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PREFACE

Newtonian Mechanics is, traditionally, the firsage of “initiation” of a college stu-
dent into Physics. It is perhaps the only trulyoaoimous subject area of Physics, in
the sense that it can be taught as a self-contangty without the need for support
from other areas of physical science. This textbidokased on lecture notes (origi-
nally in Greek) used by this author in his two-sstae course of introductory Me-
chanics, taught at the Hellenic Naval Academy Nagal Academy of Greece).

It is evident that no serious approach to Madtg(at least at the university level)
is possible without the support of higher Mathegsatindeed, the central law of Me-
chanics, Newton’s Second Law, carries a rich ma#tigal structure being both a
vector equation and a differential equation. Aroefis thus made to familiarize the
student from the outset with the use of some basithematical tools, such as vec-
tors, differential operators and differential egoas. To this end, the first chapter
contains the elements of vector analysis that balineeded in the sequel, while the
Mathematical Supplement constitutes a brief intobidm to the aforementioned con-
cepts of differential calculus.

The main text may be subdivided into threegant the first part (Chapters 2-5) we
study the mechanics of a single particle (and, ngereerally, of a body that executes
purely translational motion) while the second g&tap. 6-8) introduces to the me-
chanics of more complex structures such as systédnparticles, rigid bodies and
ideal fluids. The third part consists of 60 fullglwged problems. | urge the student to
try to solve each problem on his/her own beforeilog at the accompanying solu-
tion. Some useful supplementary material may a¢stobnd in the Appendices.

| am indebted to Aristidis N. Magoulas for hiapme with the figures. | also thank
the Hellenic Naval Academy for publishing the ona@ji, Greek version of the book.
And, of course, | express my gratitude and apptiecido my wife, Thalia, for her
patience and support while this book was written!

Costas J. Papachristou

Piraeus, Greece
June 2020
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CHAPTER 1

VECTORS

1.1 Basic Notions

Vectorsare physical or mathematical quantities carrywmwg propertiesmagnitude
anddirection Symbolically, a vector is usually representechbyarrow (Fig. 1.1).

Y
—_—
Fig. 1.1 Symbolic representation of a vector.

The magnitude o¥ (proportional, by convention, to the length of #reow) is de-
noted byM and, by definitioanO. In particular, a vector of zero magnitude is

called azero vectorV =0, and its direction is indeterminate. By definitighe vec-

tor -V has the same magnitude dsbut is oriented in the opposite direction (Fig.
1.2).

v -V
>  SE—

Fig. 1.2 Two vectors having equal magnitudes and oppdsiéetions.

A unit vector(denotedd) is a vector of unit magnitudéd|=1. A vectorV in the
direction of the unit vectoid is written

while a vectoW in theoppositedirection is written

vvz—\ku.

Note that the unit vectaid in the direction of a vectdr can be expressed as the quo-
tient

(1.1)

(By definition, the effect of multiplying or dividg a vector by gositivenumber is to
multiply or divide, respectively, the magnitudetbfs vector by this number without
altering the direction of the vector.) In geneealiectomparallel to U is expressed as
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V:ﬂVﬁ

Vi (1.2)

The quantityV is called thealgebraic valueof V with respect to the unit vectdr. In
particular, the sign o¥ indicates the orientation & relative to(.

G
—

Y
<

W <

Fig. 1.3 Two vectors of equal magnitudes may have oppasigebraic values.

Example:For the vectors in Fig. 1.3, we have:
VEWE2,V=2u, W=—2u, V= 2, W-—

where the last two quantities represent algebraiiges.

Fig. 1.4 Two equivalent graphic representations of the efitwo vectors: by placing the
origin of either one at the tip of the other (left)by forming a parallelogram with two vectors
that have a common origin (right).

W B,

Fig. 1.5 Two equivalent graphic representations of théed#ince of two vectors: by adding
the negative of the second vector to the firstae(eft) or by joining the tips of two vectors
with common origin, in the direction from the sedorector to the first (right).

ThesumV = A+ B of two vectors can be represented graphicallyio ways, as
shown in Fig. 1.4 (note carefully the way the arjleetween the two vectors is speci-
fied in the left diagram).
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Thedifference W = A- B= A+(— B of two vectors is found graphically as seen

in Fig. 1.5. In the figure on the right, note thia¢ arrow of A— B is directed toward
the tip of A. (Draw the vectoB— A.)

It can be shown (see Exercise 1 at the enldeothapter) that

‘Ai é‘:(AZ+ B’ +2 ABcos )2 (1.3)

where A:W, B= ‘ a and wherd is the angle betweeA and B.

1.2 Rectangular Components of a Vector

An oriented straight line is called amis The orientation is specified by a unit vector
a, parallel to the line, the direction of which vecindicates theositivedirection on
the axis.

We consider they-planedefined by the mutually perpendicubarandy-axes with
unit vectorsd, and(,, respectively. LeV be a vector on this plane. It is often con-

venient to expres¥ as a sum of two vectors parallel to the corresjmt andy-
axes, as seen in Fig. 1.6:

V=V, +V, where V,=V,0, V,=V,1,.

@)
><C >
<i

Fig. 1.6 Rectangular components of a vector onxyplane.

The quantitie/, andV,,, which are thelgebraic valuef the projections/ and
V, of V onto the two axes, are thectangular componentsf V . These quantities
may be positive or negative, depending on the tat@ms ofV, and\7y relative tod,
and 4, respectively. (In Fig. 1.6 boW, andV, are positive.) We write:

V=V, i+, U=\ V) (1.4)

Themagnitudeof the vectoV is
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V=V =W+ (1.5)

The angled in Fig. 1.6is measured relative to the positiveemiaxisand it increases
counterclockwiseThus, starting from the&-axis we may form positive or negative
angles by moving counterclockwise or clockwisepeesively. We note that

V.
V,=Vcos#, V,=Vsig, tad= Vy (1.6)

X

y

Fig. 1.7 A vector in 3-dimensional space.

In an analogous way one may define the rectangomponents of a vector in 3-
dimensional space. In this case we usiglat-handedrectangular system of axgsy,
z, with corresponding unit vectors,,d,,0,, as shown in Fig. 1.7. (If we inter-
changed, say, the names of theand y-axes, the ensuing rectangular systeya
would beleft-handed while the systenyxzwould now be right-handed. Can you find
a practical way to determine whether a given systéraxesxyzis right-handed or
left-handed? Notice therder in which the nameg, y andz are written!) The alge-

braic valuesvy, Vy, V; of the projections oY onto the three axes constitute the-
tangular componentsf V . The 3-dimensional generalizations of (1.4) an8)(are

V=V o4+V,U+Vu=(\, VY, V);

|\7|EV: /\/Xz_i_\/yz_}_vzz

In particular, if V=0 then Vx=V,=V,=0 andV=0.

(1.7)
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Now, assume tha\= A (| + Au+ Ay and B=B{ + B U+ Bu. Then,

A=B < A=B ,A=B ,A-§ (1.8)
Moreover,
A+B=(A+* B)U+(A* B)y+( At B (1.9)
E(A&iBX'A\/i By' At B) .

In general, the components of a sum of vectorsreresums of the respective compo-
nents of the vectors. Thus, let

V=V+Vt=3V=(, Y, V) where V= (Y, V).

Then,

V=2V V=20V, =00 (1.10)

Example:For the vectorA= (1,— 1, 0), B= (2,1~ 1, we have:

A+B=(3,0-1), A-B=(1- 21

and

|A+ I§|:\/32+0+ 1¢ =10, |A—q:\/613+ €28+ 1=+ ¢.

1.3 Position Vectors

A position vectoris a vector used to determine the position of iatga space, rela-
tive to a fixed reference poi which, typically, is chosen to be the origin ofr @o-
ordinate system. For points on a plane, we usstarsyof two axeg, y (Fig. 1.8).

y
) ' P
~ F |
d, 0
) N
@) a, X

Fig. 1.8 A position vector on they-plane.



6 CHAPTER 1

The vectorf =OP determines the position of poiftrelative toO. The compo-
nents X, y) of i are theCartesian coordinatesf P. We write:

r=x0,+yl=(x}Y (2.12)

Alternatively, we can determine the positionfby usingpolar coordinatedr, 6),
where r =|F| and where0<8< 27 or —z <68 <x (by convention, the angle in-

creasegounterclockwise We notice that
X=rcosfd, y=rsid (1.12)

or, conversely,

r=yx>+y* , tand=

X <

(1.13)

y
Fig. 1.9 A position vector in 3-dimensional space.

For points in space we use a rectangular systemesx, y, z (Fig. 1.9). We write:

F=x0,+yl+Zu=(xyr;

Fl=r =yx*+y?+2°

The three quantitiex(y, z) constitute theCartesian coordinatesf pointP in space.
Alternative systems of coordinates aghericaland cylindrical coordinates, which
will not be used in this book (see [1,2]).

(1.14)

Now, letP; P> be two points in space with position vectdrsr, and with coordi-

nates X1, 1, z1), (X2, Y2, ), respectively (Fig. 1.10). We seek an expres$iorthe
distance P, between these points.
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X

Fig. 1.10 The distance between two points in space is @égnitude of the difference of their
position vectors.

We notice thatR,R, =|7,,|=|F,—F]. But,
n=x0,+ Y0+ 24, TB=xU+ Yy+ 7
so that
h,=F,—F= (X 2—X])ljx +(Y2_ y])ﬁy+( Z— Z)AU .
Therefore,

Plpz :|T12| :[(Xz_ X1)2 +( Yo~ y1)2+( Z— 2)2} Y2 (1-15)

Example:For the pointd;, P,, with respective coordinates,(yi, z1)=(-2,1,-3)
and &, Y, z) = (0,-1,-2), we have: PP, =2 + (-2)° + £ = 3.

1.4 Scalar (“Dot”) Product of Two Vectors

Fig. 1.11 Two vectors forming an angte
Consider two vectorsA and B, and letd be the angle between them, where, by con-

vention,0< 6 <z (Fig. 1.11). Thescalar product(or “dot product’)of A andB is a
scalar quantity defined by the equation

A B:‘TAH acosez ABco¥ (1.16)

where A= W B= ‘ a It is easy to show that this product@mmutative
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- = —

A-B=B- A.
In the case wheréd= B, we haved=0, co®=1 and
A A= = & (1.17)

If A and B aremutuallyperpendiculaythen 6=7/2, co®=0 and therefore

A-B=0 < ALB (1.18)

As can be shown [1],
A-UB)=(1A-B, (xA)-(IB)=xl(A B

(where k, A are scalars) and
A- B¢C =)ABr AC.
For the unit vectors we can show that

Oo-0=0,0=1U=1,  WU="u"y="4"u=0.

Thus, if A= A+ A+ Al and B=B,0 + Bl + B, we find a useful relation
for the dot product in terms of components:

A-B=AB+ AB+ AB (1.19)

For two equal vectors we are thus led back to §1.17
A-A=AZ+ A2+ AP=| A (1.20)

1.5 Vector (“Cross”) Product of Two Vectors

Ax B
B
4
E A

Bx A

Fig. 1.12 The two possible orientations of the vector paidif two vectors, depending on
the order in which these vectors appear in theymbd
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The vector product(or “cross product’)Ax B of A and B is a vector normal to the
plane defined byA and B and in the direction of advance of a right-handegw

rotated fromA to B (see Fig. 1.12). Alternatively, the direction Ak B may be de-
termined by the “right-hand rule”: Let the fingeskthe right hand point in the direc-

tion of the first vector,A. Rotate the fingers from to B through the smaller of the
two angles between these vectors. The extendedbtiliem points in the direction of
Ax B. The magnitude ofAx B is, by definition,
|A>< B| :|ﬁH Hsing = ABsing (1.21)
where0< 8 < 7. We notice that
AxB=-Bx A

(hence, the cross productriet commutative) and thafx A= 0. In general, ifA and
B areparallel vectors, therAx B=0, since, in this case4=0 or z, so that sié=0.

As can be proven [1],
Ax(AB)=(AAx B, (kA)x(AB)=xi(AxB
(where k, A are scalars) and
Ax(B+C)=(AxB+(A Q.
For the unit vectors of a right-handed rectdaugsystem we can show that
Uox0,=0x0=Uux1=0, UxUu="u, "ux'u="u " U L

Thus, if A= AL+ AU+ Au, B= Buy+ Buy+ B we find that

AxB=(AB- AB)U+(AB- AB yr( AB- AR L (1.22)

This can be written more compactly in the form afederminant,

[ b

X y 74
AxB=|A A A (1.23)
B, B, B,

to be developed with respect to the first row.
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Exercises

1. Consider the vector& = (A, A, A) and B= (B, B, B), and let be the angle
between them. By using the properties of the sgatagtuct, show the following:

= 47482 A o)

AB,+ AB+ AB,
(AZ+ A+ A2 (B2+ B2+ BY

b. cosf =

c. If ALB, then

C ‘ A- az = ‘ AZ‘ #2 (Pythagorean theoreym

2.Let A=(A,A,A), B=(B,B,B), C=(C,C,C).

a. Show that

. A A A
A-(BxCO=|B B B
C, C, C,

b. By using the properties of determinants, shaat th

—

B(Cx A= C( A B
=0

>

P o
\J Q‘
I

>

(
(
3. Find the value of in order that the vectorf = (%ai;} and B =(-3,3-1) be

mutually perpendicular.

4. Find the values oftr and £ in order that the vectorszxz(l,a,S) and
B=(-2,-4, 8) be parallel to each other.

References
1. A.l Borisenko, LLE. Tarapowector and Tensor Analysis with Applications
(Dover, 1979)

2. M.D. GreenbergAdvanced Engineering Mathemati&nd Edition (Prentice-
Hall, 1998)



CHAPTER 2

KINEMATICS

2.1 Redctilinear Motion

Kinematicsis the branch of Mechanics that studies mopen se regardless of the
physical factors that cause or affect it. (The @mtion between cause and effect is the
subject ofDynamics to be discussed in the next chapter.)

The simplest type of motion tisctilinear motion i.e., motion along a straight line.
Such a line could be, e.g., tkeaxison which we have defined a positive orientation
in the direction of the unit vectal,, as well as a poinD (an origin) at which x=0

(Fig. 2.1).

@)
=
=i
xXe

x=0

Fig. 2.1 Motion along thec-axis; the value ok determines the momentary positiémf the
moving object.

The positiorA of the moving object, at timg is specified by the position vector

OA=T = xU,

wherex and r are functions of : x= x(t), T=7(t). We note thak>0 or x<0, de-
pending on whether the object is on the right othenleft ofO, respectively.

Thevelocity of the object at pointl, at timet, is defined as the time derivative of
the position vector; i.e., it is the vector

g0 _d oo
gt dt T

(where we have taken into account tBatis constant). We write:

v=vl, where v:%:iM (2.1)

In the above relationy is thealgebraic valueof the velocity with respect to the unit
vector 0,. The magnitude of the velocity, equal\p is called thespeed In generaly
and v are functions of. Thesignof vindicates the instantaneodisection of motion:

if v>0, the object is moving in the positive directidrtite x-axis (i.e., to the right, as
seen in Fig. 2.1), while ¥<0, the object is moving in the negative directitm the
left). In S.1. unitsy is expressed imys=ms ™.

11
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Given the functiorv=v(t), we can find the positior(t) of the object at all timet
by integrating (cf. Mathematical Supplement). Fr@1) we have:

v:% = dx= vdt.
dt

We integrate the above differential equation, mgkire additional assumptiomiial
condition) that, at the momerttty, the instantaneous position of the objeck#:

J'Xt)dx:'[;vdt: X— )5:'[; vdt=
X=X, +J'tt vdt (2.2)

The differencex—x, is called thedisplacemenof the object from pointg .

Theaccelerationof the object at timé is the derivative of the velocity vector:

2o dV_dy v,
dt dt 4 dth'
We write:
. dv  d?’x
a=a here a=—=—=+|3 2.3
S W dt df |al (2:3)

The unit of acceleration in the S.I. systermigs’=m.s .

The quantitya in (2.3) represents the algebraic value of the lacaton. For a
given functiona=a(t), and by assuming that at the momtetg the moving object has
a velocity v=v,, we find the velocity(t) at all timest by integrating:

a:d—v = dv= adt = IV thJ't adt—>
dt Vo fo

V=V, + j: adt (2.4)

If we know the acceleration as a functiorxpfa=a(x), we can find the velocity as
a function of position, as follows: By dividing tlmelations dv=adt and dx=vdt in
order to eliminaté, we get: vdv=adx We now integrate this relation, assuming that
V=V at the positionx=xg:

J'Vvvdv: j; adx = V—Zz—vl;:jy: adx=

V=t + ZJ-XZ adx (2.5)
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Two observations are in order regarding equg2os):

1. In order for (2.5) to make sense physicdhg, right-hand side must Ib@nnega-
tive. This may place restrictions on the admissiblei@slofx, which means that the
object may not be allowed to move on the entiexis.

2. To findv itself (rather than just its absolute value) frogfation (2.5), we must
take the square root of the right-hand side (theeraassumed nonnegative). This
process will yield two values for, with opposite signs. One of these values must be
excluded, however, since its sign will not be cstesit with that ofr .

Note also that, in relations (2.2) and (2.B&x andv are functions of the variabte
that appearsn the upper limitof the corresponding integrals. Similarly, in tela
(2.5) the quantity” is a function of the variable that appears on the upper limit of
the integral. In general, an integral with variabpger limit is a function of that limit
[1,2].

2.2 Special Types of Rectilinear Motion

We now apply the general results of the previougiae to two familiar cases of
rectilinear motion.

1. Uniform rectilinear motion:v=constant, a®

This is the motion witltonstant velocityin magnitude andirection). Relation (2.2)
yields (by puttingto=0):

x:x0+J';vdt= %+ \{; dt=

X= %+ Vvt (2.6)

2. Uniformly accelerated rectilinear motiora=constantz 0

By relations (2.4) and (2.2) we find (puttirig=0):

v:vo+.|.;adt: -+ aj‘; dt=

v=y,+ at (2.7)

x:xo+.|.;vdt: )g+j;(\6+ aj de ¥+ yj; dt fl; tdt=

x:x0+v0t+% af (2.8)
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Furthermore, relation (2.5) gives:

2 .2 X 2 X
Vi=y, +2j‘xoadx_ v +26L0 dx=

V2 =y +2a(x— %) (2.9)

Note that the same result is found by eliminatitgtween (2.7) and (2.8). Note also
that, since the right-hand side of (2.9) must benegative, the acceptable valuexof
may be restricted; this, in turn, will place a reston on the possible positions of the
moving object.

ExampleProjectile motion

X
A
v>0 l
v<0
\70
la
d,j
O ¢ x=0

Fig. 2.2 Projectile motion along the verticalxis.

At timetp=0, a bullet is fired straight upward from a paih{at whichxy,=0) of the
vertical x-axis, with initial velocity v, =v, U (v, > 0) (Fig. 2.2). We assume that the

bullet is subject only to the force of gravity (wgmore air resistance). Thus, the accel-
eration of the projectile equals the acceleratibigravity, which is always directed
downward regardless of the direction of motignpward or downward) of the projec-
tile. In vector form,

d=-gl=ay = a=-c¢

whereg is approximately equal to 9r8/s’. We notice thaa is constant, and therefore
the motion iauniformly acceleratedThe equations of motion are:

v=\, +at= - dt,
1 1
X=¥%+Vt+—=af = yt-= gf,
X+ V% > v 29
vV =yl +2a(x- %)= -2 gx

The projectile will reach a maximum heigkth, where it will stop momentarily at
time t=ty; it will then start moving downward, toward theimtoof ejectionO. To find
h andt;, , we use the first two equations of motion:
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Vi =% -0t =0 = t ==
g
1 v, 2
h=yt - gt2=o
b by thh 2

The maximum heighih may also be determined by noting that, in ordettie right-
hand side of the third equation of motion to be memative, the value of must not
exceed vo’/2g. Note also thatv>0 for 0<t< t,, while v<O for t>t,. What is the
physical meaning of this? (Notice that we chosepbsitive direction of the-axis
upward.)

Exercise Find the moment at which the bullet returngXtoas well as the velocity
of return. What do you observe? Also, show thag finee fall from heighh, a body

acquires a speed
v=./2gh .

2.3 Curvilinear Motion in Space

We now consider motion along an arbitrary curvetib@ plane or in space. The
instantaneous position of the moving object is mheteed by the position vectar
with respect to the origi® of our coordinate system (Fig. 2.3). This vectsrnell as
the corresponding coordinatesy, z), are functions of timée

Fig. 2.3 Motion along a curve in space; the momentarytmwsA of the moving object is
determined by the coordinatesy(z) of A.

According to (1.14), we may write:
r=rt)=xd4,+yd,+2zu where x=x(1), y= (9, z= %}.

The velocity of the moving object at a poiuat of the trajectoryat timet, is the time
derivative of the position vector:

g 9T s v g - gy ey, O
V= dt(xwywzu)— agTe ladlz (2.10)
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We write:

V=V U+ VvU+ vy
_dx o dy  dz (2.10)

Vy=—, V,=—, \,=—
dt’ 7 dt dt

As will be shown analytically in Sec. 2.6, the \a@typ vector v is tangentto the tra-
jectory at all point@and its direction is that of the direction of motid’he magnitude
of the velocity, calledpeedis

V= v+ V2 + v (2.11)

Theaccelerationof the object at a poi, at timet, is the time derivative of the
velocity:

d=—=—"*U0+—U+—=1U, (2.12)

We write:

d=al+al+auy
Cdv, _dv, _ dy (2.12)

a , =—= Z
o dt & dt % dt

As will be shown in Sec. 2.6, the direction of Hezeleration vectoa is toward the
concaveginner”) side of the trajectory. The magnitudetloé acceleration is

al=a’+a’+a’ (2.13)

Example:Assume that the coordinates of a moving partickegiven as functions
of time by the equationsxEA coswt , y=A sinwt , z=At}, where4, w, 1 are positive
constants. (What can you say about the trajectbthe particle?) By using (2.10
and (2.12) we find the components of velocity and accelergtrespectively, of the
particle:

(W, Wy, Vz) = (—wA4 sinot, wAdcoswt, 4),

(ax,dy,8,) = (-0’4 cosot, —w°dsinwt, 0) .
The magnitudes anda of the corresponding vectors are given by (2.htl) @.13):
v=Nw’A+ 1%, a=w?A.
Note that the speedof the particle is constant in time, as well aat tthe vectors of

velocity and acceleration are mutually perpendicd&ow this by using relations
(1.18) and (1.19)]. As will be seen below, these tacts are closely related.
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2.4 Change of Speed

Generally speaking, a motion asceleratedf a =0, so that the vectov of the ve-
locity changes with time. The terfaccelerated”, however, is often used with a dif-
ferent meaning in Kinematics, a fact that, if natgerly pointed out, may lead to con-
fusion. Thus, a (generally curvilinear) motion isids to be “accelerated” or

“retarded” during a time interval if thepeedv=|\7| increases or decreases, respec-
tively, in that interval. If the speed is constaht motion is calledniform

The kind of motion depends on the anglbetween the vectov of the velocity
and the vectod of the acceleration, where, by conventiors &< r . In general,

v-a=|v|gcosf = vacod (2.14)

wherea=|d. On the other hand,

2(v-a)= 2(v ﬂj:v LU (* g 49 _ €9 dv,, dv
dt dt = dt dt  dv dt ~ dt
goazv. oA (2.15)
dt  dt

where we have used (1.17), and where it shouldbedrcarefully that

yav_ d|v|
o=
By comparing (2.14) and (2.15), we find that

v =acosd (2.16)
dt

Given thata > 0, we note the following:

a If 0@ <% then%’ >0; vincreasesnd the motion iaccelerated
b. If %< 0<r then% < 0; vdecreasesnd the motion isetarded
c. If @ =% (that is, ifa 1 v) then% =0; visconstantand the motion isiniform

Of special importance is the following conclusion:

If the acceleration is perpendicular to the velgcthe speedf the moving ob-
ject is constant in time, even though the directbthe velocity is changing.
Thus, the motion is uniform.
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In the case ofectilinear motion, the anglé betweenv and a can only assume
two values. Ifv and a are in thesamedirection, therg=0 and the motion iacceler-
ated while if v and & are inoppositedirections, therd=z and the motion ige-
tarded Now, Vv and a are in the same direction or in opposite diregigrnv-a>0
or V-a<O0, respectively. Given thai = v, anda=al, [see Egs. (2.1) and (2.3)],

where herev and a arealgebraic valuegv=+|V|, a=+|4), we have:v-a=va.
We thus conclude that

a rectilinear motion is accelerated or retarded,pdading on whether the
product of the algebraic values of the velocity &mel acceleration is positive
(va>0) or negativg(va<0), respectively.

2.5 Motion with Constant Acceleration

We now consider the case where the acceleraiai the moving object is constant
in magnitude and direction. We assume that at tmfethe instantaneous position
vector of the object, relative to our coordinatsteyn, ist =f,, while the object has

initial velocity v = v,. We seekr(t) andv(t) for everyt >0.
Taking into account that is a constant vector, we have:

dav . o v U -
E:a: dv=adt= IVO dv= aj'o dt= "+ y="at=

V=", +at (2.17)

. R . R . r . t ot
a:v_v0+at:> dir =V, dt+ atdt= . dr= gjo de ej'o tdt=

r:g+\70t+%at2 (2.18)

We write:

t2
AF=F—f =tVy+—d.

This vector relation is of the formr = xV,+ A&, with constantv,, & and variable
k, 4. According to Analytic Geometry, the vectart =i —r, lies on the constant

plane defined by, and @ and passing through the poirt (initial position of the

moving object). On the same plane will thereforwagss lie the tip of the position
vectort of the object. We conclude that
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motion with constant acceleration (in magnitude a@ction) takes place on
a constant plané.

An example is motion of a body in the gravaasl field near the surface of the
Earth, in a relatively small region of space whtne field may be considered uni-
form. If we ignore air resistance, the body is sabjto the constant acceleration of
gravity g (directed downward, toward the surface of the ljaanhd its path is con-

fined to the plane defined by the body’s initialogty v, and the acceleratiog (the
plane of motion is perpendicular to the surfacthefEarth).

2.6 Tangential and Normal Components

The velocity v and the acceleratioa of a moving object are vectors of absolute
physical and geometrical substance, independetheotthoice of a system of axes
(X, ¥, 2) in our space. If we choose a different set osakéy’, z"), with different ori-
gin and orientation relative ta,fy, z), thecomponentsf v anda will change but the
vectorsthemselves, as geometrical quantities, will rentagnsame. We will now in-
troduce a system of components that is associatddtiae trajectory itself of the
moving object.

Fig. 2.4 The positiom of the moving object is specified by the distase€A, measured
along the trajectory.

