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Certain aspects of the concept of the electromdtivee (emf) of a “circuit”, as
this concept was defined in recent publications,discussed. In particular, the
independence of the emf from the conductivity @f tircuit is explained and the
role of the applied force in motional emf is analgz

1. Definition and analytical expression of the emf

In recent articles [1,2] we studied the concepthafelectromotive forcdemf) of a
“circuit” and examined the extent to which the empresents work per unit charge
for a complete tour around the circuit. This edigcet note contains some additional
remarks regarding the emf; it may be regarded aldendum to the aforementioned
publications.

We consider a closed pdth(or loop) in a region of space where an electromag-
netic (e/m) field exists (Fig. 1). Generally spewakithis loop will be called &cir-
cuit” if a charge flow can be sustained on it. 8hkitrarily assign a positive direction

of traversing the loof© and we consider an elemett of C oriented in the positive
direction.

Figure 1

Letq be atest chargewhich at timet is located at the position afi , and letF

be the force o at this time. The forcé& is exerted by the e/m field itself as well as,
possibly, by additiona¢nergy sourcegsuch as batteries or some external mechanical
action) that may contribute to the generation ame$grvation of a current around the

loop C. Theforce per unit charget the position ofdl, at timet, is f = F/q. We

note thatf is independent o since the e/m force on a charge is proportion&héo
charge.

Since, in general, neither the shape nositbe ofC is required to remain fixed,
and since the loop may also be in motion relativart external observer, we will use



C.J. PAPACHRISTOU & A. N. MAGOULAS

the notationC(t) to indicate the state, at timeof a circuit of generally variable shape,
size or position in space.
Theelectromotive forcdemf) of the circuitC at timet is defined as the line inte-

gral of f alongC, taken in thepositivesense of:

W) =¢ f(rt)-di (1)

c)

whereF is the position vector ofll relative to the origin of our coordinate system.
Obviously, the sign of the emf is dependent uponabwice of the positive direction
of circulation ofC. It should be noted carefully that the integrgl i€levaluatedat a
given time t Thus, the forcef must be measuresimultaneouslyat timet, at all
points ofC.

The forcef can be attributed to two factors) the interaction ofj with the ex-

isting e/m field itself; andh) the action org by any additional energy sources that
may be necessary in order to maintain a steady dfogharge orC. (This latter inter-
action also ielectromagnetian nature, even when it originates from some ewxter
mechanical action.) We write

—h|
I
.l
+
—h|

em app (2)

where f,, is the force due to the e/m field arfg,p is theapplied forcedue to an ad-

ditional energy source.

Two familiar cases of emf-driven circuits wdean additional applied force is re-
quired are the following:

1. In a battery-resistor circuit [1-3] an &pg force is necessary in order to carry a
(conventionallypositivg mobile charge from the negative to the positieéef the
battery,throughthe source. This force is provided by the batitseif.

2. In the case of a closed metal wiranoving in a time-independent magnetic
field [2-5] the current o€ is sustained for as long as the motioiCafontinues. This,
in turn, necessitates the action of an externaefanC (say, by our hand), as will be
explained in Sec. 4.

Now, by (1) and (2),

€0 =Py Ton 0T+ 9 T T = Eom() + Eapol) ©

We would like to find an analytical expression &r{t). So, Iet(E(f,t) , E(f,t)) be

the e/m field in the region of space where the I is lying. Letq be a test charge
located, at time, at the position ofil and leto,,, be the total velocity off in space,
relative to some inertial frame of reference. Weenr

Uit =0+ U,
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where o, is the velocity ofj alongC (i.e., in a direction parallel tdl) while & is the

velocity of di itself due to a possible motion in space, or msteformation over
time, of the loopC(t) as a whole. The total e/m force @is

lfem: (:I[E_i_(l_jtot>< B)] )

so that
N
fem:E:E+[(u+ung] .
Hence,
Eem(t) = C(t)E-dI+<ﬁC(t)(uxB)-d|+<ﬁc(t)(uc><B)-dI.

Given thato, is parallel todl, the last integral on the right vanishes. Thuslfy,
Eem(t) = cj;c(t) E(F,t)-di + qSC(t)[u(r,t)xB(r,t)]-dl = Eo(t) + En(D) (4)

We note that, in our definition of the entifetforce per unit charge was defined as
f =F /q, assuming that a replica of a test chardge placed at every point of the cir-
cuit and that the forceF on all test charges are measus@dultaneoushat timet.
Now, in the case of a conducting loGp(say, a metal wire) it is reasonable to identify
g with one of the (conventionally positive) mobiled electrons. This particular iden-
tification, although logical for practical purposés nevertheless not necessary, given
that the forcef is eventually independent gf Thus, in generaly may just be con-

sidered as &ypotheticaltest charge that is not necessarily identifiechvah actual
mobile charge.

