z = λt               (13) 
 
Equations (13) express the coordinates of the particle as functions of time.  
 
    Projected to the xy-plane, the motion of the particle is uniform circular of radius 
r=A /ω  and with angular velocity  ω=qB/m . Define now the function θ(t) by  
 

θ(t) ≡  α – ωt + π/2    ⇔    ωt – α = π/2 – θ(t) . 
 
Equations (13) are then rewritten as  
 

x = r cos θ(t)  ,    y = r sin θ(t) . 
 
 
 



 MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD 

 6 

We observe that the pair (r, θ) represents polar coordinates on the xy-plane, describing 
the circle r=A /ω=const. We also notice that, by its definition, θ(t) is a decreasing 
function of t ; that is, the polar angle θ decreases with time. This suggests that the 
circular projection of the path on the xy-plane is traversed in the negative direction, 
i.e., clockwise.  
 
    It also follows from (13) that the motion in the z-direction is uniform rectilinear. 
The overall path of the particle is a helix and the motion is, therefore, uniform helical.  
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1.  Definition of the center of mass  
 
Consider a system of particles of masses m1 , m2 , m3 ,... Assume that at some particu-
lar moment the particles are located at the points of space with corresponding position 
vectors 1 2 3, , , ,r r r

� � �

⋯  relative to a reference point Ο which is typically chosen to be 

the origin of an inertial1 frame of reference (see figure).  
 
 

 
 
      The total mass of the system is  
 

    1 2 3 i
i

M m m m m= + + + =∑⋯                                   (1) 

 
The center of mass of the system is defined as the point C of space having the position 
vector  
 

    1 1 2 2

1 1
( )C i i

i

r m r m r m r
M M

= + + = ∑� � � �

⋯                                  (2) 

 
      In relation (2) the position vectors of the particles and of the center of mass are 
defined with respect to the fixed origin O of our coordinate system. If we choose a 
different reference point O΄, these position vectors will, of course, change. However, 
as will be shown below, the position of the center of mass C relative to the system of 
particles will remain the same, regardless of the choice of reference point.  
 

                                                 
1 At least, insofar as Newton's laws are to be used.  

•

•

•

•

x y

z

O

1m

2m

3m

C

1r
� 2r

�

3r
�

Cr
�
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      If (xi , yi , zi ) and (xC , yC , zC) are the coordinates of mi and C, respectively, we can 
replace the vector relation (2) with three scalar equations:  
 

 
1 1 1

, ,C i i C i i C i i
i i i

x m x y m y z m z
M M M

= = =∑ ∑ ∑                       (3) 

 
      As an example, consider two particles of masses m1=m and m2=2m, located at 
points x1 and x2 of the x-axis. Call  a = x2 – x1  the distance between these particles:  
 
                                                                
 
 
 
 
 
The total mass of the system is M=m1+m2=3m . From relations (3) it follows that the 
center of mass C of the system is located on the x-axis. Indeed, yi=zi=0 (i= 1,2) so that  
yC=zC=0  (the y and z-axes have not been drawn). Furthermore,  
 

1 1 2 2 1 2 1

1 1 2
( ) ( 2 )

3 3Cx m x m x x x x a
M

= + = + = +  

 
where we have used the fact that  x2=  x1+a . Thus, the center of mass C is located at a 
distance 2a/3 from m. Note that the position of C relative to the system of particles 
does not depend on the choice of the reference point Ο with respect to which the co-
ordinates of the particles are determined.  
      As the above example demonstrates, the position of the center of mass does not 
necessarily coincide with the position of a particle of the system. (Give examples of 
systems in which a particle is located at C, as well as of systems where no such coin-
cidence occurs.)  
 
 
2.  Independence from the point of reference  
 
We must now show that the location of C in space does not depend on the choice of 
the reference point Ο. Let us assume for the moment, however, that the position of C 
does depend on the choice of reference point. So, let C and C΄ be two different posi-
tions of the center of mass, corresponding to the reference points Ο and Ο΄. We call 

Cr
�

 and Cr ′
�

 the position vectors of C and C΄ with respect to Ο and Ο΄, respectively, and 

we let ir
�

 and ir ′
�

 be the position vectors of the particle mi relative to Ο and Ο΄. For 

convenience, we denote by b
�

the vector OO′
�����

 (see figure).  
 

•• ••
O C

x
m 2m

1x 2xCx

a
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i
i

O O′
b
�

C C′

ir
�

ir ′
� Cr ′
�

Cr
� im

i

 

 
      The defining equation (2), expressed successively for Ο and Ο΄, yields  
 

1 1
,C i i C i i

i i

r m r r m r
M M

′ ′= =∑ ∑� � � �

 

where i ir r b′ = −
�

� �

. Now,  

 

1 1 1
( )

1 1 1
0

C C

i i i i i i i
i i i

i i
i i

CC CO OO O C r b r

CC m r b m r b m r r
M M M

b m b b m b b M b
M M M

′′ ′ ′ ′= + + = − + + ⇒

′ ′′ = − + + = − −

 
= − = − = − = 

 

∑ ∑ ∑

∑ ∑

����� ���� ����� ������ �
� �

����� � �
� � � �

� � � � � �

 

 
which suggests that the points C and C΄ coincide. Hence, the center of mass of the 
system is a uniquely determined point of space, independent of the origin of our coor-
dinate system.  
 
 
3.  Center of mass and Newton’s laws  
 
We define the total (linear) momentum of the system at time t , relative to an inertial 
reference frame, as the vector sum  
 

    i i i
i i

P p m v= =∑ ∑
� � �

                                                   (4) 

Let iF
�

 be the external force acting on mi  at this instant. The total external force acting 

on the system at time t is ext i
i

F F=∑
� �

. By Newton’s 2nd and 3rd laws we find that  

 

      ext

dP
F

dt
=

�

�

                                                           (5) 

 
[see, e.g., Papachristou (2020)]. We now prove the following:  
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1. The total momentum of the system is equal to the momentum of a hypothetical 
particle having mass equal to the total mass Μ of the system and moving with 
the velocity of the center of mass of the system.  

2. The equation of motion of the center of mass of the system is that of a hypo-
thetical particle of mass equal to the total mass Μ of the system, subject to the 

total external force extF
�

 acting on the system.  

 
      Proof:  
 
      1. Differentiating (2) with respect to time, we find the velocity of the center of 
mass of the system:  
 

1 1C i
C i i i

i i

dr d rd
v m r m

dt dt M M dt

 
= = = ⇒ 

 
∑ ∑

� �

� �

 

 

    
1 1

C i i i
i i

v m v p
M M

= =∑ ∑� � �

                                           (6) 

 
Combining this with (4), we have:  
 

        CP M v=
� �

                                                         (7) 

 
      2. Differentiating (7), we have:  
 

( ) C
C C

dvdP d
M v M M a

dt dt dt
= = =

� �

� �

 

 
where Ca

�

 is the acceleration of the center of mass. Hence, by (5),  

 

            ext CF M a=
� �

                                                         (8) 
 
      A system of particles is said to be isolated if (a) it is not subject to any external 
interactions (a situation that is only theoretically possible) or (b) the total external 

force on the system is zero: ext 0F =
�

. In this case, relations (5) and (7) lead to the fol-

lowing conclusions:  
 

1. The total momentum of an isolated system of particles retains a constant value 
relative to an inertial frame of reference (principle of conservation of momen-
tum).  

2. The center of mass C of an isolated system of particles moves with constant 
velocity relative to an inertial reference frame.  

 
      As an example, consider two masses m1 and m2 connected to each other with a 
spring. The masses can move on a frictionless horizontal plane, as shown in the fig-
ure:  
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1m 2m
k

 
 
The system may be considered isolated since the total external force on it is zero (ex-
plain this!). Thus, the total momentum of the system and the velocity of the center of 
mass C remain constant while the two masses move on the plane. Note that the inter-
nal force Fint=k∆l, where ∆l is the deformation of the spring relative to its natural 
length, cannot produce any change to the total momentum and the velocity of C.  
 
 
4.  Center of mass and angular momentum  
 
The total angular momentum of the system at time t, relative to an arbitrary point O, 
is defined as  
 

( )i i i i
i i

L L m r v= = ×∑ ∑
� � � �

                                              (9) 

 
In particular, the total angular momentum relative to the center of mass C of the sys-
tem is  
 

    ( )i i i
i

L m r v′ ′′ = ×∑
� � �

                                                 (10) 

 
where primed quantities are measured with respect to C. We have:  
 

,i i C i i Cr r r v v v′ ′= + = +
� � � � � �

 . 

 
Substituting these into (9) and using (1) and (10), we get:  
 

( )C C i i C C i i
i i

L L M r v m r v r m v
    ′ ′′= + × + × + ×    
    
∑ ∑

� � � � � � � �

 . 

 

But, 0i im r′Σ =
�

 and 0i im v′Σ =
�

, since these quantities are proportional to the position 

vector and the velocity, respectively, of the center of mass C relative to C itself. Thus, 
finally,  
 

    ( )C CL L M r v′= + ×
� � � �

                                                  (11) 

 
      We may interpret this result as follows:  
 

The total angular momentum of the system, with respect to a point O, is the 
sum of the angular momentum relative to the center of mass (“spin angular 
momentum”) and the angular momentum relative to O, of a hypothetical par-
ticle of mass equal to the total mass of the system, moving with the center of 
mass (“orbital angular momentum”).  
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      Now, suppose O is the origin of an inertial reference frame. Let iF
�

 be the external 

force acting on mi at time t. The total external torque acting on the system at this time, 
relative to O, is given by  
 

   ext i i
i

T r F= ×∑
� ��

                                                    (12) 

 
If we make the assumption that all internal forces in the system are central (as the 
case is in most physical situations of interest), then the following relation exists be-
tween the total angular momentum and the total external torque, both quantities meas-
ured relative to O [see, e.g., Papachristou (2020)]:  
 

    ext
dL

T
dt

=

�

�

                                                          (13) 

 
      Equation (13) is strictly valid relative to the origin O of an inertial frame. If the 
system of particles is isolated, the center of mass C moves with constant velocity 
(relative to O) thus is a proper choice of point of reference for the vector relation (13). 
That is, (13) is valid with respect to the center of mass of an isolated system. But, 
what if the system of particles is not isolated? Then C is accelerating (relative to O) 
and it would appear that (13) is not valid relative to C in this case. This is not so, 
however:  
 

Equation (13) is always valid with respect to the center of mass C, even when 
C is accelerating (i.e., even if the system of particles is not isolated)!  

 
      Indeed, by differentiating (11) with respect to time and by using (13), (12) and (8), 
we have:  
 

( )( ) ( ) which vanishesC C C C
dL dL

M r a M v v
dt dt

′
= + × + × ⇒

� �

� � � �

 

ext ext( )i i C
i

dL
T r F r F

dt

′
≡ × = + × ⇒∑

�

� � �� �

 

ext

( )i i C i i C i
i i i

i i
i

dL
r F r F r r F

dt

r F T

 ′
= × − × = − × 

 

′ ′= × =

∑ ∑ ∑

∑

�

� � �� � � �

� ��

 

where extT ′
�

 is the total external torque relative to the center of mass.  

