Costas J. Papachristou

MATHEMATICAL HANDBOOK

CONTENTS

Mathematical Formulas and Properties 1
Complex Numbers 8
Algebra: Some Basic Concepts 13
Basic Matrix Properties 23
Determinants 25
The Exponential Function 35

MATHEMATICAL FORMULAS AND PROPERTIES

Trigonometric formulas

$\sin ^{2} A+\cos ^{2} A=1 ; \tan x=\frac{\sin x}{\cos x} ; \quad \cot x=\frac{\cos x}{\sin x}=\frac{1}{\tan x}$
$\cos ^{2} x=\frac{1}{1+\tan ^{2} x} \quad ; \quad \sin ^{2} x=\frac{1}{1+\cot ^{2} x}=\frac{\tan ^{2} x}{1+\tan ^{2} x}$

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}, \quad \cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}
\end{aligned}
$$

$\sin 2 A=2 \sin A \cos A$
$\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A$
$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}, \quad \cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}$
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
$\sin A-\sin B=2 \sin \frac{A-B}{2} \cos \frac{A+B}{2}$
$\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
$\cos A-\cos B=2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$

$$
\begin{array}{ll}
\sin (-A)=-\sin A, & \cos (-A)=\cos A \\
\tan (-A)=-\tan A, & \cot (-A)=-\cot A \\
\sin \left(\frac{\pi}{2} \pm A\right)=\cos A, & \cos \left(\frac{\pi}{2} \pm A\right)=\mp \sin A \\
\sin (\pi \pm A)=\mp \sin A, & \cos (\pi \pm A)=-\cos A
\end{array}
$$

	\sin	\cos	\tan	\cot
0	0	1	0	∞
$\pi / 6=30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\pi / 4=45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\pi / 3=60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\pi / 2=90^{\circ}$	1	0	∞	0
$\pi=180^{\circ}$	0	-1	0	∞

Basic trigonometric equations

$$
\begin{aligned}
& \sin x=\sin \alpha \Rightarrow\left\{\begin{array}{l}
x=\alpha+2 k \pi \\
x=(2 k+1) \pi-\alpha
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right. \\
& \cos x=\cos \alpha \Rightarrow\left\{\begin{array}{l}
x=\alpha+2 k \pi \\
x=2 k \pi-\alpha
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right. \\
& \tan x=\tan \alpha \Rightarrow x=\alpha+k \pi \quad(k=0, \pm 1, \pm 2, \cdots) \\
& \cot x=\cot \alpha \Rightarrow x=\alpha+k \pi \quad(k=0, \pm 1, \pm 2, \cdots) \\
& \sin x=-\sin \alpha \Rightarrow\left\{\begin{array}{l}
x=2 k \pi-\alpha \\
x=\alpha+(2 k+1) \pi
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right. \\
& \cos x=-\cos \alpha \Rightarrow\left\{\begin{array}{l}
x=(2 k+1) \pi-\alpha \\
x=\alpha+(2 k+1) \pi
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right.
\end{aligned}
$$

Hyperbolic functions

$\cosh x=\frac{e^{x}+e^{-x}}{2} ; \quad \sinh x=\frac{e^{x}-e^{-x}}{2} ; \quad \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{1}{\operatorname{coth} x}$
$\cosh ^{2} x-\sinh ^{2} x=1$
$\cosh (-x)=\cosh x, \quad \sinh (-x)=-\sinh x$

Power formulas

$(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$
$(a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}$
$a^{2}-b^{2}=(a+b)(a-b)$
$a^{3} \pm b^{3}=(a \pm b)\left(a^{2} \mp a b+b^{2}\right)$
$(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\cdots+b^{n} \quad(n=1,2,3, \cdots)$

Quadratic equation: $a x^{2}+b x+c=0$

Call $D=b^{2}-4 a c \quad$ (discriminant)
Roots: $x=\frac{-b \pm \sqrt{D}}{2 a}$
Roots are real and distinct if $D>0$; real and equal if $D=0$; complex conjugate if $D<0$.

Geometric formulas

$A=$ area or surface area ; $V=$ volume ; $P=$ perimeter
Parallelogram of base b and altitude $h: \quad A=b h$
Triangle of base b and altitude $h: \quad A=(1 / 2) b h$
Trapezoid of altitude h and parallel sides a and $b: \quad A=(1 / 2)(a+b) h$
Circle of radius r : $P=2 \pi r, \quad A=\pi r^{2}$
Ellipse of semi-major axis a and semi-minor axis $b: \quad A=\pi a b$
Parallelepiped of base area A and height $h: \quad V=A h$
Cylindroid of base area A and height $h: \quad V=A h$
Sphere of radius $r: \quad A=4 \pi r^{2}, \quad V=(4 / 3) \pi r^{3}$
Circular cone of radius r and height $h: \quad V=(1 / 3) \pi r^{2} h$

Properties of inequalities

$$
\begin{aligned}
& a<b \text { and } b<c \Rightarrow a<c \\
& a \geq b \text { and } b \geq a \Rightarrow a=b \\
& a<b \Rightarrow-a>-b \\
& 0<a<b \Rightarrow \frac{1}{a}>\frac{1}{b} \\
& a<b \text { and } c \leq d \Rightarrow a+c<b+d \\
& 0<a<b \text { and } 0<c \leq d \Rightarrow a c<b d \\
& 0<a<1 \Rightarrow a>a^{2}>a^{3}>\cdots, a^{n}<1, \sqrt[n]{a}<1 \\
& a>1 \Rightarrow a<a^{2}<a^{3}<\cdots, a^{n}>1, \sqrt[n]{a}>1 \\
& 0<a<b \Rightarrow a^{n}<b^{n}, \sqrt[n]{a}<\sqrt[n]{b}
\end{aligned}
$$

Properties of proportions

Assume that $\frac{\alpha}{\beta}=\frac{\gamma}{\delta}=\kappa$. Then,

$$
\begin{array}{ll}
\alpha \delta=\beta \gamma, & \frac{\alpha \pm \gamma}{\beta \pm \delta}=\kappa \\
\frac{\alpha \pm \beta}{\beta}=\frac{\gamma \pm \delta}{\delta}, & \frac{\alpha}{\beta \pm \alpha}=\frac{\gamma}{\delta \pm \gamma}
\end{array}
$$

Properties of absolute values of real numbers

$$
\left.\begin{array}{l}
|a|=a, \quad \text { if } a \geq 0 \\
\quad=-a, \text { if } a<0
\end{array} \begin{array}{l}
|a| \geq 0 \\
|-a|=|a| \\
|a|^{2}=a^{2} \\
\sqrt{a^{2}}=|a| \\
|x| \leq \varepsilon \Leftrightarrow-\varepsilon \leq x \leq \varepsilon \quad(\varepsilon>0) \\
|x| \geq a>0 \quad \Leftrightarrow \quad x \geq a \text { or } \quad x \leq-a
\end{array}\right] \begin{aligned}
& ||a|-|b|| \leq|a \pm b| \leq|a|+|b| \\
& |a \cdot b|=|a||b| \\
& \left|a^{k}\right|=|a|^{k} \quad(k \in Z) \\
& \left|\frac{a}{b}\right|=\frac{|a|}{|b|} \quad(b \neq 0)
\end{aligned}
$$

Properties of powers and logarithms

$$
\begin{aligned}
& x^{0}=1 \quad(x \neq 0) \\
& x^{\alpha} x^{\beta}=x^{\alpha+\beta} \\
& \frac{x^{\alpha}}{x^{\beta}}=x^{\alpha-\beta} \\
& \frac{1}{x^{\alpha}}=x^{-\alpha} \\
& \left(x^{\alpha}\right)^{\beta}=x^{\alpha \beta} \\
& (x y)^{\alpha}=x^{\alpha} y^{\alpha} ; \quad\left(\frac{x}{y}\right)^{\alpha}=\frac{x^{\alpha}}{y^{\alpha}} \\
& \ln 1=0 \\
& \ln \left(e^{\alpha}\right)=\alpha \quad(\alpha \in \mathbb{R}), \\
& \ln (\alpha \beta)=\ln \alpha+\ln \beta \\
& \ln \left(\frac{1}{\alpha}\right)=-\ln \alpha \\
& \ln \left(\frac{\alpha}{\beta}\right)=\ln \alpha-\ln \beta=-\ln \left(\frac{\beta}{\alpha}\right) \\
& \ln)=k \ln \alpha \quad(k \in \mathbb{R}) \\
& \hline
\end{aligned}
$$

Derivatives and integrals of elementary functions

$(c)^{\prime}=0 \quad(c=$ const. $)$	$(\sin x)^{\prime}=\cos x$	$(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
$\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \quad(\alpha \in R)$	$(\cos x)^{\prime}=-\sin x$	$(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$
$\left(e^{x}\right)^{\prime}=e^{x}$	$(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$	$(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$
$(\ln x)^{\prime}=\frac{1}{x} \quad(x>0)$	$(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}$	$(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}$
$(\sinh x)^{\prime}=\cosh x$	$(\cosh x)^{\prime}=\sinh x$	

$$
\begin{aligned}
& \int d x=x+C ; \quad \int x^{a} d x=\frac{x^{a+1}}{a+1}+C \quad(a \neq-1) \\
& \int \frac{d x}{x}=\ln |x|+C \\
& \int e^{x} d x=e^{x}+C \\
& \int \cos x d x=\sin x+C \quad ; \quad \int \sin x d x=-\cos x+C
\end{aligned}
$$

$$
\int \frac{d x}{\cos ^{2} x}=\tan x+C \quad ; \quad \int \frac{d x}{\sin ^{2} x}=-\cot x+C
$$

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

$$
\int \frac{d x}{x^{2}-1}=\frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|+C
$$

$$
\int \frac{d x}{\sqrt{x^{2} \pm 1}}=\ln \left(x+\sqrt{x^{2} \pm 1}\right)+C
$$

C. J. PAPACHRISTOU

COMPLEX NUMBERS

Consider the equation $x^{2}+1=0$. This has no solution for real x. For this reason we extend the set of numbers beyond the real numbers by defining the imaginary unit number i by

$$
i^{2}=-1 \quad \text { or, symbolically, } \quad i=\sqrt{-1}
$$

Then, the solution of the above-given equation is $x= \pm i$.