As we already know, a poidt of the trajectory can be determined by its position
vector i relative to any reference poiok This vector is a certain functiorn(t) of

time. An alternative way of determiningjis the following (see Fig. 2.4). We choose
an arbitrary poinCC of the curve representing the trajectory, as welagositive di-
rection of motion along the curve (not necessaycident with the actual direction
of motion). The location of poird on the curvas then given by the distance=CA

of A from C, measuredalong the curveNote thats may be positive or negative, de-
pending on whethet is located ahead @& or behindC, respectively, in the positive
sense of traversing the curve, i.e., in the diogctf increasings. To simplify our
analysis, we make the assumption that the trajgcsoa plane curve. The results we
will arrive at, however, will be valid for motiorang any smooth curve in space.

! In the special case where the acceleratiaeiig the motion isuniform rectilinearand the plane is
indeterminate.
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We consider the points andA” of the trajectory, through which points the object
passes at timdsandt’, respectively. Let andr’ be the position vectors dfand4’
relative toO. We call AT =" -1 and At=t'—t, and we write:

r=rt), r=rt)=rt+At)=r@)+Aar.

The velocity at poind, at timet, is

_odr . rit+A)-rt) .. A
V=—=1Iim =lim — .
dt a0 At At—>0 At
But, ﬁ:ﬂg, so that
At AS At

. AF . ATY(,.. AS
im—=]| lim — || lim —
At—0 At As—»0 AS J\ At>0 At

(since As— 0 when At— 0). We thus have:

_ dr drds
V=—-=——

= 2.19
dt ds dt ( )

This relation expresses the derivative of a compdanction, given that =r(s) and
s=g(t), so thatr=r).

We now seek the geometrical significance ofuetor dr/ds. We notice that this
vector is the limit ofAr/As for As—0. As As—0, the vectorAr/As tends to become

tangentto the trajectory at poird, while its direction is that ahcreasings (As>0);
that is, it points toward th@ositive direction of traversing the curve. Moreover,

|AF/As| -1 asAs—0. We conclude thatif/ds is aunit vector tangent to the trajec-
tory at4 and oriented in thpositivedirection of motion on the path. We write:

6 =2" (2.20)

V=— (0 =vi} (2.21)

Thus, if v>0 the motion is in the positive direction (increass)gwhile if v<0 the
motion is in the negative direction (decreasg)gNote that the unit vectod, is



KINEMATICS 21

alwaysin the positivedirection, regardless of the direction of motiolm Fig. 2.5 the
motion is in the positive direction; thus0.) As seen from (2.21jhe velocity is a

vector tangent to the trajectary

Fig. 2.5 The velocity is a vector tangent to the trajegtreach point of the latter.

Our study of acceleration begins with an imaotrtremark:

1. A component of acceleratigrarallel to the velocity may altethe magnitude
but not the directiorof the velocity. (This is the case in acceleratdtilinear

motion.)

2. A component of acceleratigrormalto the velocity may changée direction
but not the magnitudef the velocity. (This is a direct consequencehef dis-

cussion in Sec. 2.4.)

Given that the velocity is a vector tangenthe trajectory, it is natural to resolve
the acceleratiord into two components (see Fig. 2.6):

1. a componeng, tangentto the trajectorytangential acceleration which is
responsible for the change sfeed(change omagnitudeof the velocity);

2. acomponeng, normalto the trajectoryrformal or centripetal acceleration
which is responsible for the changedafectionof the velocity.

The total acceleration of the moving object willthe vector suné = &; + 3, .

Fig. 2.6 Tangential and normal acceleration.
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To evaluatéd, and &, we differentiate (2.21) with respecttto

. dv d, . dv.. dy
_dv_d oy dve , du 2.22
A= T W T U Vg (2.22)

A

The vectordd—utT isnormalto U, . Indeed,

given that|l]T| =1=constant. Moreover?‘d—utT is directed toward theoncave(“inner”)

side of the trajectory, since this is the case whth infinitesimal changell, of U, .

[By (2.22), then,the accelerationa of the moving object is oriented toward the
concavity of the curvEWe thus consider a unit vectdf, normal to the trajectory

and directed “inward”, and we write:

i
dt

dg; _

. Gy =— 0, (2.23)

The differential dG, is approximately equal to an infinitesimal charmgel, when

this unit vector is displaced along the curve withn infinitesimal time intervadt .
That is, di, = O’ -0, as seenin Fig. 2.7.

o

Fig. 2.7 The infinitesimal sectiods of the trajectory may be regarded as an arc otal |
circle with centeK and radiug, these quantities generally varying along thestrijry. (The
trajectory itself need not be a circle macroscdpiba

The G, andd,” are unit vectors tangent to the curve at the @sepoints4 and

A’. These points are an infinitesimal distamseapart (measuredlong the curve),
which distance the object covers within timie Given that the angldp betweend,

and 0, is infinitesimal, we may write:
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|d0;| = || dp = dp , wheredy isinrad.
Relation (2.23) is thus written (by taking into aaot that v=ds/d}:

dt, dp. dpds @
by _dp, _Op ds, _ @ 224
at  dt N T ds M ds ' N (2.24)

Given thatdsis infinitesimal, it may approximately be regardesian arc of a local
circle with centeX (the point of intersection of the lines normal he turve ayd and
A") and radiup=A4K (Fig. 2.7). The poinK is called thecenter of curvaturef the
trajectory atA, while p represents theadius of curvatureat 4 (these quantities gener-
ally vary along the trajectory). Thuds= p dp, so that (2.24) becomes:

di, v .
—T=—1 2.25
a o (2.25)
Finally, (2.22) yields:

PR (2.26)

dt P
We write:
d=a U +a Y
dv  d?s V (2.27)
aT =—=—, [
dt dt

The magnitude of the acceleration is

2 1/2
la =\’ + 8’ :K%’j +§} (2.28)

We stress that these results are valigfyr curve in spaganot just for motion on a
plane curve.

Let us summarize the ways of resolving veloaitg acceleration into components:

O+ v+ = VY

A i i (2.29)
al+al+au= ay+ a'y

v
a
Note, in particular, that

ad° =a’+a’+a’= a’+ g’ (2.30)
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Special cases:

1. Uniform curvilinear motion:v=constant We have:

= - L, (231)

0, é=aN0N=ﬁ“
Y2,

Note that in uniform motion the acceleration ismal to the velocity, in accordance
with the conclusions of Sec. 2.£xercise:Show that the distancealong the curve
(Fig. 2.4) is given as a function of time yvt, where we assume th&t0 att=0.]

2. Rectilinear motion: p =, s=x, 4 =U. Hence,

v:d_saT:Q(A - t!(!
dt " dt
a=-0, a-an-y
Yo, dt

In uniformrectilinear motion (Vv = const) bothar anday are zero, so tha=0.

2.7 Circular Motion

Circular motion is plane motion with constant radaf curvaturep=R. The trajectory
of the moving object is a circle of radiBRyFig. 2.8).

Fig. 2.8 Circular motion is plane motion with constanticesdof curvaturg=R.

We choose the positive direction of motion eéodounterclockwise, in which case
the lengths of the ardrom a reference poir€, as well as the angkemeasured from
C, increase counterclockwise and decrease clock{fige 2.8 represents motion in

the positive direction). As always, the unit tangeector U, is oriented in the posi-
tive direction regardless of the actual directibmation.

As we know,s=Rf, whered is measured inad. The velocity of the object is

V=vi where v:d—S: Rﬁ (2.32)
dt dt
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(In general,v=i|\7|, depending on the direction of motion.) We defihe angular
velocity

do
=— 2.33
0= (2.33)
Then,
v=Ro (2.34)

The quantityw is measured irrad/s= rad.s™. Note that the sign @b is the same as
that ofv and depends on the direction of motion.

The acceleration of the object is

d=a U +a Y
where
We define thangular acceleration
do
a=" (2.35)
We thus have:
a,=Ra, g =R’ (2.36)
The magnitude of the acceleration is
a=a’+a?= R{a’+0* (2.37)

In uniform circular motionthe algebraic valueg and w are constant, so that, by
(2.35) and (2.36)p=0 andar=0. Hence, the acceleration is purebntripetal:

A

2
é:VE 0,=Ro’Y, (ve= cons) (2.38)

By (2.33) and by taking into account thatis constant, we have (assuming thaty
att=0):

do=w dt = j:dezj;m dt:a)j;dt:

0=0,+wt (2.39)
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Exercise:Show that the equation for the arc length s=sy+vt.

Theperiod T (measured i) and thefrequencyf= 1/T (measured is ™ or hertz,
Hz) of uniform circular motion are defined by theatébn

|a)|=2T—”:27rf (2.40)

More on these will be said in Chapter 5, in theterhof simple harmonic motion.

2.8 Relative Motion

Consider two objectd, B and an observa? who uses the coordinate systexny(2).
This system is called thieame of referencef O. The position vectors of and B

relative toO are 1, andr,, respectively, while the velocities dfandB with respect
to O are

_ dr, . dr.
g BT

We call 1y, =1z —r, the position vector @ relative to4 (Fig. 2.9).

Va
Vea
- Vg V, ¢
r laa Vg

Fig. 2.9 Relative motion of two objects andB.

The velocityof B relative to4 is defined as

~ drg,
=—5A 2.41
w= (2.41)
We notice that
. d,. . dr, dr,
Vo, =—(T,—T,)=—2—-—24
BA - dt® N dt dt

Vgp = Vg — V, (2.42)
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Similarly, the velocity o#4 relative toB is

Vg =Va— V==V, (2.43)

In an analogous way we define the acceleratidhrelative to4:

L Oy, d dy dy
BAT dt dt( 2= V) dt  dt
aBA = é‘B - QA: - _aAB (2-44)
where
_dv, L dy
a, =—— , = —
A dt %=t

are the accelerations @fandB with respect ta.

Consider now two observetsandO’, whereQO’ is moving withconstantvelocity

V relative toO; that is, Vo= V = const The relative acceleration of these observers
is, therefore, zero:

Fig. 2.10 The motion of a particl& as seen by two observé&sandO” moving with constant
velocity relative to each other.

Assume, further, that these observers recadrtbtion of a particle’ (Fig. 2.10).

We denote the velocity and the acceleratiod @fith respect to the two observers as
follows: Vi, =V, &o=a; %Yg=V, §gg="a

We now apply (2.42) and (2.44) with in place of4 andX in place ofB:

Vg =Vsg—Vgo = V=V-V,
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We thus arrive at an important conclusion:
A particle moves with the same acceleration wigpeet to two observers that
maintain a constant velocity relative to each otftaey do not accelerate with
respect to each other).

In particular,

if the particle moves with constant velocity relatto one observer, it will also
move with constant velocity relative to the othieserver.

Stated differently, if the particle executesiform rectilinearmotion relative to one
observer, it will execute the same kind of motielative to the other observer.
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CHAPTER 3

DYNAMICS OF A PARTICLE

3.1 The Law of Inertia

The termpoint particle(or simplyparticle) refers to a body whose dimensions are so
small that we may ignore its rotational motiondify). But, even a body dinite di-
mensions may be treated as a “particle” if its mois purely translationalthat is, if

the body is not rotating).

A patrticle is said to bieeeif (a) it is not subject to any interactions with thetref
the world (a case that is rather unrealistic!)@rtlie totality of its interactions some-
how sum to zero (i.e., they cancel one anotherthab the particle behavess if it
were subject to no interactions whatsoever. Acogrdo theLaw of Inertiaor New-
ton’s First Law

a free particle moves with constant velocity (ib@s no acceleration) relative
to any other free patrticle.

Therefore, a free particle either isuniform rectilinearmotion, or is at rest, relative
to another free particle.

Imagine now an observer who herself is a fragigle (this is approximately true
for someone who is at rest on the surface of théh|eeéBuch an observer is called an
inertial observerand the system of coordinates or axes she useslésl aninertial
frame of referencéor, simply,inertial frameg. According to the law of inertia,

different inertial observers move with constantoegles (thus, do not accel-
erate) relative to one another.

For example, the passenger in a train that movés aenstant velocity relative to the
ground is (approximately) an inertial observer anfixed system of axe,(y, 2) in
the train is an inertial frame of reference.

On the basis of the law of inertia we may naweghe following definition of an
inertial reference frame:

An inertial frame of reference is any set of conadées (or axes) relative to
which a free particle either moves with constabeiéy or is at rest. Thus, in
an inertial frame a free particle does not accetera

We note that the observer who uses this frameyidebnition, at restrelative to it.

A reference frame thatceleratesvith respect to an inertial frame is obviouslyt
inertial. This is, e.g., the case with the Earthause of its daily rotation as well as its
orbiting motion about the Sun (if we regard thaelatas an almost inertial frame).
However, since the acceleration of the Earth &tingdly small compared to the accel-
erations measured in typical terrestrial experimente may, for practical purposes,

29
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consider the Earth as an almost inertial frame.cdgsny observer moving on the
surface of the Earth with constant velocity willlegarded as an inertial observer

3.2 Momentum, Force, and Newton’s 2nd and 3rd Laws

In an abstract senskrce represents the effort necessary in order to dieistate of
motion of a body; in particular, in order to chartbe body’s velocity. The first idea
that comes to mind is to quantitatively identifyde with acceleration. We know
from our experience, however, that different bodjeserally require a different effort
in order to acquire the same acceleration, orsémee velocity within the same period
of time. (Try, e.g., to produce the same accelenatn a book and on a truck by push-
ing them!) This happens because different bodidshédifferentinertia, that is, dif-
ferent resistance to a change of their state ofamoT his property must therefore be
taken into account in the definition of force. Tastend, we introduce a new physical
quantity calledinear momentunfor simplymomentumof a body:

p=mv (3.1)

whereV is the velocity of the body. The coefficiemtis calledmassand is a measure
of the body’s inertia.

Newton’s Second Law of Motiqwe will often simply call it “Newton’s Law”),
which is valid only ininertial frames of reference, in essemsdinesthe force exerted
on a body as the rate of change of the body’'s maimeat timet :

~ dp
F=— 3.2
at (3.2)
If we make the assumption that the miaids constant, then
dp d, . dv
—=—(mvV)=m— .
dt dt dt
Hence,
F=ma (3.3)

where a= dv/ dt is the acceleration of the body at tin&Ve stress that the form (3.3)

of Newton’s law is valid for a body of constant maas well as that relations (3.2)
and (3.3) are valid on the assumption that thergbseneasuring the velocity and the
acceleration of the body is amertial observer. By using (3.3) and by taking into ac-
count the conclusion at the end of Sec. 2.8,nbishard to show that

the force on a particle is the same for all inerbdservers

(recall that inertial observers move with constalocities relative to one another).
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The vector equation (3.3) is equivalent to ¢hadgebraic equations, one for each
vector component. We write:

F=Fu-+Fu+Fu, a=au+ aut+ au,

Substituting these expressions into (3.3) and @uatorresponding components in
the two sides of this equation, in accordance {lit8), we have:

F,=ma , FK=mg, FE=mg (3.4

Now, as implied by the law of inertia, the charof the state of motion of a body
relative to an inertial observarequires an interaction of the body with the @sthe
world. The forceF is precisely a measure of this interaction. If bioely is not sub-
ject to interactions (i.e., is a free “particleRen F =0 and it follows from (3.3) that
the velocity of the body with respect to mertial reference frame is constant (since
the acceleration is zero). We thus conclude tras#tond law of motion is consistent
with the law of inertia, provided that both theaw$ are examined from the point of
view of an inertial frame of reference.

It is tempting to argue that, according to atve discussion, the law of inertia is
redundant since appearsto be just a special case of the second law:

Free particle= no interaction= no force< no acceleratior= constant velocity.

There is a subtle point, however: What kind of ebseisentitledto conclude that a
particle that appears to move with constant vejogie., with no acceleration) is a
free particle?Answer:Only aninertial observer, who uses amertial frame of refer-
ence! The purpose of the law of inertia is essbytia definethese frames anguar-
anteetheir existence. So, without the first law of nootj the second law would be-
come indeterminate, if not altogether wrong, siheeould appear to be valid relative
to any observer regardless of his or her stateatiom. One may say that the first law
defines the “terrain” within which the second lasgaires a meaning. Applying the
latter law without taking the former one into acobwould be like trying to play soc-
cer without possessing a soccer field!

According to (3.2), if a body is not subjectaiy force £ =0) its momentump
relative to an inertial frame is constant in timce, in this casedp/ dt=0. As will
be seen in Chapter 6, this is true, more genefallyanyisolatedsystem of particles,

i.e., a system subject to mxternalinteractions. For such a system génciple of
conservation of momentuisivalid:

The total momentum of a system of particles sulbgec external forces is
constant in time.

This principle is intimately related to a third lasf motion. Consider a system of two
particles subject only to their mutual interactighere are naexternalforces). The
total momentum of the system at timeeand t+At is
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P()=R+B=my+ my,
Pt+A) =P +p =mVy+ m\.
By conservation of momentum,
P()=P(t+At) = R+ B=HN+ 1 =

! -

P-P=-(R-P) © ADp=-2AT (3.5)
Hence,
AP __AP, = IimA—hl:—IimA—sz = ﬂl:_ﬂ%_
At At At-0 At A0 At dt dt
But, by (3.2),

- dp -
d_T:FlZ’ d% F

where F,, is theinternal force exerted on particte by its interaction with particl@,
while F,, is the force on particl2 due to its interaction with particle Thus, finally,

I:12 = _le (3-6)

Relation (3.6) expressékewton’s Third Lawor Law of Action and ReactiomNote
that this law is equivalent to the principle of servation of momentum, which prin-
ciple, in turn, constitutes the generalizationtod taw of inertia for a system of parti-
cles. Taking into account that Newton’s second (ewessence, thdefinition of the
concept of force) also is a logical extension ad flist law, we can appreciate the
great importance of the law of inertia in the axatim foundation of Newtonian Me-
chanics! (For a discussion of the axiomatic bakNewtonian Mechanics, see [1].)

You may have noticed that we defined momentwimch depends explicitly on
mass, without previously giving a definition of masself. We will now describe a
method for determining mass, based on the prin@pleonservation of momentum.
Consider again aisolatedsystem (i.e., a system subject to no externak&rcon-
sisting of two particles of masses, m,, which somehow interact with each other
(e.g., they collide or, if they are electricallyacged, they exert Coulomb forces on
each other, etc.). Assume that, within a time wrd@kent, the momenta of, andmp
change byAp, and Ap,, respectively. According to (3.5Ap, =—-Ap, or

mAY, = -mAY (37)

In terms of magnitudes,
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m AV = m[AY =

m, |AV]

m,  |AY

(3.8)

As experiment shows, the ratio of magnitudes onrigjig-hand side of (3.8) always
assumes the same value for given partiolegend m, , regardless of the kind or the
duration of their interaction. Moreover, the vesta@wv, and Av, are found to be in
opposite directions, in accordance with (3.7). Ehebservations verify that to each
particle in the system there corresponds a constanttitym, its mass, such that the
sum mVy, + m, retains a constant value when the particles aogesuonly to their

mutual interaction. This constitutes an experimlengaification of conservation of
momentum.

Now, relation (3.8) allows us to determine thgo my/m, experimentally by meas-
uring the ratio of magnitudes afv;, and Av,. Hence, byarbitrarily assigning unit
value to the mass of particle we can determine the mass of partithes follows: We
allow the two particles to interact for a time @ At ; then we measure the (vector)
changes of their velocities within this intervaldawe calculate the ratio of magni-
tudes of these changes. The result yields the mas$ particle2 numerically (since,
by definition, m; is a unit mass). In a similar way, we determine rtie@ssm of any
particle by allowing this particle to interact wihparticle of known mass. By measur-
ing the instantaneous accelerati@nof m we then find the corresponding instantane-
ous forceF on this particle by using Newton’s law (3.3).

In the S.I. system of units, the unit of masdkig=10° g while the unit of force is
1INewton=1N=1kg.m.s? .

Assume now that a body of masds subject to various interactions with its sur-
roundings, which interactions are represented dfasimely by the forceslfl, If2
The vector sum

YFE=)F=F+F,+

is theresultant force(or total force acting on the body. Newton’s second law then
takes on the form:

= dp -
E F=—=ma 3.9
dt (39)

Letay, ay, a;, be the components of the acceleratérof the body. According to
(1.10), the components of the resultant fofde arexF,, XFy, XF;, whereXFy is the

sum of thex-components of the individual forcds, F, ,---, and similarly forzF, and
>F,. By equating corresponding components on the tdessf (3.9), we have:
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>F.=ma, > F=ma, > F=ma (3.10)

As an example, assume that a body of mmas&kg is subject to the forces
F,=(31-1N andF, =(-1,3~1N . The resultant force is

Y F=F+F,=(24-2N

so that>F,=2N, ZF,=4N, XF~ -2N. By (3.10) we find the acceleration of the body:
éz(ax,ay, a)=1,2-1)m g,

A body is said to be iequilibriumif the total force on it is zera2F = 0. Note that
by “equilibrium” we do notecessarily mearest (v =0). According to (3.9), a body
is in a state of equilibrium if it does not accater(a =0) relative to an inertial ob-
server. If, however, the body is initially at regtan equilibrium position where the
total force on it vanishes, then it remains at tieste.

Conversely, a body may loeomentarilyat rest without being in a state of equilib-
rium. The total force acting on it will then caum® acceleration that will put the body
back in motion at the very next moment. For examplee throw a stone straight
upward, it will stop instantaneously as soon asaches a maximum height and then
it will start moving downward immediately, undeethaction of gravity. Another ex-
ample of momentary rest is that of a pendulum kdbeahighest point of its path.

We noted earlier that a body of finite dimensi@an be treated as if it were a point
particle if its motion is purely translational (i.¢he body is not subject to rotation).
Such a motion depends only on the resultant foncthe body, regardless of the loca-
tion of the points of action of the various indiva forces that act on this body. On
the contrary, as will be seen in Chapter 7, thetgoof action of these forcese im-
portant when one considers rotational motion, @srtiotion is determined by the to-
tal externatorqueon the body.

3.3 Force of Gravity

Near the surface of the Earth and in the absen@er oesistance, all bodies fall to-
ward the ground with a common acceleratign called theacceleration of gravity

and having a magnitudg = 9.8 m- s*. The force of gravitational attraction between

a body and the Earth is called tveight w of the body. Ifmis the mass of the body,
then, by Newton’s second law,

For larger distances from the surface of thehgdhe value ofy (hence also the
weight of a body) varies as a function of the dis&afrom the Earth. We cal andR
the mass and the radius of the Earth, respectiagig, we leth be a given height
above the surface of the Earth. We would like téedmrine the value of at this
height. According tdNewton’s Law of Gravitythe magnitude of the gravitational
force on a body of mass, located at a heigltabove the Earth, is
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w=G_Mm (3.12)
(R+h)

whereG is a constant, the value of which is experimentaditermined to be
G =6.673x 107 N.nf.kg™.
Taking into account thatv=mg, we find that

GM

g

Note that the ratis/m, which represents thgravitational field strengttat the con-
sidered location, also represents the acceleratiagravity, g. According to (3.13),
this acceleration is independent of the massf the body. Thusall bodies experi-
ence the same acceleration at any point in a gasiahal field regardless of the par-
ticular physical properties of each body (provideidgourse, that no forces other than
gravity are present).

3.4 Frictional Forces

Sliding friction (or simplyfriction) is a force that tends to oppose the relative onoti

of two surfaces when they are in contact. It isiaglative effect of a large number of
microscopic interactions of electromagnetic origimong the atoms or molecules of
the two surfaces. Practically speaking, these sesféelong to two bodies that are in
contact with each other (although true contaceigen possible at the atomic level!).

y N v=0 y N V0 —

I

1 —F

—h

k <—] 1
b b

Fig. 3.1 A box pushed to the right experiences statia {iglire) or kinetic (right figure) fric-
tion, depending on whether it is at rest or in motirespectively.

fs(—

Let us consider, for example, a box of weighiying on the horizontal surface of
a table (Fig. 3.1). The box is initially at restden the action of two forces, namely, its

weight and the normal reactioN from the table. This state of equilibrium implies
that the resultant force on the box is zefor W= <0N=—W.

We now push the box to the right with a fof€ethat may vary in magnitude. The
box “wants” to slide to the right but there is acie f opposing this motion. This
force, which is directed to the left, is the frati between the box and the surface of
the table. IfF is not large enoughf manages to balance it and the box remains at

rest. We say thaf is static frictionand we denote it byf,. Obviously, F + f,=0.
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Depending on the applied forde, the force fs varies from zero (wheff =0) to a

maximum valuef,

s,max "

WhenF exceedsf, in magnitude, the box is set in motion on thedahktcel-

S,max

—

erating to the right. The frictional force then eases fromf to a new, constant

s,max

value fk (also directed to the left) that opposes the nmptitois calledkinetic friction

The total force on the box during the motionHs = F + f,. If we assume that the
box moves in the positive direction of tkaxis, then

—

F:‘lf o =—fu

X

0,=Fo, f=-|f,

so that

—

F

tot

=Fax+(_fk)0x=(F_ fk) ax (314)

By dividing F,, with the massn of the box we find the accelerati@n of the box. In

tot

the case wherE= fy the resultant forcé,, is zero and the box moves with constant

velocity. If we withdraw the applied forcE , the kinetic friction fk decelerates the
body until the latter comes to a halt.

As found experimentally, the magnitudgnax of maximumstatic friction, as well
as the magnitudéy of kinetic friction, is proportional to the magniteiN of the nor-
mal force pressing one surface against the othauis,Tthe possible values of static
friction are

0< f < fo=uN (3.15)

while the value of kinetic friction is

fo=u N (3.16)

whereus andu are thecoefficients of friction(static and kinetic, respectively), with

Uk < us . Note thatus andu are dimensionlesgjuantities (i.e., pure numbers). These
coefficients depend on the nature of the two sedand typically vary between 0.05
and 1.5

We now describe an experimental method forrdeteng the coefficients of fric-
tion between two surfaces:
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Fig. 3.2 Experimental setting for measuring the coeffitseof friction.

Consider an inclined plane of variable anglen which plane we have placed a
box of massn (Fig. 3.2). For small values éfthe box is at rest, since the static fric-

tion fs balances the componemt, = mgsing of the weight along the plane. By

gradually increasing the anglewe notice that the box remains at rest until #mgle
exceeds a certain valde 6., after which the body begins to slide on the plane

The box is subject to three forces; namelywigight W= mg, the normal forceN

from the plane, and the frictiod (static fs or kinetic fk, depending on whether

v =0 or v =0, respectively). It is convenient to resolve thegheinto two mutually
perpendicular componentsy, = mgsing , along the plane, and, = mgcosg , normal

to it. Depending on the value 6fthe following two physical situations are possibl
a. For < 6., the body stays at rest. By the condition for Bloium,
D F=w+N+ f=0
or, in terms of components,

D> F,=0 = mgsind- f,= 0= mgsiv= f
> F,=0= N-mgcos¥= 0=> mgcog= N

By dividing the equations on the right, we get:

tané’:% = f.=Ntary .

But,
f,<f = Ntand<uy N = tand <y, .