      This observation justifies using (13) to analyze, e.g., the motion of a rolling body 
on an inclined plane by choosing an axis of rotation that passes through the accelerat-
ing center of mass of the body.  
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5.  Center of mass and kinetic energy  
 
The total kinetic energy of the system relative to an external observer O is  
 

    21

2k i i
i

E m v=∑                                                   (14) 

 
The total kinetic energy with respect to the center of mass C is  
 

     21

2k i i
i

E m v′ ′=∑                                                   (15) 

 
(as before, primed quantities are measured with respect to C). We have:  
 

2 2 2 2i i C i i i i C i Cv v v v v v v v v v′ ′ ′= + ⇒ = ⋅ = + + ⋅
� � � � � � �

 . 

 
Substituting this into (14) and using (1) and (15), we get:  
 

21

2k k C i i C
i

E E M v m v v
 ′ ′= + + ⋅ 
 
∑ � �

 . 

 
But, as noted previously, the sum in the last term vanishes, being proportional to the 
velocity of the center of mass C relative to C. Thus, finally,  
 

     21

2k k CE E M v′= +                                                  (16) 

 
      This may be interpreted as follows:  
 

The total kinetic energy of the system, relative to an observer O, is the sum of 
the kinetic energy relative to the center of mass and the kinetic energy relative 
to O, of a hypothetical particle of mass equal to the total mass of the system, 
moving with the center of mass.  

 
 
6.  Adding a particle at – or removing a particle from – the center of mass  
 
We now prove the following:  
 
      (a) Consider a system of N particles of masses m1 , m2 , ... , mN . Let C be the cen-
ter of mass of the system. If a new particle, of mass m , is placed at C, the center of 
mass of the enlarged system of (N+1) particles will still be at C.  

      (b) Consider a system of N particles of masses m1 , m2 , ... , mN . It is assumed that 
the location of one of the particles, say of mN , coincides with the center of mass C of 
the system. If we now remove this particle from the system, the center of mass of the 
remaining system of (N–1) particles will still be at C.  
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      Proof:  
 
      (a) The total mass of the original system of N particles is M=m1+m2+...+mN . The 
center of mass of this system is located at the point C with position vector  
 

1 1 2 2
1

( )C N Nr m r m r m r
M

= + + +
� � � �

⋯  

 
relative to some fixed reference point O. For the additional particle, which we name 
mN+1 , we are given that  mN+1=m  and 1N Cr r+ =

� �

. The total mass of the enlarged sys-

tem of (N+1) particles  m1 , m2 , ... , mN , mN+1  is  M΄=  M+m,  and the center of mass 
of this system, relative to O, is located at  
 

1 1
1

( )C N N Cr m r m r mr
M

′ = + + +
′

� � � �

⋯  . 

 
Now,  1 1 N N Cm r m r M r+ + =

� � �

⋯ ,  so that  

 
1

( )C C C Cr M r mr r
M m

′ = + =
+

� � � �

 . 

 
      (b) Although this statement is obviously a corollary of part (a), we will prove this 
independently. Here we are given that N Cr r=

� �

. Thus,  

 

1 1
1

( )N N Nm r m r r
M

+ + =
� � �

⋯  . 

 
The mass of the reduced system of (N–1) particles m1 , m2 , ... , mN–1  is  M΄=  M–mN , 
while the center of mass of this system is located at  
 

1 1 1 1
1

( )C N Nr m r m r
M − −

′ = + +
′

� � �

⋯  . 

 
But,  1 1 1 1N N N N Nm r m r m r M r− −+ + + = ⇒

� � � �

⋯  

 

1 1 1 1 ( )N N N N Nm r m r M m r M r− − ′+ + = − =
� � � �

⋯  . 

 
Thus, finally,  

1
C N N Cr M r r r

M
′ ′= = =

′
� � � �

 . 
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7.  Center of mass of a continuous mass distribution  
 
A rigid body is a physical object the structure of which exhibits a continuous mass 
distribution. Such an object can be considered as a system consisting of an enormous 
(practically infinite) number of particles of infinitesimal masses dmi , placed in such a 
way that the distance between any two neighboring particles is zero. The total mass of 
the body is  
 

i
i

M dm dm= =∑ ∫  

 
where the sum has been replaced by an integral due to the fact that the dmi are infini-
tesimal and the distribution of mass is continuous.  
      A point in a rigid body can be specified by its position vector r

�

, or its coordinates 
(x, y, z), relative to the origin Ο of some frame of reference. Let dV be an infinitesimal 
volume centered at ( , , )r x y z≡

�

, and let dm be the infinitesimal mass contained in this 
volume element. The density ρ of the body at point r

�

 is defined by  
 

( ) ( , , )
dm

r x y z
dV

ρ ρ= =
�

 . 

 
Then,  

( )dm r dVρ=
�

 
 
and the total mass of the body is written  
 

( )M r dVρ= ∫
�

 

 
where the integration takes place over the entire volume of the body. (The integral is 
in fact a triple one since, in Cartesian coordinates, dV=dxdydz.) The center of mass C 
of the body is found by using (2):  
 

1 1
( )C i i

i

r dm r rdm
M M

= = ⇒∑ ∫
� � �

 

 

       
1

( )Cr r r dV
M

ρ= ∫
� � �

                                             (17) 

 
where the r

�

 and Cr
�

 are measured relative to the origin Ο of our coordinate system. 

(Remember, however, that the location of C with respect to the body is uniquely de-
termined and is independent of the choice of the reference point Ο.)  
      In a homogeneous body the density has a constant value ρ, independent of r

�

. 
Then,  
 

M dV dV Vρ ρ ρ= = =∫ ∫  
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ii x
0x=

O C

Cxa a l+

where V  is the total volume of the body. Also, from (17) we have:  
 

        
1

Cr r dV r dV
M V

ρ
= =∫ ∫
� � �

                                        (18) 

 
      Imagine now that, instead of a mass distribution in space, we have a linear distri-
bution of mass (e.g., a very thin rod) along the x-axis. We define the linear density of 
the distribution by  
 

( )
dm

x
dx

ρ =  . 

 
The total mass of the distribution is  
 

( )M dm x dxρ= =∫ ∫  . 

 
The position of the center of mass of the distribution is given by  
 

     
1 1

( )Cx x dm x x dx
M M

ρ= =∫ ∫                                      (19) 

 
If the density ρ is constant, independent of x, then  
 

M dx dx lρ ρ ρ= = =∫ ∫  

 
where l is the total length of the distribution. Furthermore,  
 

      
1

Cx x dx x dx
M l

ρ
= =∫ ∫                                            (20) 

 
      As an example, consider a thin, homogeneous rod of length l, placed along the x-
axis from  x=a  to  x=a+l , as shown in the figure:  
 
         
 
 
 
By equation (20),  
 

2 21 1
( )

2 2

a l

C a

l
x x dx a l a a

l l

+
 = = + − = + ∫  . 

 
That is, the center of mass C of the rod is located at the center of the rod. Note that the 
location of C on the rod is uniquely determined, independently of the choice of the 
origin Ο of the x-axis (although the value of the coordinate xC does, of course, depend 
on this choice).  
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8.  Center of mass and center of gravity  
 
We have seen that the center of mass C of a system of particles moves in space as if it 
were a particle of mass equal to the total mass M of the system, subject to the total 
external force acting on the system. The same is true for a rigid body. Let us assume 
that the only external forces that act on the system (or the rigid body) are those due to 
gravity. The total external force is then equal to the total weight of the system:  
 

( )i i i
i i i

w w m g m g
 

= = = ⇒ 
 

∑ ∑ ∑� � � �

 

w M g=
� �

   where   i
i

M m=∑  . 

 
The acceleration of gravity g

�

 is constant in a region of space where the gravitational 
field may be considered uniform.  
      Note that w

�

 is a sum of forces that act on separate particles (or elementary masses 
dmi in the case of a rigid body) located at various points of space. The question now is 
whether there exists some specific point of application of the total weight w

�

 of the 
system and, in particular, of a rigid body. A reasonable assumption is that this point 
could be the center of mass C of the body, given that, as mentioned above, the point C 
behaves as if it concentrates the entire mass Μ of the body and the total external force 
acting on it. And, in our case, w

�

 is indeed the total external force due to gravity.  
      There is a subtle point here, however: In contrast to a point particle (such as the 
hypothetical “particle” of mass M moving with the center of mass C ) that simply 
changes its location in space, a rigid body may execute a more complex motion, spe-
cifically, a combination of translation and rotation. The translational motion of the 
body under the action of gravity is indeed represented by the motion of the center of 
mass C, if this point is regarded as a “particle” of mass Μ on which the total force w

�

 
is applied. For the rotational motion of the body, however, it is the torques of the ex-
ternal forces, rather than the forces themselves, that are responsible. Where should we 
place the total force w

�

 in order that the rotational motion it produces on the body be 
the same as that caused by the simultaneous action of the elementary gravitational 
forces ( )i id w dm g=

� �

? Equivalently, where should we place w
�

 in order that its torque 

with respect to any point O be equal to the total torque of the id w
�

 with respect to O ?  

      You may have guessed the answer already: at the center of mass C ! [See, e.g., Pa-
pachristou (2020).] In conclusion:  
 

By placing the total weight w
�

 of the body at the center of mass C we manage 
to describe not only the translational but also the rotational motion of the 
body under the action of gravity.  

 
It is for this reason that C is frequently called the center of gravity of the body. Note 
that this point does not necessarily belong to the body (consider, for example, the 
cases of a ring and a spherical shell).  
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9.  Mechanical energy of a rigid body  
 
Consider a rigid body rotating with angular velocity ω about an axis passing from a 
fixed point O of space:  
 

i

i

i

ω

iR
im

iv
�

ir
�

O

 
 
During rotation, every elementary mass mi in the body moves circularly about the axis 
of rotation, with the common angular velocity ω. If Ri is the perpendicular distance of 
mi from the axis (thus, the radius of the circular path of mi), the speed of this mass 
element is  vi =  Ri ω . The total kinetic energy of rotation is the sum of the kinetic en-
ergies of all elementary masses mi contained in the body:  
 

2 2 2 2 2
,

1 1 1

2 2 2k rot i i i i i i
i i i

E m v m R m Rω ω   = = = ⇒   
   

∑ ∑ ∑  

 
2

,

1

2k rotE Iω=                                                   (21) 

where  

2
i i

i

I m R=∑  

 
is the moment of inertia of the body relative to the axis of rotation.  
      Relation (21) represents the total kinetic energy of the body when the latter exe-
cutes pure rotation about a fixed axis. A more general kind of motion is a rotation 
about an axis that is moving in space. Specifically, assume that the axis of rotation 
passes from the center of mass C of the body, while C itself moves in space with ve-
locity Cv

�

. The body thus executes a composite motion consisting of a translation of 

the center of mass C and a rotation about C. According to equation (16), the total ki-
netic energy of the body is the sum of two quantities: a kinetic energy of translation,   
 

2
,

1

2k trans CE M v=  
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(where Μ is the mass of the body and vC is the speed of the center of mass C) and a 
kinetic energy of rotation about C,   
 

2
,

1

2k rot CE I ω=  

 
(where ω is the angular velocity of rotation about an axis passing from C, while IC is 
the moment of inertia of the body relative to this axis2). Hence, the total kinetic en-
ergy of the body is  
 

2 2
, ,

1 1

2 2k k trans k rot C CE E E M v I ω= + = +                               (22) 

 
      If the body is subject to external forces that are conservative, we can define an ex-
ternal potential energy Ep as well as a total mechanical energy E, the latter assuming 
a constant value during the motion of the body:  
 

2 21 1
.