Given the real numbers x and y, we define the complex number

$$
z=x+i y
$$

This is often represented as an ordered pair

$$
z=x+i y \equiv(x, y)
$$

The number $x=\operatorname{Re} z$ is the real part of z while $y=\operatorname{Im} z$ is the imaginary part of z. In particular, the value $z=0$ corresponds to $x=0$ and $y=0$. In general, if $y=0$, then z is a real number.

Given a complex number $z=x+i y$, the number

$$
\bar{z}=x-i y
$$

is called the complex conjugate of z (the symbol z^{*} is also used for the complex conjugate). Furthermore, the real quantity

$$
|z|=\left(x^{2}+y^{2}\right)^{1 / 2}
$$

is called the modulus (or absolute value) of z. We notice that

$$
|z|=|\bar{z}|
$$

Example: If $z=3+2 i$, then $\bar{z}=3-2 i$ and $|z|=|\bar{z}|=\sqrt{13}$.

Exercise: Show that, if $z=\bar{z}$, then z is real, and conversely.
Exercise: Show that, if $z=x+i y$, then

$$
\operatorname{Re} z=x=\frac{z+\bar{z}}{2}, \quad \operatorname{Im} z=y=\frac{z-\bar{z}}{2 i} .
$$

Consider the complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. As we can show, their sum and their difference are given by

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)
\end{gathered}
$$

Exercise: Show that, if $z_{1}=z_{2}$, then $x_{1}=x_{2}$ and $y_{1}=y_{2}$.
Taking into account that $i^{2}=-1$, we find the product of z_{1} and z_{2} to be

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

In particular, for $z_{1}=z=x+i y$ and $z_{2}=\bar{z}=x-i y$, we have:

$$
z \bar{z}=x^{2}+y^{2}=|z|^{2} .
$$

To evaluate the quotient $z_{1} / z_{2}\left(z_{2} \neq 0\right)$ we apply the following trick:

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1} \bar{z}_{2}}{z_{2} \bar{z}_{2}}=\frac{z_{1} \bar{z}_{2}}{\left|z_{2}\right|^{2}}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{x_{2}{ }^{2}+y_{2}{ }^{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}{ }^{2}+y_{2}{ }^{2}}+i \frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}{ }^{2}+y_{2}{ }^{2}} .
$$

In particular, for $z=x+i y$,

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} .
$$

Properties:

$$
\begin{gathered}
\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}, \quad \overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2} \\
\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}, \quad \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}} \\
|\bar{z}|=|z|, \quad z \bar{z}=|z|^{2}, \quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \\
\left|z^{n}\right|=|z|^{n}, \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
\end{gathered}
$$

Exercise: Given the complex numbers $z_{1}=3-2 i$ and $z_{2}=-2+i$, evaluate the quantities $\left|z_{1} \pm z_{2}\right|, \bar{z}_{1} z_{2}$ and $\overline{z_{1} / z_{2}}$.

C. J. PAPACHRISTOU

Polar form of a complex number

A complex number $z=x+i y \equiv(x, y)$ corresponds to a point of the $x-y$ plane. It may also be represented by a vector joining the origin O of the axes of the complex plane with this point. The quantities x and y are the Cartesian coordinates of the point, or, the orthogonal components of the corresponding vector. We observe that

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

where

$$
r=|z|=\left(x^{2}+y^{2}\right)^{1 / 2} \quad \text { and } \quad \tan \theta=\frac{y}{x} .
$$

Thus, we can write

$$
z=x+i y=r(\cos \theta+i \sin \theta)
$$

The above expression represents the polar form of z. Note that

$$
\bar{z}=r(\cos \theta-i \sin \theta) .
$$

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers. As can be shown,

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right], \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] .
\end{aligned}
$$

In particular, the inverse of a complex number $z=r(\cos \theta+i \sin \theta)$ is written

$$
z^{-1}=\frac{1}{z}=\frac{1}{r}(\cos \theta-i \sin \theta)=\frac{1}{r}[\cos (-\theta)+i \sin (-\theta)] .
$$

Exercise: By using polar forms, show analytically that $z z^{-1}=1$.

Exponential form of a complex number

We introduce the notation

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

(this notation is not arbitrary but has a deeper meaning that reveals itself within the context of the theory of analytic functions). Note that

$$
e^{-i \theta}=e^{i(-\theta)}=\cos (-\theta)+i \sin (-\theta)=\cos \theta-i \sin \theta
$$

Also,

$$
\left|e^{i \theta}\right|=\left|e^{-i \theta}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Exercise: Show that

$$
e^{-i \theta}=1 / e^{i \theta}=\overline{e^{i \theta}}
$$

Also show that

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} .
$$

The complex number $z=r(\cos \theta+i \sin \theta)$, where $r=|z|$, may now be expressed as follows:

$$
z=r e^{i \theta}
$$

It can be shown that

$$
\begin{gathered}
z^{-1}=\frac{1}{z}=\frac{1}{r} e^{-i \theta}=\frac{1}{r} e^{i(-\theta)}, \quad \bar{z}=r e^{-i \theta} \\
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}, \quad \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{gathered}
$$

where $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$.
Example: The complex number $z=\sqrt{2}-i \sqrt{2}$, with $|z|=r=2$, is written

$$
z=2\left(\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)=2\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]=2 e^{i(-\pi / 4)}=2 e^{-i \pi / 4} .
$$

C. J. PAPACHRISTOU

Powers and roots of complex numbers

Let $z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$ be a complex number, where $r=|z|$. It can be proven that

$$
z^{n}=r^{n} e^{i n \theta}=r^{n}(\cos n \theta+i \sin n \theta) \quad(n=0, \pm 1, \pm 2, \cdots)
$$

In particular, for $z=\cos \theta+i \sin \theta=e^{i \theta} \quad(r=1)$ we find the de Moivre formula

$$
(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)
$$

Note also that, for $z \neq 0$, we have that $z^{0}=1$ and $z^{-n}=1 / z^{n}$.
Given a complex number $z=r(\cos \theta+i \sin \theta)$, where $r=|z|$, an nth root of z is any complex number c satisfying the equation $c^{n}=z$. We write $c=\sqrt[n]{z}$. An nth root of a complex number admits n different values given by the formula

$$
c_{k}=\sqrt[n]{r}\left(\cos \frac{\theta+2 k \pi}{n}+i \sin \frac{\theta+2 k \pi}{n}\right), \quad k=0,1,2, \cdots,(n-1)
$$

Example: Let $z=1$. We seek the 4th roots of unity, i.e., the complex numbers c satisfying the equation $c^{4}=1$. We write

$$
z=1(\cos 0+i \sin 0) \quad(\text { that is, } r=1, \theta=0) .
$$

Then,

$$
c_{k}=\cos \frac{2 k \pi}{4}+i \sin \frac{2 k \pi}{4}=\cos \frac{k \pi}{2}+i \sin \frac{k \pi}{2}, \quad k=0,1,2,3 .
$$

We find:

$$
c_{0}=1, \quad c_{1}=i, \quad c_{2}=-1, \quad c_{3}=-i
$$

Example: Let $z=i$. We seek the square roots of i, that is, the complex numbers c satisfying the equation $c^{2}=i$. We have:

$$
\begin{gathered}
z=1[\cos (\pi / 2)+i \sin (\pi / 2)] \quad \text { (that is, } r=1, \theta=\pi / 2) ; \\
c_{k}=\cos \frac{(\pi / 2)+2 k \pi}{2}+i \sin \frac{(\pi / 2)+2 k \pi}{2}, \quad k=0,1 ; \\
c_{0}=\cos (\pi / 4)+i \sin (\pi / 4)=\frac{\sqrt{2}}{2}(1+i), \\
c_{1}=\cos (5 \pi / 4)+i \sin (5 \pi / 4)=-\frac{\sqrt{2}}{2}(1+i) .
\end{gathered}
$$

ALGEBRA: SOME BASIC CONCEPTS

Sets

Subset:	$X \subseteq Y \Leftrightarrow(x \in X \Rightarrow x \in Y) ;$
	$X=Y \Leftrightarrow X \subseteq Y$ and $Y \subseteq X$
Proper subset:	$X \subset Y \Leftrightarrow X \subseteq Y$ and $X \neq Y$
Union of sets:	$X \cup Y=\{x / x \in X$ or $x \in Y\}$
Intersection of sets:	$X \cap Y=\{x / x \in X$ and $x \in Y\}$
Disjoint sets:	$X \cap Y=\varnothing$
Difference of sets:	$X-Y=\{x / x \in X$ and $x \notin Y\}$
Complement of a subset:	$X \supset Y ; \quad X \backslash Y=X-Y$
Cartesian product:	$X \times Y=\{(x, y) / x \in X$ and $y \in Y\}$
Mapping:	$f: X \rightarrow Y ; \quad(x \in X) \rightarrow y=f(x) \in Y$
Domain/range of f :	$D(f)=X, R(f)=f(X)=\{f(x) / x \in X\} \subseteq Y ;$
	f is defined in X and has values in Y;
	$y=f(x)$ is the image of x under f
Composite mapping:	$f: X \rightarrow Y, \quad g: Y \rightarrow Z ;$
	$f_{\circ} g: X \rightarrow Z ; \quad(x \in X) \rightarrow g(f(x)) \in Z$
Injective (1-1) mapping:	$f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$, or
	$x_{1} \neq x_{2} \Leftrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
Surjective (onto) mapping:	$f(X)=Y$
Bijective mapping:	f is both injective and surjective \Rightarrow invertible
Identity mapping:	$f_{i d}: X \rightarrow X ; \quad f_{i d}(x)=x, \quad \forall x \in X$
Internal operation on X :	$X \times X \rightarrow X ; \quad[(x, y) \in X \times X] \rightarrow z \in X$
External operation on X :	$A \times X \rightarrow X ; \quad[(a, x) \in A \times X] \rightarrow y=a \cdot x \in X$

Groups

A group is a set G, together with an internal operation $G \times G \rightarrow G ;(x, y) \rightarrow z=x \cdot y$, such that:

1. The operation is associative: $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
2. $\exists e \in G$ (identity) : $x \cdot e=e \cdot x=x, \forall x \in G$
3. $\forall x \in G, \exists x^{-1} \in G$ (inverse): $x^{-1} \cdot x=x \cdot x^{-1}=e$

A group G is abelian or commutative if $x \cdot y=y \cdot x, \forall x, y \in G$.
A subset $S \subseteq G$ is a subgroup of G if S is itself a group (clearly, then, S contains the identity e of G, as well as the inverse of every element of S).