S smax
In the limit cased=0. we havefs=fsmax and
targ, = 4, (3.17)

By measuring the anglt we determine the coefficient.
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b. For 0 > 6. the body accelerates along the inclined planefrtbigon is now ki-
netic. If we gradually decrease the anglee will find some valued,;” < 6. for which
the body moves with constant velocity. By Newtolaw and by taking into account
that the body does not accelerate, we have:

>F=w+N+f =0 .
Taking components, as before, we find:
mg sthy=f, =4 N ,mg c85=N.
By dividing these equations, we get:
tand, = (3.18)

The experimental fact that,” < . combined with (3.17) and (3.18) indicates that
u<us. This means thaffy < fsmax -
3.5 Systems with Variable Mass

In the case of a point particle or a body of camstaassm, Newton’s second law may
be expressed in two equivalent ways:

o]l

F=-—C (@ < F=ma (b

2|5

However, in the case ofsystenof particles relationky) is not applicable, since it is
not clear what exactly the acceleration vedorepresents (in Chapter 6 we will see
that this relation acquires a meaning by introdg¢ire concept of the center of mass).
Thus, in the mechanics of systems we generallyalagon @), in the form

o

d

F= (3.19)

o

t

where P is thetotal momentum of the system at timeand whereF is the totalex-
ternal force acting on the system at this instant (we mitive this equation in Chap.
6).

There are systems whaogarts have variable masses due to a redistribution of the
total mass of the system (which mass is assumée ¢tonstantfor the time interval
of interest). As an example, consider a movingf@tat on which sand falls at a rate
of a kg's (Fig. 3.3). We want to find the forcEé with which we must pull the plat-
form in order for it to move with a constant velycv .
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Fig. 3.3 A moving platform on which sand falls at a constate.

Let M be the (constant) mass of the platform. We walhe mass of the sand that
has already fallen on the platform at titpend we letdm be the additional mass of
sand that falls within an infinitesimal time intahdt. According to the data of the
problem,

G- kol (3.20)

Now, to use relation (3.19) we must first decidevtach system of masses it will be
applied. Thetotal mass of this system will beonstantin the time intervaldt, al-
though this mass will suffer redistribution. As aystem” we consider the three
massedM, m anddm At timet the massNI+m) moves with velocitw while the ve-
locity of dmis zero (this latter quantity has not yet fallericothe platform). At time

t+dt, however, the total masM¢m+dm) moves with velocityv. If P(t) and
P(t+ dt) is the total momentum of the system at these hstants, we have:

P(t)=(M+m)V+(dn)-0, Rt di=( M+ m di.
The change of the system’s momentum within the tmterval dt is

. . dP dm
dP= B(t+ d)— R )=(dm" &My g
P(t+ d) - Rd)=(dmv = o £

where we have used (3.20). According to (3.1B/ dt represents the total external
force on the system at tinhewhich force is none other than the for€ewe apply on
the platform. Hence,

ﬁ:g?V:aV (3.21)

Notice that the force in (3.21) is proportionaltbe velocity rather than to the accel-
eration (which here is zero)!
3.6 Tangential and Normal Components of Force

Recall from Sec. 2.6 that, in curvilinear motiom thcceleratioré is the vector sum
of a tangential componed, (tangent, that is, to the trajectory of the movuagticle)

and a normal (or centripetal) componeit, as seen in Fig. 3.4.
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<

Fig. 3.4 Tangential and normal components of acceleratiwhforce.

We write:
d=a+3 =a U+ 3, (3.22)
where
L. N (3.23)
dt yo)

(v= i|\7| ; p=radius of curvatur¢. Combining (3.22) with Newton’s law, we find an
expression for the total (resultant) forEeacting on a particle of mass

— N

F=ma=Fk+FK=FU~+F1 (3.24)
where
Y2

The tangentialcomponentF, is responsible for the change sgeed while thenor-

mal (or centripeta) componentlfN is responsible for the change aifection of mo-
tion.

If the total forceF is normalto the trajectory (that is, perpendicular to théowe
ity) of the particle, thefrr= 0 and, according to the first of relations (3.2B speed
of the particle is constant in tinfalthough the direction of the velocity does change
In other words, the particle executasform curvilinear motionA typical example is
uniform circular motion in which the total forceF is purely centripetal and always
passes through the center of the circular pathKgee3.5). By (3.24) and (3.25), and
by using (2.34), we have:

- V2 R

F= m-— 4, = mMRo” "y (3.26)
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p = R=constant
o = constant
v= Row = constan

Fig. 3.5 A particle executing uniform circular motion.

Exercise:A particle moves with constant speed on a plameeswnder the action
of a total force of constant magnitude. Show thatparticle performs uniform circu-
lar motion. Hint: What can you conclude regarding the radius of atuire?)

3.7 Angular Momentum and Torque

Consider a particle of mass moving along some curve in space (see Fig. 3.63. Th
instantaneous position of the particle is deterchibg the position vector relative

to the fixed originO of an inertial reference frame (we recall thasitn such frames
only that Newton'’s laws are valid). L&t be the velocity of the particle at some point
of the trajectory. The momentum of the particléhaét point isp=mv.

Theangular momentunof the particlerelative to pointO is defined as the cross
product

—

[=Fxp=m(FxV) (3.27)

Note that, in contrast to the momentum, the angml@mentumL is not an absolute
guantity since its value depends on the choice®féference poird.

The vectorL is perpendicular to the instantaneous plane définer and v, its
direction being determined by the right-hand rdket is, if we rotate the fingers of
our right hand in the direction of instantaneoustion of m aboutO, our extended
thumb points in the direction df (cf. Sec. 1.5). 19 is the angle between and v
(where0<@#<rx)andifr and v are the respective magnitudes of these two vectors,
the magnitude of the angular momentum is given by

‘E‘ =mrvsind (3.28)
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Fig. 3.6 The angular momentum vector is perpendiculanéomiomentary plane defined by
the position vector and the velocity.

We define a unit vectali normal to the plane af and Vv, the direction of which
vector (“up” or “down”) is chosen arbitrarily. Wec then write:

U

I::i‘I:

La (3.29)

where L is thealgebraic valueof L with respect tal. Note that, on the basis of the
right-hand rule, the unit vectar defines a positive direction of momentary rotation
aboutO. Thus, in Fig. 3.6 theounterclockwisenotion aboutO is in the positive di-
rection since we chose the direction wfupward (if we had chosen the downward
direction fora, then it would be the clockwise motion abéuthe one in the positive
direction). In Fig. 3.6 the particla moves in the positive direction, so tHat 0.

Fig. 3.7 The perpendicular distance of the reference ginom the axis of the velocity is
I=r (sing).

An alternative expression for the magnitudeanfjular momentum is found with

the aid of Fig. 3.7. We notice that #& |, wherel is the perpendicular distance of
O from the axis ofv. Equation (3.28) is thus written:

IC[=mvi (3.30)
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(Note that the vectot is normal to the page and directegtward i.e., toward the
reader. What would be the direction ofif we reversed the direction @f?)

The components of angular momentum are founhd thie aid of (1.23). IfXy, 2)
and (px, py, p,) are the components @f and p, respectively, then

a4, q
L=Fxp=[x y z|=Lu+ LU+ LUy
P Py B
where
L,=yp,-zR,, L=2zp- xp. L= Xp- VI (3.31)

In particular, if the motion takes place on theplane thenz=0 and p=0, so that
L,=L,= 0 andL is parallel to the-axis.

Fig. 3.8 Angular momentum of a particle executing circutetion.

Consider now the case where the particle ersaitcular motion of radiusR

aboutO (Fig. 3.8). We notice tha = z/2 and r = | = R. The angular momenturi
of mwith respect ta is a vector normal to the plane of the circle amdated in ac-
cordance with the direction of motion. By (3.28)(8r30), and by the relation=Rw,
we have:

|C[=mRv= mRw (3.32)

Returning to general curvilinear motion, we Fetbe a force acting om at a point

of the trajectory with radius vectdr (see Fig. 3.9). Theorqueof F relative to the
origin O of our inertial frames defined as the cross product

T=fxF (3.33)
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Fig. 3.9 Torque is normal to the plane defined by the pmsivector and the force.

The vectorT is normal to the plane af and F , its direction being determined by
the right-hand rule; that is, if we rotate the #ng of our right hand in the direction

that F wouldtendto rotatem aboutO if m were at rest, then our extended thumb will

point in the direction off . If 8 is the angle between and F (where0< 6 <) and
if r and F are the respective magnitudes of these two vedioesmagnitude of the
torque is

T|=rFsing (3.34)
u

Also, if ( is a unit vector normal to the plane bfand F (the direction of which
vector is chosen arbitrarily), we write:

U

T==[T|o=Tu (3.35)

where T is the algebraic value af with respect tdi.

Fig. 3.10 The perpendicular distance of the reference goinom the axis of the force is
I=r (sing).

An alternative expression for the magnitudéoofjue is found with the aid of Fig.
3.10. Given thatr sid=1, wherel is the perpendicular distance @ffrom the axis
of F, we rewrite (3.34) as

= FI (3.36)
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Finally, the components df are (show this)

Tx = sz_ ZFy ! Ty: ZFX_ XFZ’ -E: XFY_ yF (337)

Between angular momentum and total torque tea&ists a relation analogous to
the relationF = dp/ dt between linear momentum and total force. Diffeiggirtg the
angular momentum (3.27) with respect,tawe have:
d—E—E(fx ﬁ)—gx p + Tx@

dt dt dt dt

(note carefully that, upon differentiation, the @rdn whichr and p appear must be
preserved, since the cross product is not commedatBut,

%x P=Vxp=vx(mMy= "« y=0 .

Furthermore, by Newton’s law (3.2) and by the d&btn (3.33) of torque,

(3.38)

Exercise:Show that the torqu& of the resultant force om is equal to the vector
sum of the torques of all forces actingraricf. Appendix A).

Note that, in equation (3.38), and T must be takemwith respect to the same
point O, which is the origin of our inertial frame of reé@ce. Note also that (3.38) is
an immediate consequence of Newton’s law (3.2)pés not represent a new funda-
mental principle of Mechanics.

In the case wher€ =0, (3.38) yields:

dt _ 0 = L =constan.
dt

This leads us to therinciple of conservation of angular momentum

When the torque of the total force on a partictdative to some point, is zero,
the angular momentum of the patrticle relative tig fhoint is constant in time.

Even if such a point exists, however, there mapther points relative to which nei-
ther the torque of the total force vanishes, nerahgular momentum is constant!
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Exercise:An electric charg&®) is permanently located at the origihof our coor-
dinate system, while another chaggenay move freely in space. Ignoring the weight
of g, as well as the air resistance, show that thelanguomentum ofj relative toO
is constant. Would the same be true for the angantanentum ofj relative to a dif-
ferent pointO” ? (Remember that the location@fis fixed atO!)

3.8 Central Forces

Consider a particle of mass, moving on a curved path under the action of a total
force F . The instantaneous positionmfis determined by the position vectorwith

respect to the origim of an inertial reference frame. In general, thedédf varies in
space (and, in particular, along the patmpf This force is thus a function af. We
say that the particle is moving in aforce field F =F (7).

Imagine now that we are able to choose a meter@ointO (see Fig. 3.11) such
that

1. the line of action of always passes through regardless of the position of
the particlenin space;

2. the magnitude oF depends only on the distance: || of m from O.

By defining the unit vectod, in the direction ofr,

|~

0: =

r

=
ﬁ|ﬁl

we can express both these conditions mathematasifgllows:

F-FG, -—r (3.39)

where F(r) =J_r‘lf‘ is an algebraic value, the sign of which dependshe relative

orientation of F with respect tor . A force (more correctly, a force field) of therio
(3.39) is called aentral forcewith center aD.

Fig. 3.11 A particle subject to a central force.
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The motion of a particlen under the action of a central force has the falhgw
characteristics:

1. The angular momenturm of the particle, with respect to the cent@f the
force, is constant during the motion of m.

2. The motion takes place on a constant plane.

Indeed: The torque of with respect t@ is

Then, according to (3.38), the angular momentlinwith respect taO is constant.
Furthermore, the vectdr is normal to the plane defined IByand v . The constancy

of L, then, means that the aforementioned plane istainas well. We thus con-
clude that the motion takes place on a constanepla

O
T

Q q

Fig. 3.12 Coulomb force on an electric chamgdue to a charg® located aD.

A familiar example of a central force is theumnb force F experienced by an
electric chargey inside the electrostatic field created by anottergeQ located at
some fixed poin® (Fig. 3.12). According to Coulomb’s law [2],

F--L Q9 _Frq (3.40)
dre, 1

As mentioned previously (cf. Exercise at the en&et. 3.7) the angular momentum
of g with respect t@ is constant during the motion of this charge mfikld of Q.
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CHAPTER 4

WORK AND ENERGY

4.1 Introduction

In principle, by Newton’s second law we can prediet motion of a particle at any
momentt, provided that we are given)(the position and the velocity of the particle
at timet=0, and b) the force field within which the motion of therpele takes place.

In reality, however, the solution of the problemnist always easy, since Newton’s
law is not just a simple vector equation (don’tdexeived by its innocent-looking

form F =mal) but is asystem of differential equatians

By integrating this system for givenitial conditions(r =r, and Vv =V, for t=0) we
determine the position and the velocity of theipkrtat all t >0.

The difficulty in solving the problem direct{yith the exception of a few simple
cases) compels one to seek mathematical devicest,important of which — though
applicable under specific conditions — is frenciple of conservation of mechanical
energy This principle is an immediate consequence of fdais second law; that is,
it does not represent a new, independent postoldikchanics.

An even more general principle — also a consegel of Newton'’s law — is the
work-energy theoremn addition to its theoretical value, this theares particularly
useful in cases where frictional forces are preaendt therefore, conservation of me-
chanical energy cannot be applied.

4.2 Work of a Force

Fig. 4.1 Trajectory of a particle moving in a force field.

Consider a particle of mass moving in aforce field F(F) , wheref is the position
vector ofm relative to the origin of an inertial referencenfia (Fig. 4.1). Other forces,
not belonging to the above field, may also actlon particle. We callr the infini-
tesimal vector representing an elementary displac¢mf m along its trajectory, dur-
ing an infinitesimal time intervadt. As dt approaches zerar tends to become tan-

48
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gent to the trajectory; that is, it tends to acguire direction of the velocity of the
particle.

We define theslementary worlof the forceF , for the displacemendr of m, as
the dot product

dW = F. di= Fdsosd (4.1)

where F =‘If‘ and ds=|di|, with the understanding that, within an infinitesil time

interval, ds may approximately be considered equal to the len§tn infinitesimal
section of the curved path of We say that produces workiWin the time interval
dt. Depending on the sign of @yghis work is positive if0< 8 < 7 /2 and negative if
7l12<6<rx. Note, in particular, that

a force normal to the velocity does not producekyor
since, in this caseff=#/2 and co&=0, so thatdW=0.

We recall that iruniform curvilinear motion the speed of a partickeis constant

and thetotal force F onm is purely centripetal, i.e., normal to the velgciVe thus
conclude that

in uniform motion the resultant forde on a particle m does not produce work
during the motion of m.

Fig. 4.2 The pathAB in the force field is divided into a very largemioer of infinitesimal
displacements.

We now consider a finite pakB of the trajectory om. We divide the curved path
AB into a very large number of infinitesimal displaets dr;, dr, ,---, along which

the values of the force fiel& () that acts on the particle aF?;, If2 ,*++, as shown in
Fig. 4.2. The elementary works produced along tkhéesg#lacements are

AW = F-df,  dW= e dpee

Thetotal workof F(F) from A4 to B is
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W=dW+ dW+--= F dre B dpe= Y F dr

Since the displacements are infinitesimal, we negjace the sum with an integral:

wzﬁmnur 4.2)

Integrals of the form (4.2) are calléde integralssince their value depends, in
general, on the curve connecting two given paihésdB. Hencethe work of a force
on a particle traveling fromy to B is dependent upon the path followed by this parti-
cle from A to B(an infinite number of such paths exist for giymmnts A andB). In
other words, different trajectories fromto B correspond to different values of the
work of F . The case ofonservative forceso be introduced later, constitutes an ex-
ception to this rule.

E = motion

Fig. 4.3 Rectilinear motion of a body under the actiormaonstant force (among other
forces, not drawn).

Let us see a simple example. In Fig. 4.3 ttaylmoves on a straight line fromto

B under the action of aonstant(in magnitude and direction) forcé . Additional
forces, not drawn in the figure, act on the bodyctSforces are the weight of the
body as well as the normal reaction and the kirfetiion from the plane where the

motion takes place. We are interested here in tik of F alone, from4 to B. Tak-

ing into account that both the magnituélef F , and the anglé, are constant quanti-
ties, we have:

sz'f If-d?:ijcos@ds: Fcosﬁjf ds=

W = Fscosd (4.3)

wheres is the distancéB traveled by the body. In particulalV=Fs if F is in the

direction of motion §=0), while W= -Fs if F is opposite to the direction of motion
(6= n).

When a particle is subject to the simultaneaction of several force§,, F,,--,

as in Fig. 4.4the work of the resultant forcE equals the sum of the works of the
component forces
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Fig. 4.4 A patrticle subject to the action of several farce

Proof: The works ofF,, F, ,---, for a displacemerdr of the particle, are

E. dr’... .

o
=
I
=N
=
o
=
I
N1

The work of the resultant forcé = F, + F, +---, for the same displacement, is
dW= F.-di=(E+ F+-)-di= E- di+ F,- df+---= dW+ dW+---; g.e.d.

Now, letdt be the infinitesimal time interval within which tldésplacementr of a
particle takes place, and 1€ be the force acting on this particle in this ingr(for
an infinitesimaldt, F can be assumed to be constant). The elementakyafidf in
the intervaldt is dW = F- di. Thework per unit timgroduced byF is equal to

o AW

= (4.4)

and is called thpowersupplied by the agent that exerts the fofceWe have:

P= Y N
dt dt
P=F.v (4.5)

whereV is the instantaneous velocity of the particle. Wuek produced byF in the
time interval betweert; and t; is

w=| : Pdt= [ :( E-¥) di (4.6)

In S.1. units the unit of work isdbule(1J) = 1N.m =1kg.nf.s™, while the unit of
power is IWatt(1W) = 1J.s* = 1kg.nf.s . The units kW =10°W and IMW =
10°W are also used in applications.

4.3 Kinetic Energy and the Work-Energy Theorem

In the previous section we stated that a force abtmthe velocity does not produce
work. On the other hand, r@sultantforce normal to the velocity cannot produce a
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change ofspeed One is thus led to expect that there must be setadon between
the work of the total force and the change of spsedhat the vanishing of work im-
plies the constancy of speed, and vice versa.

We define th&inetic energyof a particle of mass moving at a speed:

E =5 mv (4.7)

If p=mvis the magnitude of the particle’s momentum, reta{j4.7) can also be writ-
ten in the equivalent form,

E, _P (4.8)

1
T2
<

F=ma

The elementary work of for a displacemendif of the particle is

dW= B di= mi%. dr= m&. dw mv d.
dt dt
But,
vav=Lav =L q 9= 4. 1oy g ve
2 2 2 dv

where v=|V| is the speed of the particle and where we have ($47). Thus,

dW=mvdv The work of F for a finite displacement ah from point4 to pointB
along its trajectorys found by integrating:

szde: njf vdw %T =

A

W:%m\éz—% my? (4.9)

Combining this with (4.7), we have:

W=E,-E,=AF (4.10)

Relations (4.9) and (4.10) constitute the matecal expression of theork-
energy theoremwhich states the following:



WORK AND ENERGY 53

The work of the total force on a particle (equaltbe sum of works of all
forces acting on the particle), in a displacemehthe particle from one point
of its trajectory to another, is equal to the changf the kinetic energy of the
particle in this displacement.

In particular, if the work of the resultant ¢eron the particle is zero, the kinetic
energy of the particle is constant and, by (4.f§ same is true for the particle’s
speed. This is what happens in uniform rectilinetion, where the total force is
zero, as well as in uniform curvilinear motion, whehe total force is perpendicular
to the velocity. In both cases the total work vaagand the speed of the particle is
constant.

Note that the work-energy theorem is an imntediansequence of Newton’s law;
it does not express a new, independent principMeaxfhanics. According to the defi-
nition (4.7), the unit of kinetic energy ikg.nf.s™ = (1kg.m.s)(1m) = IN.m =1J.
That is,Ex is measured in units of work, as was to be expdaotgaw of (4.10).

4.4 Potential Energy and Conservative Forces

Consider a particle of mass subject to a forcé= in some region of space. In gen-

eral, F varies from point to point in that region, eachnpaletermined by its corre-
sponding position vector relative to the origirO of coordinatesy y, 2) of an iner-

tial reference frame. We assume that the fdfcés dependent only on the position of
m in the region of interest (which is not the case,, with kinetic friction, the direc-
tion of which at any point depends on the direcbbmotion at that point). We write:

F=F(M)=F(xY,2) (4.11)

Strictly speaking, relation (4.11) representsrae fieldrather than just a single force.
Neverthelessye will continue to refer to “the forcefor brevity.

The work ofF when the particlen moves from poin# to pointB in space is
B -
W :jA F(7)-dr (4.12)

As stressed in Sec. 4.2, the value of the abowgyial is dependent not just on the
limit points 4 andB but also on theath followed bym from 4 to B (there is an infi-
nite number of paths connectidgvith B).

There is, however, a special class of forcesrénctorrectly, force fields) of the
form (4.11), the worlkV of which dependsnly on the limit points4 andB, regardless
of the path joining them. Such forces are saidetodmservative

Definition: A force of the form (4.11) is calleg¢onservativeif a function
E, () =E (X Y, 2 exists, such that the work & from 4 to B is equal to the differ-

ence of the values dg, at the pointst andB. Explicitly,
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W= F-di=E (1)~ E() = E, - Epo (4.13)

Given that thehangeof E, from4 to B is

AE, = E, ;- E, 4= final value minus initial value ,

relation (4.13) is written briefly:

W =-AE, (4.14)

The functionE (T) is called thepotential energyf the particlemin the force field

F(F) (we often say that the potential enefgyis associated with the conservative
force F ). As is obvious from (4.13), is measured in units of work.

If several conservative forces actrmaneach force is associated with a correspond-
ing potential energy. As is easy to show, the pga@kenergy associated with the-
sultantof a number of conservative forces is equal toallgebraicsumof the poten-
tial energies associated with the component fordesice, if F in (4.13) represents
the total conservative force an thenE, represents the total potential energy of that

particle in the force field® .

If additional,non-conservativéorces act on the partichg, these ar@otincluded in

the forceF appearing in relation (4.13), nor are they assediavith some potential
energy. In such a casé/in (4.13)represents the total work of thenservativdorces
only, notthe work of the resultant of all forces actingmon

We could have defineH, differently in order for (4.14) to be writteW=+AE, .
This simply means putting-E,) in place ofE, , i.e., definingE, with the opposite
sign. There is no particular physical consequemnceaing this! The choice of the
negative sign in (4.14) is purely a matter of cortian in order for the total mechani-
cal energy o (see following section) to be expressed as a sather than as a dif-
ference.

We also note the following:

1. LetE,(T) be the potential energy associated with the coatiee force F(r).
Then, the function

E, (T)=E,(F)+C

whereC is an arbitrary constant having dimensions of waiko is a potential energy
for the same forc& . Indeed, ifWis the work ofF , then

W=E - Ees=(E s+ O-(Fet 0= Ex E:.
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We notice that the definition of potential enerdipws for some degree of arbitrari-
ness, since we can add any constant quantity téutietion E () without altering

the physics of the situation (the forée is unaffected by this arbitrary addition to the
potential energy). Because of this arbitrariness,ane free to choosany point (or
anyplang of referencavhere the value oE, is assumed to be zero.

2. By the definition (4.13) it follows that theork of a conservative forcE , when
a particle travels from a poidtto another poinB, isindependent of the path connect-
ing these pointsHence, ifC; andC, are two different paths joininggandB, and if\W;

andW, are the respective works &f along these paths, then
V\/1=V\é: Ep,A_ Ep,B .

But, wait a minute: the work-energy theor¢#n10) similarly tells us thatV= E,g —
Exa , which is valid even if the forc& is not conservative! Careful, however: The
differenceAEx is dependentin general, upon the path joiniagand B, whereas the
differenceAE, doesnotdepend on it. This is due to the fact tBats a given function
of the position of the particle, which is generailyt the case witky (remember that
this latter quantity depends on speed, rather dmgomosition). We stress that

the work-energy theoremy=AEy (whereW is the work of theesultantforce
on the particlam) is of generalvalidity, regardless of the kind of forces acting
on m On the contrary, the relatid/= -AE, concerns the work afonserva-
tive forces only and doesot necessarilyepresenthe total work done om,
the latter work containing possible additional cidmitions from non-
conservative forces.

3. The work of a conservative forée along aclosedpath iszera This can be
shown as follows:

Fig. 4.5 A closed path partitioned into two open paths:
C, from A to B andC, from B back toA.

Consider a closed pa@and two arbitrary pointé, B on it (Fig. 4.5). Thus, the
path C consists of two segments; nameBy, from 4 to B, andC, from B back toA.
We write, symbolicallyC=C;+C, . Then, the workV alongC is the sum of work¥\
andW; alongC; andC; , respectively:

W:W"'WZ( I-:p,A_ L:p,B)"‘( EB,B_ %A):O'

In general, the work along a closed path isesgnted by alosed line integralln
particular, for a conservative forde we have:
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W:SBTZ-orr:o

where the little circle on the integral sign iraties that the path of integration is a
closed curve.

We remark that the above-stated propertiesonkervative forces may in fact be
regarded as definitions of the concept of a coremy force, equivalent to (4.13)
(see, e.g., [1]).

4.5 Conservation of Mechanical Energy

Consider a particle of masa moving from point4 to point B in some region of

space, under the action of a force (more correatfgrce field)F which is the resul-
tantof all forces acting om. According to the work-energy theorem, the wiviof

F equals the change of kinetic energyraf
W=AE = Ek,B_ Ek,A (4.15)
We stress again that (4.15) gives the work ofréselltantforce, regardless of whether

this force is conservative or not. Now, if it happehat the total forc& is conserva-
tive (which means thatll component forces om are conservative) then the work of

F can be expressed as

W=-AE,=E .- E (4.16)

whereE,; is the total potential energy of Equating the right-hand sides of (4.15) and
(4.16), we have:

Ecat Epa=Ecst Eps (4.17)

Relation (4.17) is valid for any two poinsand B between which the motion oh
takes place. We thus conclude that the quantity

E-E + Ep:%m\?+ E( (4.18)

which is called théotal mechanical energgf min the force fieldF , is constantlur-
ing the motion oMmin that field.

The above conclusion leads us to phnieciple of conservation of mechanical en-
ergy.

If all forces acting on a particle m are conservati the total mechanical en-
ergy of m retains a constant value along the particle’s tag@y.
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We now see the logic behind the term “conservatoree”. For non-conservative
forces (such as, e.g., kinetic friction; see Set) ¥ is not possible to define a poten-
tial energy, thus also a total mechanical energynsérvation of mechanical energy
must therefore be reexamined when such forcesrasert.