2 2k p C C pE E E M v I E constω= + = + + =                           (23) 

 
For example, if the body moves under the sole action of gravity, its potential energy is  
 

p CE M g y=  

 
where  yC is the vertical distance (the height) of the center of mass C with respect to an 
arbitrary horizontal plane of reference. Indeed, by relation (3),  
 

1
C i i

i

y m y
M

= ∑  

 
where yi is the height of the point of location of the elementary mass mi in the body. 
The total gravitational potential energy of the body, equal to the sum of the potential 
energies of all elementary masses mi , is then  
 

( )p i i i i C
i i

E m g y g m y M g y= = =∑ ∑  . 

 
The total mechanical energy of the body is constant and equal to  
 

2 21 1

2 2C C CE M v I M g yω= + +                                       (24) 

 
 
 
 

                                                 
2 The moment of inertia I relative to an axis parallel to this axis is given by the parallel-axis theorem 
[see, e.g., Papachristou (2020)]. Specifically, I=I C+Ma2, where a is the perpendicular distance between 
the two axes.  
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A note on the principle of superposition 
in electrodynamics 
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In textbooks in electromagnetism the principle of superposition is usually referred to 
in the context of electrostatics and is justified by Coulomb’s law and by the superpo-
sition principle for forces postulated in classical mechanics. At a deeper level of 
analysis, the superposition principle for time-dependent electromagnetic fields is a  
direct consequence of the linearity of Maxwell’s system of equations. The analogous 
principle for forces is a separate axiom in mechanics, independent of Newton’s laws.  

 
 
In textbooks in electromagnetism, both of intermediate [1-5] and advanced [6-8] level, 
the principle of superposition is usually referred to in the chapter on electrostatics. 
The idea is very simple: As experiment shows, the interaction of any two charges is 
unaffected by the presence of other charges. Thus, by Coulomb’s law and by the su-
perposition principle for forces postulated in classical mechanics [9] the electric field 
created by a system of charges equals the vector sum of the fields due to each charge 
separately.  

      Indeed, let {qk} (k=1,2,...) be a set of stationary1 charges and let { ( )}kE r
�

�

 
(k=1,2,...) be the corresponding electrostatic fields created separately by each of these 
charges. We consider a test charge q0 (not belonging to the set {qk}) placed at some 

point r
�

 of space and we call kF
�

 the force on q0 due to the field kE
�

 created by qk . By 

the superposition principle for forces, the total force on q0 by the electric field of the 

entire system {qk} is the vector sum i
i

F F=∑
� �

. Consider now a vector field whose 

value at the location of q0 is  
 

0 0

( ) i

i

FF
E r

q q
= =∑

��

�

�

 . 

 
By Coulomb’s law, the force on q0 due to qi is proportional to q0 , so that the quotient 

0/iF q
�

 is independent of q0 and uniquely defines the electric field iE
�

 due to qi at the 
location of q0 . Hence, the vector sum  
 

( ) ( )i
i

E r E r=∑
� �

� �

 

is independent of the test charge q0 and represents the electric field produced by the 
entire collection of charges {qk}.  
 
 

                                                 
1 Relative to an inertial observer [9].  
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      Notice that the above proof rests critically on two assumptions: (a) the force ex-
erted by a charge qk on q0 is independent of the forces exerted on q0 by other charges; 
(b) Coulomb’s law is valid. As mentioned above, assumption (a) is related to the prin-
ciple of superposition for forces2 (one might call it “Newton’s fourth law”); namely, 
the total force on a particle due to its simultaneous interaction with several objects is 
equal to the vector sum of the forces due to each object acting independently on the 
particle. As for Coulomb’s law, it is the physical content of Gauss’ law for the electric 
field, the latter law constituting the first of Maxwell’s equations for the electromag-
netic (e/m) field. It is thus an interesting exercise to check that the Maxwell system of 
equations is consistent with the principle of superposition in its most general form.  

      The Maxwell equations for the e/m field ( , )E B
� �

 is a system of linear first-order 
partial differential equations:  
 

        0

0 0 00

B
E E

t

E
B B J

t

ρ
ε

µ ε µ

∂
∇⋅ = ∇× = −

∂

∂
∇⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

                                (1) 

where the charge and current densities ( )( , ), ( , )r t J r tρ
�

� �

 are subject to the equation of 

continuity  

        0J
t

ρ∂
∇ ⋅ + =

∂

� �

                                                     (2) 

required for charge conservation.  

      Consider a region Ω of space and let ( )( , ), ( , )k kr t J r tρ
�

� �

 (k=1,2,...) be a collection 

of charge and current distributions within Ω. Each pair ( , )k kJρ
�

 is subject to the con-
dition  

           0k
kJ

t

ρ∂
∇ ⋅ + =

∂

� �

                                                     (3) 

We assume that there are no charges and/or currents in the exterior of Ω, so that the 
e/m field in Ω is due exclusively to the sources contained in Ω. Each individual distri-

bution ( , )k kJρ
�

 will give rise to a corresponding e/m field ( , )k kE B
� �

 satisfying the 
Maxwell system:  
 

             0

0 0 00

k k
k k

k
k k k

B
E E

t

E
B B J

t

ρ
ε

µ ε µ

∂
∇⋅ = ∇× = −

∂

∂
∇⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

                               (4) 

 
 
 
 

                                                 
2 First stated by Daniel Bernoulli after Newton’s death.  
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      We now define a total distribution ( , )Jρ
�

 in Ω by  
 

            ( , ) ( , ) , ( , ) ( , )i i
i i

r t r t J r t J r tρ ρ= =∑ ∑
� �

� � � �

                                 (5) 

By using (3) and by taking into account the linearity of the div and ∂/∂t operators, the 
continuity equation (2) may easily be verified for the total distribution (5). We also 

define the pair of vector functions ( , )E B
� �

 in Ω by  
 

          ( , ) ( , ) , ( , ) ( , )i i
i i

E r t E r t B r t B r t= =∑ ∑
� � � �

� � � �

                                 (6) 

where ( , )k kE B
� �

 is the e/m field produced by the distribution ( , )k kJρ
�

. We propose to 

show that ( , )E B
� �

 is the e/m field in Ω produced by the total distribution ( , )Jρ
�

. For 

this to be the case it is sufficient that the pair ( , )E B
� �

 satisfy the Maxwell system (1) 

for the distribution ( , )Jρ
�

, given that, by assumption, there are no sources outside Ω 
that might contribute to the e/m field inside Ω.  

      By substituting the sums (6) for the vector functions ( , )E B
� �

 into Maxwell’s equa-
tions (1) and by taking relations (4) and (5) into account, it is not hard to show that the 
system (1) is indeed satisfied. For example,  
 

(4)

0 0 0

0 0 0 0 0 0

i
i i i

i i i

i i
i i

E
B B B J

t

E
J E J

t t

µ ε µ

µ ε µ µ ε µ

 ∂
∇× = ∇× = ∇× = + 

∂ 

∂ ∂
= + = +

∂ ∂

∑ ∑ ∑

∑ ∑

�

� � � � � � �

�

� � �

 

We conclude that  

if the distributions ( , )k kJρ
�

 independently produce the corresponding e/m 

fields ( , )k kE B
� �

 (k=1,2,...) in a region Ω, then the e/m field in Ω produced by 

the total distribution (5) is given by the vector sums in (6).  
 
      Notice that this generalized form of the superposition principle for time-dependent 
e/m fields rests on the linearity of Maxwell’s differential equations. Thus, in electro-
magnetism the principle of superposition is “built into” the fundamental equations of 
the theory from the outset, which is not the case with Newtonian mechanics where the 
analogous principle for forces must be added a posteriori to the system of basic laws 
(see, e.g., [9]).  
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Galilean invariance of the work-energy theorem 
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Abstract: The Galilean invariance of the work-energy theorem of Newtonian 
Mechanics is explicitly demonstrated. 

 
 
Definition: A physical statement of Newtonian Mechanics is said to be Galilean in-
variant if it is valid with respect to all inertial observers (cf. Sec. 3.1 of [1]). If this 
statement is expressible by means of a mathematical equation, this equation must as-
sume the same form in all inertial frames of reference.  
 
Consider any two inertial observers O and O΄ with corresponding coordinate systems 

(or systems of axes) (x, y, z) and (x΄, y΄, ź ). Let V
�

 be the velocity of O΄ relative to O. 
Clearly, this velocity is constant in time.  
 
Consider also a particle of mass m, moving with velocity v

�

 and acceleration a
�

 with 
respect to O, and with velocity v′

�

 and acceleration a′
�

 with respect to O΄. As shown in 
Sec. 2.8 of [1],  
 

                                                               v v V

a a

′ = −

′ =

�

� �

� �

           (1) 

 
By Newton’s 2nd law, the total force on m according to O and O΄ is  
 

/F dp dt ma= =
�

� �

    and    /F dp dt ma′ ′ ′= =
�

� �

, 
 
respectively, where p mv=

� �

 and p mv′ ′=
� �

. In view of (1), then,  
 
                                                             F F ′=

� �

           (2) 
 

Assume now that the particle m is inside a force field ( )F r
�

�

 and moves from point A 
to point B along some curve in space. The inertial observers O and O΄ will generally 
perceive different trajectories of m from A to B. Both observers, however, define force 
according to Newton’s 2nd law. Given that the work-energy theorem is a direct conse-
quence of that law (see Sec. 4.3 of [1]), this theorem must be valid for both observers. 
That is, W=∆Ek  and, independently, W΄=∆Ek΄, where W is the work done on m by the 
field along the path AB, while ∆Ek =  Ek,B – Ek,A  is the change in the particle’s kinetic 
energy along that path.  
 
Let us now verify explicitly that, if W=∆Ek for observer O, then W΄=∆Ek΄ for any 
other inertial observer O΄.  
 
                                                 
1 Email:  papachristou@snd.edu.gr  
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At time t the particle m passes through the trajectory point with position vector ( )r t
�

 
relative to observer O, or ( )r t′

�

 relative to observer O΄. By (2), both observers record 
the same force on m at this instant, i.e.,  
 

                                 ( ) ( )( ) ( )    or simply   ( ) ( )F r t F r t F t F t′ ′ ′= =
� � � �

� �

       (3) 

 
(Careful: a prime does not denote a derivative with respect to t!) Now, let W and W΄ 
be the works done on m from A to B according to O and O΄, respectively. We have:  
 

( )( ) ( ) ( ) ( )
B B B

A A A

dr
W F r dr F r t dt F t v t dt

dt
= ⋅ = ⋅ = ⋅∫ ∫ ∫

�

� � �

� � � �

 

 
and, similarly,  
 

( ) ( ) ( )
B B

A A
W F r dr F t v t dt′ ′ ′ ′ ′ ′= ⋅ = ⋅∫ ∫

� �

� � �

. 