Vector space over R

Let $V=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots\}$, and let $a, b, c, \ldots \in R$. Consider an internal operation + and an external operation • on V :

$$
\begin{array}{ll}
+: V \times V \rightarrow V ; & \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{z} \\
\cdot: R \times V \rightarrow V ; & a \cdot \boldsymbol{x}=\boldsymbol{y}
\end{array}
$$

Then, V is a vector space over R iff

1. V is a commutative group with respect to + . The identity element is denoted $\mathbf{0}$, while the inverse of \boldsymbol{x} is denoted $-\boldsymbol{x}$.
2. The operation \cdot satisfies the following:

$$
\begin{aligned}
& a \cdot(b \cdot \boldsymbol{x})=(a b) \cdot \boldsymbol{x} \\
& (a+b) \cdot \boldsymbol{x}=a \cdot \boldsymbol{x}+b \cdot \boldsymbol{x} \\
& a \cdot(\boldsymbol{x}+\boldsymbol{y})=a \cdot \boldsymbol{x}+a \cdot \boldsymbol{y} \\
& 1 \cdot \boldsymbol{x}=\boldsymbol{x}, \quad 0 \cdot \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

A set $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{k}\right\}$ of elements of V is linearly independent iff the equation ${ }^{1}$

$$
c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}+\ldots+c_{k} \boldsymbol{x}_{k}=0
$$

can only be satisfied for $c_{1}=c_{2}=\ldots=c_{k}=0$; otherwise, the set is linearly dependent. The dimension $\operatorname{dim} V$ of V is the largest number of vectors in V that constitute a linearly independent set. If $\operatorname{dim} V=n$, then any system $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ of n linearly independent elements is a basis for V, and any $\boldsymbol{x} \in V$ can be uniquely expressed as $\boldsymbol{x}=c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+\ldots+c_{n} \boldsymbol{e}_{n}$.

A subset $S \subseteq V$ is a subspace of V if S is itself a vector space under the operations (+) and (.). In particular, the sum $\boldsymbol{x}+\boldsymbol{y}$ of any two elements of S, as well as the scalar multiple $a \boldsymbol{x}$ and the inverse $-\boldsymbol{x}$ of any element \boldsymbol{x} of S, must belong to S. Clearly, this set must contain the identity $\mathbf{0}$ of V. If S is a subspace of V, then $\operatorname{dim} S \leq \operatorname{dim} V$. In particular, S coincides with V iff $\operatorname{dim} S=\operatorname{dim} V$.

[^0]
Functionals

A functional ω on a vector space V is a mapping $\omega: V \rightarrow R ;(\boldsymbol{x} \in V) \rightarrow t=\boldsymbol{\omega}(\boldsymbol{x}) \in R$. The functional $\boldsymbol{\omega}$ is linear if $\boldsymbol{\omega}(a \cdot \boldsymbol{x}+b \cdot \boldsymbol{y})=a \cdot \boldsymbol{\omega}(\boldsymbol{x})+b \cdot \boldsymbol{\omega}(\boldsymbol{y})$. The collection of all linear functionals on V is called the dual space of V, denoted V^{*}. It is itself a vector space over R, and $\operatorname{dim} V^{*}=\operatorname{dim} V$.

Algebras

A real algebra A is a vector space over R equipped with a binary operation $(\cdot \mid \cdot): A \times A \rightarrow A ;(\boldsymbol{x} \mid \boldsymbol{y})=\boldsymbol{z}$, such that, for $a, b \in R$,

$$
\begin{aligned}
(a \cdot \boldsymbol{x}+b \cdot \boldsymbol{y} \mid z) & =a \cdot(\boldsymbol{x} \mid \boldsymbol{z})+b \cdot(\boldsymbol{y} \mid \boldsymbol{z}) \\
(\boldsymbol{x} \mid a \cdot \boldsymbol{y}+b \cdot \boldsymbol{z}) & =a \cdot(\boldsymbol{x} \mid \boldsymbol{y})+b \cdot(\boldsymbol{x} \mid \boldsymbol{z})
\end{aligned}
$$

An algebra is commutative if, for any two elements $\boldsymbol{x}, \boldsymbol{y},(\boldsymbol{x} \mid \boldsymbol{y})=(\boldsymbol{y} \mid \boldsymbol{x})$; it is associative if, for any $\boldsymbol{x}, \boldsymbol{y}, z,(\boldsymbol{x} \mid(\boldsymbol{y} \mid z))=((\boldsymbol{x} \mid \boldsymbol{y}) \mid z)$.

Example: The set $\Lambda^{0}\left(R^{n}\right)$ of all functions on R^{n} is a commutative, associative algebra. The multiplication operation $(\cdot \mid \cdot): \Lambda^{0}\left(R^{n}\right) \times \Lambda^{0}\left(R^{n}\right) \rightarrow \Lambda^{0}\left(R^{n}\right)$ is defined by

$$
(f \mid g)\left(x^{1}, \ldots, x^{n}\right)=f\left(x^{1}, \ldots, x^{n}\right) g\left(x^{1}, \ldots, x^{n}\right) .
$$

Example: The set of all $n \times n$ matrices is an associative, non-commutative algebra. The binary operation $(\cdot \mid \cdot)$ is matrix multiplication.

A subspace S of A is a subalgebra of A if S is itself an algebra under the same binary operation $(\cdot \mid \cdot)$. In particular, S must be closed under this operation; i.e., $(\boldsymbol{x} \mid \boldsymbol{y}) \in S$ for any $\boldsymbol{x}, \boldsymbol{y}$ in S. We write: $S \subset A$.
A subalgebra $S \subset A$ is an ideal of A iff $(\boldsymbol{x} \mid \boldsymbol{y}) \in S$ and $(\boldsymbol{y} \mid \boldsymbol{x}) \in S$, for any $\boldsymbol{x} \in S, \boldsymbol{y} \in A$.

Modules

Note first that R is an associative, commutative algebra under the usual operations of addition and multiplication. Thus, a vector space over R is a vector space over an associative, commutative algebra. More generally, a module M over A is a vector space over an associative but (generally) non-commutative algebra. In particular, the external operation (.) on M is defined by

$$
\cdot: A \times M \rightarrow M ; \quad a \cdot \boldsymbol{x}=\boldsymbol{y} \quad(a \in A ; \boldsymbol{x}, \boldsymbol{y} \in M) .
$$

Example: The collection of all n-dimensional column matrices, with A taken to be the algebra of $n \times n$ matrices, and with matrix multiplication as the external operation.

C. J. PAPACHRISTOU

Vector fields

A vector field \boldsymbol{V} on R^{n} is a map from a domain of R^{n} into R^{n} :

$$
\boldsymbol{V}: R^{n} \supseteq U \rightarrow R^{n} ; \quad\left[\boldsymbol{x} \equiv\left(x^{1}, \ldots, x^{n}\right) \in U\right] \rightarrow \boldsymbol{V}(\boldsymbol{x}) \equiv\left(V^{1}\left(x^{k}\right), \ldots, V^{n}\left(x^{k}\right)\right) \in R^{n} .
$$

The vector \boldsymbol{x} represents a point in U, with coordinates $\left(x^{1}, \ldots, x^{n}\right)$. The functions $V^{i}\left(x^{k}\right)$ $(i=1, \ldots, n)$ are the components of \boldsymbol{V} in the coordinate system $\left(x^{k}\right)$.

Given two vector fields \boldsymbol{U} and \boldsymbol{V}, we can construct a new vector field $\boldsymbol{W}=\boldsymbol{U}+\boldsymbol{V}$ such that $\boldsymbol{W}(\boldsymbol{x})=\boldsymbol{U}(\boldsymbol{x})+\boldsymbol{V}(\boldsymbol{x})$. The components of \boldsymbol{W} are the sums of the respective components of \boldsymbol{U} and \boldsymbol{V}.

Given a vector field \boldsymbol{V} and a constant $a \in R$, we can construct a new vector field $\boldsymbol{Z}=a \boldsymbol{V}$ such that $\boldsymbol{Z}(\boldsymbol{x})=a \boldsymbol{V}(\boldsymbol{x})$. The components of \boldsymbol{Z} are scalar multiples (by a) of those of \boldsymbol{V}.

It follows from the above that the collection of all vector fields on R^{n} is a vector space over R.

More generally, given a vector field \boldsymbol{V} and a function $f \in \Lambda^{0}\left(R^{n}\right)$, we can construct a new vector field $\boldsymbol{Z}=f \boldsymbol{V}$ such that $\boldsymbol{Z}(\boldsymbol{x})=f(\boldsymbol{x}) \boldsymbol{V}(\boldsymbol{x})$. Given that $\Lambda^{0}\left(R^{n}\right)$ is an associative algebra, we conclude that the collection of all vector fields on R^{n} is a module over $\Lambda^{0}\left(R^{n}\right)$ (in this particular case, the algebra $\Lambda^{0}\left(R^{n}\right)$ is commutative).

A note on linear independence:

Let $\left\{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\mathrm{r}}\right\} \equiv\left\{\boldsymbol{V}_{a}\right\}$ be a collection of vector fields on R^{n}.
(a) The set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly dependent over R (linearly dependent with constant coefficients) iff there exist real constants c_{1}, \ldots, c_{r}, not all zero, such that

$$
c_{1} \boldsymbol{V}_{1}(\boldsymbol{x})+\ldots+c_{r} \boldsymbol{V}_{r}(\boldsymbol{x})=0, \quad \forall \boldsymbol{x} \in R^{n}
$$

If the above relation is satisfied only for $c_{1}=\ldots=c_{r}=0$, the set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly independent over R.
(b) The set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly dependent over $\Lambda^{0}\left(R^{n}\right)$ iff there exist functions $f_{1}\left(x^{k}\right), \ldots$, $f_{r}\left(x^{k}\right)$, not all identically zero over R^{n}, such that

$$
f_{1}\left(x^{k}\right) \boldsymbol{V}_{1}(\boldsymbol{x})+\ldots+f_{r}\left(x^{k}\right) \boldsymbol{V}_{r}(\boldsymbol{x})=0, \quad \forall \boldsymbol{x} \equiv\left(x^{k}\right) \in R^{n}
$$

If this relation is satisfied only for $f_{1}\left(x^{k}\right)=\ldots=f_{r}\left(x^{k}\right) \equiv 0$, the set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly independent over $\Lambda^{0}\left(R^{n}\right)$.