2. Independence from conductivity

Let C(t) be a conducting loop (say, a metal wire) insidgvan e/m field. The emf of
C at timet is given by (3) and (4). We note from (4) that paet E.m Of the total emis

independent of the velocity, of qalongC (whereg may be conveniently — although
not necessarily — assumed to be a mobile freeretecif the conductor, convention-
ally considered aspositivecharge). We may physically interpret this as foo

The e/m field creates an efif, that tends to generate a charge flonGriHow-
ever, this emf does not by itself determieav fastthe mobile charges move aloGg
Presumably, this will depend on physical propertieshe pathC that are associated

with its conductivity (For example, in a battery-resistance circuitpbeential differ-
ence at the ends of the resistance — thus the wéltie electric field inside the con-

ductor — does not by itself determine the velocityof the mobile charges along the
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circuit, since this velocity is related to the @amnt generated by the source, which cur-
rent depends, in turn, on the resistance of tlwaiitjraccording to Ohm’s law.)

Now, the role of the pafy, of the total emf (3) is tanaintainthe charge flow on
C(t) that is generated bfen. We thus anticipate thakp, will also be independent of

U, (this is, e.g., the case in our previous examplere&,p, is equal to the voltage of
the battery [1-3]). In conclusion,

the total em&(t) of a conducting loop @ is not dependent upon the velocity
of motion of the mobile charges g along the loop.

This leads us to a further conclusion:

The total em€(t) of a conducting loop @) inside an e/m field is not depend-
ent upon the conductivity of the loop.

This can be justified by noting that, by its detiom, the force (2) does not include
contributions fromresistive forceghat oppose a charge flow @ it only contains
e/m interactions that may contribute to the gemamadnd preservation of a current in
the circuit. Note, however, that tiarrentitself doesdepend on theonductivitys of

C, according to Ohm's lawd = o f ) [3].

Alternatively, as argued above, the emf dussdepend orj,. Now, in a steady-
state situation under given electrodynamic conaéti¢thus, for a giverf ) this veloc-
ity is a linear function of themobility x of g, according to the empirical relation
O, = U f (by which Ohm’s law is deduced). On the other hahd conductivity ofC

is given bys=gnu. Thedensity nof mobile charges, as well as the value,ofannot
affect the value of the emf since that quantitgie§ined per unit charge. We thus con-

clude that the emf of cannot depend om, as well as om andg; hence is inde-
pendent of.

3. Emf and the Faraday-Henry law
Consider a region of space in which a (generaihetidependent) e/m fiel(E, B)

exists. LetC be afixed conducting loop in this region. There is no addiéil applied
force onC, so (3) reduces t6(t)=Een(t). Furthermore, sinc€ is stationary,o (r',t)

vanishes identically and, by (£J(t)=0 and&en{t)= E(t). Thus, finally,

E(t) = gSC E(,t)-dI (5)

By Stokes’ theorem,
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whereSis any open surface bounded®yFig. 2).

da
&
C
Figure 2
Moreover, by thé-araday-Henry law
- - 0B
VxE=-— 6
X ot (6)
So, (5) yields
d ( 5 — d
E)=—-—— | B-da=-—_(t 7
0=-—1 5 n( (7)
where

D, (1) =j8|§(r,t)-aa

is themagnetic fluxhroughC at timet. As commented in [1], relation (7) expresses a
genuine physical law, not a mere consequence afdfieition of the emf.

4. Motional emf dueto a static magnetic field
Let C(t) be a conducting loop inside a static magnetild fiB(f) (Fig. 3). The time

dependence of indicates a motion and/or a deformation of theplower time. We
will show that the emf o€ at timet is given by the expression

() = Em(®) = [6(N) xB(N] - (8)
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=
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Figure 3

Letqg be a mobile charge (say, a conventionplbgitivefree electron) located at
the positionf (relative to our coordinate system) of the loggneéntdi at timet. As
in Sec. 1, we denote the velocity di with respect to our frame of reference by
u(r), the velocity ofg alongC by o, and the total velocity df relative to our frame
by 0, =0+ 0.

Since there is no electric field in the regad interest,

Eolt) = gSC E(F,t)-di=0 and Eem(t) = Em(t) (9)
Also, if fapp Is the applied force per unit charge at the pmsitfq, at timet,

Eapp(t) = § , Fapp(T1)-dIT (10)

The role of the applied force is to keep the curfeawing. This will happen for as
long as the loo® is moving or/and deforming, so tha{r’) is not identically zero for

all t. Why is an external force needed to kéemoving or deforming? Let us care-
fully analyze the situation.
The magnetic force apis

Fro=q@0xxB) sothat f,=0,xB .