 
Taking (1) and (3) into account, we have:  
 

( ) ( ) ( ) ( )
B B B

A A A
W F t v t dt F t V dt W V F t dt′ = ⋅ − ⋅ = − ⋅∫ ∫ ∫

� � � � �

�

. 

 
By using Newton’s 2nd law, we have:  
 

B B

A A

dv
W W mV dt W mV dv

dt
′ = − ⋅ = − ⋅ ⇒∫ ∫

�

� �

�

 

 

                                                ( )B AW W mV v v′ = − ⋅ −
�

� �

          (4) 

 
On the other hand, the change in kinetic energy from A to B is, according to O,  
 

2 21 1

2 2k B AE mv mv∆ = −  

 
while according to O΄ and in view of (1),  
 

( ) ( ) ( ) ( )
2 2

2 2 2 21 1 1 1
| | | | | | | |

2 2 2 2k B A B A B AE m v m v m v v m v V v V′ ′ ′ ′ ′∆ = − ≡ − = − − −
� �

� � � �

. 

 
By using the identity  
 

2 2 2| | ( ) ( ) 2v V v V v V v V v V− = − ⋅ − = + − ⋅
� � � �

� � � �

 
 
at A and B, we find:  
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( )2 21
2 2

2k B A B AE m v v v V v V′∆ = − − ⋅ + ⋅ ⇒
� �

� �

 

 

                                               ( )k k B AE E mV v v′∆ = ∆ − ⋅ −
�

� �

         (5) 

 
Subtracting (5) from (4), we have: W΄– ∆Ek΄ =  W– ∆Ek . So, if   W– ∆Ek=0 ⇔ W= ∆Ek 
(i.e., if the work-energy theorem is valid in the O-frame) then W΄=  ∆Ek΄ (the theorem 
is valid in the O΄-frame also). In other words, the work-energy theorem is Galilean 
invariant.  
 
Exercise: Demonstrate in a similar way the Galilean invariance of the angular mo-
mentum – torque relation  
 

dL
r F T

dt
= × =

�

� �

�

 

 

where L mr v= ×
�

� �

 is the angular momentum of the particle m relative to O, and where 

F
�

 is the total force on m (see Sec. 3.7 of [1]).  
 

[Hint: Assume that r r Vt′ = −
�

� �

 (this means that the origins O and O΄ of the two inertial 

frames coincide at t=0; as before, V
�

 is the constant velocity of O΄ relative to O). 

Evaluate L mr v′ ′ ′= ×
�

� �

 and, by using Newton’s 2nd law, show that  
 

                                                  
dL dL

tV F
dt dt

′
= − ×

� �

� �

           (6) 

 

Also, show that T r F′ ′ ′= ×
� �

�

 is equal to  
 

                                                    T T tV F′ = − ×
� � � �

           (7) 
 
Finally, subtract (7) from (6).]  
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One-dimensional Newtonian systems 
 

C. J. Papachristou 

Department of Physical Sciences, Hellenic Naval Academy 

papachristou@hna.gr 
 

The cases of conservative and oscillatory Newtonian systems in one dimension are 
studied. Certain unique properties of simple harmonic motion are noted.  

 
A. One-dimensional conservative systems 

 
      1. The general solution to the problem  
 
Consider a particle of mass m, moving along the x-axis under the action of a total 
force F(x). The position x(t) of the particle as a function of time is found by integrat-
ing the second-order differential equation (Newton’s second law)  
 

               m d 2x / dt 2 = F(x)                                                   (1)        
 
for given initial conditions  x(t0)=x0 ,  v(t0)=v0 ,  where  v=dx/dt  is the velocity of the 
particle.  
      Define the auxiliary function U(x) (potential energy of the particle) by  
 

        
0

( ) ( ) ( ) /
x

U x F x dx F x dU dx′ ′= − ⇔ = −∫                                  (2) 

 
Then (1) is written  

m d 2x / dt 2 + dU / dx = 0 . 
 
We multiply by  v=dx/dt , which plays the role of an integrating factor:  
 

(dx / dt) (m d 2x / dt 2 + dU / dx) = 0 .  
 
By noticing that  
 

(dx / dt) (m d 2x / dt 2 ) = v (m dv / dt) = (d / dt) (m v2/2) 
 
and that  (dx / dt) (dU / dx) = dU / dt , we have:  (d / dt) (m v2/2 + U ) =  0  ⇒   
 

       m v2/2 + U(x) ≡ T +  U = E = const.                                       (3) 
 
(where T = kinetic energy) which expresses conservation of total mechanical energy.  
      From relation (3) we get  
 

(dx / dt)2 = (2/m) [E–U(x)]  ⇒  dx / dt = ± { (2/m) [E–U(x)]} 1/2 .  
 
Integrating this first-order differential equation and taking into account the initial con-
dition x=x0 for t=t0 , we have:  
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[ ]
0

01/ 2
2

( )

x

x

dx
t t

E U x
m

±
= −

 − 
 

∫                                           (4) 

 
where the plus sign is chosen for motion in the positive direction (v>0, x>x0) while the 
minus sign applies to motion in the negative direction (v<0, x<x0).  
      The value of the constant E may be determined by applying the given initial con-
ditions to (3):  

          E = m v0
2/2 +  U(x0)                                                      (5) 

 
(although, as we will see, other physical considerations may also be used).  
 
      2. The case of periodic motion  
 
Let us now assume that the potential energy U(x) has the form of a U-shaped potential 
well (Fig. 1) such that U(0)=0 and U(x)>0 for x≠0 (this arrangement is always possi-
ble because of the arbitrariness in the definition of the zero-level of the potential en-
ergy). In general, the graph of U(x) need not be symmetric with respect to the axis 
x=0.  

x

E

Oax bx

U

 
Fig. 1 

 
      Let E be the total mechanical energy of the particle. Since E=T+U with T ≥0, it 
follows that E ≥U(x) for any physical motion. The motion is thus bounded between 
the points xa and xb of the x-axis, these points being turning points at which the parti-
cle stops momentarily (E=U ⇒ T=0 ⇒ va=vb=0). The time it takes for a complete 
journey from xa to xb and back to xa is found by using (4) with the appropriate sign for 
each direction of motion:  
 

1/ 2 1/ 2{ } { }

b a

a b

x x

x x

dx dx
P

−
= + ⇒∫ ∫

⋯ ⋯

 

 

          

[ ]
1/ 2

2
2

( )

b

a

x

x

dx
P

E U x
m

=
 − 
 

∫                                             (6) 

Since P is fixed for given xa and xb , the motion is periodic with period P. Generally, 
the period depends on the limits of integration xa and xb and therefore it depends on 
the total energy E of the particle. An exception where P does not depend on E is sim-
ple harmonic motion, as we now show.  
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      3. Simple harmonic motion (SHM)  
 
In SHM the potential energy is of parabolic form: U(x)=kx2/2 , which is symmetric 
with respect to the axis x=0 (see Fig. 1). The total force is a restoring force given by  
 

F(x) = – dU / dx = – kx                                                 (7) 
 
If frictional (damping) forces are present, the total force also contains a velocity-
dependent term  –λv= –λdx/dt  and the system is no longer conservative.  
      According to Fig. 1 the motion takes place between xa= –A and xb=A, where A≥0 
is the amplitude of oscillation. At the two extreme points the kinetic energy T van-
ishes momentarily and the total energy, which is equal to E=T+U and which retains a 
fixed value during the motion, is equal to the potential energy: E=U(±A)=kA2/2. Since 
E is the same at all points x, we conclude that  
 

       E = m v2 / 2 + k x2 / 2 = k A2 / 2                                            (8)     
 
      The period of oscillation is found by using (6):  
 

1/ 2
22

2 ( / 2)
A

A
P E kx dx

m

−

−

 = − 
 ∫ . 

 
Substituting for E from (8), we find:  
 

( ) 1/ 22 22 A

A
P A x dx

ω

−

−
= −∫      

 
where we have set  ω=(k/m)1/2  (angular frequency). Putting  x/A=u  and using the in-
tegral formula  

2
arcsin

1

du
u C

u
= +

−
∫  

we finally find (see Appendix):  
 

P = 2π / ω = 2π (m / k)1/2 . 
 
      We conclude that, if the potential energy is of parabolic form: U(x)=kx2/2 , the pe-
riod P of motion is independent of the amplitude A, thus independent of the total en-
ergy E=kA2/2.  
      But, what if U(x) is like that in Fig. 1 but not parabolic? For example, let U be of 
the form U(x)=λx4/4 , so that F(x)=  –dU/dx =  –λx3. Since U(x) is symmetric with re-
spect to the axis x=0, the periodic motion will take place between the points xa=  –A 
and xb=A and the total energy will be equal to E=U(±A)=λA4/4.  The period is  

( )
1/ 2

1/ 2 14 4 4

1 4

2 2 2
2 ( / 4)

1

A A

A A

du
P E x dx A x dx

m A u
λ

µ µ

−
−

− − −

 = − = − = 
  −

∫ ∫ ∫  
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where we have set u=x/A and µ=(λ/2m)1/2. Obviously, P depends on the amplitude A, 
thus on the total energy E. (A more general proof regarding non-parabolic potential 
energies, in general, is given in the Appendix.)  
      Returning to SHM, we may obtain the equation of motion x=x(t) by using (4) with 
U(x)=kx2/2 and E=kA2/2. Let us assume first that the motion is in the positive direc-
tion, so that x>x0 . Setting ω=(k/m)1/2 , we have:  

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = −∫ . 

Using the integral formula  

( ) 1/ 22 2 arcsin( / )A x dx x A C
−

− = +∫  

and making appropriate substitutions for constants, we find an equation of the form1  
 

arcsin(x/A) = ωt+α    ⇒    x =  A sin(ωt+α) . 
 
For motion in the negative direction (x<x0) we choose the minus sign in (4), so that  

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = − −∫ . 

This yields a result of the form2  
 

arcsin(x/A) = – ωt+β    ⇒    x =  –A sin(ωt–β) . 
 
Since the constant β is arbitrary (being dependent on the arbitrary constants x0 and t0) 
we may set  –β ≡ π+α , so that  x =  A sin(ωt+α), as before.  
      Thus, the general solution for SHM is  x(t) =  A sin(ωt+α) . Physically, A is the am-
plitude of oscillation, ω is the angular frequency and α is the initial phase (i.e., the 
phase  ωt+α  at t=0).  
 
      4. Motion under a constant force of gravity  
 
A projectile of mass m is fired straight upward at time t0=0 from the point x=0 of the 
vertical x-axis, with initial velocity v0>0 (we choose the positive direction of the x-
axis to be upward). The constant acceleration of gravity is directed downward, so that 
a=dv/dt= –g . The total force on the particle (assuming no air resistance) and the cor-
responding potential energy of the particle are given by  
 

F(x) =  ma =  –mg   ⇔   U(x) =  mgx   [we assume that U(0)=0] . 
 