There can be at most n elements in a linearly independent system over $\Lambda^{0}\left(R^{n}\right)$. These elements form a basis $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\} \equiv\left\{\boldsymbol{e}_{k}\right\}$ for the module of all vector fields on R^{n}. An element of this module, i.e. an arbitrary vector field \boldsymbol{V}, is written as a linear combination of the $\left\{\boldsymbol{e}_{k}\right\}$ with coefficients $V^{k} \in \Lambda^{0}\left(R^{n}\right)$. Thus, at any point $\boldsymbol{x} \equiv\left(x^{k}\right) \in R^{n}$,

$$
\boldsymbol{V}(\boldsymbol{x})=V^{1}\left(x^{k}\right) \boldsymbol{e}_{1}+\ldots+V^{n}\left(x^{k}\right) \boldsymbol{e}_{n} \equiv\left(V^{1}\left(x^{k}\right), \ldots, V^{n}\left(x^{k}\right)\right) .
$$

In particular, in the basis $\left\{\boldsymbol{e}_{k}\right\}$,

$$
\boldsymbol{e}_{1} \equiv(1,0,0, \ldots, 0), \quad \boldsymbol{e}_{2} \equiv(0,1,0, \ldots, 0), \ldots, \boldsymbol{e}_{n} \equiv(0,0, \ldots, 0,1)
$$

Example: Let $n=3$, i.e., $R^{n}=R^{3}$. Call $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\} \equiv\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$. Let \boldsymbol{V} be a vector field on R^{3}. Then, at any point $\boldsymbol{x} \equiv(x, y, z) \in R^{3}$,

$$
\boldsymbol{V}(\boldsymbol{x})=V_{x}(x, y, z) \boldsymbol{i}+V_{y}(x, y, z) \boldsymbol{j}+V_{z}(x, y, z) \boldsymbol{k} \equiv\left(V_{x}, V_{y}, V_{z}\right) .
$$

Now, consider the six vector fields

$$
\boldsymbol{V}_{1}=\boldsymbol{i}, \boldsymbol{V}_{2}=\boldsymbol{j}, \boldsymbol{V}_{3}=\boldsymbol{k}, \boldsymbol{V}_{4}=x \boldsymbol{j}-y \boldsymbol{i}, \boldsymbol{V}_{5}=y \boldsymbol{k}-z \boldsymbol{j}, \boldsymbol{V}_{6}=z \boldsymbol{i}-x \boldsymbol{k} .
$$

Clearly, the $\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}\right\}$ are linearly independent over $\Lambda^{0}\left(\boldsymbol{R}^{3}\right)$, since they constitute the basis $\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$. On the other hand, the $\boldsymbol{V}_{4}, \boldsymbol{V}_{5}, \boldsymbol{V}_{6}$ are separately linearly dependent on the $\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}\right\}$ over $\Lambda^{0}\left(R^{3}\right)$. Moreover, the set $\left\{\boldsymbol{V}_{4}, \boldsymbol{V}_{5}, \boldsymbol{V}_{6}\right\}$ is also linearly dependent over $\Lambda^{0}\left(R^{3}\right)$, since $z \boldsymbol{V}_{4}+x \boldsymbol{V}_{5}+y \boldsymbol{V}_{6}=0$. Thus, the set $\left\{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{6}\right\}$ is linearly dependent over $\Lambda^{0}\left(R^{3}\right)$. On the other hand, the system $\left\{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{6}\right\}$ is linearly independent over R, since the equation $c_{1} \boldsymbol{V}_{1}+\ldots+c_{6} \boldsymbol{V}_{6}=0$, with $c_{1}, \ldots, c_{6} \in R$ (constant coefficients), can only be satisfied for $c_{1}=\ldots=c_{6}=0$. In general,
there is an infinite number of linearly independent vector fields on R^{n} over R, but only n linearly independent fields over $\Lambda^{0}\left(R^{n}\right)$.

Derivation on an algebra

Let L be an operation on an algebra A (an operator on A):

$$
L: A \rightarrow A ; \quad(x \in A) \rightarrow \boldsymbol{y}=L \boldsymbol{x} \in A .
$$

L is a derivation on A iff, $\forall \boldsymbol{x}, \boldsymbol{y} \in A$ and $a, b \in R$,

$$
\begin{array}{ll}
L(a \boldsymbol{x}+b \boldsymbol{y})=a L(\boldsymbol{x})+b L(\boldsymbol{y}) & \text { (linearity) } \\
L(\boldsymbol{x} \mid \boldsymbol{y})=(L \boldsymbol{x} \mid \boldsymbol{y})+(\boldsymbol{x} \mid L \boldsymbol{y}) & \text { (Leibniz rule) }
\end{array}
$$

Example: Let $A=\Lambda^{0}\left(R^{n}\right)=\left\{f\left(x^{1}, \ldots, x^{n}\right)\right\}$, and let L be the linear operator

$$
L=\varphi^{1}\left(x^{k}\right) \partial / \partial x^{1}+\ldots+\varphi^{n}\left(x^{k}\right) \partial / \partial x^{n} \equiv \varphi^{i}\left(x^{k}\right) \partial / \partial x^{i}
$$

where the $\varphi^{i}\left(x^{k}\right)$ are given functions. As can be shown,

$$
L\left[f\left(x^{k}\right) g\left(x^{k}\right)\right]=\left[L f\left(x^{k}\right)\right] g\left(x^{k}\right)+f\left(x^{k}\right) L g\left(x^{k}\right) .
$$

Hence, L is a derivation on $\Lambda^{0}\left(R^{n}\right)$.

Lie algebra

An algebra \mathcal{L} over R is a (real) Lie algebra with binary operation [•, $\cdot]: \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$ (Lie bracket) iff this operation satisfies the properties:

$$
\begin{aligned}
& {[a \boldsymbol{x}+b \boldsymbol{y}, z]=a[\boldsymbol{x}, z]+b[\boldsymbol{y}, z]} \\
& {[\boldsymbol{x}, \boldsymbol{y}]=-[\boldsymbol{y}, \boldsymbol{x}]} \\
& {[\boldsymbol{x},[\boldsymbol{y}, z]]+[\boldsymbol{y},[\boldsymbol{z}, \boldsymbol{x}]]+[z,[\boldsymbol{x}, \boldsymbol{y}]]=0}
\end{aligned} \quad \text { (antisymmetry) } \text { (Jacobi identity) }
$$

(where $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{L}$ and $a, b \in R$). Note that, by the antisymmetry of the Lie bracket, the first and third properties are written, alternatively,

$$
\begin{aligned}
& {[\boldsymbol{x}, a \boldsymbol{y}+b z]=a[\boldsymbol{x}, \boldsymbol{y}]+b[\boldsymbol{x}, z]} \\
& {[[\boldsymbol{x}, \boldsymbol{y}], z]+[[\boldsymbol{y}, z], \boldsymbol{x}]+[[z, \boldsymbol{z}], \boldsymbol{y}]=0 .}
\end{aligned}
$$

A Lie algebra is a non-associative algebra, since, as follows by the above properties,

$$
[x,[y, z]] \neq[[x, y], z] .
$$

Example: The algebra of $n \times n$ matrices, with $[A, B]=A B-B A$ (commutator).
Example: The algebra of all vectors in R^{3}, with $[\boldsymbol{a}, \boldsymbol{b}]=\boldsymbol{a} \times \boldsymbol{b}$ (vector product).

Lie algebra of derivations

Consider the algebra $A=\Lambda^{0}\left(R^{n}\right)=\left\{f\left(x^{1}, \ldots, x^{n}\right)\right\}$. Consider also the set $D(A)$ of linear operators on A, of the form

$$
L=\varphi^{i}\left(x^{k}\right) \partial \partial \partial x^{i} \quad(\text { sum on } i=1,2, \ldots, n) .
$$

These first-order differential operators are derivations on A (the Leibniz rule is satisfied). Now, given two such operators L_{1}, L_{2}, we construct the linear operator (Lie bracket of L_{1} and L_{2}), as follows:

$$
\begin{aligned}
& {\left[L_{1}, L_{2}\right]=L_{1} L_{2}-L_{2} L_{1} ;} \\
& {\left[L_{1}, L_{2}\right] f\left(x^{k}\right)=L_{1}\left(L_{2} f\left(x^{k}\right)\right)-L_{2}\left(L_{1} f\left(x^{k}\right)\right) .}
\end{aligned}
$$

It can be shown that $\left[L_{1}, L_{2}\right]$ is a first-order differential operator (a derivation), hence is a member of $D(A)$. (This is not the case with second-order operators like $L_{1} L_{2}$!) Moreover, the Lie bracket of operators satisfies all the properties of the Lie bracket of a general Lie algebra (such as antisymmetry and Jacobi identity). It follows that
the set $D(A)$ of derivations on $\Lambda^{0}\left(R^{n}\right)$ is a Lie algebra, with binary operation defined as the Lie bracket of operators.

Direct sum of subspaces

Let V be a vector space over a field K (where K may be R or C), of dimension $\operatorname{dim} V=n$. Let S_{1}, S_{2} be disjoint (i.e., $S_{1} \cap S_{2}=\{\mathbf{0}\}$) subspaces of V. We say that V is the direct sum of S_{1} and S_{2} if each vector of V can be uniquely represented as the sum of a vector of S_{1} and a vector of S_{2}. We write: $V=S_{1} \oplus S_{2}$. In terms of dimensions, $\operatorname{dim} V=\operatorname{dim} S_{1}+\operatorname{dim} S_{2}$. We similarly define the vector sum of three subspaces of V, each of which is disjoint from the direct sum of the other two (i.e., $S_{1} \cap\left(S_{2} \oplus S_{3}\right)=\{\mathbf{0}\}$, etc.).