So, how do we handle the case where a partide subject to the simultaneous
action ofboth conservativeand non-conservative forces (such as, e.g., gravityan

resistance, respectively, for a falling body)? Eetbe the total conservative force on

m, and letF’ be the total non-conservative force on this prtithe resultant of all
forces ommis

—

F,=F+F

tot —

and the work of this force frootito B is
W= BFH dr = BFH dr + BFH' dr 4.19
J-A o O J-A -dr J-A Har (4.19)

The first integral on the right is equal to thefeliénce Epa— Eyg), whereE, is the
potential energy associated with the conservativeefF , while the second integral
represents the wol/’ of the non-conservative fordé’. Furthermore, by the work-
energy theorem, the wok of the resultant forc@t is equal to x g—Ex 4). Relation
(4.19) is thus written as

ot

Ece— Eca=(E a— Egp+ W =

W'=(E s+ E,e) - (Bt E;)=A(E+ E) (4.20)

We therefore conclude that

if non-conservative forces are present, the S&xE,) is not constant, in
general; specifically, this quantity changes byaanount equal to the work of
the non-conservative forces.

An exception occurs when the non-conservatbreelsdo not produce worki.e.,

whenW' = 0. This is the case when the total non-conservdtwee F' is normal to
the velocity ofm. It then follows from (4.20) that the suf.$E,) is constant:

A B +E, ¥ 0 E+ E =constant, wheW'=0.

We may thus express the principle of consesmatif mechanical energy more gen-
erally, as follows:

If the non-conservative forces that act on a p&tibo not produce work, the
total mechanical energy of the particle is constant
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For example, we apply conservation of mechanicatgnn the study of the motion
of a pendulum (see Problem 25) despite the facttttigabob of the pendulum is sub-
ject not only to the conservative force of grawtyt also to the tension of the string.
This tension does not produce work, however, sintealways perpendicular to the
velocity of the bob (explain why).

Note: Equation (4.20) may be interpreted more generabyfollows: Assume that
the total force acting on a particle can be writhsra sum of two forces; and F',

where F is conservativeand is associated with some potential en&gywhile F’
may be ofany kind, i.e., conservative, non-conservative, ohwitixed conservative

and non-conservative components. Then, accordin@.®D), the workW’ of F’
equals the change of the syi+E)).

4.6 Examples of Conservative Forces

The following examples demonstrate a method fomahg that a given force field is
conservative. Specifically, we evaluate the wivlof the force for an arbitrary path
from A to B and then use equation (4.13) to read off the pieleenergyE, , if it ex-
ists. The existence &, automatically proves the conservative propertyhef given
force field.

1.Force of gravity

Near the surface of the Earth the acceleragjonf gravity is practically constant

over large regions of space. Hence, in accordaritetie results of Sec. 2.5, the mo-
tion of a body under the sole action of gravityesmiplace in a constant plane — say,
the xy-plane — perpendicular to the surface of the Eavtiere thex-axisis horizontal
while they-axis is vertical and, by arbitrary choice, directed upivésee Fig. 4.6).
The y-coordinate specifies the instantaneous height lathwa particle is located
above an arbitrary horizontal reference level aictvly=0. With the chosen upward
direction of the vertical axis, the particle is abar below the reference levelyit0

or y<O0, respectively. In a 3-dimensional Cartesian coaté systemx vy, z) the z-
coordinate of the particle has the fixed vata®, where the-axis (not shown in Fig.
4.6) is normal to the page and directed towardehéer.

y

a reference leve

X

Fig. 4.6 Motion of a body near the surface of the Eartigar the sole action of gravity.
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The weight of a particle of massis a force perpendicular to the surface of the
Earth (thus parallel to theaxis) and directed downward:

F =mg=-mgy=(0,— mgO0)

(thex- andz-components of are zero). On the other hand, an elementary displa
ment in space is written, in general,

dr =d(xQ + Yy + Zy)= ( dXy+( dy yr( 9z 6= ( dx dy ).

Herez is fixed, so thatiz=0. Thus, an elementary displacement of the partiolés
trajectory is written:

dr =(dx) G +(dy Y= ( dx dy0).
Then, by using (1.19),
F.dr = -0x+ —mg Jy+ -096- mgd.
The work of F when m moves fromd to B along its trajectory is
B - B B
W:jA F- d”rz—jA mgdy= - miA de— mgoy- Y =
W=mgy—- mgy (4.22)

Is the forceF conservative? In order for it to be, one shouldble to find a func-
tion E,(F), thepotential energy of m in the gravitational fieldtbé Earth such that

W=E ,-E5s-

By (4.21) we see that such a function indeed exists

E,(y) = mgy (4.22)

More generallyE,=mgy+C, whereC is an arbitrary constant quantity. We can elimi-
nate C by (arbitrarily) requiring thaEy,=0 at the reference levgl=0.

Exercise:Show that, if we choose tliwnwarddirection for they-axis, then rela-
tion (4.22) must be rewritten ds, (y) = — mgy.

According to the principle of conservation oechanical energy, the total me-
chanical energy ofm remains fixed as the particle moves under the aaifogravity
(if we ignore non-conservative forces such asesistance):
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E=E+E, =% mv + mgy= cons (4.23)
Equivalently, for any two pointd andB,
1, 1
E,=E, < 5 MW+ mgy=- my + mg) (4.24)

Exercise:By using (4.24) show that, in a free fall from agie h, a body acquires a
speed equal to

v=./2gh .

Will this result be valid if air resistance is takieto account?

2.Elastic force

~

u

X
A
rd

Xx=0

@)
A TL
) 2o}

=l

> X

m
X
Fig. 4.7 A particle subject to an elastic force.

Consider a particle of magsmoving along the-axis under the action of a force

F = —kxQ (4.25)

wherek is a positive constant (Fig. 4.7). A force of tlypd (4.25) is calleelastic
force its physical significance will be studied in Chexps.

The elementary displacementobn thex-axis is written:
dr =(dx) @ .
Thus, by applying (1.19) for two vectors havingazgrandz-components,
F-df = —kxdx .

The work of F for a displacement ahfrom point4 to pointB on thex-axis is
_(B= _ B 1., 1
W=[ F-di=-[ hoxebe= 2 o = Kk .

Now, in order forF to be conservative, one should be able to findtargial energy
function E, such that

W=E ,-E5s-
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Indeed:

E.(%) :% % (4.26)

where we have arbitrarily demanded tBgt0 atx=0. By conservation of mechanical
energy,

E=FE + Epzém\h—; kx= cons (4.27)
3.Coulomb force
d, r -
Qe— > F
dar

Fig. 4.8 Motion of an electric charggin the Coulomb field produced by another chapge

The force on an electrically charged particlecloargeq, inside the electrostatic
field created by another char@e(Fig. 4.8), is given by equation (3.40):

F k3 g
r

F(n g (4.28)

where k=1/4reo in S.1. units. Given thadi, =7 /r (wherer =|r|), (4.28) is written:

g-FO ¢
r

If dr is an elementary displacementgadn its trajectory,

Eoar="Drgr
r
But,
T U I | 1d (? 1
r-dr ==[(dr)-Fr+r-di]==d-r)==d (2 :——%ir:—z r=rdr .
2[() ]2()2()20Ir 2()1

Hence,

F dF:mrdr:F(r)dr.

r
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The work of F for a displacement af from point4 to pointB on its trajectory is
B _ B Bdr 1 1
W=[ F.di=[ F(rdr= qujAF: kQ({a—aj =

w= k29 _ Q4 (4.29)

Fa I's

The forceF is conservative if there existgatential energyg, of gqin the Coulomb
field of Q, such thatW=E, o—E, g . The functiorE, is easy to read off from (4.29):

E(r)= k% (4.30)

where we have arbitrarily assumed tBgt0 at an infinite distance frolQ, i.e., for
r=o0. We conclude that the electrostatic Coulomb fogce conservative force.

Note: Due to the symmetry of (4.30), this relation euakpresses the potential

energy ofQ in the Coulomb field ofy. For this reason one says that (4.30) represents
the potential energy of theystenof charge€Q andq (see [2], Chap. 5).

4.7 Kinetic Friction as a Non-Conservative Force

dr _

T
L B

Fig. 4.9 Kinetic friction is always directed opposite teetvelocity of the moving body.

Kinetic friction (we here denote ) is always opposite to the velocity of a parti-
cle, thus opposite to the elementary displacentgnbf the particle on its trajectory

(see Fig. 4.9). This means that the elementary wbrk for the displacemendr is
always negative:

dw= F-di<0 .

Hence, the work of alongany path is negative. In particular, for a path repnése
by a closed curve we have:

Sﬁlf-df<0.

That is, the closed line integral & is different from zero. According to what was
said in Sec. 4.4, this result indicates tkmtetic friction cannot be a conservative
force
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It is meaningless to ask whettstatic friction is or is not conservative, given that
this force does not produce work (why?). In Chafteve will see that we may use
conservation of mechanical energy for rolling bedie spite of the presence of static

friction.
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CHAPTER 5

OSCILLATIONS

5.1 Simple Harmonic Motion (SHM)

In this chapter we will study a special type oftiletear motion calledsimple har-
monic motion(SHM) or harmonic oscillation It is a kind ofperiodic motion in the
sense that it consists of a continuous repetitibra @ertain prototype motion or
“cycle”. This motion may describe a physiedtbration, such as that of a mass-spring
system or, to a good approximation, of a pendulum.

Fig. 5.1 The oscillatory motion of the body takes placeuMsenx= —A andx=+A.

The motion is confined to a section of #axis limited by the pointx=—A and
x=+A (Fig. 5.1). Thedisplacemenk of the moving body relative to the orig is
given as a function of time by an expression of the form

x=Acos@t+a) (5.1)

whered andw are positive constants whiteis a constant that may assume any real
value. The constant$ andw represent thamplitudeand theangular frequencyre-
spectively,of the SHM, while the anglet+a (in rad) is called thephase The angu-

lar frequencyw has dimensions of inverse time in orderdarto bedimensionless.

Note that we could have described the sameomdiy using a sine function instead
of a cosine one:

x=Asin(wt+f) (5.2)
This, however, reduces to the cosine form (5.13dding f=a+ /2.

An effective way to visualize the kind of matidescribed by (5.1) is the following
(see Fig. 5.2). Imagine a particle executing unifaircular motion on they-plane,
with constant angular velocity. We call4 the radius of the circular trajectory and
we assume that the motiondasunterclockwiseThe centelO of the circle coincides
with the origin of our coordinate system; thussthircle intersects the-axis at the
points x= —-A and x=+A . At the moment=0 the particle is located at some given
point Py of the circle, while at the (arbitrary) momerthe particle passes from a point
P. Between the moments0 andt the position vector of the particle sweeps out an
angleP,OP=wt. Hence, the angle between the position vectortlamg-axis at timet
is p(t)=wt+a [see relation (2.39)]

64
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Fig. 5.2 As the poinP performs uniform circular motion, its projectigrexecutes
SHM between-A and+A.

Ast increases indefinitely, the poi# representing the instantaneous position of
the patrticle traces out the circle repeatedly wibhstant angular velocity. At the
same time, th@rojectionof P onto thex-axis oscillatescontinuously along the axis
between the pointx= —-A and x=+A. The valuex of the projection oP at timet is
given by the relation

X(t) = Acosp ()= Acospt+a .

We thus see that, as the palhimoves counterclockwise on the circle, with constant
angular velocityw, the projectiorx of P executes SHMvith angular frequency and
with amplitude4 equal to the radius of the circle. Furthermore, ithetantaneous
value of the angle(t) gives the phase of the SHM. In particular, thei@ap(0)=a of
the phase at=0 is called thenitial phase

Theperiod T of a SHM is the time required in order for the dating body to pass
from the same point twice, moving in the same directiokquivalently,T is the time
required in order for the poimit to describe a full circle, or, in order for the pias

vector of P to sweep out an angler.2Thus, the angular velocity of the circular mo-
tion, equal to the angular frequency of the SHM, is

w=— (5.3)
[see (2.40)]. In the course of a period, the pludisee SHM increases byr2 Indeed,
p)=ot+a = et+T)=o(+T)+a=p()+oT=p(1)+27 .

Thus, X returns to its initial value:

X(t+T)= Acosp (t+ T)= Acosp (t+ Z F Acos (> xt .
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XA

Fig. 5.3 Graph of the SHM (5.1) far= —=/2.

For the particular value= —/2 of the initial phase, relation (5.1) is graphiica
represented as in Fig. 5.3. Notice that the samaphgdescribes the sine function
x=Asinwt, which is of the form (5.2) witfi=0.

Given that the oscillating body executes a deteposcillation within the timé& of
a period, how many oscillations does the body eteetuthe unit of time? Equiva-
lently, how many complete revolutions does the pfimake along the circle in the
unit of time?

Assume that time is measured in some unjtwlherezr could mean seconds, min-
utes, days, months, years, etc. We think as fotlows

Time T (measured irr) corresponds to 1 oscillation or 1 revolution;
time 1Ir corresponds to (sayy oscillations oM revolutions.

Then,

=

1 N_1
1r N r T

The quantity

f= (5.4)

1
=

is called theérequencyof the SHM. In S.I. unitsf is measured is™. This unit is also
calledhertz(Hz) or cycle per secondBy combining (5.3) and (5.4) we have:

T

The angular frequenay is measured imad.s™.

5.2 Force in SHM

Consider a body of mass, performing SHM. Relation (5.1) gives the displacatne
of mfrom the center of oscillatio®, as a function of timé& The velocity and the ac-
celeration oimare given by (2.1) and (2.3), respectively:
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v=vl, a=auy,

where the algebraic valuesand a of the two vectors are

V:%:—wASin(a) t+a)
dt
and
a:%’:—a)zACOS@Ha):—a)ZX

By Newton'’s law, theesultantforce onmis

—

F=ma=may=- mw® xy= Fy.

The algebraic valuE of the total force is

F=-kx
where we have put
k=mw’ < o= K
m
Relation (5.5) now yields:
f—ﬁ—i\/g
2r 2z \m
T:2—ﬂ:27z m
@ k
F—s , <«—F
X
x<0 x=0 x>0

F>0 F=0 F<O0

Fig. 5.4 Total force on a body executing SHM.
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(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

From (5.8) we see that in SHM the total foreealwaysoppositeto the displace-
ment fromO and is directed toward (see Fig. 5.4). The poir@, wherex= 0, is
called theequilibrium positionof SHM, sinceF= 0 there. This doesot necessarily
mean that the body is at rest@tbut that the resultant force on it vanishes at tha
point. If, however, the body is initially at regtthe equilibrium positiorO, it will re-

main at rest there.
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5.3 Energy Relations

With the aid of (5.6) we can find an expression tfog kinetic energy of a body of
massm, executing SHM:

Ek:%mv":% mp’ Asin®(@ Ha)z—; mw?’[ A- Acos’ ta)].

By using (5.1) and (5.9) we get:

E, =%k(A2— %) (5.11)

We notice thaEg obtains its maximum value at the equilibrium pasitix=0) and
vanishes at the extreme points{A) of the oscillation.

It follows from (5.8) that theesultantforce F on the oscillating body is alastic
force of the form (4.25). As we showed in Sec. 4.6 [sdation (4.26)] the potential
energy of the body is

£ :%kxz (5.12)

We notice thak, vanishes at the equilibrium positiox=Q) while it obtains a maxi-
mum value at the extreme poinks-£A) of the oscillation.

From (5.11) and (5.12) we can find the totakchamical energy of the oscillating
body:

E-E + Ep:%k,& (5.13)

Notice that this quantity assumes a fixed valuenduthe SHM, in accordance with
the principle of conservation of mechanical energy.

5.4 Oscillations of a Mass-Spring System

Springs are often used as instruments for produsidlyl. Before we see how this is
done, let us say a few words about the force agm@xerts on a body connected to it.

The spring may be in one of the following thsta&tes:

1. In itsnatural length which occurs when the spring is not subject ttemral
forces. The spring then, in turn, does exert a force on a body connected to it.

2. Inextensiorby Al relative to its natural length. The spring thes haendency to
return to its natural length; it thus exerts a éoF; oppositeto the extension, of mag-
nitude KAl , wherek is called thespring constant
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3. Incompressiorby Al relative to its natural length. The spring aga&nds to re-
turn to its natural length, thus it exerts a fofgeoppositeto the compression, also of
magnitudekAl.

a. Horizontal oscillation

Kk
I_/\/\N\/W m
X

o g, X

X

Xx=0

Fig. 5.5 Horizontal oscillation of a mass-spring system.

The body, of mag®, is connected to a spring of spring constaahd moves along
the x-axis on a frictionless horizontal surface, as shawfig. 5.5. At the location
x=0 (pointO in the figure) the spring has its natural lengtld ¢hus exerts no force on
m. At a positionx=0, the spring suffers deformation (extensior>0 or compression
if x<0) and exerts a force an, given by

lfk:—kxfsz E U (5.14)

where Fi= —kx is the algebraic value df, . We note that~, is directed left whem
Is to the right ofO (x>0), while its direction is to the right whenis to the left ofO
(x<0). In any caseF, is directed toward the equilibrium positiéh at which position

F. vanishes.

Let us callF the resultantforce onm. Clearly, F = F, since the other forces,

namely, the weight of the body and the normal readrom the horizontal surface,
cancel each other (remember that there is nodntiHence,

F=-—kxii=FlU =
F =—kx (5.15)

whereF is the algebraic value df . The fact that théotal force onm is arestoring
force of the form (5.15) indicates that the motion of thody is a SHM along the
axis, centered ab [cf. equation (5.8)]. The angular frequency, tleeigd and the fre-
guency of oscillation are given by (5.9) and (5:10)

(5.16)

Note that these quantities do not depend on théitaig of the SHM.
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The potential energy of the body at the positics

E =%ka (5.17)

p

If A'is the amplitude of oscillation, the total mecltahienergy of the body is equal to
1
E=E + Ep:EKAE (5.18)

This quantity assumes a constant value in the eanfrshe SHM. (Would this be the
case if friction were present?)

b. Vertical oscillation
The spring is initially free and has its natueagthl, (see Fig. 5.6). We then attach

to the spring a body of mass When the body is1 equilibriumat the positiox=0 of
the verticalx-axis, the spring is extended Ay and exerts on the body an upward ver-

tical force equal tF,' = kA |, which force balances the weighg of the body:

kAl=mg (5.19)

Fig. 5.6 Vertical oscillation of a mass-spring system.

We now displace the body a distaxcabove the equilibrium position (that is, we
raise the body from its initial positiax=0 to some positiox>0). The extension of
the spring is now Al — X) and the upward force on the body by the spring is
Frx=k (Al —x). Thetotal force on the body is

F=F -mg=kAI-x3) mc (algebraic value) .
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By making use of the equilibrium condition (5.18k find:
F=-kx (5.20)

Equation (5.20) was derived for0, i.e., for a displacement af abovethe equi-
librium position. Consider now a displacembrtowthe equilibrium position, at<0.
The extension of the spring is thexl + |x|= Al —x, as before, and our previous ex-
pressions for the upward forég by the spring and for the total foreeon m are still
valid:

szk(AI+|x|)=k(AI—x),
F=F-mg=KkAI-X-mg=- k>

where the equilibrium condition (5.19) was agaiadis

In conclusion, theotal force on the body is a restoring force of the fqBR20),
wherex is the displacement from the equilibrium posititinder the action of this
force the body will execute SHisbout its equilibrium positiogat which position the
extension of the spring 1§l ). The angular frequency and the period of oslifaare

w=|X | T:izzﬂ,\ﬁE (5.21)
m f k

The potential energy of the body at a posikids
E, =% kX (5.22)

while the total mechanical energyrafis

E=ﬁ+%=%k& (5.23)

where4 is the amplitude of oscillation. We note again thas a constant quantity.

The forceF, exerted by a spring is conservative and is assatiaith a potential
energye, (y), wherey is the deformation (extension or compression) efspring.
Indeed, this force is algebraically equal to

F. =-ky

where we assume thgt0 for extension angi<O for compression. As in Example 2
of Sec. 4.6, the work oF, for a displacement of the point of applicatiortft force
from point4 to pointB is

W= [7R-dr=[Thydy=2 ke~ k= B A B F

and therefore,
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1
E,(Y) =5 ky (5.24)
where we have assumed that the potential energghemfor zero deformation of the
spring.

By using (5.24) we can derive the expressia@2bfor the potential energy in a
vertical oscillation, in the following alternatiweay: Thetotal potential energy, of
the oscillating bodyn is the sum of the potential energy due to gravity and the
potential energ¥, « due to the deformation of the spring. By arbityaaissuming that
Ep.m vVanishes at the equilibrium positi®r0, and by using equation (4.22) of Chap. 4
with x in place ofy, we have:

E,m(X) = mgx.
The deformation (extension) of the springyisAl —x, so that, by (5.24),
1
E,«(X =5 K(A 1= %)%,
The total potential energy aiis
1 1 1
E,(X0)=E,(X+E (3= mger K\ + ¥=( mg K)I *E k?x,t—2 (k)2
But, by the equilibrium condition (5.19)ng—kAl=0. Also, the termk (Al)%/2 is a
constant quantity, independentgfwhich may be omitted from the expression for the
potential energy. Thus, finally,

1
E, = Epnt Epi= KX,

in agreement with (5.22).

5.5 Oscillation of a Pendulum

The oscillation of a pendulum followagproximatelythe laws of the SHM for small
angles of deflection of the string from the vertica

Fig. 5.7 Oscillation of a pendulum.
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The massn in Fig. 5.70scillates symmetrically about the equilibrium piasi O.
For small angle® of deflection, the ar©®4 may be approximated by a horizontal
rectilinear segment of lengte=I6, wherel is the length of the pendulum string and
wheref isin rad. Here,s andé represent the displacement from the equilibriuni-pos
tion. In particulars>0 andd>0 whenm is to the right ofO (in accordance with the
positive direction of moving away from, as defined by the unit tangent vectgr)

while s<0 andd<0 whenm is to the left ofO. The restoring force that is responsible
for the oscillation is théangentialcomponent of the total force an, that is, the
component parallel to the velocity i

The massnis subject to two forces; namely, the weighf of magnitudeng and
the tensionf of the string. The total force anis F =W+ f . As is easy to see, at
any pointA the tangential componen?tr of F is equal to the tangential component
W, of the weight:

—

F, =W, =-mgsind 4= EU

where F, = -mgsiné is the algebraic value of;. For sufficiently small values of
the angled, we can make the approximatismé = 6. Hence,

F, =-mgl = —(?j s (5.25)

(since s=l0). Relation (5.25) is of the form (5.8), within place ofx:

=-ks where kz@.

This means that, under the actionfgf, the massn executes SHM about the equilib-
rium positionO. The angular frequency and the period of osaillatire

R R

Note thaiw shouldnot be interpreted as the angular velocity of theut&ncmotion
of m for finite values off ands. Indeed, since that motion is not uniform (whyg t
corresponding angular velocity cannot be a consiantontrast to the angular fre-
quencyw in (5.26).

5.6 Differential Equation of SHM

As defined in Sec. 5.1, SHM is a special kind aftitmear motion in which the dis-
placemenk from the equilibrium positio® is given as a function of time by equation
(5.1). By Newton’s law, then, thital force on the oscillating body is rastoring
force proportional to the displacement [see equatiod)[5.



74 CHAPTER 5

Conversely, let us assume that a particle afsmas subject to a total force of the
form (5.8): F= —kx According to Newton’s law, this force is equalkegma, where

dv d ( dxj o x
A=—=—| — | =—— .
dt dt\ dt) dt?
We thus have:
2 2
md—zxz—kx = d—2X+—kx:O.
dt d©= m

Setting w’=k/m [comp. equation (5.9)] we finally have:

2
%& 0*x=0 (5.27)

Relation (5.27) is aecond-order differential equatidior the functionx=x(t). Its
general solutionmust depend otwo arbitrary constants (or parameters). As can be
verified by direct substitution into (5.27), thislgtion is precisely the function

x=Acos@t+a)

by which the SHM was defined in Sec. 5.1. The amg@éA and the initial phase
are the two parameters which the solution of (5i2 7¢quired to contain.

In the case of the pendulum (Sec. 5.5) theabileis played by the ars=l6, which
arc is almost rectilinear for small angkesGiven that
d’s  do . ..
—=1— (sincd is constant) ,
d?  dt? ( )

the differential equation (5.27) within place ofx reduces to

2
%m@:o (5.28)

where w?=g/l [see eq. (5.26)]. The general solution of (528 the form
6=6,cospt+a),
whered, is the maximum angle of deflection of the stringnh the vertical.

In the real world, oscillations are not as demgs those described by (5.27). Thus,
in addition to a restoring force of the form (5tBe body may be subject to a fric-
tional force and/or an applied periodic force. Thphysical situations are referred to
as damped oscillationgnd forced oscillations accordingly [1-3] and are described
mathematically by linear (homogeneous or non-homeges, as the case may be)
differential equations of the second order [4].
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CHAPTER 6

SYSTEMS OF PARTICLES

6.1 Center of Mass of a System of Particles

The dynamics of a system of particles presentstiaddi difficulties compared to the
single-particle case. What makes things more cara@d is the fact that, in the case
of a system one must distinguish between two kofdsrces; namelyinternal forces

— those exerted between particles of the systemd-external forcegesulting from
factors not belonging to the system. As we will,sgigen a system one may find a
certain point of space, called thenter of massf the system, which movess if it
were a particle of mass equal to the total magbekystem and subject to the total
externalforce acting on the system.

Consider a system of particles of massesn,, mg,... (Fig. 6.1). Assume that, at
some particular moment, the particles are locatetthea points of space with corre-
sponding position vectorg, f,,r;, -+, relative to a reference poitt which is typi-

cally chosen to be the origin of an inertial fraof@eference.

X

Fig. 6.1 A system of particles and its center of m&ss,

The total mass of the system is

The center of massf the system is defined as the paihbf space having position
vector given by the equation

e =

o . 1 .
(mlr1+m2r2+'”):_2mr (6-2)

Z||—\

In relation (6.2) the position vectors of tharticles and of the center of mass are
defined with respect to the fixed orig of our coordinate system. If we choose a

76
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different reference poir®’, these position vectors will, of course, changewklver,
as will be shown in Appendices A and B, fhasitionof the center of mags relative
to the system of particlesill remain the same, regardless of the choicestdrence
point.

If %,VYi,z) and &, Yc, Zc) are the coordinates of andC, respectively, we can
replace the vector relation (6.2) with three scatprations:

1 1 1 |
Xc—ﬁime, x—ViZmy, @—VZ m: (63

o) m C 2m

. ® . o X
X X X,
- a _—

Fig. 6.2 A system of two massesand 2n.