      Relation (4) (with the plus sign for upward motion) is written  
 

1/ 2
1/ 20

(2/ )
( )

x dx
m t

E mgx
=

−∫  . 

 

                                                 
1 Explicitly:  α = arcsin(x0/A) – ωt0 .  
2 Explicitly:  β = arcsin(x0/A) + ωt0 .  
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By (5) and by using the initial conditions we have that E=mv0
2/2+U(0)=mv0

2/2 (since 
U=0 for x0=0). Thus, the requirement E–mgx ≥ 0 yields x ≤ v0

2/2g. Physically this 
means that the particle will reach a maximum height h=v0

2/2g where it will stop mo-
mentarily before it starts to move downward (i.e., in the negative direction).  
      With this restriction on the acceptable values of x, the integration may be per-
formed to give  

(E – mgx)1/2 = E 
1/2 – (m / 2)1/2 g t . 

Squaring this, we find:  

x = (2E / m)1/2 t – g t 
2/2 . 

 
But,  E = m v0

2/2  ⇒ (2E / m)1/2 = v0  (since  v0 > 0 ). Thus, finally,  
 

x = v0 t – g t 
2/2  

 

which is, of course, a familiar result.  
 
      5. Phase curves of a one-dimensional conservative system  
 
Newton’s law for one-dimensional motion: md 2x/dt 2=F(x), a second-order differential 
equation, may be rewritten as a system of first-order equations:  
 

      dx / dt = v ,     m d v / dt = F(x)                                          (9) 
 
Dividing these equations in order to eliminate dt, we have:  
 

m v dv = F(x) dx = – dU    
where  

0
( ) ( ) ( ) /

x
U x F x dx F x dU dx′ ′= − ⇔ = −∫ . 

 
Thus,   m v dv +  dU = d (m v2/2 + U ) = 0  ⇒  
 

         m v2/2 + U(x) = E ≡ const.                                          (10)         
 
      For each value of the constant E (total energy), Eq. (10) defines a curve in the 2-
dimensional phase space with coordinates (x, v). This curve is called a phase curve. 
The value of E is uniquely determined by the initial conditions of the system, accord-
ing to (5). Since the solution of the system (9) is unique for given initial conditions, 
no two phase curves may intersect in phase space. Let us see two examples:  
 
      1. Simple harmonic motion (cf. Sec. 3)  
 
Conservation of mechanical energy in SHM is expressed by  mv2/2 + kx2/2 =  E  ⇒  
 

2 2

1
2 / 2 /

x v

E k E m
+ =      (equation of an ellipse)  
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O x

v

A− A+

  
 

Fig. 2 
 
Figure 2 shows a family of ellipses in phase space, corresponding to different values 
of E. Notice that, for v=0 ⇒ x= ±(2E/k)1/2 ≡ ± A , so that E=kA2/2 . Note also that the 
equations of motion, {dx/dt =  v ,  dv/dt =  – kx/m}, endow the phase curves with a sense 
of direction for increasing t (i.e., for dt >0). Indeed, the velocity v is positive (nega-
tive) for increasing (decreasing) x, while v decreases (increases) algebraically for 
positive (negative) x. This indicates that the phase curves are described clockwise.  
 
      2. Vertical motion under the force of gravity (cf. Sec. 4)  
 
Conservation of mechanical energy is expressed by  mv2/2 + mgx =  E  ⇒  
 

v2 = (2/m) (E – mgx)     (equation of a parabola)  

 

O x

v

h

0v

0v−

  
 

Fig. 3 
 
Since v2 ≥ 0, we must have E – mgx ≥ 0 ⇒ x ≤ E/mg . Physically, this means that the 
particle will reach a maximum height h=E/mg where it will stop momentarily and 
then its direction of motion will be reversed. On the other hand, at x=0 the velocity is 
±v0 (see Fig. 3) where v0

2=2E/m ⇒ E=mv0
2/2 . The maximum height is thus h=v0

2/2g.  
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B. Oscillatory motion of (generally) non-conservative systems 
 
      1. Second-order linear differential equations  
 
A second-order linear differential equation (DE) has the general form  
 

      y΄΄ +  a(x) y΄ +  b(x) y = f (x)                                            (1) 
 
where y=y(x) and where a(x), b(x),  f (x) are given functions. If  f (x)≡0, the DE (1) is 
called homogeneous linear :  
 

      y΄΄ +  a(x) y΄ +  b(x) y =  0                                               (2) 
 
      As is easy to prove, if a function y1(x) is a solution of (2), then so is the function 
y2(x)=Cy1(x) (C=const.). More generally, the following is true:  

      Theorem 1: If y1(x), y2(x),… are solutions of the homogeneous DE (2), then every 
linear combination of the form y=C1 y1(x)+C2 y2(x)+… (where C1 , C2 ,… are con-
stants) also is a solution of (2).  

      Proof: By substituting for y on the left-hand side of (2) and by taking into account 
that each of the y1(x), y2(x),… satisfies this DE, we have:  
 

y΄΄ +  a(x) y΄ +  b(x) y = C1 (y1΄΄ +  a y1΄ +  b y1) + C2 (y2΄΄ +  a y2΄ +  b y2) +… = 0 . 
 
      Let y1(x) and y2(x) be two non-vanishing solutions of the homogeneous DE (2) 
[notice that the zero function y(x)≡0 is a particular solution of (2)]. We say that the 
functions y1 and y2 are linearly independent if one is not a scalar multiple of the other. 
To put it in more formal terms, linear independence of y1 and y2 means that a relation 
of the form  C1 y1(x)+C2 y2(x) ≡ 0  can only be true if C1=C2=0.  
      If we manage to find two linearly independent solutions y1(x) and y2(x) of the ho-
mogeneous DE (2) (I can assure you that no other solution linearly independent of the 
former two exists!) then the general solution of (2) is the linear combination  
 

y = C1 y1(x) + C2 y2(x)                                                (3) 
 
where C1 , C2  are arbitrary constants.  

      Theorem 2: The general solution of the non-homogeneous DE (1) is the sum of 
the general solution (3) of the corresponding homogeneous equation (2) and any par-
ticular solution of (1).  

      Analytically: Let y1(x), y2(x) be two linearly independent solutions of the homoge-
neous DE (2), and let y0(x) be any particular solution of (1). Then, the general solution 
of (1) is  

    y = C1 y1(x) + C2 y2(x) + y0(x)                                           (4) 
 
This practically means that, for any chosen y0 , any other particular solution of (1) can 
be derived from (4) by properly choosing the constants C1 and C2 . Since (4) contains 
the totality of particular solutions of (1), it must be the general solution of (1).  
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      2. Homogeneous linear equation with constant coefficients  
 
This DE has the form  

      y΄΄ +  a y΄ +  b y =  0                                                    (5) 
 
with constant a and b. It will be assumed that a and b are real numbers.  

      Theorem 3: If the complex function y=u(x)+iv(x) satisfies the DE (5), then the 
same is true for each of the real functions y1=u(x) and y2=v(x) (real and imaginary 
part of y, respectively).  

      Proof: Putting  y=u+iv  into (5), we find:  
 

(u΄΄ +  a u΄ +  b u) + i (v΄΄ +  a v΄ +  b v) = 0 , 
 
which is true iff  u΄΄+a u΄+b u =  0  and  v΄΄+a v΄+b v =  0.  

      The standard method for solving (5) is the following: We try an exponential solu-
tion of the form y=ekx. Then,  y΄=kekx,  y΄΄=k2ekx, and (5) yields (after eliminating ekx):  
 

      k2 + ak +b = 0    (characteristic equation)                                (6) 
 
      We distinguish the following cases:  

    1. Eq. (6) has real and distinct roots k1 , k2 . Then, the functions ek1x and ek2 x are line-
arly independent and, according to (3), the general solution of (5) is of the form  
 

      y = C1 e
k1x + C2 e

k2 x                                                    (7) 
 
    2. Eq. (6) has real and equal roots,  k1 =  k2 ≡ k. The general solution of (5) is, in this 
case (check!),  
 

         y = (C1 + C2 x) ekx                                                     (8) 
 
    3. Eq. (6) has complex conjugate roots  k1=α+iβ , k2=α–iβ (where α, β are real). The 
general solution of (5) is  
 

y = C1 e
k1x + C2 e

k2 x = e αx (C1 e
 iβx + C2 e

 –iβx ) . 
 
By Euler’s formula,  e ±iβx = cos βx ± i sin βx . We thus have:  
 

y = e αx [(C1 +C2) cos βx + i (C1 – C2) sin βx ] . 
 
Since the (generally complex) constants C1 and C2 are arbitrary, we may put C1 in 
place of  C1+C2  and C2 in place of  i  (C1 – C2), so that, finally,  
 

     y = e αx (C1 cos βx + C2 sin βx )                                          (9) 
 
      In any case, the general solution of (5) contains two arbitrary constants C1 and C2 . 
Upon assigning specific values to C1 and C2 we get a particular solution of (5). The 
values of C1 and C2 (and thus the particular solution itself) are determined from the 
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general solution if we are given two initial conditions that the sought-for particular 
solution must obey. There are two kinds of initial conditions:  

    (a) We are given the values of  y(x) and y΄(x) for some value  x=x0  of x.  

    (b) We are given the values of  y(x) for  x=x1 and  x=x2 .  
 
      Examples:  
 
    1.   y΄΄–  y΄– 2 y =  0  ⇒  a= –1,  b= –2.  The characteristic equation (6) is written:  

k2 – k – 2 = 0,  with real roots  k1=2,  k2= –1. The general solution (7) is  

y = C1 e
2x + C2 e

– x.  Assume the initial conditions y=2 and y΄= –5 when x=0. Then,  

C1= –1, C2=3 (show it!) and we get the particular solution  y = – e
2x + 3 e– x.  

 
    2.   y΄΄–  6 y΄+  9 y =  0  ⇒  a= –6,  b=9.  The characteristic equation (6) is written:  

k2 – 6 k + 9 = 0,  with real and equal roots  k1=k2=3. The general solution (8) is  

y = (C1 + C2 x) e3x.   
 
    3.   y΄΄–  4 y΄+  13 y =  0  ⇒  a= –4,  b=13. The characteristic equation (6) is written:   

k2 – 4 k +13 = 0,  with complex conjugate roots  k1=2+3i,  k2=2–3i. The general solu-

tion (9) is (with α=2,  β=3):  y = e 2x (C1 cos 3x + C2 sin 3x ). (Show that essentially the 

same result is found by making the alternative choice α=2,  β=  –3.)  