Homomorphism of vector spaces

Let V, W be vector spaces over a field K. A mapping $\Phi: V \rightarrow W$ is said to be a linear mapping or homomorphism if it preserves linear operations, i.e.,

$$
\Phi(x+y)=\Phi(x)+\Phi(y), \quad \Phi(k x)=k \Phi(x), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in V \text { and } k \in K .
$$

A homomorphism which is also bijective (1-1) is called an isomorphism.
The set of vectors $\boldsymbol{x} \in V$ mapping under Φ into the zero of W is called the kernel of the homomorphism Φ :

$$
\operatorname{Ker} \Phi=\{\boldsymbol{x} \in V: \Phi(\boldsymbol{x})=\mathbf{0}\} .
$$

Note that $\Phi(\mathbf{0})=\mathbf{0}$, for any homomorphism (clearly, the two zeros refer to different vector spaces). Thus, in general, $\mathbf{0} \in \operatorname{Ker} \Phi$.

If $\operatorname{Ker} \Phi=\{\boldsymbol{0}\}$, then the homomorphism Φ is also an isomorphism of V onto a subspace of W. If, moreover, $\operatorname{dim} V=\operatorname{dim} W$, then the map $\Phi: V \rightarrow W$ is itself an isomorphism. In this case, $\operatorname{Im} \Phi=W$, where, in general, $\operatorname{Im} \Phi$ (image of the homomorphism) is the collection of images of all vectors of V under the map Φ.

The algebra of linear operators

Let V be a vector space over a field K. A linear operator \boldsymbol{A} on V is a homomorphism $A: V \rightarrow V$. Thus,

$$
\boldsymbol{A}(\boldsymbol{x}+\boldsymbol{y})=\boldsymbol{A}(\boldsymbol{x})+\boldsymbol{A}(\boldsymbol{y}), \quad \boldsymbol{A}(k x)=k \boldsymbol{A}(\boldsymbol{x}), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in V \text { and } k \in K .
$$

The sum $\boldsymbol{A}+\boldsymbol{B}$ and the scalar multiplication $k \boldsymbol{A}(k \in K)$ are linear operators defined by

$$
(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{x}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{x}, \quad(k \boldsymbol{A}) \boldsymbol{x}=k(\boldsymbol{A} \boldsymbol{x}) .
$$

Under these operations, the set $O p(V)$ of all linear operators on V is a vector space. The zero element of that space is a zero operator $\boldsymbol{0}$ such that $\boldsymbol{0 x}=\mathbf{0}, \forall \boldsymbol{x} \in V$.

Since \boldsymbol{A} and \boldsymbol{B} are mappings, their composition may be defined. This is regarded as their product $\boldsymbol{A B}$:

$$
(\boldsymbol{A B}) \boldsymbol{x} \equiv \boldsymbol{A}(\boldsymbol{B} \boldsymbol{x}), \quad \forall \boldsymbol{x} \in V .
$$

Note that $\boldsymbol{A B}$ is a linear operator on V, hence belongs to $O p(V)$. In general, operator products are non-commutative: $\boldsymbol{A} \boldsymbol{B} \neq \boldsymbol{B} \boldsymbol{A}$. However, they are associative and distributive over addition:

$$
(A B) C=A(B C) \equiv A B C \quad, \quad A(B+C)=A B+A C
$$

The identity operator \boldsymbol{E} is the mapping of $O p(V)$ which leaves every element of V fixed: $\boldsymbol{E} \boldsymbol{x}=\boldsymbol{x}$. Thus, $\boldsymbol{A} \boldsymbol{E}=\boldsymbol{E} \boldsymbol{A}=\boldsymbol{A}$. Operators of the form $k \boldsymbol{E}(k \in K)$, called scalar operators, are commutative with all operators. In fact, any operator commutative with every operator of $O p(V)$ is a scalar operator.

It follows from the above that the set $O p(V)$ of all linear operators on a given vector space V is an algebra. This algebra is associative but (generally) non-commutative.

An operator \boldsymbol{A} is said to be invertible if it represents a bijective (1-1) mapping, i.e., if it is an isomorphism of V onto itself. In this case, an inverse operator \boldsymbol{A}^{-1} exists such that $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{E}$. Practically this means that, if \boldsymbol{A} maps $\boldsymbol{x} \in V$ onto $\boldsymbol{y} \in V$, then \boldsymbol{A}^{-1} maps \boldsymbol{y} back onto \boldsymbol{x}. For an invertible operator $\boldsymbol{A}, \operatorname{Ker} \boldsymbol{A}=\{\mathbf{0}\}$ and $\operatorname{Im} \boldsymbol{A}=V$.

Matrix representation of a linear operator

Let \boldsymbol{A} be a linear operator on V. Let $\left\{\boldsymbol{e}_{i}\right\}(i=1, \ldots, n)$ be a basis of V. Let

$$
\boldsymbol{A} \boldsymbol{e}_{k}=\boldsymbol{e}_{i} A_{i k} \quad(\text { sum on } i)
$$

where the $A_{i k}$ are real or complex, depending on whether V is a vector space over R or C. The $n \times n$ matrix $A=\left[A_{i k}\right]$ is called the matrix of the operator \boldsymbol{A} in the basis $\left\{\boldsymbol{e}_{i}\right\}$.

Now, let $\boldsymbol{x}=x_{i} \boldsymbol{e}_{i}$ (sum on i) be a vector in V, and let $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$. If $\boldsymbol{y}=y_{i} \boldsymbol{e}_{i}$, then, by the linearity of \boldsymbol{A},

$$
y_{i}=A_{i k} x_{k} \quad(\operatorname{sun} \text { on } k) .
$$

In matrix form,

$$
[y]_{n \times 1}=[A]_{n \times n}[x]_{n \times 1} \text {. }
$$

Next, let $\boldsymbol{A}, \boldsymbol{B}$ be linear operators on V. Define their product $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ by

$$
\boldsymbol{C} \boldsymbol{x}=(\boldsymbol{A B}) \boldsymbol{x} \equiv \boldsymbol{A}(\boldsymbol{B} \boldsymbol{x}), \quad \boldsymbol{x} \in V .
$$

Then, for any basis $\left\{\boldsymbol{e}_{i}\right\}, \quad \boldsymbol{C} \boldsymbol{e}_{k}=\boldsymbol{A}\left(\boldsymbol{B} \boldsymbol{e}_{k}\right)=\boldsymbol{e}_{i} A_{i j} B_{j k} \equiv \boldsymbol{e}_{i} C_{i k} \Rightarrow$

$$
C_{i k}=A_{i j} B_{j k}
$$

or, in matrix form,

$$
C=A B .
$$

That is,
the matrix of the product of two operators is the product of the matrices of these operators, in any basis of V.

Consider now a change of basis defined by the transition matrix $T=\left[T_{i k}\right]$:

$$
\boldsymbol{e}_{k}^{\prime}=\boldsymbol{e}_{i} T_{i k}
$$

The inverse transformation is

$$
\boldsymbol{e}_{k}=\boldsymbol{e}_{i}{ }^{\prime}\left(T^{-1}\right)_{i k}
$$

Under this basis change, the matrix A of an operator \boldsymbol{A} transforms as

$$
A^{\prime}=T^{-1} A T \quad \text { (similarity transformation) } .
$$

Under basis transformations, the trace and the determinant of A remain unchanged:

$$
\operatorname{tr} A^{\prime}=\operatorname{tr} A, \quad \operatorname{det} A^{\prime}=\operatorname{det} A
$$

An operator \boldsymbol{A} is said to be nonsingular (singular) if $\operatorname{det} A \neq 0(\operatorname{det} A=0)$. Note that this is a basis-independent property. Any nonsingular operator is invertible, i.e., there exists an inverse operator $\boldsymbol{A}^{-1} \in O p(V)$ such that $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{E}$. Since an invertible operator represents a bijective mapping (i.e., both 1-1 and onto), it follows that $\operatorname{Ker} \boldsymbol{A}=\{\boldsymbol{0}\}$ and $\operatorname{Im} \boldsymbol{A}=V$. If \boldsymbol{A} is invertible (nonsingular), then, for any basis $\left\{\boldsymbol{e}_{i}\right\}$ $(i=1, \ldots, n)$ of V, the vectors $\left\{\boldsymbol{A} \boldsymbol{e}_{i}\right\}$ are linearly independent and hence also constitute a basis.

Invariant subspaces and eigenvectors

Let V be an n-dimensional vector space over a field K, and let \boldsymbol{A} be a linear operator on V. The subspace S of V is said to be invariant under \boldsymbol{A} if, for every vector \boldsymbol{x} of S, the vector $\boldsymbol{A x}$ again belongs to S. Symbolically, $A S \subseteq S$.

A vector $\boldsymbol{x} \neq \mathbf{0}$ is said to be an eigenvector of \boldsymbol{A} if it generates a one-dimensional invariant subspace of V under \boldsymbol{A}. This means that an element $\lambda \in K$ exists, such that

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

The element λ is called an eigenvalue of \boldsymbol{A}, to which eigenvalue the eigenvector \boldsymbol{x} belongs. Note that, trivially, the null vector $\mathbf{0}$ is an eigenvector of \boldsymbol{A}, belonging to any
eigenvalue λ. The set of all eigenvectors of \boldsymbol{A}, belonging to a given λ, is a subspace of V called the proper subspace belonging to λ.