As an example, consider two particles of massgan and m=2m, located at
pointsx; and x, of thex-axis (Fig. 6.2). Calla= x,—X; the distance between these
particles. The total mass of the systenMrsm;+m,=3m. From relations (6.3) it fol-
lows that the center of ma&sof the system is located on thexis. Indeedy;=z;=0
(i=1,2) so thatyc=zc=0 (they andz-axes have not been drawn). Furthermore,

Xc=ﬁ(nl>i+ nw)=—;( X+2 %)= >1<+—§ i

where we have used the fact that x;+a . Thus, the center of ma€sis located at a
distance @/3 from m. Notice that the position & relative to the system of particles
does notdepend on the choice of the reference pointith respect to which the co-
ordinates of the particles are determined.

As the above example demonstrates, the posmicdhe center of mass does not
necessarily coincide with the position of a paetiof the system. (Give examples of
systems in which a particle is locatedCatas well as of systems where no such coin-
cidence occurs.)

6.2 Newton's Second Law and Conservation of Momeumin

Let v, V,,---, be the instantaneous velocities of the particlesm,, ..., of a system,
at timet. Thetotal momentunof the system at this time is

P= _pl+ T)2+...: n‘l'i“_ n}“\ﬁ_...
or, briefly,

P=>R=>mYy (6.4)
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For simplicity, we consider a system of twotées my , m, (Fig. 6.3). We call
F,, F, the correspondingxternalforces on these particles, due to the presence of

other bodies not belonging to the system (e.g.wights ofm, , m,, due to the at-
traction of the Earth). We assume further ith&grnal forces are also present; namely,

F,, on particlel due to its interaction with partic® and F,, on particle2 due to par-
ticle 1. According to Newton’s third lawE,, = —F,,.

Fig. 6.3 Internal and external forces on a system of tentiges.

The total force on particlé is F, +F,,, while that on particl® is F, +F,,. By
Newton’s second law,

B - = O = =
d—'%:FﬁFlz, T'%:FZHZ

Adding the above equations and taking into accthattF,, + F,, = 0, we find:

21 -

dp, dp d,. = =
—14 - (P =F+F .
dt i dt dt( tR)= Rt R

Generalizing the above result for a system watharbitrary number of particles
[1,2] we have:

I
azpi—ZE (6.5)

The left-hand side of (6.5) is the time derivatbfethe total momentun® of the sys-
tem. The right-hand side representsttital external forceacting on the system:

Foa =2 F, (6.6)

Thus, (6.5) is written:

o
o
)

(6.7)

ext

Q.
—

That is,

the rate of change of the total momentum of theesygquals the total exter-
nal force acting on the system

Note thatinternal forcescannotby themselveslter the total momentum of the sys-
tem; for a change of total momentuexternalforces are needed.
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How is the center of mass related to all tHiB@ answer is contained in the follow-
ing two propositions:

1. The total momentum of the system is equal tonhreentum of a hypothetical
particle having mass equal to the total mass ofstrstem and moving with the
velocity of the center of mass of the system.

2. The equation of motion of the center of maghefsystem is that of a hypo-
thetical particle of mass equal to the total makthe system, subject to the to-
tal external force acting on the system.

Proof:

1. By differentiating (6.2) with respect to Bimwe find the velocity of the center of
mass of the system:

o dr. d(1 )1 .
e =gt dt(Mzm(] MZ‘ Yat T

I R
Vo= r 2 My=100 b (6.8)

P=MV, (6.9)
2. Differentiating (6.9), we have:
dP d dy,
—=—(MV.)=M—=M3
dt dt( c) %

where &, is the acceleration of the center of mass. Haneés.7),

Fo=Mé&, (6.10)

Strictly speaking, a system of particlessiglatedif it is not subject to any external
interactions (a situation that is only theoretigglbssible). More generally, we will
say that a system is “macroscopically isolated”soimply, “isolated” if the total ex-

ternal force on it is zerol:fext =0. In this case, relations (6.7) and (6.9) leachofol-
lowing conclusions:

1. The total momentum of an isolated system ofgbestretains a constant value
relative to an inertial frame of reference (printg@f conservation of momen-
tum).

2. The center of mass of an isolated system ofcpegtmoves with constant ve-
locity relative to an inertial reference frame.
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k
m FN\AANNNA M

Fig. 6.4 Two masses connected by a spring and movingfoatianless horizontal plane.

As an example, consider two masseandn, connected to each other by a spring.
The masses can move on a frictionless horizondaleplas shown in Fig. 6.4. The sys-
tem may be considered isolated since the totalreaitéorce on it is zero (explain
this). Thus, the total momentum of the system &edvelocity of the center of ma€s
remain constant while the two masses move on tmeeplNote that thmternal force
Finc=kAl, whereAl is the deformation of the spring relative to itgural lengthcan-
not produce any change to the total momentum andedlueity of C.

6.3 Angular Momentum of a System of Particles

As noted in Sec. 3.7, the angular momentum of tgtais not an absolute quantity
(such as, e.g., the momentum) but is always defiekdive to some reference point
0. We choos& to be the origin of coordinates of an inertial refece frame (we re-
call that in such frames only the laws of Newtoa \aalid).

Given a system of particles, the angular moomeraf a particlen is

—

L=0xp =m(FxY) (6.11)
whereT is the position vector afy relative toO. According to (3.38), iflfi'tot is the
total force orm, the torque oﬂfi’tot relative toO is

fi :rixﬁ,tot:% (6.12)

dt

Let us initially consider a system of two pelgsm andm, that are subject to ex-
ternal forceslf1 and Ifz, respectively, while the corresponding internacés are, in

the notation of Sec. 6.2F, andF,,, with F,,=-F,, as required by the action-
reaction law. By (6.12),

dEl dEz d - - -
L 22 - C(L+L)=T.+T 6.13
i ot dt(Ll =T, +T, (6.13)
But,
_;:_ixlf,tot:rlx('fl""fla)zrxlff"rf('flz’
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Adding the above equations and taking into accthattF,, = —F,,, we have:
'Ijl + fz =T, x |E1+ T, |32+ (r—-r) ><|f12 .

The difference(r; —1,) is a vector directed along the line joining the fmarticles (see
Sec. 1.3). If we make thadditional assumption that the internal forcés, and F,,
act along this line, then

(=) x 'flz =0
so that

!

1+ L=xF+TxF,=T

exi

where fext is thetotal external torquen the system of particleselative toO. Equa-

tion (6.13) is thus written:

—

L+ L) =X FarxF =T (6.14)

ext

For a system with an arbitrary number of péatic(6.14) is generalized as follows

[2]:

EZQ =Y i xF =T, (6.15)
The vector
L=>L=0+0+ (6.16)

represents thital angular momenturof the system relative 0. By (6.15),

[t}

d ~
a = Text (617)

That is,

the rate of change of the total angular momenturnhefsystem, relative 10,
equals the total external torque on the system reiipect taD.

We note that thénternal forces alonecannotproduce a change to the total angular
momentum of the system. [Notice the similarityannh between (6.7) and (6.17).]

Given that (6.17) is a consequence of Newttavs this relation is expected to be
valid in inertial reference frames only. Thus, faént O relative to whichL and T,

are evaluated must be the origin of some inent&ah&. For an isolated system of par-
ticles, the center of ma€3 moves with constant velocity with respect to angriial
frame (see Sec. 6.2) and theref@Gréself may be considered as the origin of a special
inertial frame, called theenter-of-mass framg@r briefly, C-frameg. Thus, for an iso-
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lated system of particles, relation (6.17) is vaflid. and fe
the center of mass.

are taken with respect to

Xt

When the system of particles is msalated, its center of ma€sis accelerating ac-
cording to (6.10). ThusC cannotbe the origin of some inertial reference frame. One
might therefore assume that, in this case, relg@abr) is not valid with respect @
One of the curious facts of Mechanics, howevethas this latter relatiors valid rela-
tive toC even if the system isotisolated (see Appendix B for a proof). That is,

relation (6.17) is always valid relative to the tenof mass C of the system,
even if C is accelerating with respect to an inertial ohs.

It follows from (6.17) that, ifT,_, =0, thendL/dt=0 < L =constan. This ob-

servation leads us to tipeinciple of conservation of angular momentum

When the total external torque on a system, redatovsome poind®, is zero,
the total angular momentum of the system with m@dpethis point is constant
in time.

As an example, consider a system of electyicdibrged particles with charges,

g2, ... The particles are located inside the electietdfcreated by some external
chargeQ firmly placed at a poin©. No other external forces other than the Coulomb
forces fromQ are exerted on the system. Assuming that theivelaelocities of the
charges are sufficiently small, in order for thectlomagnetic force between any two
charges to be approximately directed along the jim@ng these charges, show that
the total angular momentum of the system ofgheelative toO, is constant in time.
(Note that this statement is generaibyt true for reference points other than the point

O at which the external charg@gis located, since, relative to such poirf@l, #0.)

CommentThe principle of conservation of angular momentas based on (6.17)
which, in turn, was derived by assuming thetthe action-reaction law (3.6) is valid,
and ) the internal forces of the system are directed@lthe lines joining the parti-
cles of the system (that is, the internal forcescentral forces). There are, however,
physical situations in which these conditions avefulfilled (this happens, for exam-
ple, in the case of a system of moving electriagbsi the relative velocities of which
are not small). Relations (6.7) and (6.17) moevalid for such systems and conserva-
tion of momentum and angular momentum is not satiseven in the absence of ex-
ternal forces. Conservation laws are restored byrasg that, in addition to the mo-
mentum and the angular momentum of the system arfgels, one must take into ac-
count the corresponding quantities contained inelbetromagnetic field itself. (Yes,
even a field may carry energy, momentum and angatanentum! See, e.g., [3].) We
thus see that the conservation laws we have foamd An even deeper and more gen-
eral meaning.

Note: Let O be the origin of coordinates of an inertial refeeframe, and &€ be
the center of mass of a system of particles. Asvehm Appendix B, the angular

momentumL of the system relative t0, and the angular momentui. of the sys-
tem relative tdC, are related by
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L=L.+M(F.xV,) ,

whereM is the total mass of the system, and whigrandv, are the position vector
and the velocity, respectively, of the center oba@relative toO.

6.4 Kinetic Energy of a System of Particles

According to the work-energy theorgi®ec. 4.3) the change of the kinetic energy of a
particle, within a period of time, equals the wofkthetotal force acting on the parti-
cle within that period. For a system of particlt® work-energy theorem is general-
ized as follows:

The change of the total kinetic energy of a sysieparticles is equal to the
work done by the external atite internal forces acting on the system.

Proof: Consider, for simplicity, a system of two particldanassesm , m,, subject
to external forces,, F, and internal forces,, F,,, respectively. Ledr,, d, be the
elementary displacements of the particles in &y Newton’s law,

ma = Iﬁ:1+ I#:12’ m,a,= T:2+ #le
(whered,, &, are the accelerations of the particles), so that
ma - di = IEl' di+ I#:12' dr, ,
ma,- dE: I4:2' de"' I4:21' de-

Adding these and taking into account tfigf= —F,,, we have:

m3a-di+ ma- dt= F di+ Fy di+ Fy(dr- di) (6.18)
But,
- dv _ode . 1 . - 1
ai'd?l:d_tl'd?l:dvl'?E: Vi Cr\Fa dy \!)ZE ()
1d(v*) 1
== gy == (2y) dy= v d
2 dv, Vi 2(\/1)\{ v ay
and similarly,

=

a,- di, = v, dv,

wherevy, v, are the magnitudes af, v,, respectively. Furthermore,
df, - dF, = d(F,~ F,) = dF,,

where 1, =1, -1, . Hence, (6.18) is written:

myvdy+ mydy= £ dr K dp Ky O .
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Integrating the above differential relation frofmto B, where by4 and B we denote
the state of the system (e.g., the locations ahotcities of the particles) at timdgs
and tg , respectively, we have:

m[ vay+ mf  yay=[ F dp[ & dp[ F o (6.19)

A

The left-hand side of (6.19) is equal to

m{v—ﬂzﬂ[v—ﬂ}@m\h—; r@\il—(—lz mf7+—12 mfle

A
=E - Ea=AE
where the quantity
1 1 1
E =-my+-my=> - my (6.20)
2 2 —~ 2
represents thital kinetic energyf the system. The sum
B - . B - . B - .
IA Fl-drlJrjA F,-df,= ZIA F-di =W, (6.21)

on the right-hand side of (6.19) represents thal teork of theexternalforces in the
period betweert, and tg , while the integral

J-f 'flz'dflz = J-AB 'flz'drﬁ' J-ABlfzf drzz Z;Ifﬁlj 'dri =W, (6.22)

represents the work of theternal forces in that period. Thus, finally, (6.19) is tari
ten:

Ecs—EcA=AE =W, + W, (6.23)

Although proven for a two-particle system, tigla (6.23) is generally valid for a
system with any number of particles [2].

If no external forces act on the system, tAgg=0 and any change of the total ki-
netic energy is due exclusively to theernal forces. As an example, consider two
electric charges that are initially kept at rethey are allowed to move freely, their
mutual electrical interaction will set the chargesnotion and the system will acquire
kinetic energy equal to the work of the internau@onb forces. Note that, in the ab-
sence okexternalforces, the total momentum of a system is conswamch is gener-
ally not the case with regard to the kinetic energy (untessparticles interact very
weakly with one another, so that internal forcey imaignored).
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Note: As shown in Appendix B, the kinetic energyof a system of particles rela-
tive to the originO of our inertial frame of referencand the kinetic energlx ¢ of
the system relative to its center of m@ssre related by

E = Ek,c+% MV,

whereM is the total mass of the system and wheéres the velocity of the center of
massC with respect t.

6.5 Total Mechanical Energy of a System of Partiek

The work-energy theorel(®.23) is of general validity, independently of theture of
the external and the internal forces acting onstesy of particles. In (6.23)Vex and
W represent the corresponding works of these fondesn the system progresses
from a statef at timeta to a stateB at timetg.

When both the internal and the external for@sconservativeone may find an
internal potential energ¥,n: and anexternal potential energl,ex, both functions
of the coordinates of the patrticles, such that

VVint = ( Ep,int)A - ( Ep,int) B (624)

and

Vvext = ( Ep,ext)A_ ( Ep,ext) B (625)
By (6.23) we then have:

Ek,B - Ek,A: ( Ep,int + Egext) A ( Egint+ Epext) B —

(Ek + Epyint + Ep,ext)A: ( Ek+ Ep,int+ Epext) E (6-26)

Relation (6.26), expressimgnservation of mechanical enerfgy a system of par-
ticles, is valid for any two statesandB of the system. We conclude that the quantity

E = Ek + Ep,int + Ep,ext = E<+ Ep (627)

representing théotal mechanical energgf the system, is constant during the motion
of the system wheall forces acting on it — both internal and externale-conserva-
tive. Note that we have call&§=E,n+Eex thetotal potential energyf the system.
Note also that the expressiosin: and E,ex: represent sums of potential energies as-
sociated with all conservative forces (both intéaral external) acting on the system.

When some of the forces (internal and/or exi@racting on the system anen-
conservativethe sum E+Ep) is generally not constant: its change is giveralrgla-
tion analogous to (4.20). Thus,W' is the work of the non-conservative forces as the
system progresses from a stat® a stateB, it is not hard to show that
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W'=(E+ E)s—(E+ E),=A(E+ E) (6.28)
That is,

the change of the su(&«+E,) equals the work of the non-conservative forces
(both internal and externaf).

The sum E+Ep) is constant only in the special case where the-aumservative
forces do not produce woifV' = 0).

Let us see two characteristic examples of quasge systems:

1. Consider a hydrogen atom, consisting of lanten and a proton of masses
andmy, , respectively. We assume that the particles aogesuto no forces other than
their mutual Coulomb attraction (4.28), which isa@nservative internal force of the
system (see Sec. 4.6). We have:

1 1 2
Ek :Em\{2+_2 n}\éz ) %,int:_ l% ’ E,ext: 0

whereq is the absolute value of the charge of the elecirmhwhere is the distance
of the electron from the nucleus of the atom (f@m the proton). Conservation of
total mechanical energy is then expressed by thaae

2

Ezém\{2+%n}\f— quz cons (6.29)

Exercise:By using (6.22) and (6.24), together with (4.283rify the expression
given above for the internal potential eneEgyx: .

m y
K

m,

) Y,

Y,

) y=0

reference leve

Fig. 6.5 Two masses connected by a spring and movinggimith
near the surface of the Earth.

2. Consider two masseas, m, connected to each other by a spring of spring con-
stantk (Fig. 6.5). At a given moment the system is in diirenear the surface of the
Earth. We call, y, the instantaneous heights at which the massdecated above a

! For a more general interpretation of (6.28), seteMt the end of Sec. 4.5.
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reference levey=0 (e.g., the surface of the Earth) at which theigaional potential
energy is assumed to be zero, and we denokethy deformation (extension or com-
pression) of the spring relative to its naturalgin There are two internal forces in
the system, of magnitudex and of opposite directions, which forces are auéhe
mutual interaction of the two masses through thisagpOn the other hand, the exter-
nal forcesmyg and mpg are due to the gravitational attraction of thetfcan the two
masses. The potential energies (internal and exdjavhthe system are

1
Ep,intzzsz ’ Ep,ext: magy+ m gy.

(Note thatE,ex is the sum of the gravitational potential energissociated with each
mass separately.) By conservation of mechanicabgne

Ezém\{%—; n3\£2+—; kX+ mgy m gy con (6.30)

Exercise:By using (6.22) and (6.24), verify the expressjiwven above for the in-
ternal potential energf,in: . (You may assume that the two masses always move
along the line joining them.) Assume next that mh@sses move on a frictionleiss
clined plane. By using (6.28) and by taking inte@amt that the normal reactions
from the plane produce no woilV’'=0) conclude that (6.30) is still valid in this

case.

6.6 Collisions

A collision is a form of interaction between two masses, duwhich the masses are
momentarily “in contact” (though this never occatsthe atomic level!), exchanging
momentum, angular momentum and energy in the psogesollision is assumed to
take place within an extremely small (infinitesiiniine intervaldt. That is, the inter-
action between the masses is almost instantanpmidefore and right after contact,
the masses essentially exert no forces on each othe

Collision problems offer us a good opportunigystudy various conservation laws
in practice:

A. Conservation of momentum

As we know, the chang#P of total momentunP of a system of particles, within

a time intervabt, is due to the total external fordzgXt (e.g., gravity, friction, etc.) that
acts on the system in that period. In mathematérats,

P e o d-F dt.

dt ext ext

In a collision, the external forces are almost igdgle compared to the internal forces
that are associated with the mutual interactiorthef two masses. Furthermore, the
durationdt of this interaction is infinitesimal. We may thusike the approximation

F dt~0 = dP=~0.

ext
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We conclude that

the total momentum of the system is unchangedoiligion; that is, the mo-
mentum just beforne collision equals the momentum right aftes collision.

B. Conservation of angular momentum

The changall of total angular momentum of a system, relativedme point,
and the total external torq(g, on the system, relative @, are related by

%:fext = dL=T, dt.
As before,
T, di=0 = dL=0.
That is,

in a collision, the total angular momentum of tlystem, relative to any point,
is unchanged (i.e., the values of the angular méumenust beforeand right
after the collision are the same).

C. Kinetic energy

In contrast to momentum and angular momentungtic energy is1ot necessarily
conserved in a collision. This is explained asoiel: We recall that the change of
total kinetic energy of a system, within a timeipér(here, the timelt of duration of
the collision), equals the work of the exteraatithe internal forces acting on the sys-
tem in that period. Even if we assume that, foso@a explained previously, the work
of the external forces within an infinitesimal tinmgerval is negligible, we cannot ig-
nore the work of the internal forces, which is matarly significant if the collision
produces aleformationof the colliding bodies. In such a case, part &f ithtial ki-
netic energy of the system is lost due to the (eglawork done by the internal
forces that are responsible for this deformation.

Collisions are classified on the basis of covesion or non-conservation of kinetic
energy, as follows:

a. Elastic collision: The total kinetic energy of the system of collglimodies is un-
changed by the collision. That is, the kinetic gresjust beforeandright after the
collision are equal. This is the case for collisidhat do not cause deformation of the
colliding bodies. Example: the collision of two tdrilliard balls.

b. Inelastic collision: Part of the kinetic energy of the system is logke do
deformation caused by the collision; this energghiss not conserved in the process.
Example: the collision of two rubber balls.

c. Completely inelasti¢or plastic collision: This is an extreme form of inelastic
collision in which the colliding bodies stick toget and move as one body, with
common final velocity. Part of the initial kinetenergy of the system is lost due to
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deformation of the bodies (see Problem 37). Exantpke collision of two lumps of
wet clay.

Let us examine cases @nd €) in more detalil:
Plastic collision

m-+m

O3
Oz
?

| =

Before After
Fig. 6.6 Plastic collision of two masses.

Consider two masses, andm, moving along thec-axis with velocities v, = v, U,
and vV, =V, U, as seen in Fig. 6.6. (Note thatandv, arealgebraic valueghat may

be positive or negative. In Fig. 6M§>0 andv,<0.) After colliding, the masses stick to
each other and move as one body of massr(y), with velocityV =V {i .

As argued above, conservation of momentum @howot of kinetic energy) applies
in this case. Equating the values of total momenjush before and right after the
collision, we have:

my+my=(m+ np V =

m+m m+ m

In the special case where the two masses ar@ ¢g=n,) and collide head-on
with equal speedsi= —v3), equation (6.31) yield¥ =0. That is, the resulting com-

posite mass stays at rest. In general, the directficthe velocityV of this mass is de-
termined by the sign of the algebraic value

Exercise:Find the velocityV for the case where the body is initially at rest.
What will happen ifm;>>m; (as, e.g., when a lump of wet clay is ejected resjea
wall)?

Elastic collision

e

m v v, m, v, m m, v, )
O— —O —O O
Before After

Fig. 6.7 Elastic collision of two masses.
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Consider two masses; andm, moving along the-axis with velocities v, = v, U,
and v, = v, U (Fig. 6.7). After colliding elastically, the massacquire new velocities

— ! [AVN

V, =v/0 andv, =v, {. (Thevi, v2, Vv, ,v,” are algebraic values that may be posi-
tive or negative. In Fig. 6.%;>0, v»<0, etc.) We seek the velocities of the two masses
after the collision.
By conservation of momentum,
MY+ my=my+ gy = ( py my,&( My iy, w
My+my=my+ my (6.32)

Furthermore, since total kinetic energy is alsoseoved,

1 2 1 2 1 2 /2
Elel +§”&\é :—2 1Y +— MYy =
mv’ +my = my’+ my’ (6.33)

Equation (6.32) is written:
m (v~ V)= m( V- v (6.32)
while (6.33) yields
m (= )%+ )= m( - (v ) (6.33)

We make the logical assumption that the velocibiethe two bodies change as a re-

sult of the collision. Hencey, -V, #0, v, — v, # 0, which fact allows us to divide
(6.33) by (6.32):

v+, =V, (6.34)

Relations (6.32) and (6.34) are a system of equaticith unknownsy, andv,’, for
given v; and v, . By solving this system, we find:

_(m-m)v+2my VerZFE'YF(rE‘— D ) (6.35)

n m + m m+ g

Special cases:

1. If my=my , equation (6.35) yields;, =v,, v, = v. That is,the two bodies ex-

change velocitiesin particular, if one of the bodies is initialét rest, then after the
collision it acquires the initial velocity of thet@r body, which, in turn, comes to rest.

2. If my>>my, we can make the approximation/ m,=0. Equation (6.35) then

yields v, = —v, +2v,, v, = v, (show this). In particular, ifn; is initially at rest {;=0)
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thenv, =-v,, v, =0. That is, after the collision the body remains at rest, while
the direction of motion ofiy, is reversed with no change in this body’s speed.
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CHAPTER 7

RIGID-BODY MOTION

7.1 Rigid Body

A system of particles constitutesigid bodyif the relative positions and distances of
the particles remain fixed when external forcesooques act on the system. Hence, a
rigid body maintains its shape during its motfon.

A rigid body may execute two kinds of motion:

1. Translational motionwhen all particles move with the same velocity ale-
scribe parallel trajectories, so that the bodysstegrallel to itself at all times.

2.Rotational motionwhen the particles describe circular paths abaudxis of ro-
tation. This axis may or may not be fixed in spdagng the rotation of the body.

The most general motion of a rigid body is anbmation of translation and rota-
tion (notice, for example, the motion of a ballaocar wheel). An example of such a
composite motion is a translation of the centematsC of the body, with a simulta-
neous rotation of the body about an axis passiraughC. As we will see, the center
of mass plays an important role in the dynamica oid body.

7.2 Center of Mass of a Rigid Body

We have seen (Sec. 6.2) that the center of iBasfsa system of particles moves in
space as if it were a particle of mass equal tadted masdvi of the system, subject
to the total external force acting on the systehe $ame is true for a rigid body if this
body is viewed as a structure composed of a numibgarticles of masseas, . Let us
assume that the only external forces acting orsyseem (or the rigid body) are those
due to gravity. The total external force is thenado thetotal weightof the system:

W=iZVV.=Z(m@=[iZ mj 9=

W=Mg where M=) m (7.1)

The acceleration of gravityg, is constant in a limited region of space where th
gravitational field may be considered uniform.

Note thatw is a sum of forces acting on separate partioiekcated at various
points of space. The question now is whether thrigis some specific point of appli-
cation of the total weightv of the system and, in particular, of a rigid bodyrea-
sonable assumption is that this point could bectmer of mas€ of the body, given
that, as mentioned above, the pdinbehaves as if it concentrates the entire mass

! More generally, a rigid body may consist of molpitets. We will examine this case in Sec. 7.7.

92
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of the body and the total external force actingtoAnd, in our casew is indeed the
total external force, due to gravity alone.

There is a subtle point here, however. In @sttto a point particle (such as the hy-
pothetical “particle” of mas#M moving with the center of mass ) that simply
changes its location in space, a rigid body maygeteesa more complex motion; spe-
cifically, a combination of translation and rotatiol hetranslational motion of the
body under the action of gravity is indeed represginy the motion of the center of
massC, if this point is regarded as a “particle” of magon which the total forcev
is applied. For theotational motion of the body, however, it is therquesof the ex-
ternal forces, rather than the forces themselves,are responsible. Where should we
place the total forcev in order that the rotational motion it producestioa body be
the same as that caused by the simultaneous auftitme elementary gravitational
forcesw = m §? Equivalently, where should we plagein order that its torqueith

respect to any point @e equal to the total torque of tkie with respect t@® ?

You may have guessed the answer already: atdhter of mas€ (this will be
shown analytically in Appendix A). In conclusion:

By placing the total weighiv of the body at the center of mass C, we manage
to describe both the translational and the rotaibmotion of the body under
the action of gravity.

It is for this reason that is frequently called theenter of gravityof the body. Note
that this point doesiot necessarilypbelong to the body (consider, for example, the
cases of a ring or a spherical shell).