 

      3. Harmonic oscillation  
 
In a harmonic oscillation along the x-axis the total force on the oscillating body (of 
mass m) is F=  –kx (k>0), where x is the momentary displacement of the body from the 
position of equilibrium (x=0). By Newton’s second law we have that F=ma,  where a 
is the acceleration of the body:  a=d 2x/dt 2. Therefore,  
 

m d 2x / dt 2 = – kx 
 
or, setting  k/m ≡ ω

2 (where we assume that ω>0),  
 

                  x΄΄ +  ω
2
 x =  0                                                     (10) 

 
      Eq. (10) is a homogeneous linear DE of the form (5) with x in place of y and t in 
place of x (notice that the first-derivative term is missing in this case). The 
characteristic equation (6) is written: k2+ω2=0 (or, analytically, k2+0k+ω2=0), with 
complex roots k= ± iω (analytically, k1=0+iω, k2=0–iω). The general solution of (10) 
is given by (9), with α=0 and  β=ω:  
 

      x = C1 cos ωt +  C2 sin ωt                                             (11) 
 
where we assume that the constant coefficients C1 and C2 are real in order for the solu-
tion (11) to have physical meaning.  



C. J. PAPACHRISTOU 

 10 

      The general solution (11) can be put in different but equivalent form by setting  
 

C1 =  A sin φ ,  C2 =  A cos φ  (A>0)   ⇔   A=(C1
2+C2

2)1/2 ,  tan φ=C1 /C2 . 
 
Then,  

      x =  A sin (ωt +  φ)                                                 (12) 
 
The positive constant A is called the amplitude of the oscillation, while the angle φ is 
called the initial phase (the value of the phase  ωt+φ  at time t=0). The positive con-
stant ω is the angular frequency of oscillation, to be called just “frequency” in the 
sequel.  
      Notice that, if we set  C1=A cos φ,  C2=  –A sin φ  in (11),  we will get the general 
solution of (10) in the form  
 

    x =  A cos (ωt +  φ)                                                  (13) 
 
which is equivalent to (12). Indeed, equation (13) follows directly from (12) by put-
ting  φ+(π/2)  in place of  φ (which is arbitrary anyway) in the latter equation.  
 
      4. Damped oscillation  
 
In a damped oscillation, in addition to the restoring force –kx, opposite to the dis-
placement x from the equilibrium position, there is a frictional force –λv= –λdx/dt 
(λ>0) opposite to the velocity v. The total force on the body is3 F=  –kx–λdx/dt. By 
Newton’s law,  F=m d 2x/dt 2.  Hence,   
 

m d 2x / dt 2 = – kx – λ dx/dt . 

We set  
 

k/m ≡ ω0
2 

 (ω0=  natural frequency of oscillation without damping),   λ/m ≡ 2γ, 
 
so that  

      x΄΄ +  2γ x΄ +  ω0
2 x =  0                                              (14) 

 
      Eq. (14) is a homogeneous linear DE. The characteristic equation (6) is  
 

k2 +  2γk +  ω0
2 = 0    ⇒    k = –γ ± (γ2 – ω0

2 )1/2 . 
 
We distinguish the following cases:  

      1. Large damping  ⇔  γ > ω0 .  We have two real solutions:  
 

k1 = –γ + (γ2 – ω0
2 )1/2 ,    k2 = –γ – (γ2 – ω0

2 )1/2 . 
 
The general solution of (14) is of the form (7):  
 

x = C1 e
k1t + C2 e

k2 t                                                 (15) 

                                                 
3 Note that a velocity-dependent force is not conservative. Thus, conservation of energy methods do not 
apply in this case.  
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Let us assume that C1>0 and C2>0. Given that k1<0 and k2<0 (why?) we see that  x>0 
at all times t και, moreover,  x→0 as t→∞. That is, as the time t increases, the moving 
object approaches the equilibrium position x=0 without ever crossing it. The motion is 
therefore non-oscillatory.  

      2. Critical damping  ⇔  γ = ω0 . Then,  k1=  k2 = –γ , and the general solution of 
(14) is of the form (8):  
 

x = (C1 + C2 t) ekt = (C1 + C2 t) e–γt                                     (16) 
 
If we assume that C1>0 and C2>0, we see again that  x>0 at all t and that  x→0 as t→∞. 
(For the term  t e–γt = t  / eγt we may use L’Hospital’s rule for the indeterminate form 
∞/∞; show this!) Thus, there is no oscillation in this case either.  

      3. Small damping  ⇔  γ < ω0 .  We have two complex conjugate solutions:  
 

k = –γ ± i  ω1   where   ω1 = (ω0
2 – γ

2 )1/2 . 
 
The general solution will be of the form (9), with  α=  –γ  and  β=ω1 :  
 

x = e –γt (C1 cos ω1 t +  C2 sin ω1 t
 ) , 

 
or, by setting  C1 =  A sin φ,  C2 =  A cos φ  (A>0),  
 

     x =  A e –γt sin (ω1 t +  φ
 )                                             (17) 

 
We notice that the amplitude  Ae –γt  decreases exponentially with time (Fig. 1). Thus, 
strictly speaking, damped oscillatory motion is not periodic.  
 

 
 

Fig. 1 
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      5. Forced oscillation  
 
In a forced oscillation, in addition to the restoring force –kx and the frictional force  
–λv= –λdx/dt   the body is subject to an external force of the form  
 

F(t) =  F0 sin ωf t   (F0 > 0) . 
 
The total force on the body is F=  –kx–λdx/dt+F0 sin ωf t . By Newton’s law we have 
that  
 

m d 2x / dt 2  =  – kx – λ dx/dt + F0 sin ωf t . 

We set  

k/m ≡ ω0
2 

 (ω0=  natural frequency),   λ/m ≡ 2γ,   F0 /m ≡ f0 , 

 

so that  

      x΄΄ +  2γ x΄ +  ω0
2 x =   f0 sin ωf t                                        (18) 

 
      Eq. (18) is a non-homogeneous linear DE. According to Theorem 2 of Sec. 1, its 
general solution is the sum of the general solution of the corresponding homogeneous 
equation,  

x΄΄ +  2γ x΄ +  ω0
2 x =  0 , 

 
and any particular solution of (18). For small damping (γ < ω0) the general solution of 
the homogeneous equation is given by (17):  
 

x =  A1 e –γt sin (ω1 t +  φ1
 )   where   ω1 = (ω0

2 – γ
2 )1/2 . 

 
As can be verified, a particular solution of (18) is the following:  
 

    x = A sin (ωf  t +  φ
 )                                                 (19) 

where  

        

( )
0

1 222 2 2 2
0 4

/

f f

f
A

ω ω γ ω
=

 − +  

     and   
2 2

0

2
tan f

f

γω
ϕ

ω ω
=

−
                 (20) 

 
The general solution of (18) is, therefore,  
 

     x =  A1 e –γt sin (ω1 t +  φ1
 ) + A sin (ωf  t +  φ

 )                              (21) 
 
with arbitrary A1 , φ1 . The first term on the right in (21) decreases exponentially with 
time and dies out quickly. In a steady-state situation, therefore, what remains is the 
particular solution (19):  
 

x = A sin (ωf  t +  φ
 ) . 
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      The amplitude A of oscillation is a function of the applied frequency ωf , according 
to (20). This amplitude attains a maximum value when the denominator in the first 
relation (20) becomes minimum. This occurs when  
 

       ωf  = (ω0
2 –2γ2 )1/2  ≡ ωA                                             (22) 

 
      Proof: We set  ωf  ≡ ω, for simplicity, and we consider the function  
 

Ψ(ω) = (ω2 – ω0
2)2  + 4γ2ω2 , 

 
so that  A= f0  / [Ψ(ω)]1/2.  We can show that  
 

Ψ΄(ω) = 0  for  ω  = (ω0
2 –2γ2 )1/2  = ωA   and   Ψ΄΄(ωA) = 8ωA

2 > 0 . 
 
Thus, for small damping (2γ2 < ω0

2) the function Ψ(ω) is minimum, hence the ampli-
tude A is maximum, when  ωf =ωA . This situation is called amplitude resonance.  

      In Fig. 2 it is assumed that λ1<λ2 ⇔ γ1<γ2 . This means that, in accordance with 
(22), ωA,1 > ωA,2 . In the case of no damping (λ=0 ⇔ γ=0) Eq. (22) yields ωA=ω0 . In 
other words, in an undamped forced oscillation the amplitude becomes maximum (in 
fact, infinite) when the applied frequency ωf  is equal to the natural frequency ω0  of 
oscillation.  
 

 
 

Fig. 2 
 
      By differentiating (19) we find the velocity of the oscillating body:  
 

v = dx/dt = ωf  A cos (ωf  t +  φ
 ) ≡ v0  cos (ωf  t +  φ

 ) 
 
where, by (20),  
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0
0 1 22

2
20

21 4

f /

f

f
v Aω

ω
γ

ω

= =
  
 − +     

 . 

 
The velocity amplitude v0 becomes maximum when the denominator on the right is 
minimum, which occurs for ωf =ω0 (Fig. 3). The kinetic energy mv0

2/2 then reaches 
its maximum value and there is energy resonance.  
 

 
 

Fig. 3 
 
      Note that, in contrast to amplitude resonance, the frequency ωf for energy reso-
nance is independent of the damping factor λ and is always equal to the natural fre-
quency ω0 of the oscillator. At this frequency the work supplied by the external force 
F(t) to the oscillator per unit time is maximum. That is, the oscillator absorbs the larg-
est possible power from the external agent that exerts the force F.  
      Notice also that, in the case of zero damping (λ=0 ⇔ γ=0) the velocity amplitude 
v0 becomes infinite at energy resonance, i.e., for ωf =ω0 . This rather unphysical situa-
tion is, of course, purely theoretical since a mechanical motion with no friction what-
soever is practically impossible!  
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Appendix: Amplitude dependence of period 
 
As we have shown, the general solution to the one-dimensional conservative Newto-
nian problem is  
 

      

[ ]
0

01/ 2
2

( )

x

x

dx
t t

E U x
m

±
= −

 − 
 

∫                                           (1) 

 
where the plus sign is chosen for motion in the positive direction (v>0, x>x0) while the 
minus sign applies to motion in the negative direction (v<0, x<x0).  
      Let us assume that the potential energy U(x) has the form of a U-shaped potential 
well (Fig. 1) such that U(0)=0 and U(x)>0 for x≠0. The graph of U(x) is assumed to be 
symmetric with respect to the axis x=0, which means that U(x) is an even function:  
U (–x)=U  (x).  

x

E

O

U

A− A+  
Fig. 1 

 
      If E is the total mechanical energy of the particle, then, according to Fig. 1, the 
motion is bounded between the points –A and +A of the x-axis, which are turning 
points at which the particle stops momentarily. Since E is constant, its value at all 
points equals its value at the turning points; i.e.,  
 

        E = U (± A)                                                         (2) 
 
      The time it takes for a complete journey from –A to +A and back to –A is found by 
using (1) with the appropriate sign for each direction of motion:  
 

1/ 2 1/ 2{ } { }

A A

A A

dx dx
P

−

−

−
= + ⇒∫ ∫

⋯ ⋯

 

 

        

[ ]
( ) [ ] 1/ 21/ 2

1/ 2
2 2 ( )

2
( )

A A

A A

dx
P m E U x dx

E U x
m

−

− −
= = −

 − 
 

∫ ∫                    (3) 

 
Since P is fixed for a given A, the motion is periodic about the point x=0, with ampli-
tude equal to A and with period P. It follows from (2) and (3) that the period P de-
pends on A and thus on the total energy E of the particle. We will now show that an 
exception where P does not depend on A (thus on E also) is simple harmonic motion.  
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      Since U(x) is an even function with U(0)=0, it can be expanded into a Maclaurin 
series of the form  

         2

1

( ) l
l

l

U x a x
∞

=

=∑                                                    (4) 

 
where the coefficients al are not necessarily all different from zero. From (2) we have  
 

2

1

( ) l
l

l

E U A a A
∞

=

= ± =∑  

so that    

( )2 2

1

( ) l l
l

l

E U x a A x
∞

=

− = −∑ . 