Now, imagine a temporary, local 3-dimensional negtdar system of axes,(y, z) at
the locationr of g at timet. We assume, without loss of generality, thatzlais is
in the direction ofdl . (The orientation of the mutually perpendicutaandy-axes on
the plane normal to theaxis may be chosen arbitrarily.) Then we may write

— — — —

fmzfmx+fmy+fm fa+f

NIl

where f.=f__ is the component of the magnetic formleng the loop (i.e., in a

C m, z

direction parallel todi) while f, = f_ +f  is the componenormalto the loop
(thus todl).
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In a steady-state situation (steady curriemt)f fc is counterbalanced by the resis-

tive force that opposes charge motion al@¢ps mentioned before, this latter force
does not contribute to the emf). However, to codoralance the normal component

f , some external action (say, by our hand that maredeforms the loo[C) is
needed in order fo€ to keep moving or deforming. This is precisely e applied

force fapp does. Clearly, this force must bermal to C at each point of the loop.

From (10) we then conclude that
Eapt) = 0.

Combining this with (3), (4) and (9), we finallynfg the validity of (8).
It can be shown [1,3] directly from (8) that

M) = — % @, (t) 1j1

where ®(t) is the magnetic flux throug@ at timet. This looks like(7) for a fixed
geometrical loop in a time-dependent e/m fieldha@ligh the origins of the two rela-
tions are different. Indeed, equation (11) is @&dirconsequence of the definition of
the emf and may be derived from (8) essentiallyrathematical manipulation (see,
e.g., the Appendix in [1]). On the contrary, toider(7) the Faraday-Henry law (6)
was used. This is aexperimentalaw, hence so is the expression (7) for the emf. |
other words, relation (7) is not a mere mathembtoasequence of the definition of
the emf.

5. An example

Consider a metal baalf) of lengthh, sliding parallel to itself with constant speed
on two parallel rails that form part of a U-shapéde, as shown in Fig. 4. Aniform
magnetic fieldB, pointing into the page, fills the entire regiéncircuit C(t) of vari-
able size is formed by the rectangular loabdd3.

y
hie - =
O da B}
—— v =const
®B 14di
d a X
O — | X
Oz
Figure 4
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In Fig. 4, thez-axis is normal to the plane of the wire and dirdd@ward the

reader. We callda an infinitesimal normal vector representing anmedat of the
plane surface bounded by the wire (this vectorinscted toward the reader, consis-

tently with the chosen counterclockwise directidrtraversing the loof€). If G, is
the unit vector on the-axis, then the field and the surface element artenr respec-
tively, asB=—-B{, (whereB=|B|= const) andda=(da 1y .

The balance of forces is shown in Fig. 5 fpywe denote the resistive force per

unit charge, which does not contribute to the emfjte that this diagram concerns
only themovingpart @b) of the circuit, since it is in this part only tithe velocityo

and the applied forcd, _ are nonzero.

app

—D)
Fm UC Dtot
; B 0L 0,
dl @
___________ o0 faon
®B ﬂ X

Figure 5

The emf of the circuit at tintas, according to (8),

E®) =¢_ (65xB)-di :j:uBm:qu:dl:uBr.

c(t)
Alternatively, the magnetic flux througbis

@m(t)=js(t)é-aa=—jso Bda= — BLU da= — Bh

(wherex is the momentary position of the bar at tithso that, by (11),

d dx
E)=——d (1) =Bh— = Bhv .
(t) at m(t) it

Now, the role of the applied force is to ctarbhalance thex-component of the
magnetic force in order that the bar may move asstant speed in the direction.
Thus,

fapp = fmCOSO = v,B co® =Bo, .

We note that, althoughp, depends on the speegdof a mobile charge along the bar,
the associated part of the emf is itself independém.! Specifically, as argued in
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Sec. 4 £4p(t)=0. On the other hand, in this particular exampé&workw of f,, for a

complete tour around the circuit is equal to thaltemf (cf. [2]): w=£=Bho. This

equality, however, is accidental and does not ceflemore general relation between
the work per unit charge and the emf. (Another sadcidental” case is the battery-
resistance circuit [1-3].)

6. Summary

This article is an addendum to our study of theceph of the electromotive force
(emf), as this concept was pedagogically approaahgatevious publications [1,2].
We have focused on some particular aspects ofubed that we felt are important
enough to merit further discussion. Let us revibam:

1. For a conducting lodp inside an e/m field, we explained why the emiCof
does not depend on the conductivity of the loop:‘@ws/ious” as this statement may
seem, one still needs to justify it physically anddemonstrate its consistency with
Ohm’s law.

2. We expressed the Faraday-Henry law ingavfrthe emf of a closed conduct-
ing curve inside a time-dependent e/m field.

3. We studied the case of motional emf in saetail (see also [2-5]). Particularly
important is the role of the applied force in tbaése. In addition to analyzing this role
and, in the process, deriving an explicit expres$w the emf, we explained why the
physics of the situation is different from thattbe Faraday-Henry law, despite the
similar-looking forms of the emf in the two cas@d.course, as Relativity has shown,
this similarity is anything but coincidental!
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