In most cases a rigid body is an object eximppicontinuousmass distribution.
Such an object can be considered as a system wog$ an enormous (practically
infinite) number of particles of infinitesimal massim , placed in such a way that the
distance between any two neighboring particlegis.ZThe total mass of the body is

M = dm =j drr (7.2)

where the sum has been replaced by an integraiodilne fact that them are infini-
tesimal and the distribution of mass is continuous.

A point in a rigid body can be specified bypissition vectorr , or its coordinates
(XY, 2), relative to the origir©® of some frame of reference. L& be an infinitesimal
volume centered at = (X, Y, z), and letdmbe the infinitesimal mass contained in this

volume element. Thdensityp of the body at point is defined as
dm
MN=pXYVy,2)=— 7.3
p(r)=p(XYy,2) Y (7.3)

Then,
dm= p(T) dV
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and therefore, relation (7.2) for the total masthefbody is written:
M = j o(F)dV (7.4)

where the integration takes place over the enttame of the body. (The integral is
in fact atriple one, since, in Cartesian coordinai@g=dxdydz) The center of ma<s
of the body is found by using (6.2):

F. :ﬁ jrp(r)dv (7.5)

where ther and, are measured relative to the orighof our coordinate system.

(Remember, however, that the location®fvith respect to the body uniquely de-
terminedand is independent tiie choice of the reference pois)

In ahomogeneoubody the density has a constant valumdependent of . Then,
M =[pdV=p[dv=pV (7.6)
whereV is the total volume of the body. Also, from (7.5¢ Wwave:
rc=ﬁjr*dv =\%jrdv (7.7)

Imagine now that, instead of a mass distrilsuiiospace, we haveliaear distribu-
tion of mass (e.g., a very thin rod) along xhaxis. We define thénear densityof the
distribution as

dm

2(X) = (7.8)
X
The total mass of the distribution is
M:jdm:jp(x)dx (7.9)

The position of the center of mass of the distrdiuts given by
1 1
Xe =ﬁjxdmzﬁj xo( § d (7.10)

If the density is constant, independentxfthen

M=[pdx=p[dx=p (7.11)
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wherel is the total length of the distribution. Furthermor

_P 1
xc_ﬁj.xdx_I '[ xd (7.12)
O C
- 1> X
x=0 a Xe a+l

Fig. 7.1 The center of mass of a thin, homogeneous ratltise center of the rod.

As an example, consider a thin, homogeneoufdengthl, placed along th&-
axisfrom x=a to x=a+l , as shown in Fig. 7.1. By equation (7.12),

That is, the center of magsof the rod is located at the center of the rod.i¢éothat
the location ofC on the rod is uniquely determined, independentlghefchoice of the
origin O of thex-axis (although the value of the coordinatedoes, of course, depend
on this choice).

7.3 Revolution of a Particle About an Axis

As we have said, a rigid body can be viewed astesyof particlesn (or dm , for a
continuous mass distribution) the relative posgiamd distances of which are fixed.
So, before we study the rotational motion of adrigody, it would be helpful to exam-
ine the revolution of a single partiakeabout an axis. The following analysis is fairly
detailed and most of it may be skipped in a fiestding; the student may thus concen-
trate on the main physical conclusions.

z

Fig. 7.2 Circular motion of a particle about thexis. The right figure is a view of the left
figure “from above”.
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We choose the-axis of our coordinate system to coincide with &xés of revolu-
tion and we calR the (constant) perpendicular distancarofrom this axis (see Fig.
7.2). The particlan thus describes a circle of radiRscentered at some point” of
the z-axis,whereO’ is the normal projection af on the axis. The axes andy’ in
the right figure are parallel to the axeandy, respectively, while the-axisis normal
to the page and the unit vectay is directecoutward(toward the reader).

In accordance with the conventions establishegections 2.6 and 2.7, the positive
direction of traversing the circle is determinedthy direction of the unit tangent vec-

tor U, and is independent of the actual direction of orofin Fig. 7.2 the motion is in

the positive direction). By convention, the postidirection of revolution is related to
the direction of(, by means of the right-hand rule; that is, by iatabur fingers in

the positive direction of revolution (i.e., in tde&ection of i, ) our right thumb points
in the direction ofi,. If R is the position vector ah relative toO’, and if {, is the

unit vector in the direction oR (so thatR= R1), the ordered triad{y, G, , 01
forms a right-handed rectangular system of unitorsc This means that

A

Ugx 0O =0,, UxU=T1U;,, UxUusu (7.13)

The velocity of the particlen is, according to (2.32) and (2.34),
V=vily where v=Ro =z} (7.14)

The angular velocity» is positive for counterclockwise motion (as in .Ffig2) and
negative for clockwise motion.

The position vector ah with respect t@ is (see Fig. 7.3)
F=00+R= zy+ Ry (7.15)

where the distanc®0O’'= z of O’ from O is one of the three coordinatesmfin Fig.
7.3 the unit vectord, (which determines the positive direction of revin) is nor-
mal to the page and directado it.

z

o > Uy

=l

O

Fig. 7.3 The position vector ah, relative toO, is the sum of components
in thez- andR-directions.
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The angular momentum oh with respect to the origirO of coordinates is
L =m(T x V). By substituting forf and v from (7.15) and (7.14), respectively, and
by using (7.13), we have:

L=m(Ri+ ZY)x( B Y= mio(" "+ mzR" U Ju=
L=mRoU- mz® "y (7.16)

The z-component of angular momentum, i.e., the projectibL onto thez-axis (see
Fig. 7.4) is the coefficient ofi, in (7.16):

L, =mRao (7.17)

We notice thatlL, has the same sign as Thus, L, is positive or negative, depending
on whether the particle revolves in the positivehar negative direction, respectively.
(In Fig. 7.4,L; is positive.)

Fig. 7.4 Projection of the angular momentum vector on&xtaxis.

It is of interest to compare the angular moment. relative toO with the angular
momentumL’ relative to the cente?’ of the circular path. The position vectorrof
with respect t@’ is R; hence, by using (7.13) and (7.14),

L'=m(Rx¥Y)= m RYx( R"Y= nid ", (7.18)

The z-component ofL’ is

L =mRo= L, (7.19)

where we have taken (7.17) into account. We ndtiaethe component Lof the an-
gular momentum in the direction of the axis of tetion is independent of the point
of the axis relative to which the angular momentsitaken.(Of course, theector L

of the angular momentunoesdependon the choice of that point!) This conclusion is
of more general validity:
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The component of the total angular momentum oftatirg system in the di-
rection of the axis of rotation assumes a uniqukiejaindependent of the
choice of reference point on that axis (i.e., & goint of the axis relative to
which the angular momentum is taken).

The quantity

| =mR (7.20)

is called thenoment of inertiaf m with respect to the axis of revolutidmus, (7.17)
takes on the form

L=lw (7.21)

Z

Relation (7.21) connects tkzecomponent.; of the angular momentum with the angu-
lar velocityw, in the same way that the relatipemv connects the linear momentum
with the linear velocity. Note the correspondeneésMeenm and|l in these two rela-
tions: the moment of inertikis for rotational motion what the massis for linear
motion.

Let F be thetotal force onm at some point of the particle’s circular trajectoFpe
torque of F with respect ta@ (equal to the vector sum of the torques of altésract-

ingonm) is T=FxF. If L is the angular momentum of relative toO, and if our
reference frame, with origi@, is assumed to be inertial, then, by (3.38),

d
dL, “ug 5 “uf dL, “u,
dt dt dt

By equating the coefficients af, and by using (7.21), we have:

T, 0, + T, Uy+ T[u;% (Lu+ Ly“uy+ Lu)=

rodh_d g, S
dt dt dt
(sincel is time-independent). Calling
do
o=—
dt

the angular acceleration of we finally have:

T, =la (7.22)

z

If T'= Rx F is the torque oF with respect t@’, then
dr o _dy

T=" = T/=
dt dt
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But, by (7.19) and (7.21),

Thus, again,
T=la=T (7.23)
We conclude that

the component of the total torque in the directodrthe axis of revolution as-
sumes a unique value independent of the choicefe@fence point on that axis.

Note the formal analogy between (7.22) and Newttavis F=ma.

Relation (7.22) allows us to determine the #mgacceleration ofm, given the
z-component of the total torque (equivalently, thejbe of the total force) acting on
the particle. All we need now is a practical wayet@luateT, . First off, the particle
always moves in thg'y’-plane, which is parallel to the/plane. This means that the

total force E onm s a vector on th&'y’-plane. Such a vector can be decomposed
into two orthogonal components in the directionghef unit vectorsi, and G, :

F = F g+ F, 0, (7.24)

In the above relatiorf;t is the component of in the tangential direction relative to
the circular path ofn, while Fr is the component oF in the radial direction. By us-
ing (7.15) and (7.24) we find the torque Bf with respect ta@:

~

T=7xF =(Rb+ ZW)x( R+ FW
=RRE(Gx W)+ zR(Ux W+ zR'w "y =
T=RRE U+ zRy- zE"y (7.25)

T,=RF. (7.26)

Note thatT, is independent of the location of the referencen{p6i on the axis of
revolution (sincel; is independent df), in agreement with a remark made earlier.

Assume now tha is the resultant of a set of forc€s, F, ,---, acting onm:
F=F+F+-=>F .

If Fr and Fir are the components (radial and tangential, respy}iof IfI the
components g and Fr of the total forceF are, in the spirit of equation (1.10),

FR:ZFiR 'FT:ZFiT'
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By (7.26), thez-component of the total torque amis
T,=RY Fr= R+ Fr+)= RE+ RE+

or

Tz:T12+T22+”':zTiz (727)

where

T, =RF, (7.28)

1Z

is the z-component of the torque & . Note that (7.27) represents a sum of quantities
that may be positive or negative. Specifically,is positive (negative) when the com-
ponentFir of F in the direction ofii, is positive (negative). This, in turn, means that
F tendsto cause a revolution afiin the positive (negative) direction about thaxis

whenm is initially at rest. [As already mentioned, thesjiive direction of revolution
(i.e., the direction ofi. ) is related to the direction af, by the right-hand rule.]

As an example, consider the case where thécleam is subject to three forces
F,,F,,F,, as shown in Fig. 7.5. In this figure th@xisis normal to the page anj

is directedoutward (toward the reader). On the other hagg,is, by definition, in the
positive direction of revolution, which, in turrs felated to the direction af, by the
right-hand rule (in Fig. 7.5 the positive directisrcounterclockwise).

Fig. 7.5 Revolution of a particle subject to three forasout thez-axis
(only the projectior©” of this axis is shown).

LetF1, F», F3 be the magnitudes of the three forces. The comysna these
forces in the direction ofi, (tangential components) are

Fr=Fcosd, , Fy=-F,co9, , F;= 1I.

The signs ofF; and F,, are consistent with the fact thgf tends to produce a revo-
lution in the positive direction, whilé2 tends to generate a revolution in the opposite
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direction. The vanishing oF,, means thafF, (which passes through the cene)

cannot produce a revolution af about thez-axis whenm is initially at rest. The
z-components of the torques are, according to (7.28),

T, = RF; = RFcosd, , T,= RE=—- REco®, , T= RE= I.
The z-component of the total torque is given by (7.27):

T,=T,+T,,+T,,= R Fcosd,— Fcod, ).

Finally, the angular accelerationmfis found from (7.22) and (7.20):

T T 1 .
a=-"%4*=—2=—"(Fcosd,—F,co¥, .
I mR2 mR( 1 1 2 2 .

7.4 Angular Momentum of a Rigid Body

Consider now a rigid body rotating about an axikjclw we arbitrarily choose to be
the z-axis (see Fig. 7.6). As always, the directionlpfalso defines the positive direc-

tion of rotation according to the right-hand riée assume that the body consists of
a number of particlesy located at corresponding perpendicular distafeéom the
axis of rotation. In the course of the rotationrgygarticlem executes circular motion
of radiusR; , centered at the normal projectionmfon thez-axis. All particles have
the same angular velocity, equal to the angular velocity of rotation of thegid
body. (Can you explain this?)

AN

Fig. 7.6 As the rigid body rotates about thexis, all particles composing the body revolve
about this axis with common angular velogity
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In Fig. 7.6 the body rotates in the positiveadiion with angular velocitw. The
angular momentum of a partiate, with respect to a poir@® of the axis of rotation, is

L=m(FxV) .
The total angular momentum of the body, relativetcs
E=ZEi=Zmi(TX\7) (7.29)

According to equation (1.10), tteecomponent ofL equals the algebraic sum of the
z-components of thé, :

L=>L,.
But, by (7.21) and (7.20),
L, =l.o=mR’0 .
Hence,
L=> Ld@)=0)l,
where we have taken into account th&as the same for ath; .

We now define thenoment of inertiaof the body with respect to the axis of rota-
tion:

=Yl =ymR? (7.30)

(Notice that this is the sum of the moments oftiaeof all particles making up the
rigid body.) Thus, finally,

L =lw (7.31)

A

Relation (7.31) gives the-component of the angular momentum of the body, with
respect ta).

It is clear from (7.30) and (7.31) that

the component of the angular momentum of a rigitlybo the direction of the
axis of rotation is independent of the choice démence point on that axis,
relative to which point the angular momentum isstak

Indeed, the moment of inertlan (7.31) is dependent only on therpendiculardis-

tancesR of the m from the axis of rotation, not on the distancesf the particles
from the reference poinD. For this reason we (somewhat improperly) talthe

“angular momentum of the rigid body with respecthe axis of rotation’ Thevector

L of the angular momentum, of course, is only defireative to the poin® and de-
pends, in general, on the location(bn the axis of rotation.
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7.5 Rigid-Body Equations of Motion

To the extent that a rigid body can be treated agsgéem of particles, its motion is
governed by the physical laws stated in the presvchapter. This system can perform
two kinds of motion, namely, translation and raiati The former motion is deter-
mined by the total external force acting on theyhaghile the latter motion is af-
fected by the total external torque.

The momentum of a rigid body represents thal tstomentum of the system of
particles making up the body and is given by equal6.9):
P=MV, (7.32)
whereM is the mass of the body and whegeis the velocity of the body’s center of

mass,C. If Ifl, Ifz,--- are the external forces acting on the body (sufdrce is the
weight w, havingC as its point of application) the total externalcfoon the body is

F

e

w=F+F+=>F (7.33)

From (6.7) and (7.32) we then have:

~ P de
E-9dP _y9de _y 7.34
2F=" at G (7.34)

where &; is the acceleration of the center of mass of tidybRelation (7.34) is the
equation for translational motioaf the rigid body. Note that, for translational noot

it doesn’t mattewherethe component forceB,, F,,--- act on the body; all we need
to consider is the resultant of these forces.

On the other hand, the rotational motion of bely is determined by the total ex-
ternal torque. This motion, therefore, is dependgidn the points of application of

the external forces. LéE, T,,--- be the torques of,, F, ,--- relative to some poir®
in space. The total external torque on the bodstive toO, is

—

T =T+ T+=>T (7.35)

ex

Also, let L be the angular momentum of the body with respect tequal to the vec-
tor sum of angular momenta of all particles makipghe body. According to (6.17),

I

p_dL
ZT_m (7.36)

In Sec. 6.3 we noted that this relation is valickither of two casesal whenO is a
fixed point in somenertial frame of reference, ob) whenO coincides with the cen-
ter of mas<C, even if that point is accelerating (hence carofixed in any inertial
frame).
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In the case of rotation about an axis, conesaliy chosen to be theaxis of our
coordinate system, the torques and angular momelhtalways be takemvith respect
to a pointO of that axis In accordance with what was said above, relgffo6) can
be used in either of two cases) (otation about an axis passing through a point
that is either fixed or moving with constant vetgan some inertial frame, ob}) ro-
tation about an axis passing through the centenadsC of the body, wher€ may
move with constant velocity or may accelerate netatio an inertial observer, depend-
ing on whether the total external force on the bisdgero or different from zero, re-
spectively [see (7.34)].

The vector equation (7.36) can be resolved timtee algebraic equations by taking
components. We have:

2T=02T+UDT+ud T,

[see (1.10)] where, e.gxT; is the algebraic sum of thecomponents of all torques
acting on the body, with respect to the refererapt@. Moreover,

- ) ) ) CodL )
%ZE(LXUX+L u,+ L,u)= L, U+ 5 u+ dL, u. .
dt dt o dt dt v dt -
Equating coefficients ofi,, we get:
y1,-9k (7.37)
dt

But, by (7.31),L, = l®, wherew is the angular velocity of rotation and whéie the

moment of inertia of the body with respect to thaxis of rotation [see equation
(7.30)]. By assuming thdtis constant, we have:
d, _d o _
dt dt dt
where o=dw/dt is the angular acceleration of the rotating bodywsl finally,

| o

(lw) =1

dT,=la (7.38)

Relation (7.38) is thequation for rotational motioof the body. Relations (7.34) and
(7.38) together constitute the equations of motiba rigid body.

From (7.38) it follows that

the component of the total external torque in theddion of the axis of rota-
tion is independent of the reference point on thas, relative to which point
the torques of the external forces are taken.

Indeed, the moment of inertian (7.38) depends only on the perpendicular dietan
of the masses making up the body from zkexis. For this reason the algebraic sum
>T, is often (albeit somewhat improperly) called thetal torque with respect to the
axis of rotation”. Remember, however, that tliectorrepresenting the total external
torque is always definadgith respect to a poin® of the axis
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It would be useful now to find a practical wafyevaluating the surBT, . This can
be accomplished by generalizing relation (7.26)¥ollews: Suppose that the external

forces Ifl, Ifz,--- act, respectively, at the poiris, P, ,... of the body, at normal dis-
tancesR; , Ry ... from thez-axis of rotatioA. As in Sec. 7.3, we caliir, For,... the
components oifl, If2 ,-+- in directions normal to the corresponding r&jii R, ,..., as

well as normal to thez-axis of rotation. According to (7.26), tzecomponents of the
torques of the external forces, relativexoare

T,=RF;, Tp=REq, -

Hence, thez-component of the total torque, equal to the summ-@dmponents of all
external torques on the body, is

ZT2=T12+T22+“'= R I::I.T—'— I% I:2T+'”

or briefly,

> T,=>(RF) (7.39)

Note that (7.39) represents a sum of quantthes may be positive or negative.
Specifically, a componerfr is positive (negative) if the corresponding forEe
tendsto cause rotation in the positive (negative) dicegcwhen the body is initially at
rest. Let us see an example:

/ axis of rotation \

rigid body

~_ 7
+

Fig. 7.7 Rotation of a body subject to two forces, abbetztaxis (only the projectio® of
this axis is shown).

2 To simplify our analysis we assume that all exaéfarces are perpendicular to the axis of rotation



106 CHAPTER 7

In Fig. 7.7 the-axis of rotatioris normal to the page. The unit vectoris directed
outward (toward the reader), thus the positive directiorrathtion is counterclock-
wise. The external forceB, and F,, acting at the point®; andP; of the body, are

normal to thez-axis (only the projectio® of which axisis shown in the figure) and
may belong to different planes parallel to eacheotind normal to the-axis. The
pointsP; andP, describe circular paths of radi andR,, respectively, wherg; and
R, are the perpendicular distances of these poiais the axis of rotation. (The direc-
tion of rotation of the body is not specified irethigure and is of no interest to us in

this particular problem.) The unit vectalis and (,", tangent to the circular paths of
P, andP; , respectively, always point toward the positiuvection of rotation, regard-
less of the actual direction of rotation of the jao@ihe tangential components &f

and F, are

F;=Fcosd, , F,=-F,co9,

whereF; andF, are the magnitudes of the two forces. The physicglificance of the
signs ofF;r andF,r is that F, tends to rotate the body in the positive directishile

If2 tends to generate a rotation in the negative tilmecThez-components of the ex-
ternal torquesire

T,=RE;=RFRcost,, T,= RFE=-R FKcog,.
Thus, the total torque with respect to the axisotdtion is
2.T,=T,+T,,= R Fcosd,- R Fcod, .

Finally, the angular acceleration of the body exarding to (7.38),

a=1 2T, =+ (R Feoss,~ R F.cod,

wherel is the moment of inertia of the body with respecthe axis of rotation.

7.6 Moment of Inertia and the Parallel-Axis Theoren

In the case of a rigid body consisting of a disestt of particlesy, m,..., the mo-
ment of inertia with respect to an axis is

=2 MR =mK+ mE+ (7.40)

whereR is the perpendicular distance wf from the axis. As an example, consider
two spheres of massas andn, connected to each other by a thin, weightlessofod
lengthL, as seen in Fig. 7.8 (the role of the rod is symplkeep the spheres at a con-
stant distancé from each other; the rod is thus not counted aisgbdhe rigid body).
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m, m,
o 10 R g

D — X—)i

L
Fig. 7.8 Rotating system of two spheres connected byma weightless rod of length

The moment of inertia of this system, with szo an axis passing throughis
l=mR’+mR’= m &+ m( & X

where we have puw=R; . In particular, if the axis of rotation passestighm, then
x=0 and I=m,L ?. As can be proven (see below) the moment of mersisumes a
minimumvalue when the axis of rotation passes througlcémeer of mas€ of the
system. It is thus easier to rotate the systemtatiath an axis, since a given external
torgue will then produce a maximum angular accétamaaccording to (7.38).

For rigid bodies consisting of a continuoudrdisition of matter, the sum in (7.40)
must be replaced by an integral:

| = j R2dm (7.41)

whereR is the perpendicular distance of the elementarysrdasfrom the axis of
rotation. This mass is writtedm=pdV , wherep is the density of the body at the point
wheredmis located, and whemV is the volume occupied lm For ahomogeneous
body the density is constant, equal tp=M/V , whereM is the mass and is the total
volume of the body. Relation (7.41) is then written

| =jR2pdV=pj ?de%j B d\ (7.42)

To evaluate the above integrals one must knowkeific geometrical characteristics
of the rigid body. A table of moments of inertia the most common geometries is
given in Appendix C.

Theparallel-axis theorenfor Steiner’s theorejnallows us to calculate the moment
of inertia of a rigid body with respect to an axgssen the moment of inertia with re-
spect to a parallel axis passing through the cesftenass of the body. We state this
theorem without proof (see [1,2]). Consider a rigatly of masd/. Let| be the mo-
ment of inertia of the body with respect to an aaisd letlc be the moment of inertia
with respect to a parallel axis passing throughctv@er of mas€ of the body. If the
perpendicular distance between the two axes isl égjaathen

| =1.+Ma’ (7.43)

According to (7.43), given an infinite set ofea parallel to one another, the mo-
ment of inertia of a rigid body becomesmnimumwhen taken with respect to the
axis passing through the center of mass of the .dody for this reason that, as men-
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tioned earlier, it is easiest to rotate a body alaouaxis passing through its center of
massC. (Of course, an infinite number of axes pass thindD, each axis defining a
separate infinity of parallel axes.)

As an application of (7.42), we will calculdtee moment of inertia of a thin rod of
lengthl and mas#/ (see Fig. 7.9) with respect to an axis perpendrcial the rod and
passing through its cent€r(which point coincides with the center of masshef rod,
as shown in an example at the end of Sec. 7.2)call& the cross-sectional area of
the rod and we assume that the rod lies oxdnds.

W W

A cl /

N | —

N | —
o
X
N | —

Fig. 7.9 A thin rod of length, lying along thex-axis.

We assume that the cen@of the rod is located at the poixtO of the axis, so
that the rod extends from=—I/2 to x=1/2 (this choice has no effect on the value of
the moment of inertia, since this value dependyg onlthe position of the axis of ro-
tation relative to the body We consider an elementary section of the razmfx to
x+dx. The volume of this section @V=Sdx while the total volume of the rod is
V=SI. The distanceR of the pointx from the center of mass (thus also the perpen-
dicular distance ok from the axis that passes throu@his R=|x|. Relation (7.42) is
written (with =1 ¢ for an axis passing through):

3 1/2
IC=MSJ-”2 xzdx:M{x—} =
VIRERTE |3

-1/12

1
lc =—MI? 7.44
<=1z (7.44)

To find the moment of inertia of the rod with respt® a parallel axis passing through
an end of it — say, the endof the rod — we use (7.43) wita=I/2 :

|A=%+Ma%>£MR+EMV =
12 4

IA:%MV (7.45)

Of course, the same result can be found direatinf(7.42) (show this).
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7.7 Conservation of Angular Momentum

Up to this point we have treated the moment oftiadras a constant quantity, un-
changed with time. This is true as long as the slughe rigid body doesn’t change
in the course of the body's motion. We will nowarelthis requirement and consider
rigid bodies whose shameaychange while they move. This is, e.g., the caske thie
human body and, in general, with rigid bodies cetnmgyj of mobile parts. In such
cases the moment of inertia with respect to an &xia variable quantity and its
change with time may significantly affect the ratatl motion of the body even in
the absence of external torques.

The treatment of such complex problems, as aglbf many others of a different
nature (e.g., problems combining collision withatadnal motion; see Problems 44
and 45) is simplified by using conservation of dagumomentum, provided, of
course, that the conditions for validity of thisnaiple are fulfilled.

As we know (Sec. 7.5) the angular momentum ridid body and the total external
torque on the body are related by

!

= d
T = (7.46)

As stressed in Sec. 7.5, the above relation igl\alh rotation about an axis passing
through the common reference paihdf L and T , whereO may be a fixed point in
some inertial reference frame or may coincide \hil center of masS of the body

(even ifC accelerates relative to an inertial observer).nfice that, if=T =0, then
dL/dt=0 = L= const; that s,

when the total external torque on a rigid bodyatele to a pointO, is zero,
the angular momentum of the body relativéts constant in time.

This conclusion constitutes tipginciple of conservation of angular momentéon a
rigid body.

Note carefully that the vector relation (7.4€always understood to be validth
respect to a poinD. By taking thez-component of (7.46), however, we find an alge-
braic relation that is validith respect to the z-axis of rotatioregardless of the posi-
tion of the reference poim on that axis (see Sec. 7.5):

_d,
2T =y (7.47)

In particular, whenxT~=0 , the componenL, of angular momentum is constant:
When the total external torque on the body relativéhe axis of rotation is

zero, the angular momentum of the body relativéhis axis is constant in
time.
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The above statement expresses fhaciple of conservation of angular momentum
with respect to the axis of rotation

We remark that the choice of thaxisof our coordinate systeas coincident with
the axis of rotation is totally arbitrary! We coutdve named our axes differently so
that, e.g., the axis of rotation would be #axis or they-axis. Relation (7.47) would
then have to be rewritten witk or y in place ofz

Now, according to (7.31),~=lw, wherew is the angular velocity of rotation and
wherel is the moment of inertia of the rigid body relatitee the z-axis of rotation.
Thus, the constancy of angular momentum with reqpethis axis is expressed as

lo=constant & | 0, =1,0, (7.48)

where the indices 1 and 2 refer to two momentandt, . If 7 is constant f=1,),

which occurs when the geometry of the body is ungkd, the angular velocity is

constant in time d1=w,). This conclusion also follows from (7.38), acdagl to
which the angular accelerationis zero (hence, the angular velocidyis constant)
when the total torque with respect to the axisotdtion vanishes.