It can be shown that the eigenvalues of \boldsymbol{A} are basis-independent quantities. Indeed, let $A=\left[A_{i k}\right]$ be the $(n \times n)$ matrix representation of \boldsymbol{A} in some basis $\left\{\boldsymbol{e}_{i}\right\}$ of V, and let $\boldsymbol{x}=x_{i} \boldsymbol{e}_{i}$ be an eigenvector belonging to λ. We denote by $X=\left[x_{i}\right]$ the column vector representing \boldsymbol{x} in that basis. The eigenvalue equation for \boldsymbol{A} is written, in matrix form,

$$
A_{i k} x_{k}=\lambda x_{i} \quad \text { or } \quad A X=\lambda X .
$$

This is written

$$
\left(A-\lambda 1_{n}\right) X=0 .
$$

This equation constitutes a linear homogeneous system for $X=\left[x_{i}\right]$, which has a nontrivial solution iff

$$
\operatorname{det}\left(A-\lambda 1_{n}\right)=0 .
$$

This polynomial equation determines the eigenvalues $\lambda_{i}(i=1, \ldots, n)$ (not necessarily all different from each-other) of \boldsymbol{A}. Since the determinant of the matrix representation of an operator [in particular, of the operator $(\boldsymbol{A}-\lambda \boldsymbol{E})$ for any given λ] is a basisindependent quantity, it follows that, if the above equation is satisfied for a certain λ in a certain basis (where \boldsymbol{A} is represented by the matrix A), it will also be satisfied for the same λ in any other basis (where \boldsymbol{A} is represented by another matrix, say, A^{\prime}). We conclude that the eigenvalues of an operator are a property of the operator itself and do not depend on the choice of basis of V.

If we can find n linearly independent eigenvectors $\left\{\boldsymbol{x}_{i}\right\}$ of \boldsymbol{A}, belonging to the corresponding eigenvalues λ_{i}, we can use these vectors to define a basis for V. In this basis, the matrix representation of \boldsymbol{A} has a particularly simple diagonal form:

$$
A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using this expression, and the fact that the quantities $\operatorname{tr} A, \operatorname{det} A$ and λ_{i} are invariant under basis transformations, we conclude that, in any basis of V,

$$
\operatorname{tr} A=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}, \quad \operatorname{det} A=\lambda_{1} \lambda_{2} \ldots \lambda_{n} .
$$

We note, in particular, that all eigenvalues of an invertible (nonsingular) operator are nonzero. Indeed, if even one is zero, then $\operatorname{det} A=0$ and \boldsymbol{A} is singular.

An operator \boldsymbol{A} is called nilpotent if $\boldsymbol{A}^{m}=\boldsymbol{0}$ for some natural number $m>1$. The smallest such value of m is called the degree of nilpotency, and it cannot exceed n. All eigenvalues of a nilpotent operator are zero. Thus, such an operator is singular (noninvertible).

An operator \boldsymbol{A} is called idempotent (or projection operator) if $\boldsymbol{A}^{2}=\boldsymbol{A}$. It follows that $\boldsymbol{A}^{m}=\boldsymbol{A}$, for any natural number m. The eigenvalues of an idempotent operator can take the values 0 or 1 .

BASIC MATRIX PROPERTIES

$$
\begin{aligned}
& (A+B)^{T}=A^{T}+B^{T} ; \quad(A B)^{T}=B^{T} A^{T} \\
& (A+B)^{\dagger}=A^{\dagger}+B^{\dagger} ; \quad(A B)^{\dagger}=B^{\dagger} A^{\dagger} \quad \text { where } M^{\dagger} \equiv\left(M^{T}\right)^{*}=\left(M^{*}\right)^{T} \\
& (k A)^{T}=k A^{T} ; \quad(k A)^{\dagger}=k^{*} A^{\dagger} \quad(k \in C) \\
& (A B)^{-1}=B^{-1} A^{-1} ; \quad\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} ; \quad\left(A^{\dagger}\right)^{-1}=\left(A^{-1}\right)^{\dagger} \\
& {[A, B]^{T}=\left[B^{T}, A^{T}\right] ; \quad[A, B]^{\dagger}=\left[B^{\dagger}, A^{\dagger}\right]} \\
& A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adjA\quad (\operatorname {det}A\neq 0)} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]} \\
& \operatorname{tr}(\kappa A+\lambda B)=\kappa \operatorname{tr} A+\lambda \operatorname{tr} B \\
& \operatorname{tr} A^{T}=\operatorname{tr} A ; \quad \operatorname{tr} A^{\dagger}=(\operatorname{tr} A)^{*} \\
& \operatorname{tr}(A B)=\operatorname{tr}(B A), \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B), \quad e t c . \\
& \operatorname{tr}[A, B]=0 \\
& \operatorname{det} A^{T}=\operatorname{det} A ; \quad \operatorname{det} A^{\dagger}=(\operatorname{det} A)^{*} \\
& \operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det} A \cdot \operatorname{det} B \\
& \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A \\
& \operatorname{det}(c A)=c^{n} \operatorname{det} A(c \in C, A \in g l(n, C)) \\
& \text { If } \operatorname{any} \operatorname{row} \text { or } \operatorname{column} \text { of } A \text { is multiplied by } c, \text { then so is det } A .
\end{aligned}
$$

$[A, B]=-[B, A] \equiv A B-B A$
$[A, B+C]=[A, B]+[A, C] ; \quad[A+B, C]=[A, C]+[B, C]$
$[A, B C]=[A, B] C+B[A, C] ; \quad[A B, C]=A[B, C]+[A, C] B$
$[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$
$[[A, B], C]+[[B, C], A]+[[C, A], B]=0$

Let $A=A(t)=\left[a_{i j}(t)\right], B=B(t)=\left[b_{i j}(t)\right]$, be $(n \times n)$ matrices. The derivative of A (similarly, of B) is the $(n \times n)$ matrix $d A / d t$, with elements

$$
\left(\frac{d A}{d t}\right)_{i j}=\frac{d}{d t} a_{i j}(t)
$$

The integral of A (similarly, of B) is the $(n \times n)$ matrix defined by $\left(\int A(t) d t\right)_{i j}=\int a_{i j}(t) d t$.

$$
\begin{aligned}
& \frac{d}{d t}(A \pm B)=\frac{d A}{d t} \pm \frac{d B}{d t} ; \quad \frac{d}{d t}(A B)=\frac{d A}{d t} B+A \frac{d B}{d t} \\
& \frac{d}{d t}[A, B]=\left[\frac{d A}{d t}, B\right]+\left[A, \frac{d B}{d t}\right] \\
& \frac{d}{d t}\left(A^{-1}\right)=-A^{-1} \frac{d A}{d t} A^{-1} \Rightarrow d\left(A^{-1}\right)=-A^{-1}(d A) A^{-1} \\
& \operatorname{tr}\left(\frac{d A}{d t}\right)=\frac{d}{d t}(\operatorname{tr} A)
\end{aligned}
$$

Let $A=A(x, y)$. Call $\partial A / \partial x \equiv \partial_{x} A \equiv A_{x}$, etc.:

$$
\partial_{x}\left(A^{-1} A_{y}\right)-\partial_{y}\left(A^{-1} A_{x}\right)+\left[A^{-1} A_{x}, A^{-1} A_{y}\right]=0
$$

$$
\partial_{x}\left(A_{y} A^{-1}\right)-\partial_{y}\left(A_{x} A^{-1}\right)-\left[A_{x} A^{-1}, A_{y} A^{-1}\right]=0
$$

$$
A\left(A^{-1} A_{x}\right)_{y} A^{-1}=\left(A_{y} A^{-1}\right)_{x} \Leftrightarrow A^{-1}\left(A_{y} A^{-1}\right)_{x} A=\left(A^{-1} A_{x}\right)_{y}
$$

$$
e^{A} \equiv \exp A=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=1+A+\frac{A^{2}}{2}+\cdots
$$

$$
B e^{A} B^{-1}=e^{B A B^{-1}}
$$

$$
\left(e^{A}\right)^{*}=e^{A^{*}} ; \quad\left(e^{A}\right)^{T}=e^{A^{T}} ; \quad\left(e^{A}\right)^{\dagger}=e^{A^{\dagger}} ; \quad\left(e^{A}\right)^{-1}=e^{-A}
$$

$$
e^{A} e^{B}=e^{B} e^{A}=e^{A+B} \text { when }[A, B]=0
$$

In general, $e^{A} e^{B}=e^{C}$ where

$$
C=A+B+\frac{1}{2}[A, B]+\frac{1}{12}([A,[A, B]]+[B,[B, A]])+\cdots
$$

By definition, $\log B=A \Leftrightarrow B=e^{A}$.

$$
\begin{aligned}
& \operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr} A} \Leftrightarrow \operatorname{det} B=e^{\operatorname{tr}(\log B)} \Leftrightarrow \operatorname{tr}(\log B)=\log (\operatorname{det} B) \\
& \operatorname{det}(1+\delta A) \simeq 1+\operatorname{tr} \delta A, \text { for infinitesimal } \delta A \\
& \operatorname{tr}\left(A^{-1} A_{x}\right)=\operatorname{tr}\left(A_{x} A^{-1}\right)=\operatorname{tr}(\log A)_{x}=[\operatorname{tr}(\log A)]_{x}=[\log (\operatorname{det} A)]_{x}
\end{aligned}
$$

DETERMINANTS

Consider the 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The determinant of A is defined by

$$
\operatorname{det} A \equiv\left|\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right|=a d-b c .
$$

Next, consider the 3×3 matrix

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

To evaluate its determinant, we work as follows: First, we draw a 3×3 "chessboard" consisting of + (plus) and - (minus) signs, as shown below. Careful: At the top left we always put a plus sign!

$$
\left|\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right|
$$

We may now develop the determinant of A with respect to any row or any column; the result will always be the same. Let us assume, e.g., that we choose to develop with respect to the first row. Its first element is a. At the position where this element is located (top left) the "chessboard" has a + sign; we thus leave the sign of a unchanged. Imagine now that we cross off both the row and the column to which this element belongs (first row, first column in this case). What is left over is a lower-order, 2×2 matrix with determinant

$$
\left|\begin{array}{ll}
e & f \\
h & k
\end{array}\right| .
$$

We multiply this determinant by a and we save the result.
The second element in the first row is b. At its location, the chessboard has a - sign; we thus write $-b$. We "cross off" the row and the column to which b belongs (first row, second column) and we get the 2×2 determinant

$$
\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|
$$

We multiply this by $-b$ and we save this result, too.
The third element in the first row is c. At its location the chessboard has a+sign, thus we leave the sign of c unchanged. Crossing off the first row and the third column, where c is located, we find the determinant

$$
\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| .
$$

We multiply this by c and again we save this result in the "memory".
Summing the contents of the memory, we finally find the determinant of A :

$$
\operatorname{det} A \equiv\left|\begin{array}{lll}
a & b & c \tag{2}\\
d & e & f \\
g & h & k
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & k
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

Of course, to complete the job we must evaluate the minor determinants according to Eq. (1), which is an easy task.