Equation (3) then yields  

( ) ( )
1/ 2

1/ 2 2 2

1

2
A l l

lA
l

P m a A x dx
−∞

−
=

 
= − 

 
∑∫ . 

 
By setting  x/A=u  ⇔  x=Au , we get:  
 

( ) ( )
1/ 2

11/ 2 2 2

1
1

2 1l l
l

l

P m A a A u du
−∞

−
=

 
= − 

 
∑∫                                (5) 

 
      It is obvious that, in general, P depends on A. The only exception where P is not 
dependent on A is the case where the following condition is satisfied: al =0 for l  ≠1. 
That is, the only nonvanishing coefficient al in the series (4) is a1 . By setting  a1 =  k/2 

the potential energy (4) reduces to U(x) = kx2/2 , which corresponds to a restoring 
force of the form  

F (x) =  – dU / dx =  – kx                                                (6) 
 
The periodic motion is then simple harmonic motion (SHM) and the period (5) re-
duces to  

( ) [ ]
1/ 21 11/ 2 2 1/ 2

11

1/ 2

2( / ) 1 2( / ) arcsin

2( / )
2 2

P m k u du m k u

m k
π π

−

−−
= − =

  = − − ⇒    

∫
 

1/ 2
2

2
m

P
k

π
π

ω
 = ≡ 
 

    where    
1/ 2

2 k

P m

π
ω  = =  

 
. 

 
We notice that the period of SHM is amplitude-independent, hence also energy-
independent.  
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      It is of interest to examine a one-dimensional periodic motion that follows a 
curved path (where by “one-dimensional” we now mean that a single generalized co-
ordinate – such as, e.g., an angle or a distance along the curve – is needed in order to 
specify the location of the particle). A nice example is that of an oscillating pendulum 
(Fig. 2; see also Sec. 5.5 and Problem 25 of [1]). The position of the mass m is speci-
fied by the arc length OA=s=lθ or, equivalently, by the angle θ (in rad). The algebraic 
value of the velocity of m is  v=ds/dt=ldθ/dt ; it may be positive or negative, depend-
ing on the direction of motion relative to the unit tangent vector ̂Tu .  

 

•

O

l

θ

θ
s

A

f
�

w
�

ˆTu

m

Tw
�

Nw
�

 
Fig. 2 

 
      The motion is governed by the tangential component wT =  – mg sinθ (algebraic 
value) of the weight w. The tangential equation of motion of m is  
 

       m dv / dt = – mg sinθ    ⇒    dv / dt = – g sinθ                              (7) 
 
We seek a conserved quantity that associates the velocity v with the position θ. We 
could, of course, work with (7) directly, but there is an easier way; namely, conserva-
tion of mechanical energy. This principle may be applied in view of the fact that the 
mass m is subject to the conservative force of gravity and the tension f of the string 
which, being normal to the velocity, produces no work (cf. Sec. 4.5 of [1]). The poten-
tial energy of m at point A (Fig. 2) is  
 

U(θ) = mg (l – l cosθ) = mgl (1 – cosθ) , 
 
where we have assumed that U(0)=0 (i.e., U is zero at the lowest point O). If α is the 
angular amplitude of oscillation (i.e., the maximum angle of deflection of the string 
from the vertical) then at θ=  ±α the kinetic energy T vanishes and the total mechanical 
energy E is equal to U(±α). Applying conservation of mechanical energy between an 
arbitrary angle θ and the maximum angle  θ=α , we have:  
 

m v2 / 2 + mgl (1 – cosθ) = 0 + mgl (1 – cosα)   ⇒  (after eliminating m) 
 

         v2 = 2gl (cosθ – cosα)                                               (8) 
 
    Exercise: By differentiating (8) with respect to t and by using the fact that v=ldθ/dt, 
recover the equation of motion (7). Conversely, show that (8) is a direct consequence 
of (7). [Hint: Multiply (7) by v.]  
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      Setting   v=ldθ/dt   in (8), we get a first-order differential equation:  
 

dθ / dt = ± [(2g/l ) (cosθ – cosα)]1/2 , 
 
which is integrated to give  

0

1/ 2

0
2

(cos cos )
g

d t t
l

θ

θ
θ α θ

−
 ± − = −  ∫  . 

 
The period of oscillation is [cf. Eq. (3)]  
 

       

1/ 2

1/ 2 1/ 2

2
2 (cos cos )

(2 / ) (cos cos )

g
P d

l

l g d

α

α

α

α

θ α θ

θ α θ

−

−

−

−

 = −  

= −

∫

∫
                                  (9) 

 
Obviously, P depends on the angular amplitude α . Let us assume, however, that this 
amplitude is very small: α <<1. We may then make the approximations  
 

cosθ ≈ 1 – θ 
2/2    and    cosα ≈ 1 – α2/2 . 

 
Furthermore, we set  θ/α=u ⇔ θ=αu . It is then a straightforward exercise to show that 
(9) reduces to  

( ) [ ]
1/ 21 11/ 2 2 1/ 2

11

1/ 2

2( / ) 1 2( / ) arcsin

2( / )
2 2

P l g u du l g u

l g
π π

−

−−
= − =

  = − − ⇒    

∫
 

 
P = 2 π (l /g )1/2 , 

 
which is the familiar expression for the period of oscillation of a pendulum executing 
simple harmonic motion for small angles of deflection from the vertical. Once again, 
the SHM is seen to be the only one-dimensional periodic motion in which the period 
does not depend on the amplitude of oscillation.  
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Amplitude dependence of period 
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Conservation of mechanical energy furnishes a neat way to formally evaluate the 
period of a one-dimensional periodic motion. It is shown that the only such motion 
where the period does not depend on the amplitude of oscillation – thus on the total 
energy of the oscillating body – is simple harmonic motion.  

 
Consider a particle of mass m, moving along the x-axis under the action of a total 
force F(x). The position x(t) of the particle as a function of time is found by 
integrating the second-order differential equation (Newton’s second law)  
 

               m d 2x / dt 2 = F(x)                                                   (1)        
 
for given initial conditions  x(t0)=x0  and  v(t0)=v0 , where  v=dx/dt  is the velocity of the 
particle.  
      Newton’s law (1) may be rewritten as a system of first-order equations:  
 

      dx / dt = v ,     m d v / dt = F(x)                                          (2) 
 
Dividing these equations in order to eliminate dt, we have:  
 

m v dv = F(x) dx = – dU    
where  

0
( ) ( ) ( ) /

x
U x F x dx F x dU dx′ ′= − ⇔ = −∫ . 

 
Thus,   m v dv +  dU = d (m v2 / 2 + U ) = 0  ⇒  
 

       m v2 / 2 + U(x) ≡ T +  U = E = const.                                       (3) 
 
(where T = kinetic energy) which expresses conservation of total mechanical energy.  
      From relation (3) we get  
 

(dx / dt)2 = (2/m) [E–U(x)]  ⇒  dx / dt = ± { (2/m) [E–U(x)]} 1/2 . 
 
Integrating this first-order differential equation and taking into account the initial 
condition  x=x0 for  t=t0 , we have:  
 

      

[ ]
0

01/ 2
2

( )

x

x

dx
t t

E U x
m

±
= −

 − 
 

∫                                           (4) 
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where the plus sign is chosen for motion in the positive direction (v>0, x>x0) while the 
minus sign applies to motion in the negative direction (v<0, x<x0). The value of the 
constant E in (4) may be determined by applying the initial conditions to (3): 
E=mv0

2/2+U(x0) , or by other physical considerations pertaining to the problem.  
      Let us now assume that the potential energy U(x) has the form of a U-shaped 
potential well (Fig. 1) such that U(0)=0 and U(x)>0 for x≠0 (this arrangement is 
always possible because of the arbitrariness in the definition of the zero-level of the 
potential energy). The graph of U(x) is assumed to be symmetric with respect to the 
axis x=0, which means that U(x) is an even function: U (–x)=U  (x).  
 

x

E

O

U

A− A+  
Fig. 1 

 
      Let E be the total mechanical energy of the particle. Since E=T+U with T ≥0, it 
follows that E ≥U(x) for any physical motion. The motion is thus bounded between 
the points –A and +A of the x-axis (see Fig. 1), these points being turning points at 
which the particle stops momentarily (E=U ⇒ T=0 ⇒ v=0). Now, since E is 
constant, its value at all points equals its value at the turning points; i.e.,  
 

        E = U (± A)                                                         (5) 
 
      The time it takes for a complete journey from –A to +A and back to –A is found by 
using (4) with the appropriate sign for each direction of motion:  
 

1/ 2 1/ 2{ } { }

A A

A A

dx dx
P

−

−

−
= + ⇒∫ ∫

⋯ ⋯
 

 

        

[ ]
( ) [ ] 1/ 21/ 2

1/ 2
2 2 ( )

2
( )

A A

A A

dx
P m E U x dx

E U x
m

−

− −
= = −

 − 
 

∫ ∫                    (6) 

 

[Since  E–U(x)  is an even function,  1/ 2 1/ 2

0
( ) 2 ( )

A A

A
E U dx E U dx− −

−
− = −∫ ∫ . ]  

 
      Given that P is fixed for a given A, the motion is periodic about the point x=0, 
with amplitude equal to A and with period P. It follows from (6) that the period P 
depends on A and, therefore, on the total energy E of the particle, according to (5). We 
will now show that an exception where P does not depend on A (thus on E also) is 
simple harmonic motion.  
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      Since U(x) is an even function with U(0)=0, it can be expanded into a Maclaurin 
series of the form  
 

         2

1

( ) l
l

l

U x a x
∞

=

=∑                                                    (7) 

 
where the coefficients al are not necessarily all different from zero. From (5) we have  
 

2

1

( ) l
l

l

E U A a A
∞

=

= ± =∑  

so that    

( )2 2

1

( ) l l
l

l

E U x a A x
∞

=

− = −∑ . 

Equation (6) then yields  

( ) ( )
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1/ 2 2 2

1

2
A l l

lA
l

P m a A x dx
−∞

−
=

 
= − 
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∑∫ . 

 
By setting  x/A=u  ⇔  x=Au , we get:  
 

( ) ( )
1/ 2

11/ 2 2 2

1
1

2 1l l
l

l

P m A a A u du
−∞

−
=

 
= − 

 
∑∫                                (8) 

 
      It is obvious that, in general, P depends on A. The only exception where P is not 
dependent on A is the case where the following condition is satisfied: al =0 for l  ≠1. 
That is, the only nonvanishing coefficient al in the series (7) is a1 . By setting  a1 =  k/2 

the potential energy (7) reduces to U(x) = kx2/2 , which corresponds to a restoring 
force of the form  

F (x) =  – dU / dx =  – kx                                                (9) 
 
The periodic motion is then simple harmonic motion (SHM) and the period (8) 
reduces to  

( ) [ ]
1/ 21 11/ 2 2 1/ 2

11
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∫
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π
π
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    where    
1/ 2

2 k

P m

π
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. 