We talked earlier about a basic difference betwthe vector relation (7.46) and the
algebraic relation (7.47). In (7.46) the and T are evaluated with respect tgaint
O of the axis of rotatioand, generally, depend on the choice of this parhgreas in
(7.47) theL, and T, are taken with respect to thaisitself and donot depend on the
location of the reference poitt on this axis. For each body, however, there is ydwa
a special set of axes of rotation, each of whickspa through the center of m&sef
the body and possesses the following propertyvéwtor L of the angular momen-
tum of the body [thus, by (7.46), the total extémeaque T also] does not depend
on the choice of reference poi@ton that axis but assumes a unique valueafbr
points of the axis. Furthermore, the angular moomant is directedparallel to the
axis. An axis of rotation having these propertgesalled gprincipal axis In particu-
lar, every axis of symmetry passing through theterenf massC of the body is a
principal axis for this body. Thus, in the caseacdphere, every axis passing through
its center is a principal axis. For a cylinder, demtral axis as well as every axis nor-
mal to it and going through the center of massparecipal axes. For a cube, the three
axes normal to the faces and passing through thtercef the cube are principal axes.
(More on principal axes will be said in Appendix $ee also [2,3].)

Assume now that theaxis of rotationis a principal axis of the rigid body (as men-
tioned above, such an axis always passes throwgbethter of mas€ of the body).
The angular momenturh of the body, with respect tny point of this axis, will be
independent of the location of that point on this axd equal to

[=lwd, (7.49)

wherew is the angular velocity of rotation and whéns the moment of inertia with
respect to the principal axis (remember thahay be positive or negative, depending
on the direction of rotation).
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We define thangular velocity vector

w=wl (7.50)

z

Equation (7.49) is then written:

[=1& (7.51)

Relation (7.51) gives the angular momentum of &l dgpdy with respect tany point
of aprincipal axis. Note that the angular momentum is directedljgh to the princi-
pal axis.

It must be noted here that a relation of threnf¢7.51) may sometimes be valid for
axes that areot principal. For example, (7.51) gives the angulamantum L of a
thin flat plate rotating about an axis perpendicutathe plate, or of a rod rotating
about an axis normal to it. Careful, however: Icleaf these examples the angular
momentumL is takenwith respect to the poir® of the body through which the axis
passekFor any other point, (7.51) isot valid, unless the axis of rotation ig&nci-
pal axis (such as is, e.g., the axis normal to a arcdisk and passing through the
center of the disk, or, the axis intersecting aperpendicularly at its center).

Let us now assume that, for any of the aboasaes, relation (7.51) is valid rela-
tive to a pointO of the rotation axis. The fundamental equatiodgYis then written,
relative to this point,

!

- d d, .
ST==q (19 (7.52)

If the moment of inertid is constant,

dT=1 d_ 5 (7.53)

where & is theangular acceleration vectolf it happens that the total external torque
on the body, relative t®, is zero €T =0), then, by (7.52), the angular momentum
L with respect to that point is constant:

L=I&=constant < |,@,=1,d, (7.54)

Moreover, if/ is constant, the angular accelerati@nis zero and the angular velocity
@ 1s constant, as follows from (7.53) and (7.54).

Let us see some examples:

1. Consider a body of ma&smoving in space under the sole action of gravitgt t
is, no forces act on the body other than its weight M g. Hence, as explained in
Sec. 7.2, the total external force on the bodylmconsidered acting at the center of
massC (even if that point does not belong to the body.eas., in the cases of a ring
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or a spherical shell). Then, the total torque wéspect taC is zero and, according to
(7.46), the angular momentuln of the body relative t€ is constant:

If a body moves under the sole action of gravitg,dngular momentum of the
body relative to its center of mass is constant.

What does a diver do in order to increase hgukar speed and make several som-
ersaults in the air? He allows his body to cont@tmuch as possible by pulling
hands and feet close to the trunk of his body, ttetgeasing his moment of inertia
relative to the axis of rotation (which axis is lzontal and passes through the center
of massC of the athlete). According to (7.48) and (7.54)s tkesults in an increase of
the magnitude of the angular velocity of rotati@#, of the body. [We assume that

(7.51) is approximately valid wheh is taken with respect 0.]

2. You may have observed the spinning motioa fiure skater on ice. The skater
Is subject to two forces, namely, her weight areribrmal reaction from the ice (we
assume that friction is negligible). None of thésees produces torque with respect
to the center of mass of the skater; hence, the angular momentum ofkbtesrela-
tive to C is constant. Moreover, the vertical axis of rotatie a principal axis, relative
to which the conservation of angular momentum ressed in the form (7.54) [or,
algebraically, in the form (7.48)]. To increase hegular speed, the skater pulls her
hands close to the trunk of her body, which hasftfext of decreasing her moment of
inertia. She does exactly the opposite in ordeletrease her angular speed.

3. Why is a bicycle harder to overturn whers iin motion? Consider, for simplic-
ity, a single bicycle wheel and call the angular momentum of the wheel with re-

spect to its (principal) axis of rotation at timéf T is the total external torque on the
wheel at this instant, the change of angular moomnwithin an infinitesimal time

intervaldtis dL = T dt. Now, an overturn of the wheel is accompanied biiange of

direction of L, which change requires a torqiie perpendicularto L (in the same
way that a force perpendicular to the velocity tfoaly is needed to produce a change

of the direction of motion of the body). Then, ihénitesimal changedL of the an-
gular momentum will be normal tb, as shown in Fig. 7.19.

S
oz Jor
L

Fig. 7.10 A torque normal to the angular momentum is neédedder to change
the direction of the latter.

We notice that

tan0 = = == (755)

% The figure is not drawn to scale. In fact, if tioeque is normal to the angular momentum, then for
dt—>0 the magnitudes of the latter at timesind t+dt tend to be equal (see Sec. 7.12, below).
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Therefore, the larger the magnitude of the angmamentumL of the wheel [thus,
the higher the angular speedof the wheel, according to (7.51)] the smaller \wé

the angle of deflectiofi for a given torquel , and the more stable will be the motion
of the wheel. It is for this reason that, the fasteébicycle moves, the harder it is to
overturn.

7.8 Equilibrium of a Rigid Body

A body is intranslational equilibriumif the total external force on it is zero. The pod
is in rotational equilibriumif the total external torque on it, relative day point of
space, is zero. We write:

YF=0 (@

Stoo @ (7.56)

Think twice before you ask yourself the (supmguihg rhetorical) questiorfwhat
need do we have of conditidin) if condition (a) is already satisfied?’ A vanishing
total force doesot necessarilymply a vanishing total torque, and vice versa.eHer
are two examples:

1. Assume that a body is subject to two forokeequal magnitudes but opposite
directions, acting along parallel lines (Fig. 7.1%)uch a system of forcd:q and F,,

where F, = —F,, is called aouple

Fig. 7.11 Two opposite forces forming a couple.
The total force on the body is
Y F=F+F,=F+(-F)=0.

According to (7.34), the velocity of the centemadissC of the body is constant:
~ dy,

F=M3. =M—-C

Z % dt

=0 = V. =constan.

Hence, ifC is initially at rest ¢. = 0) it will remain at rest. We say that the bodyns i
translational equilibrium.
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On the other hand, the total torque with resfean arbitrary poin® (Fig. 7.11)is

2

Putting b= -F, , we have:

!
!

+

—
Il

=ix F+ T,x F,=TxF~TxF = ~r)xF .

N

T = bx F (7.57)

Relation (7.57) gives tharque of a coupleObviously, this torque isxdependent of
the choice of reference poitt We note that the total torque on the body isedéint
from zero, even though the resultant foiceero! This torque will produce a rotation
of the body about its center of maSswhich point, as argued above, will remain at
rest if initially at rest. If the axis of rotatias a principal axis, we can find the angular
accelerationz of the body by using (7.53) and (7.57):

&:%Zf:%(BX F) (7.58)

2. Consider now a body of constant shape, stibjdy to its weightw. Thus,
D F=w=0.

The center of mass of the body moves relative to an inertial obsewih accelera-
tion equal to

e W
aC_MZF_M g .

On the other hand, the single fondepasses throug@, and so the total torque on
the body, relative t&, is zero €T =0). Consequently, the body does not acquire

angular acceleration with respect to its centana$s. We say that the body is in rota-
tional equilibrium abou€.

We thus conclude that an absolute state ofibgum of a body requires théioth
relations (7.56) be satisfied simultaneously. Thesgor relations are equivalent to a
system of six algebraic equations:

> F=0, >F =0, >F,=0 (7.59)
d>T,=0, >T,=0, >T,=0 (7.60)

whereFy, Ty, etc., are the components of the various forcest@mues acting on the
body. In particular, relations (7.60) must be d$@tikindependently of the choice of
the originO of the coordinate syster, {y, 2), i.e., must be valid with respect amy
point of reference® of the torques. A body subject to the above coowlgiwill move
with constant momentum and constant velocity otéaster of mass, as well as with
constant angular momentum relativeatty point of space.
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7.9 Kinetic and Total Mechanical Energy

AN

Fig. 7.12 All elementary masses in the body revolve ablogtaxis of rotation
with common angular velocity.

Consider a rigid body rotating with angular velgeit about an axis passing through a
fixed pointO of space (Fig. 7.12). During rotation, every elatagy massm in the
body moves circularly about the axis of rotatiothathe common angular velocidy.

If R is the perpendicular distance rof from the axis (thus, the radius of the circular
path ofm) the speed of this mass elemenvis R o . The totakinetic energy of ro-
tation is the sum of the kinetic energies of all elemgntaassesn contained in the
body:

(7.61)

where
I = zmi Rz
is the moment of inertia of the body relative te Hxis of rotation.

Relation (7.61) represents the total kinetiergy of a body when this body per-
forms pure rotationabout a fixed axis. A more general kind of motisrai rotation
about an axis that is moving in space. Specificalisume that the axis of rotation
passes through the center of m@&ssf the body, whileC itself moves in space with

velocity V.. The body thus performs a composite motion congsif atranslation
of the center of magS and arotation aboutC. According to a remark made at the end

of Sec. 6.4, the total kinetic energy of the baglyhie sum of two quantities:kinetic
energy of translation
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1

K.trans — ~
2

E M v,? (7.62)

(whereM is the mass of the body ang is the speed of the center of m&sand a
kinetic energy of rotation about,C

E lcw? (7.63)

N

k,rot =

(wherew is the angular velocity of rotation about an axas$ng througit, while I¢
is the moment of inertia of the body relative tatthxis). The total kinetic energy of
the body is, therefore,

1 1
Ek = Ek,trans+ Ek,rot: E MVCZ+E I(:a)2 (764)

If the body is subject to external forces th conservative, we can defineea
ternal potential energ¥, as well as @tal mechanical energy,Bhe latter assuming
a constant value during the motion of the body:

E-E+E,= lcw?+ E = const (7.65)

2
\YAVARRS o

N
N~

For example, if the body moves under the sole adfaravity, its potential energy is
E, =M@y (7.66)

where yc is the vertical distance (the height) of the centanassC with respect to an
arbitrary horizontal plane of reference. Indeedrdédgtion (6.3),

1
Ye = Mlz my
wherey; is the height above the reference plane, of thatime of the elementary

massm in the body. The total gravitational potential egyeof the body, equal to the
sum of the potential energies of all elementarysess , is then

E, =2 (mgy)= g my= Mgy.
The total mechanical energy of the body is constadtequal to

E:%MVC2+%ICa)2+ngC (7.67)
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7.10 Rolling Bodies

The rolling of a body (such as a sphere or a cglihdn a plane surface can be de-
scribed in two equivalent ways:

a. Combination of translation and rotation

Rolling can be considered as a composite mat@rsisting of a rotation about an
axis parallel to the surface and passing througtcémter of masS of the body, with
a simultaneous translation of this axis parallatgelf and in such a way that the axis
is always normal to the (constant) direction of imotof C. Figure 7.13 shows a
cross-section of the body, passing thro@gand normal to the surface and to the axis
of rotation. The axis is normal to the page, sd tmy its projectionC is visible in
the figure. We callv the angular velocity and=dw/dt the angular acceleration of
the rolling body relative to the axis of rotation.

N\

O

Fig. 7.13 Cross-section of a rolling body. (The plane dlimg is not necessarily horizontal!)

Let4 be an arbitrary poindf the circumference of the cross-section (obvipusl
belongs to the surface of the body). The velogityof the center of mass with respect
to the plane surface on which rolling takes pladar(e of rolling is normal to the
axis of rotation; so, in Fig. 7.13 the vect@r belongs to the cross-section passing
throughC and containing the point.

We denote by the pointof the circumference of the cross-section thahdnen-
tarily in contact with the plane of rolling. Equivalentty can be regarded as a point
of that plane. Also, we denote the velocity and dheeleration oC with respect to
the plane (or, if you prefer, with respect to tiwénp of contaciD) by

vc,oEvc ) ?éc,oEéC .

The magnitudes of the velocity and ttamgentialacceleration of4, relative to the
center of mas€, are

Vic=Ro, a,.=Rx (7.68)

whereR is the radius of the cross-section, and whereave luised (2.34) and (2.36).

The motion is calletblling without slipping— or, simplypure rolling—if the body
does not slide on the plane of rolling. This metiyasg the point of the body in contact
with the plane of rolling does not move along thenp but its contact with this plane
is only instantaneous. Thendition for pure rollingcan be expressed as follows:
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The velocity and the tangential acceleration ofoanpA4 of the circumference
of the cross-section, relative to the center of sn@sare equal in magnitude
to the velocity and the acceleration, respectivefyC with respect to the plane
of rolling (or, with respect to the instantaneousmi of contac).

We write:

Vac=Veo= Ve s Apc= ;0= A (7.69)

By combining (7.68) and (7.69), the condition fargrolling is written:

V.=Row, g=FRx (7.70)

We can justify this condition as follows: Inllneg without slipping, as the point
of the circumference of the cross-sectaescribes an arc of lengthrelative to the
centerC, the pointC itself travels the same distanseelative to the plane of rolling.
For example, when the body performs a complete aboutC, the point4 describes
an arc of lengths=2zR with respect ta&C. The same distance is traveled, in the mean-
while, by C with respect to the plane. (Observe, e.g., theanatif a car wheel that
doesn't slip on the road.) Therefore, the velooity relative toC must be equal in
magnitude to the velocity of relative to the point of conta@; that is,vc=Rw . By
differentiating this relation with respect to timand by taking into account that
dvc/dt=ac and dw /dt=a, we get:ac=Ra.

b. Rotation about an instantaneous axis
Alternatively, pure rolling may be viewed asogationabout aninstantaneousxis

belonging to the plane of rolling, passing throtigg point of contac® and normal to
the velocity of the center of ma€g(see Fig. 7.14).

P 2V

Fig. 7.14 Pure rolling viewed as a rotation about an insta@ous axis passing through the
point of contacO (only the projectior© of this axis is visible).

At any moment, every point of the cross-section of the body tends to move on
circle with center the instantaneous point of con€g of radius equal to the distance
0A of the considered point frof (note that4 may now beany point of the cross-
section, not necessarily a point of the circumfeegnWe notice that the angular ve-
locity of 4 with respect ta@ is the same as the angular velocitylokith respect tcC;
that is, equal taw. Indeed, the angular velocity dfrelative toO is the same as the
angular velocity of any other point of the crosstgm relative toO; in particular, of
the center of masS. But, the angular velocity d@ with respect ta is equal to the
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angular velocity o0 with respect taC, which, in turn, is equal t@. (Think of it as
follows: Within an infinitesimal time intervalt, the angle described &y relative to
the pointO of the plane of rollings the same as the angle described by the @boft
the body relative t&.)

Given that, momentarily, the motion #fis circular abouD, the speed of rela-
tive to O (that is, relative to the plane of rolling) is

Vio=(OAw (7.71)

while the direction of motion of\ is normal to the radiu®4. If 4 coincides withO,
then 0A4)=0 and

Vo0 =0 (7.72)

On the other hand, # coincides withC, then (0A4)=(0C)=R and

V. = Ro (7.73)

VC,O
By differentiating this with respect to time, wet:ge
a.o=a.= Rx (7.74)

We have thus recovered the condition (7.70) foepwiling. Finally, if4 coincides
with the top pointP of the cross-section (see Fig. 7.14) thém)E(OP)=2R and

Voo =Ve=2Rw=2\ (7.75)

Differentiating this with respect to time, we have:

dpo=a,=2Rx=24 (7.76)

7.11 The Role of Static Friction in Rolling

In many cases (though not always) friction is neagsfor rolling on a surface. Imag-
ine, for example, a car at rest attempting to steving on an icy road! The role of
friction can be appreciated with the aid of thédaing example.

Fig. 7.15 Static friction is needed for pure rolling of Winder on an inclined plane.
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Consider a cylinder that is rolling withoutpgling on an inclined plane (Fig. 7.15).
The angular velocity of the cylinder about the axisotation (which is a principal
axis passing through the center of m@sksincreases as the cylinder rolls down the
incline, which indicates the presence of an extetorgue with respect t&€. What
force can be responsible for that torque? Certamdyther the weightv nor the nor-

mal reactionN from the plane, since both these forces pass ghr6u The only re-
maining force isstatic friction f, the role of which is to prevent the cylinder from

sliding on the incline (otherwise the motion wouldt be a pure rolling and, in that
case, friction would bkinetic. We thus conclude that pure rolling would be isgie
ble on an inclined plane without the presence aticstriction. (This conclusion is not
valid, however, if the plane of rolling is horizahitsee Problem 47.)

It should be noted that

in pure rolling the static friction does not produwork and thus has no effect
on the conservation of mechanical energy.

[This is in contrast to rollingvith slipping, where the friction is kinetend does pro-
duce (negative) work; see Sec. 4.7.] Indeed, i polling the point of applicatio®

of the static frictionf does not move along the plane of rolling, sinoep&ding to
(7.72), the instantaneous velocity of this poitatiee to the plane is zero. No work is
thus produced byf .

7.12 Gyroscopic Motion

Generally speaking, the rotational motion of a badgharacterized agpyroscopicif
the axis of rotation passes through a fixed poirgpace but the direction of the axis
changes with time. If the axis of rotation is anpipal axis (e.g., an axis of symmetry,
passing through the center of mass of the body), thecording to (7.49), the angular
momentumL of the body is directed parallel to that axis. §hm gyroscopic motion
about a principal axis the direction of the angat@mmentum may change with time.

In general, a change of the body's angular nmome L requires an external

torque T , where the vector§ andT are evaluated with respect to any point of the
principal axis of rotation and are independenthef ¢hoice of that point. According to
(7.46),

We notice that the infinitesimal chang& of the angular momentum is in the direc-
tion of the external torque.

If the torqueT is normalto the angular momenturh (see Fig. 7.10) the change
dL is normal toL, so thatL-dL=0. But,



RIGID-BODY MOTION 121

— —

-1 - 1 1
L-dL==d(L-D)==d(1®)==(2LdD = LdL
> (L-D > (L) 2( )

(whereL is the magnitude of ) and, thereforeLdL=0. Given thatL =0, we con-
clude thatdL=0 < L=constant

If the external torque is normal to the body’s alagumomentum, the magni-

tude of the angular momentum is constant in timis @nly the direction of
that changes).

This conclusion reminds us of the constancg pérticle’s speed (magnitude of the
velocity) when the total force on the particle igsextor perpendicular to the velocity.
Here we can think of the angular momentimof the body as a vector of constant
magnitudel, having a direction that changes with time. Thediom of the principal
axis of rotation then also changes accordinglis tiften the case that the axis of rota-
tion is itself precessing about another axis thdixed in space. This kind of gyro-
scopic motion occurs, for example, in the casesygianing top(Fig. 7.16).

X

Fig. 7.16 A spinning top. The force of gravity acts on teamter of mas€, producing a
torque in the direction perpendicular to the angmamentum. The latter vector precesses
about thez-axis, retaining a constant magnitude.

In general, bodies capable of executing gymoscaotion are calledjyroscopes
An important application is thgyroscopic compaswith the aid of which one can
determine the direction to the North. Because ef rittation of the Earth about its
axis, an external torque is exerted on the gyrascdphe compass, forcing the axis of
rotation of the gyroscope to be aligned with this axX rotation of the Earth (see, e.g.,
Sec. 13.10 of [4]).
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COMPARATIVE TABLE OF TRANSLATIONAL AND ROTATIONAL M  OTION

Translational Rotational
_dv _ do
a=— a=—
dt dt
p=mv L=1&
E-P_ma t-2ys
dt dt
1 1
E ==mV E =Zlw?
k,trans 2 k,rot 2
References

K.R. SymonMechanics 3rd Edition (Addison-Wesley, 1971)

. J.B. Marion, S.T. Thorntor§lassical Dynamics of Particles and Syste#th
Edition (Saunders College, 1995)

3. J.R. TaylorClassical MechanicqUniversity Science Books, 2005)
M. Alonso, E.J. FinrRhysics (Addison-Wesley, 1992)

»



CHAPTER 8

ELEMENTARY FLUID MECHANICS

8.1 Ideal Fluid

The term*“fluid” signifies a continuous medium that can flow. Dejyeg on their

physical properties (such as, e.g., compressipiliyds are separated intiguids and

gases In this chapter we focus our attention to thedgtaf liquids, and it is in this
sense that the terfiluid” will be used henceforth. The mechanics of fluids be

separated into two parts; nameiiid Staticsor Hydrostatics which studies fluids at
rest, and-luid Dynamicsor Hydrodynamicswhich studies fluids in motion.

Nothing in this world is ideal! This is not agsimistic thought but simply an inter-
pretation of the terrtideal” , which originates from the Greek watdéa” . It means
something that exists only in our mind, an entitgttis nonexistent in reality. Given
that real fluids have physical characteristics (such as, @igcosity) that make the
theoretical study of these substances difficult,invent an idealization of fluids with
the generic namieleal fluidand with the following properties:

1. An ideal fluid isabsolutely incompressihl@his means that the density of an
ideal fluid is the same at all points in the flu{&s will be seen in Sec. 8.3,
this assumption facilitates the derivation of thedamental equation of Hy-
drostatics.)

2. An ideal fluid isabsolutely non-viscoughere is no internal friction within the
fluid). This is particularly important in Hydrodymacs since it allows us to
use conservation of mechanical energy for the stddiuid motion (this will
be discussed in Sec. 8.12).

Many real fluids (e.g., water) have propertieat are close to those of an ideal
fluid. Note, however, that the characteristicse#lfluids are not always undesirable.
For example, if fluids werperfectlyincompressible they would not allow the propa-
gation of elastic waves (such as sound) in thegrior. And, of course, you wouldn’t
enjoy honey so much if it didn’t have that familthrck texture!

8.2 Hydrostatic Pressure

To begin our study of Hydrostatics we considemaill at rest in a vessel and we let
ds be anelementary(i.e., infinitesimal) surface located at some pdnn the fluid
(see Fig. 8.1). The elemeds may be part of the surface of an immersed object or
may belong to a fictitious surface within the flujthat is, a surface consisting of
points belonging to the fluid itself). Such an etsnary surface may be treated, at

least approximately, as a plane surface. We d@llthe elementary force exerted by
the fluid onds

123
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o Jre
- 1Iqul

vesse

Fig. 8.1 Normal force on an elementary surfaisenside a liquid at rest.

It is found experimentally thatF has the following properties:

1. It is independent of the nature of the surfdseThat is, the force exerted by
the fluid on the elemerds does not depend on the molecular composition of
ds(i.e., on the material of whidlsis made).

2. The direction ofdF is alwaysnormalto ds, regardless of the orientation dx
This is a consequence of the absence of interraiofral forces within the
ideal fluid and of the fact that the fluid is aste

3. The magnitudelF of dF is independent of the orientation @ (that is,dF
does not change if we rotatis in any direction while leaving the location of
dsfixed at point2’). As is found,dF depends only on the location Bfin the
fluid and, for infinitesimalds, it is proportional to the area df (this infini-
tesimal area will also be denotds).

This last remark leads us to the definitiorhpdirostatic pressur® at a pointX'in
the fluid:

P=— <« dF=Pds (8.1)

We note the following:
1. In generalP is a function of the location of poiatin the fluid.

2.P does not depend on the orientatiordgfthereforeP is independent of the ori-
entation ofdF . We conclude tha® is ascalarquantity.

3. P is defined for a particular point in the fluid;cannotbe defined as a sum over
a set of points. Thus it is meaningless to speak ‘wbtal pressure” on a surface, as
we never speak, for example, of a “total tempeedtar a “total density” of the air in
a room. On the contrary, weay define the total force on a finite surfa8én a fluid
as the vector sum of all elementary forc#s exerted by the fluid on the various ele-
mentary surfacesls that make u®s.

As verified by experiment,

the hydrostatic pressure is constant over a hotiiosurfacein a fluid at rest;
that is, all points of this surface have the samesgure.
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This means that, in a fluid at rest, hydrostatiespure varies only in theertical di-
rection (i.e., in the direction of the gravitatibri@ld of the Earth). In particular, the
constant pressure over tfree surfaceof the fluid (which surface is always horizon-
tal) is equal to the atmospheric presstye

I I
v v

|

Fig. 8.2 Horizontal surfac&inside a fluid at rest.

S

Let us now consider lzorizontal surfaceof total areaSinside a fluid at rest (Fig.
8.2). We partitiorSinto a huge number of elementary surfadgs

S=>ds.

The total forceF exerted by the fluid o8 is normalto Sand its magnitud€ is the
sum of magnitudeslF; of all elementary forceslF exerted normally on the corre-
sponding surface elemerds:

F=>dF .

But, dF=Pds , whereP is theconstantpressure ors, same for all elementary sur-
facesds . Hence,

F=)Pds=P) ds =
F
F=PS < P-< (8.2)

Note carefully that (8.2) is only valid forh@rizontalsurface, since it was derived
on the assumption that the pressBrbas the same value everywhere®rOn the
contrary, thenfinitesimalrelation (8.1) for an elementary surfad®is alwaysvalid,
regardless of the orientation dé

8.3 Fundamental Equation of Hydrostatics
It was mentioned earlier that the hydrostatic presg8 in a fluid at resvaries only in

the verticaldirection. We now seek the equation that descititngsvariation quantita-
tively.
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Consider an ideal liquid of densjty Since the fluid is incompressible, the value of
p is constant over the entire fluid. dimis the mass andV is the volume of an ele-
mentary quantity of the fluid, then

ng—c < dm=pdVv (8.3)
y
F(y+dy)
Ao l A
_ﬂx_ﬂ%%%%%% L
t Loy
y dw TF(y) I
y=0 l

Fig. 8.3 A fluid element in the shape of a thin horizordesk.