Exercise: Evaluate again the determinant of A, this time by developing with respect to the second column, and show that

$$
\operatorname{det} A \equiv\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right|=-b\left|\begin{array}{cc}
d & f \\
g & k
\end{array}\right|+e\left|\begin{array}{ll}
a & c \\
g & k
\end{array}\right|-h\left|\begin{array}{cc}
a & c \\
d & f
\end{array}\right| .
$$

Verify that your result is the same as before.
Exercise: With the aid of the chessboard

$$
\left|\begin{array}{ll}
+ & - \\
- & +
\end{array}\right|
$$

(the + sign always on the top left!) and by following an analogous procedure, verify formula (1) for a 2×2 determinant. (By definition, the determinant of a 1×1 matrix [a] is equal to the single element of the matrix.)

For a 4×4 matrix, the chessboard is of the form (with a + sign always on the top left)

$$
\left|\begin{array}{llll}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & +
\end{array}\right| .
$$

The development of a 4×4 determinant leads to 3×3 determinants that are developed as shown previously. As is obvious, the problem becomes harder as the dimension of the determinant increases!

Exercise: Show that

$$
\left|\begin{array}{ccc}
1 & -1 & 1 \\
2 & 0 & -2 \\
-1 & 1 & -1
\end{array}\right|=0
$$

by developing with respect to a row and, again, with respect to a column. Choose the row and column that will make your calculations easier. (Obviously, as a general rule, it is in our best interest to choose a row or a column with as many zeros as possible!)

Properties of determinants

Let A be an $n \times n$ matrix and let $\operatorname{det} A$ be the determinant of A. The following statements are true:

1. If all elements of a row or a column of A are zero, then $\operatorname{det} A=0$.
2. If every element of a row or a column of A is multiplied by λ, then $\operatorname{det} A$ is multiplied by λ as well.
3. If all elements of A are multiplied by λ, then $\operatorname{det} A$ is multiplied by λ^{n} (where n is the dimension of A). That is,

$$
\operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det} A
$$

4. If any two rows or any two columns of A are interchanged, the value of $\operatorname{det} A$ is multiplied by (-1).
5. If two rows or two columns of A are identical, then $\operatorname{det} A=0$. The same is true, more generally, if two rows or two columns are multiples of each other.
6. The value of $\operatorname{det} A$ remains the same if the rows and columns of A are interchanged. That is,

$$
\operatorname{det}\left(A^{T}\right)=\operatorname{det} A,
$$

where A^{T} is the transpose of $A:\left(A^{T}\right)_{i j}=A_{j i}$.
7. If A and B are $n \times n$ matrices,

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det} A \cdot \operatorname{det} B .
$$

Also,

$$
\operatorname{det}\left(A^{k}\right)=(\operatorname{det} A)^{k}, \quad k=1,2,3, \ldots
$$

8. If A^{-1} is the inverse of A (see below),

$$
\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A .
$$

9. The determinant of a diagonal (or, more generally, a triangular) matrix A is equal to the product of the elements of the diagonal of A.
10. The value of $\operatorname{det} A$ is unchanged if to any row or any column of A we add an arbitrary multiple of any other row or column, respectively.

Evaluation of a matrix inverse

Consider a 3×3 matrix A :

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \equiv\left[a_{i j}\right] \quad(i, j=1,2,3) .
$$

Let $a_{i j}$ be an arbitrary element of A (the one that belongs to the i-th row and the j-th column). By "crossing off" the row and the column to which $a_{i j}$ belongs, we obtain a 2×2 matrix. We call $D_{i j}$ the determinant of this latter matrix.

We now construct a 3×3 matrix M, as follows: We replace every element $a_{i j}$ of the given matrix A by the corresponding quantity

$$
(-1)^{i+j} D_{i j}
$$

That is, in place of $a_{i j}$ we put the minor determinant $D_{i j}$ multiplied by the sign that exists on the chessboard at the position of $a_{i j}$. We thus get

$$
M=\left[\begin{array}{ccc}
D_{11} & -D_{12} & D_{13} \\
-D_{21} & D_{22} & -D_{23} \\
D_{31} & -D_{32} & D_{33}
\end{array}\right] .
$$

Finally, we take the transpose M^{T} of M, which is called the adjoint of the matrix A :

$$
\operatorname{adj} A=M^{T}=\left[\begin{array}{ccc}
D_{11} & -D_{21} & D_{31} \\
-D_{12} & D_{22} & -D_{32} \\
D_{13} & -D_{23} & D_{33}
\end{array}\right] .
$$

The inverse A^{-1} of A, satisfying $A A^{-1}=A^{-1} A=I$ (where I is the 3×3 unit matrix) is given by

$$
\begin{equation*}
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A \tag{3}
\end{equation*}
$$

Obviously, a necessary condition in order that the inverse of A may exist (i.e., in order that the matrix A be invertible) is that $\operatorname{det} A \neq 0$. The process described above, leading to relation (3), is generally valid for any $n \times n$ matrix ($n=2,3,4, \ldots$).

Exercise: For the 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

show that

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Verify that

$$
A A^{-1}=A^{-1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Exercise: By using (3), show that

$$
\left[\begin{array}{ccc}
0 & 1 & -3 \\
-1 & -1 & 3 \\
0 & 1 & -1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
-1 / 2 & 0 & 3 / 2 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

Verify that your result satisfies the relation $A A^{-1}=A^{-1} A=I$.

Solution of linear systems

The method we will describe applies to any linear system of equations; i.e., system of n linear equations with n unknowns ($n=2,3,4, \ldots$). For simplicity, we consider a system of two equations:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2} \tag{4}
\end{align*}
$$

In matrix form, this is written

$$
A \mathbf{x}=\mathbf{b} \Leftrightarrow\left[\begin{array}{ll}
a_{11} & a_{12} \tag{5}\\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

where A is the matrix of the coefficients of the unknowns, \mathbf{x} is the column vector of the unknowns and \mathbf{b} is the column vector of the constants. In the case where $\mathbf{b}=0 \Leftrightarrow$ $b_{1}=b_{2}=0$, the given system is said to be homogeneous linear.

We note the following:

1. If $\operatorname{det} A \neq 0$, the matrix A is invertible and the system has a unique solution that is obtained as follows:

$$
\begin{gather*}
A \mathbf{x}=\mathbf{b} \Rightarrow A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b} \Rightarrow\left(A^{-1} A\right) \mathbf{x}=A^{-1} \mathbf{b} \Rightarrow \\
\mathbf{x}=A^{-1} \mathbf{b} \tag{6}
\end{gather*}
$$

In the case where $\mathbf{b}=0$ (homogeneous system), the only solution of the system is the trivial one: $\mathbf{x}=0 \Leftrightarrow x_{1}=x_{2}=0$.
2. If $\operatorname{det} A=0$ (the matrix A is non-invertible), the system either has no solution (is inconsistent) or has an infinite number of solutions (see below).

The difficulty in solving (6) lies in the necessity of determining the inverse matrix. Let us now see an alternative expression for the solution of the system, based on Cramer's method (or method of determinants). As before, we call A the matrix of the coefficients of the unknowns in system (4):

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] .
$$

Furthermore, we call A_{1} the matrix obtained from A by replacement of its first column (i.e., the column of the coefficients a_{11} and a_{21} of x_{1}) with the column of the constant terms b_{1} and b_{2}. Similarly, we call A_{2} the matrix obtained from A by replacing its sec-
ond column (the one with the coefficients of x_{2}) with the column of the constants. Analytically,

$$
A_{1}=\left[\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right] .
$$

Then, the solution of system (4) - if it exists - is written

$$
\begin{equation*}
x_{1}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}, \quad x_{2}=\frac{\operatorname{det} A_{2}}{\operatorname{det} A} \tag{7}
\end{equation*}
$$

The determinants of the matrices A_{1} and A_{2} are called Cramer's determinants.
Exercise: Write the analytical expression of the general solution (7), for any given $a_{i j}$ and b_{i}.

Exercise: Consider the system

$$
\begin{gathered}
a x+b y=c \\
e x+f y=g
\end{gathered}
$$

(where we have put $x_{1}=x, x_{2}=y$). Show that its solution is

$$
x=\frac{c f-b g}{a f-b e}, \quad y=\frac{a g-c e}{a f-b e} .
$$

Assume now that we "rewrite" the system by inverting the order of the two equations:

$$
\begin{gathered}
e x+f y=g \\
a x+b y=c
\end{gathered}
$$

Must we expect a different solution? How is your answer related to the properties of determinants?

More generally, for a linear system of n equations with n unknowns,

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \tag{8}\\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{align*}
$$

the solution is written

$$
\begin{equation*}
x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}, \quad i=1,2, \cdots, n \tag{9}
\end{equation*}
$$

where A is the $n \times n$ matrix of the coefficients $a_{j k}$ of the unknowns, while A_{i} is the matrix obtained from A by replacing the column of the coefficients of x_{i} with the column of the constants b_{k}.

We note the following:

1. If $\operatorname{det} A \neq 0$ (i.e., if the matrix A is invertible) a unique solution (9) of the system (8) exists.
2. If $\operatorname{det} A=0$ (the matrix A is not invertible) and if even one of the Cramer determinants $\operatorname{det} A_{k}$ in (9) is non-vanishing, the system (8) has no solution (is inconsistent), as follows from (9).
3. If $\operatorname{det} A=0$ and if all Cramer determinants $\operatorname{det} A_{k}(k=1,2, \ldots, n)$ are zero, the system (8) has an infinite number of solutions.

Particularly significant for applications is the case of a homogeneous system, in which all constant terms $b_{k}(k=1,2, \ldots, n)$ are zero:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \tag{10}\\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=0
\end{align*}
$$

In this case all Cramer determinants $\operatorname{det} A_{k}(k=1,2, \ldots, n)$ are zero (explain this!). The following possibilities thus exist:

1. If the determinant of the matrix A of the coefficients of the unknowns is non-zero $(\operatorname{det} A \neq 0)$, the only possible solution of the system (10) is the trivial solution $x_{1}=x_{2}=\ldots=x_{n}=0$, as follows from (9).
2. If $\operatorname{det} A=0$, the system (10) admits an infinite number of nontrivial solutions.