 
We notice that the period of SHM is amplitude-independent, hence also energy-
independent.  
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      We may obtain the equation of motion x=x(t) for SHM by using (4) with 
U(x)=kx2/2 and E=U(±A)=kA2/2. Let us assume first that the motion is in the positive 
direction, so that x>x0 . Setting ω=(k/m)1/2 , we have:  
 

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = −∫ . 

 
Using the integral formula  
 

( ) 1/ 22 2 arcsin( / )A x dx x A C
−

− = +∫  

 
and making appropriate substitutions for constants, we find an equation of the form1  
 

arcsin(x/A) = ωt+α    ⇒    x =  A sin(ωt+α) . 
 
For motion in the negative direction (x<x0) we choose the minus sign in (4), so that  
 

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = − −∫ . 

 
This yields a result of the form2  
 

arcsin(x/A) = – ωt+β    ⇒    x =  –A sin(ωt–β) . 
 
Since the constant β is arbitrary (being dependent on the arbitrary constants x0 and t0) 
we may set  –β ≡ π+α , so that  x =  A sin(ωt+α), as before.  
      We conclude that the general solution of the differential equation (1) for SHM 
under the action of a force (9), is   
 

x(t) =  A sin(ωt+α) . 
 
Physically, A is the amplitude of oscillation, ω=(k/m)1/2 is the angular frequency and 
α is the initial phase (i.e., the phase  ωt+α  at t=0).  
      It is of interest to examine a one-dimensional periodic motion that follows a 
curved path (where by “one-dimensional” we now mean that a single generalized 
coordinate – such as, e.g., an angle or a distance along the curve – is needed in order 
to specify the location of the particle). A nice example is that of an oscillating 
pendulum, shown in Fig. 2 (see also [1-3]). The position of the mass m is specified by 
the arc length OA=s=lθ or, equivalently, by the angle θ (in rad ). The algebraic value 
of the velocity of m is  v=ds/dt=ldθ/dt ; it may be positive or negative, depending on 
the direction of motion relative to the unit tangent vector ˆTu .  

 

                                                 
1 Explicitly:  α = arcsin(x0/A) – ωt0 .  
2 Explicitly:  β = arcsin(x0/A) + ωt0 .  
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Fig. 2 

 
      The motion is governed by the tangential component wT =  – mg sinθ (algebraic 
value) of the weight w. The tangential equation of motion of m is  
 

       m dv / dt = – mg sinθ    ⇒    dv / dt = – g sinθ                            (10) 
 
We seek a conserved quantity that associates the velocity v with the position θ, in the 
spirit of Eq. (3). We could, of course, work with (10) directly but there is an easier 
way; namely, conservation of mechanical energy. This principle may be applied in 
view of the fact that the mass m is subject to the conservative force of gravity and the 
tension f of the string which, being normal to the velocity, produces no work (cf. Sec. 
4.5 of [1]). The potential energy of m at point A (Fig. 2) is  
 

U(θ) = mg (l – l cosθ) = mgl (1 – cosθ) , 
 
where we have assumed that U(0)=0 (i.e., U is zero at the lowest point O). If α is the 
angular amplitude of oscillation (i.e., the maximum angle of deflection of the string 
from the vertical) then at θ=  ±α the kinetic energy T vanishes and the total mechanical 
energy E is equal to U(±α). Applying conservation of mechanical energy between an 
arbitrary angle θ and the maximum angle  θ=α , we have:  
 

m v2 / 2 + mgl (1 – cosθ) = 0 + mgl (1 – cosα)   ⇒  (after eliminating m) 
 

         v2 = 2gl (cosθ – cosα)                                             (11) 
 
      Exercise: By differentiating (11) with respect to t and by using the fact that 

v=ldθ/dt,  recover the equation of motion (10). Conversely, show that (11) is a direct 
consequence of (10). [Hint: Multiply (10) by v.]  
 
      Setting  v=ldθ/dt  in (11), we get a first-order differential equation:  
 

dθ / dt = ± [(2g/l ) (cosθ – cosα)]1/2 , 
 
which is integrated to give  

0

1/ 2

0
2

(cos cos )
g

d t t
l

θ

θ
θ α θ

−
 ± − = −  ∫  . 
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The period of oscillation is [cf. Eq. (6)]  
 

       

1/ 2

1/ 2 1/ 2

2
2 (cos cos )

(2 / ) (cos cos )

g
P d

l

l g d

α

α

α

α

θ α θ

θ α θ

−

−

−

−

 = −  

= −

∫

∫
                                (12) 

 
Obviously, P depends on the angular amplitude α . Let us assume, however, that this 
amplitude is very small: α <<1. We may then make the approximations  
 

cosθ ≈ 1 – θ 
2/2    and    cosα ≈ 1 – α2/2 . 

 
Furthermore, we set  θ/α=u ⇔ θ=αu . It is then a straightforward exercise to show that 
(12) reduces to  
 

( ) [ ]
1/ 21 11/ 2 2 1/ 2

11

1/ 2

2( / ) 1 2( / ) arcsin

2( / )
2 2

P l g u du l g u

l g
π π

−

−−
= − =

  = − − ⇒    

∫
 

 
P = 2 π (l /g )1/2 , 

 
which is the familiar expression for the period of oscillation of a pendulum executing 
simple harmonic motion for small angles of deflection from the vertical. Once again, 
the SHM is seen to be the only one-dimensional periodic motion in which the period 
does not depend on the amplitude of oscillation.  
      As another example, consider a body of mass m, which is moving back and forth 
on a U-shaped, frictionless roller-coaster track on the vertical xy-plane, where the x-
axis is horizontal while the y-axis is vertical (Fig. 3). The shape of the track, which is 
symmetric with respect to the y-axis, is described mathematically by an equation of 
the form y=f (x), where f (x) is an even function and where f (0)=0. We want to 
determine the period of the oscillatory motion, given the total mechanical energy E of 
m (equivalently, the maximum height h reached by the body).  
 

x

E

OA− A+

y

h h

 
 

Fig. 3 
 
      Let us first take a look at the physics of the problem. The body m is sliding 
without friction on the roller-coaster track, moving back and forth between two 
extreme points at height h above the x-axis (Fig. 3). The projections of these points on 
this axis are  –A and +A. The body is subject to the gravitational force mg and the 
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normal force from the track. The latter force produces no work, hence does not affect 
the conservation of mechanical energy (see Sec. 4.5 of [1]). The gravitational 
potential energy of m is U(y)=mgy.  Along the track, where y=f (x), the values of U 
may be expressed in terms of x:  
 

U (x) = mg f (x)                                                   (13) 
 
      Let E be the total mechanical energy of m. Since E is constant along the path, its 
value will be equal to the value of the potential energy at the extreme positions 
corresponding to x= –A and x=+A (at which positions the kinetic energy of m 
vanishes). That is,  
 

E = U (± A) = mg f (± A) = mgh                                       (14) 
 
The kinetic energy of the body is  
 

( )2 2 21 1

2 2
T mv m x y= = +ɺ ɺ  

 
(dots indicate differentiation with respect to t) where, for y=f (x),  
 

( )
( ) ( )

d d f x dx
y f x x f x

dt dx dt
′= = =ɺ ɺ                                       (15) 

Hence,  

     { }2 21
1 [ ( )]

2
T mx f x′= +ɺ                                              (16) 

 
The total mechanical energy E=T+U is constant along the path. By (13), (14) and (16) 
we have:  

{ }2 21
1 [ ( )] ( )

2
mx f x mg f x mgh′+ + =ɺ                                     (17) 

 
      The position of m on the track is specified by a single coordinate x, which plays 
the role of a generalized coordinate in the sense of Lagrangian dynamics. The 
Lagrangian function is  

      { }2 21
( , ) 1 [ ( )] ( )

2
L x x T U mx f x mg f x′= − = + −ɺ ɺ                             (18) 

 
The Lagrange equation for x(t) is  
 

      0
d L L

dt x x

∂ ∂  − = ∂ ∂ ɺ
                                                   (19) 

 
We note that the time-derivative of any function of x is defined by the rule used in 
(15) for  f (x). With this in mind, it is a somewhat long but straightforward exercise to 
show that (18) and (19) yield the differential equation  
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      { }2 21 [ ( )] ( ) ( ) ( ) 0x f x x f x f x g f x′ ′ ′′ ′+ + + =ɺɺ ɺ                              (20) 

 
      Presumably, the first-order differential equation (17) for x, expressing 
conservation of mechanical energy, is a first integral of the second-order differential 
equation (20). (In general, a first integral of a differential equation is a lower-order 
differential equation – or an algebraic relation, in the case of a first-order equation – 
that gives us the information that some mathematical quantity retains a constant value 
as a consequence of the original differential equation; see, e.g., [4].) To prove the 
validity of the above statement, we need to integrate (20) once with respect to t in 
order to derive (17). It is easier, however, to work in reverse order. We thus take the 
time-derivative of (17), keeping the rule (15) in mind. Not surprisingly, the result is 
again the differential equation (20) (show this)!  
      The equation of motion of m on the track is a function x(t) that satisfies the 
differential equation (20). In principle, this second-order equation has “already” been 
integrated once to obtain the first-order equation (17) [which is a first integral of (20), 
expressing conservation of mechanical energy]. From (17) we have:  
 

2
2

2 [ ( )]

1 [ ( )]

g h f x
x

f x

−
=

′+
ɺ  . 

 
This yields a first-order differential equation for x(t):  
 

      
1/ 2

2

2 [ ( )]
( ; )

1 [ ( )]

dx g h f x
x h

dt f x

 −
= ± ≡ ± Λ 

′+ 
                                   (21) 

 
By assuming the initial condition x=x0 for t=t0 , the differential equation (21) is 
integrated to give  

       
0

0( ; )

x

x

dx
t t

x h

±
= −

Λ∫                                                 (22) 

 
where the plus sign is chosen for motion in the positive direction (x>x0), while the 
minus sign applies to motion in the negative direction (x<x0). This formally solves the 
problem of determining the position of m on the track as a function of time.  
      The period P of the oscillatory motion of m is the time it takes for a complete 
journey from the extreme position with x= –A to the extreme position with x= +A and 
back to the original position x= –A. To find P we use (22) with the appropriate sign 
for each direction of motion:  
 

2
( ; ) ( ; ) ( ; )

A A A

A A A

dx dx dx
P

x h x h x h

−

− −

−
= + =

Λ Λ Λ∫ ∫ ∫  . 

  
We observe that P depends on the maximum height h, thus on the total energy E of 
the body (notice that both the integrand and the limits of integration depend on h). 
However, P is independent of the mass of the body, as expected for a motion 
governed by the sole action of gravity.  
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