Exercise: Show the following: (a) A homogeneous linear system always has a solution, i.e., is never inconsistent. (b) For such a system to possess a nontrivial solution (different, that is, from the zero solution) the determinant of the matrix of coefficients of the unknowns must be zero.

Example: Consider the homogeneous system

$$
\begin{gathered}
2 x-y=0 \\
-6 x+3 y=0
\end{gathered}
$$

(where we have put $x_{1}=x, x_{2}=y$). The determinant of the coefficients of the unknowns is

$$
\left|\begin{array}{cc}
2 & -1 \\
-6 & 3
\end{array}\right|=6-6=0
$$

This occurs because the second line is a multiple (by -3) of the first. And this, in turn, reflects the fact that the equations in the system are not independent of each other (the second one is just a multiple of the first, thus does not provide any useful new information). The only thing we can say is that $y=2 x$, with arbitrary x. This means that the system has an infinite number of solutions, one for each chosen value of x.

Application to the vector product

Consider the vectors

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{u}_{x}+A_{y} \hat{u}_{y}+A_{z} \hat{u}_{z} \equiv\left(A_{x}, A_{y}, A_{z}\right), \\
& \vec{B}=B_{x} \hat{u}_{x}+B_{y} \hat{u}_{y}+B_{z} \hat{u}_{z} \equiv\left(B_{x}, B_{y}, B_{z}\right),
\end{aligned}
$$

where $\hat{u}_{x}, \hat{u}_{y}, \hat{u}_{z}$ are the unit vectors on the axes x, y, z, respectively, of a standard Cartesian system. As we know from vector analysis, the vector product (or "cross product") of \vec{A} and \vec{B} can be written in determinant form, as follows:

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| .
$$

Moreover, the necessary condition in order that \vec{A} and \vec{B} be parallel to each other is $\vec{A} \times \vec{B}=0$.

Example: Find the values of α and β for which the vectors $\vec{A} \equiv(1, \alpha, 3)$ and $\vec{B} \equiv(-2,-4, \beta)$ are parallel to each other.

Solution: We must have $\vec{A} \times \vec{B}=0 \Rightarrow$

$$
\left|\begin{array}{ccc}
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} \\
1 & \alpha & 3 \\
-2 & -4 & \beta
\end{array}\right|=0 \Rightarrow \hat{u}_{x}(\alpha \beta+12)-\hat{u}_{y}(\beta+6)+\hat{u}_{z}(-4+2 \alpha)=0
$$

(where the determinant has been developed with respect to the first row, i.e., the row of the unit vectors). Given that the unit vectors constitute a linearly independent set, the only way the above equality may be satisfied is by setting all three coefficients of
the corresponding unit vectors equal to zero. We thus obtain a system of three equations with two unknowns:

$$
2 \alpha-4=0, \quad \beta+6=0, \quad \alpha \beta+12=0 .
$$

The first two equations yield $\alpha=2, \beta=-6$. The third equation simply verifies this result. That is, the third equation is compatible with the other two but furnishes no additional information, since this last equation is not independent of the preceding ones but follows directly from them. Note that, with the values of α and β found above, the third row of the determinant that represents $\vec{A} \times \vec{B}$ becomes a multiple (by -2) of the second row, so that the determinant automatically vanishes.

Exercise: Show that no values of α and β exist for which the vectors $\vec{A} \equiv(1, \alpha, 3)$ and $\vec{B} \equiv(-2, \beta, 6)$ are parallel to each other.

Exercise: Show that there is an infinite number of values of α and β for which the vectors $\vec{A} \equiv(1, \alpha, 3)$ and $\vec{B} \equiv(-2, \beta,-6)$ are parallel to each other. What relation must exist between α and β ?

THE EXPONENTIAL FUNCTION

Problem: Let a be a positive real number. We know how to define $a^{m / n}$ with m, n integers. But, how do we define a^{x} for a general, real x that may be an irrational number, i.e., cannot be written as a quotient of integers m, n ?

Well, if it is difficult to define a function directly, we may try defining the inverse function (assuming it exists). To this end, we consider the function

$$
\begin{equation*}
\ln x=\int_{1}^{x} \frac{1}{t} d t, x>0 \tag{1}
\end{equation*}
$$

Then,

$$
(\ln x)^{\prime}=1 / x
$$

where the prime denotes differentiation with respect to x. Note in particular that $\ln 1=0$. It can also be shown [1] that, for $a, b \in R^{+}, \ln (a b)=\ln a+\ln b, \ln (a / b)=\ln a-\ln b$. Thus, $\ln x$ is a logarithmic function in the usual sense.

The function $\ln x$ is increasing for $x>0$ (indeed, its derivative $1 / x$ is positive for $x>0$). Since $\ln x$ is monotone, this function is invertible. Call exp x the inverse of $\ln x$. That is,

$$
y=\exp x \Leftrightarrow x=\ln y .
$$

This means that

$$
\exp (\ln y)=y \text { and } \ln (\exp x)=x
$$

It can be shown [1] that $\exp x$ is an exponential function in the usual sense; i.e., it has the form $\exp x=e^{x}$ for some $e>0$, to be determined. We write

$$
y=e^{x} \Leftrightarrow x=\ln y \quad\left(x \in R, y \in R^{+}\right)
$$

so that

$$
e^{\ln y}=y \text { and } \ln \left(e^{x}\right)=x
$$

Note in particular that, for $x=0$ we have $e^{0}=1$ and $\ln 1=0$, as required. Also, for $x=1$ we have that $\ln \left(e^{1}\right)=1$ and, by the definition (1) of the logarithmic function,

$$
\ln e=\int_{1}^{e} \frac{1}{t} d t=1
$$

We will now show that the function $e^{x}(x \in R)$ can be expressed as the limit of a certain infinite sequence:

$$
\begin{equation*}
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \quad(x \in R) \tag{2}
\end{equation*}
$$

Then, for any $a \in R^{+}$we will have that $a=e^{\ln a} \Rightarrow$

$$
a^{x}=e^{x \ln a}=\lim _{n \rightarrow \infty}\left(1+\frac{x \ln a}{n}\right)^{n} .
$$

Proposition 1: Given a function $u=f(x)$ that assumes positive values for all x in its domain of definition, the derivative of $\ln [f(x)]$ is given by

$$
\begin{equation*}
\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)} \tag{3}
\end{equation*}
$$

Proof: $\frac{d}{d x} \ln f(x)=\frac{d(\ln u)}{d u} \frac{d u}{d x}=\frac{1}{u} \frac{d u}{d x}=\frac{f^{\prime}(x)}{f(x)}$.
Proposition 2: The derivative of e^{x} is given by $\left(e^{x}\right)^{\prime}=e^{x}$.
Proof: $\ln \left(e^{x}\right)=x \Rightarrow\left[\ln \left(e^{x}\right)\right]^{\prime}=1 \Rightarrow\left(e^{x}\right)^{\prime} / e^{x}=1 \Rightarrow\left(e^{x}\right)^{\prime}=e^{x}$, where we have used relation (3) for the derivative of $\ln \left(e^{x}\right)$.

Corollary: $\quad[\exp f(x)]^{\prime}=f^{\prime}(x) \exp f(x)$.
Now, consider the function $g(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}(x \in R)$. We have:

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{n \rightarrow \infty}\left[n\left(1+\frac{x}{n}\right)^{n-1} \frac{1}{n}\right]=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n-1}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{x}{n}\right)^{n}\left(1+\frac{x}{n}\right)^{-1}\right] \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \cdot \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{-1}=g(x) \cdot 1=g(x) .
\end{aligned}
$$

Moreover, $g(0)=1$. Hence the function $y=g(x)$ satisfies the differential equation $y^{\prime}=y$ with initial condition $y=1$ for $x=0$. On the other hand, the function $y=e^{x}$ satisfies the same differential equation with the same initial condition. Since the solution of this differential equation with given initial condition is unique, we conclude that the functions $g(x)$ and e^{x} must be identical. Therefore relation (2) must be true.

We note that, for $x=1$, Eq. (2) gives

$$
\begin{equation*}
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \quad(\simeq 2.72) \tag{4}
\end{equation*}
$$

This is the formula by which the number e is usually defined.

In the same spirit we may show that another possible representation of the exponential function e^{x} is in the form of a power (Maclaurin) series:

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad(x \in R) \tag{5}
\end{equation*}
$$

Indeed, notice that the x-derivative of this series is the series itself, as well as that the value of the series is equal to 1 for $x=0$. Although expressions (2) and (5) do not look alike, they represent the same function, $\exp x!$ (Note: Two functions of x are considered identical if they have the same domain D of definition and assume equal values for all $x \in D$.)

We defined $a^{x}(a>0, x \in R)$ in a rather indirect way by first defining the function e^{x} as the inverse of the function $\ln x$ and then by writing $a^{x}=e^{x \ln a}$. There is, however, a more direct definition of a^{x}. Let $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ be any infinite sequence of rational numbers x_{n} such that $\lim _{n \rightarrow \infty} x_{n}=x \in R$. [Question: Can a sequence of rational numbers have an irrational limit? Yes! See, e.g., the expression (4) for e, where the latter number is irrational (see, e.g., [2]).] We now define a^{x} as follows:

$$
a^{x}=\lim _{n \rightarrow \infty} a^{x_{n}} \quad(a>0, x \in R) .
$$

Since x_{n} is a rational number for all n, raising a to a rational number should not be a problem! Note that the value of a^{x} does not depend on the specific choice of the sequence x_{n}, as long as the limit of this sequence is x.

References

[1] D. D. Berkey, Calculus, $2^{\text {nd }}$ Edition (Saunders College, 1988), Chap. 8.
[2] https://mindyourdecisions.com/blog/2015/06/18/lets-prove-e-2-718-is-irrational-3-methods/

[^0]: ${ }^{1}$ The symbol (\cdot) will often be omitted in the sequel.