Consider now a fluid element in the shape tfia horizontal disk of base areia
and infinitesimal thicknesdy, thus of volumedV=Ady (Fig. 8.3). The weight of the
disk is dw=(dm)g=( pdV)g, or

dw= pgAdy (8.4)

We callP(y) andP(y+dy) the (constant) pressures at the horizontal leatelseightsy
andy+dy, respectively, above an arbitrary reference |lgw€l. The vertical forces on
the disk are its weightw, and the normal forces from the liquid on the tvawizon-
tal surfaces of the disk(y) andF(y+dy). The disk is in equilibrium since it is part of
a fluid at rest. Thus, the total vertical forcetba disk is zero:

D> F,=0 = F(y)-F(y+dy)-dw=0.
But,
F(y)=P(YA, Hy+dy= Ry dy ..

Substituting fodw from (8.4) and eliminating, we find:

P y¢dy —-)P y(=)-p gd
or
dP=—pgdy (8.5)

wheredP is the infinitesimal change of pressure correspantb the change of height
dy.

To find the change of pressux®=P,—-P; as we move from a heigi to another
heighty- (i.e., as we move a vertical distantg=y, —y;) we integrate (8.5) fronp to
Y2 , taking into account that the dengitis constant:
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J‘fdP:—J‘yyjpgdy: —p qf dy =

P-R=-pd(%,- ¥ & AP=—p @y (8.6)

Note that the pressumecreaseqAP<0) as the height increasesayf0). Equation
(8.6) is often called theandamental equation of Hydrostatics

Instead of the heiglytthat increases in thgpwarddirection, we often refer to the
depth hbelow the free surface of the fluidhich increases in theownwarddirec-
tion. Then,dh=-dy, and the infinitesimal relation (8.5) is rewrittag

dP=pgdh (8.7)

while the fundamental equation (8.6) takes on tinenf

B-R=pd(h-h < AP-pgh (8.8)

Note that the pressure nomcreaseswith depth AP>0 when Ah>0).

As an application, let us determine the presBuat a pointz’ at depthh below the
free surface of the liquid (Fig. 8.4). Of coura#,points at the same dephll have
the same pressure.

e€«— T ——> o-U
>
Il
o

Fig. 8.4 A pointX at depthh below the free surface of a liquid at rest.

The pressure at the free surface, whet@, is the atmospheric pressutg. Substi-
tuting h;=0, P1=Py and h,=h, P,=P in (8.8), we have:

P-R=pg(h-0) =

P=P+pgh (8.9)

Relation (8.9) is an alternative, equivalentrfaf the fundamental equation (8.8).
[Exercise:By applying (8.9) at two depths andh,, recover equation (8.8).] Note
that the atmospheric pressufg adds to the pressure caused by the liquid alone at
pointX. This is a consequence Bascal’'s principleto be examined in Sec. 8.6. More
on the atmospheric pressure will be said in Appeidi
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8.4 Units of Pressure

Hydrostatic pressure is expressed in a varietynasudepending on the application of
interest. The following units are commonly usedPhysics.

1. In the S.1. system of units,(kg, S) the unit of pressure is tiascal(Pa):
1Pa:1ﬁ2 where 1N=1kg - m §°.
m

In thecgssystem(cm, g, ) the unit of pressure is

1M where 1dyn=1g-cm & .
cnt
Given thatlkg=10*g and thatlm=10% cm, we find thatIN=10" dyn and therefore,
dyn
1Pa=10— .
cnr

2. TheBar unit is defined as follows:

dyn

szzld’Pa.

1Bar=1C¢

Hence,

dyn 6
——=10"Bar= 1uyBar .
cnt lu

3. As1Torr or InmHg we define the pressure exerted at the base dienooof
mercury (Hg) of heighthm=0.1cm Thus, Torr is the pressure changé that rela-
tion (8.8) will yield by puttingp=13.6 g/cn? (density of Hg),g=9.8 m/§ and
Ah=0.1cm:

_ 9 cm
1Torr = (13.6Cma X (980? ¥ (0.tm

_1332.8 M1 _ 1332 9,Bar
cnt

4. Anatmospherdlatm) is defined as the pressure exerted at the bageolumn
of Hg of height 76m=760mm:

latm=760mmHg= 760Tore= 76Q@ 13328 Ba
=1.01Bar .

This is equal to the standard atmospheric pres3ae sea level:
P, =1atm=760Torr (sealevel, 20C).

Application: Variation of hydrostatic pressureide the sea

It is known empirically that the hydrostaticepsure inside the sea increases ap-
proximately by atm for every extra 10 meters of depth. This can béigd numeri-
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cally by using the fundamental equation (8.8) with1.03g/cn? (density of sea wa-
ter), g=9.8m/$ and Ah=10m. We have:

AP = pgAh= (103 ) (980—)< (1Bcm) 1.08 98 felrﬁ

aim —

=1.03x 9.8 10'Bar= 1.03 9.8 1bx
1.01

AP =0.9994atm= latmr for every extra 10 meters of depth

Thus, by taking into account that the atmosphemesgure i$,=1atm the pressure at
depth h in the sea is found to be

P= 1+L atm (hin meters)
10m

Question:What is the pressure at the location whereTikanic rests? lf=4km)

8.5 Communicating Vessels

Consider the following experiment: Two vessels lid same height but of different
width communicate with each other by a narrow tub@se ends are firmly attached
to the vessels at points close to their bottoms.célethis structure aystem of com-
municating vesseldVe put this system on a table and slowly butdkge@our water
into both containers simultaneously. Which vessélbe filled up first?

You may be inclined to answéthe narrower one, since the free surface of the
water will reach the opening of the vessel soohantthe water in the wider vessel”
If we actually perform the experiment, however, wi# realize that the two contain-
ers fill up simultaneouslyThis is a consequence of tpenciple of communicating
vesselsaccording to which

if two or more vessels communicate with each othed, if all vessels contain
the same liquid and are subject to the same extegressure, then, at the
state of equilibrium, the free surfaces of the iligare at the same horizontal
level (i.e., raise to the same height) in all vésse

PO PO
p P T
h h
I ) S fld

Fig. 8.5 A system of two communicating vessels contairidigiuid of density.
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The theoretical proof of the principle is aidas (see Fig. 8.5; for convenience,
only two vessels are drawn). Consider two poitndA’ located at different vessels
but belonging to the same horizontal plane. Thedstdtic pressure is thus the same
at the two points. Cath andh’ the heights of the free surfaces of the liquidvabo
andA4’, respectively. By relation (8.9),

P,=P. = R+pgh=R+pgh= h F.

Notice that the validity of this result is independ of the geometrical characteristics
of the vessels.

There are two cases where the principle of cameoating vessels doewt apply;
namely, &) when the vessels contain two or more liquids thatnot mix, and k)
when the external pressures on the free surfacé® aontained liquid are different in
different vessels. Let us see two examples:

a. Vessels containing immiscible liquids ofedlént densities

PO PO
R | T
T P1
hy h,
el 1
----------------- I -----Y----- interface
_____ A L 1k

Fig. 8.6 A system of communicating vessels containing liquids that do not mix.

The two vessels in Fig. 8.6 contain liquidsiehsities; andp,, where we assume
that p; > p,>. We callh; andh, the heights of the free surfaces of the two liguiela-
tive to the horizontal level of their interface étexistence of such an interface is re-
lated to the fact that the liquids do not mix). \démsider the pointd and4” belong-
ing to the same horizontal plane within the liguid We also consider the poiftin
the liquidp1 , at the same horizontal level with the paitat the interface of the two
liquids. Since4 and4” are points in the same liquid, the hydrostaticgpuees at these
points are equal. By the fundamental equation (8.8)

P.-R=pd(AB = R=RB+p d AB,
Py~ R = g(AB) = P, =Py +p,g(AB) .

Given thatP, = P4, and 4B=A4'B’, we conclude thaPz = Pg-. Relation (8.9), then,
yields:

R+pah=R+p,gh = ph=p,h =
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h_p
hz P1

Thus, if pP1L>pP2, then hi<h, .

b. Vessels at different external pressures

One end of a U-shaped tube containing merddg) (s connected to a tank con-
taining gas at pressurg while the other end of the tube is open to timozphere,
thus subject to the atmospheric presstyésee Fig. 8.7). We cdll the height of the
free surfaceéB of Hg at the open end, above the level of therfiate between the Hg
and the gas in the tank, and wedebe a point a vertical distantebelowB (thus, a
point at the same horizontal level with the inteefa

gas P
V B ...
P
h
Vi Al L
Hg

Fig. 8.7 An open-tube manometer.

The hydrostatic pressure Ats equal to the pressureof the gas in the tank (ex-
plain this!) while the pressure at the free surfBagf Hg at the open end is equal to
the atmospheric pressuPg. By relation (8.8),

P.—B=pgh = P-R=pgl

The above-described device is called open-tube manometeand is used for
measuringgauge pressure@—~Pg). In general, by “gauge pressure” we mean the dif-
ference between a variable pressBrand a standard, constant presskgg€such as
the atmospheric pressure in our example). The gpem-manometer may be used to
measure high pressures exerted by a gas on the afaltank.

8.6 Pascal’s Principle
Pascal’s principlemay be stated as follows:
Every variation of pressure on the free surfaceadiquid is felt simultane-

ously at all points in the liquid. Thus, if the extal pressure changes A,
the pressure at all points in the liquid will alsbange by1P.
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Proof: When the external pressurefs, the pressure at a poibtat depthh below
the free surface of the liquid P=Pgtpgh. If the external pressure increases\iBy so
that its new value i8y'=Pot+ AP, the pressure atwill become

P’= Py +pgh = (Po+AP) + pgh = (Po+pgh) + AP = P+AP .

Pascal's principle has a useful practical agpion in thehydraulic lever In its
simplest form, this consists of two communicatingindrical vessels of cross-
sectional areaS; andS,, whereS,< S, (see Fig. 8.8). The vessels contain a fluid such
as oil or water. At the top of each cylinder thex@ piston by which pressure can be
exerted on the fluid at both sides. Assume nowweaexert a downward forde on
the smaller piston. What foré& must be applied to the larger piston in ordertifigr
system to be in balance?

T

Fig. 8.8 A simplified form of a hydraulic lever.

The smaller piston exerts a pressixel-;/ S on the fluid. According to Pascal’s
principle, this pressure is transferred to thedangston, to which is thus exerted an
upward force equal to

R

FZ':PSZ:Sl S .

In order for that piston to be in balance we mustréfore exert on it a downward
force of magnitude=,=F,"; that is,

S
F,=2F 8.10
S (8.10)

We notice thaF,>F;. Thus, by a small effort (forde;) we can, e.g., lift a heavy ob-
ject such as an automobile (forfeg.
8.7 Archimedes’ Principle

Archimedes’ principlds among the most important principles of Hydrasgatlt is
stated as follows:
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A body wholly or partially immersed in a liquidssibject to an upward force

from the liquid, called buoyant foras buoyancywhich is the resultant of all

elementary normal forces exerted by the liquidleimmersed surface of the
body. The buoyant force is equal in magnitude eowkight of the fluid dis-

placed by the body, while the line of action oktforce passes through the
center of gravity of the displaced fluid (centebabyancy.

The principle is proven theoretically as follw

Let us callvVy and Wd the volume and the weight, respectively, of thedfldis-

placed by the body. (If the body is wholly immersedhe liquid,V4 equals the vol-
ume of the body. If, however, the body is only @édist immersed, theVy is lesser
than the body’s total volume.) Without loss of getiey, we assume that the body is
wholly immersed.

A’
N N
A W

(@ (b)

Fig. 8.9 Instantaneous picture of an immersed body (faft) the equivalent volume of fluid
displaced by the body (right).

Part §) of Fig. 8.9 shows an instantaneous picture ofrtiraersed body. The word
“instantaneous” is related to the fact that, inegah the body isiotin a state of equi-

librium inside the liquid. The buoyant forc& is the resultant of all elementary forces
acting normally on the surface of the body by thaid.

In part b) of the figure the body has been removed and bas keplaced by liquid
of the same volume and shape. The surface of detiba of the fluid is now subject

to a total forceA’ (buoyant force) from the surrounding fluid. Theigte VVd of this
fluid section is equal to the weight of the flultht had previously been displaced by
the body, while the line of action (Wd passes through the center of gravity of the
displaced fluid.

In contrast to the submerged body, the patt@fiquid that replaced the body is in
a state of equilibrium since it is a portion oflad at rest. Hence,

R, =0 = K=—Vy.
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Now, the buoyant force on the body is the saméadtioyant force on the part of the

fluid replacing the body (i.e.A= A) since, as mentioned in Sec. 8.2, the elementary
forces exerted by a fluid on a surface are indepeidf the nature of the surface.
Thus, finally, the buoyant force exerted by thedflon the body is

A=-W, (8.11)

The direction of the buoyant force is upward (tisabpposite to the direction Uf/d)
while the magnitude of this force is

A=W, = p gV, (8.12)
wherep is the density of the liquid.

We note the following:

1. The buoyant force depends only on the voloftbeimmersedart of the body;
it is independent of the weight, the density or¢hemical composition of the body.

2. For a body that is wholly immersed, the targyforce on it is independent of the
depth at which the body is located inside the tiqui

3. The buoyant force doest necessarilpass through the center of gravity of the
body, unless the body is homogeneous and is tataltyersed, in which case its cen-
ter of gravity coincides with the center of buoyaKfcenter of gravity of the displaced
liquid).

Question:A diver claims that he feels the “increasing actadf buoyancy” as he
dives deeper. What can you tell about his undedgtgnof Hydrostatics? Can you
correct his statement in order for it to make seemrse?

8.8 Dynamics of the Submerged Body

We submerge a body completely into a liquid (Fid.03 and then let the body free.
What will be the subsequent state of motion ofibdy? As we will now see, this
motion depends on treveragedensity p ~ of the body in comparison to the density
of the liquid.

!

Fig. 8.10 A body of volumeV, fully submerged in a liquid of densipy
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Letm, V, W be the mass, the volume and the weight, respegtiobthe submerged
body. Theaverage densitgf the body is defined as

p’:vm < m=p'V (8.13)

Hence,
W =mg=p' gV (8.14)
Since the body is fully immersedy =V, whereVy is the volume of the fluid dis-
placed by the body. By (8.12), then, the buoyarddmn the body has magnitude
A=pgV .

In vector form, by taking the positive directione{shed by the direction of the unit
vector U in Fig. 8.10) upward, we have:

A= Al=pgVu, W=— Wu-p' gV .
The total force on the body is
F=A+W=(A-W U=(p-p) gV FI.
Note that the direction of depends on the sign of the algebraic value

F=A-W=(p-p") gV (8.15)
Specifically:

o If p’>p, thenF<0 and the bodginks

e If p"=p, then F=0 and the body attains a stateeasfuilibrium, fully sub-
mergedn the liquid.

e If p’<p, then F>0 and the bodyisestoward the surface of the liquid and
finally floatsin equilibrium, partially submerged in the fluid.

The average density of a submarine can be varied with the inflow otflow of
seawater, thus becoming larger, smaller or equtigalensity of the water. In this
way one can achieve diving, surfacing or equilibrjuespectively, of the submarine
in the water.

8.9 Equilibrium of a Floating Body

As we have seen, for a body to float partially sekged in a liquid (as shown in Fig.
8.11) the average denspy of the body must bemallerthan the density of the lig-
uid (p'< p). We callV and W the volume and the weight, respectively, of theyho
and we letvy be the volume of the immersed part of the bodyaktputhe volume of
the displaced liquid. In addition to its weigiit the body is subject to the buoyant
force 4 exerted by the fluid on thenmersedsurface of the body. We want to evaluate
the fraction of the total volume of the body treasubmerged.
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Vd{p P

Fig. 8.11 A body partially submerged in a liquid of dengity
Since the body is in equilibrium, the totalderon it is zero. Thus, the buoyant
force must exactly balance the weight of the bodywV. But, by (8.12),4=pgVy ,
while by (8.14),W=p'gV. Hence (by eliminating),

pV,=p'V =

!

=£ (8.16)
P

<|<
e}

Thus, e.qg., ifp" = 3p/4, thenVy= 3V/4. That is, 3/4 of the total volume of the body is
immersedregardless of the shape or the dimensiohthe body. By applying proper-

ties of proportions to (8.16), we find the fractiohthe total volume of the body that
is abovethe surface of the liquid:

V-V _p-rF
\% p

(8.17)

Application: Explain why the captain of th&itanic didn’t manage to see the ice-
berg. The density of ice j§=0.92yr/cn?, while that of seawater js=1.03yr/cnt.

Answer:Substituting forp and p” into (8.17), we find that only 10.68% of the to-
tal volume of the iceberg was visible above théamer of the sea.

It should be noted that the conditidrW guarantees th&anslationalbut not the
rotational equilibrium of a floating body. What will happen tiie body is tipped
slightly from its equilibrium position by rotatidoy a small angle about a horizontal
axis passing through the body’s center of masflbody tends to return to its initial
position, the equilibrium is said to lséable If, however, the body tends to depart fur-
ther from its initial position, the equilibrium imstable Finally, if the body remains
in its new position, the equilibrium reeutral

If the center of gravitf of the body is locatetielowthe center of buoyandg
(center of gravity of the liquid displaced by thedly) the equilibrium istable since,

if the body is rotated slightly with respect to @guilibrium position, its weightV

and the buoyant forcé form arestoring coupleghat compels the body to return to its
initial position.
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It is possible, however, for the equilibrium affloating body to be stable even if
the center of gravitf of the bodyis locatedabovethe center of buoyandg. This
depends on the position &f relative to another poin¥, called themetacenterthe
location of whichis found as follows: When the body is in equililiuthe axisCK
passing througlC andKX is vertical. We imagine that this axis is firmlyathed to the
body and thus rotates with it. When the body ided##d from its equilibrium posi-
tion, anewcenter of buoyanc¥ emerges, since the geometry of the displaced fluid

changes, in general. The buoyant forsenow passes througti’. The metacente¥

is the point of intersection of the line of actioh A with the axisCK. One may prove
the following:

e If Cis locatedbelow, the equilibrium istable
e |If Cis locatedaboveM, the equilibrium isunstable

e If C coincideswith M, the equilibrium iseutral

In ships, the center of gravi§/is always higher than the center of buoyakidyut,
for relatively small angles of deflection from thvertical, C is located below the
metacenten. Thus the equilibrium of a ship is stable. Forlaagf deflection larger
than a certain limit value, the metacentércan pass belowC, in which case the
weight of the ship and the buoyant force form agpt@that makes the ship overturn.

In submarines, the metacentéicoincides with theonstantcenter of buoyancy.
Thus the equilibrium of a submarine is stable wtien center of gravity is lower
thank. This can be achieved with the inflow of seawat#y suitable tanks.

8.10 Fluid Flow

Having studied the fundamentals leydrostatics(fluids at rest) we now turn our at-
tention toHydrodynamicgfluids in motion). The motion of a fluid is cadléuid flow.

It will be helpful to consider that the fluid composed of a huge number of ele-
mentaryfluid particles (you may visualize them as infinitesimal volumersénts)
moving in the direction of the flow at each poifhe flow velocityat a given point at
a given time may thus be defined as the velocititheffluid particle passing through
that point at that time.

Since the study of a real flow is often a capngied problem, we will resort again
to certain simplifying idealization'sWe thus envisage adeal flow having the fol-
lowing characteristics:

1. The fluid is an ideal liquid; thus, itiscompressibl@ndnon-viscous

2. The flow issteady By this we mean that the flow velocity at anyegivpoint
is constant in timgalthough it may change from one point to another)

3. The flow isirrotational. This means that, at any point in the flow, thesieg
fluid particle has no angular momentum relativéhiat point (or, equivalently,

! For a discussion of real-fluid flow see, e.g., @hk6 of [1].
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relative to this particle’s center of mass). Thetipke thus executepurely
translationalmotion.

The path of a fluid particle is calledsaeamline At any point of a streamline the
flow velocity is a vectotangentto the line, as shown in Fig. 8.12.

A —
/i"ﬁ\/

Fig. 8.12 The flow velocity is tangential at each pointoftreamline.

In steady flow, every fluid particle passingaiigh any poin4 always follows the
same streamline (otherwise the flow veloaity at that point would not be constant in

time, since its direction would change within tired interval between the passing of
one particle and the passing of another). This s#aaistreamlines do not cross one
another(they do not intersect).

Fig. 8.13 A tube of flow.

A large aggregate of streamlines forming a Ibenod tubular shape is calledtabe
of flow. We can imagine the formation of such a tube dsvis: Consider a small
plane surfac& normal to the streamlines at some location in ke {see Fig. 8.13).
The set of all streamlines passing through theiort@s well as through the border of
Sconstitute a tube of flow. In particular, the strdiaes passing through the border of
S constitute théooundaryof the tube of flow. The flow velocity at the cressctionS
of the tube is defined as the velocity of any flpafticle passing through the center of
S (assuming that the tube is narrow enough for tbe elocity to be considered
nearly constant over the entire cross-sec8pn

A tube of flow behavebke a real pipe with impenetrable boundaries. Indeed,
fluid particle in the interior or in the exteriof the tube cannot cross the boundary of
the tube since, if that happened, the streamlinthisfparticle would cross a stream-
line belonging to the boundary. Of course, a tubdlaw may also possess real,
impenetrable boundaries, as happens in the cas®after hose or a water pipe.
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8.11 Equation of Continuity

The equation of continuity is the first of two fuardental principles of Hydrodynam-
ics. It is an immediate consequence of the praggeuf ideal flow and, physically, it
expresses conservation of mass (or, equivalertlyolome, in the case of an incom-
pressible fluid).

We consider a tube of flow and two cross-sestiof it at points 1 and 2, with cor-
responding cross-sectional areasandA; (Fig. 8.14). In general, a cross-section of a
tube of flow is assumed to be normal to the flowogity (equivalently, to the central
streamline of the tube) at the location of the srssction. Thus, the flow velocitigs

and v, at points 1 and 2 of the tube are perpendiculahéocorresponding cross-
sections4; and4,.

Fig. 8.14 A tube of flow and two cross-sections of it.
Assume that, within an infinitesimal time intal dt, the fluid particles passing
through the cross-sectioh advance a distanak , while those passing through

advance a distancex, . Thus, the fluid volumes passing through the twoss-
sections within the time intervalt are

dV]_: A]_ Xm , dV2: A2 dX2 .
But, since the fluid is incompressible and the laaures of the tube are impenetrable,
the volume of the fluid passing through a crosgiseavill be the same as the volume
passing through any other cross-section, withirstivae time interval. Hence,
dV]_: de .
Furthermore, ifvy; and v, are the flow speeds at the two cross-sections, then

dX]_: Vldt ) dX2:V2dt .

We thus have:
Avq dt = AoV dat =

Avi= AV, (8.18)
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Given that the points 1 and 2 of the tube are aha@sbitrarily, relation (8.18) is
equivalently restated as follows:

| A-v = constant along the tube of roPv (8.19)

Relations (8.18) and (8.19) are alternate vasspf theequation of continuityor a
tube of flow. Note that the proof of this equatiwas based on the assumption that the
boundaries of the tube are impenetrable, which méhat it is impossible for any
quantity of fluid to either enter or exit the tuliéis implies that the quantity of fluid
passing through any cross-section of the tube pertime must be the same for all
cross-sections of the tube.

The productA.v carries a particular physical significance, whiomtomes evident
by noting that
dx dv

Av= A= =—
dt dt

wheredV is the volume of fluid passing through the crosstiea 4 within time dt.
Thus, the producA.v represents th#uid volume per unit tim@assing through the
cross-sectiord of the tube; it is called thelume flow ratgor volume flux

[I=A4v= ?j_\t/ = volume flow rate (8.20)

According to the equation of continuity (8.19e flow rate is constant along the
tube That is, the same volume of fluid passes per timé through every cross-
section of the tube, in accordance with a remaréevearlier.

8.12 Bernoulli's Equation

Bernoulli’'s equation, to be proven in Appendix &an expression of conservation of
mechanical energy for a fluid (here, a liquid). 8peally, it is the analog of relation
(6.28) for the case of a mechanical system congisti elementary fluid particles.

Consider a tube of flow of a liquid of densityConsider also two cross-sections of
the tube, of aread; and4,, at the corresponding points 1 and 2 of the tuhe. (
8.15). The flow velocities, of magnitudesandv, , are normal to the corresponding
cross-sections. We cahy, P, the hydrostatic pressures at the two cross-sex;tenmd
we callys, y» the heights at which the centers of these crogsssscre located above
an arbitrary reference level.
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Y

Fig. 8.15 A tube of flow and two cross-sections at diffdreaights above an
arbitrary reference level.

To understand how the pressuPesand P, are defined, let us consider the section
of the tube extending from point 1 to point 2. Thection is bounded by the cross-
sections4; andA4, . Assuming that, at any point of the tube, the bgtiatic pressure is
constant (or approximately constant) over the enthoss-section at that point, we
write:

F2

whereF,, F, are the forces exerted normally on the crossaexid,, 4>, respec-
tively, by the fluid surrounding the consideredtsetof the tube. (These forces must
be normal to the corresponding cross-sections,ngthat, in general, every cross-
section of the tube moves in a direction perpendido itself.)

According taBernoulli’s equationfor any two points 1 and 2 of the tube of flow,

1 1
F’1+§pr+pgy1= R+5p V+p gy (8.21)

or, equivalently,

P +%p v’ + p g y= constant along the tube of flow (8.22)

If we overlook, for a moment, the presencehef pressur®, the left-hand side of
(8.22) looks like a total mechanical energy in gnavitational field of the Earth, ex-
cept that in place of the masswve now have the densipyof the fluid. The quantity
here is related to the work required to change ieshanical energy, according to
relation (6.28). To be specific, in addition tordgisubject to the conservative force of
gravity, the considered section of the tube isettijo the normal forcds,, F;, by the
surrounding fluid. The work of these forces is esanted by the terfin Bernoulli's
equation. This work is responsible for the chanféotal mechanical energy of the
section of the tube (for more details, see Appefrdlix
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In the trivial case where the flow velocityzero, the equations of Hydrodynamics
must reduce to those of Hydrostatics. For a fluideat, we must put;=v,=0 into
Bernoulli's equation (8.21). This equation thengse

PR-R=-pdY%,— W (8.23)

Relation (8.23) is precisely the fundamental equia(B.6) of Hydrostatics.

8.13 Horizontal Flow

We say that a tube of flow is horizontathe central streamline (which does not have
to be rectilinear) lies on a horizontal plane.

All cross-sections of a horizontal tube of flase centered at the same height
above a horizontal reference level. Thus, by pgtFy, into Bernoulli's equation
(8.21) they-dependent terms cancel out and the equation redluces

PtV Bt p (8.24)
2 2
or
P +%pv2 = constant (8.25)

For a fluid at restvEOQ) it follows from (8.25) that the hydrostatic psese P is
constantalong any horizontal path. This conclusion is imf@e agreement with Hy-
drostatics. Things are different in Hydrodynamigesyever, where/= 0. According
to (8.25), in order for the pressufealong a horizontal tube of flow to be constang, th
flow speedv must be constant along the tube. On the other,Hanthe equation of
continuity, the producA.v is constanalong the tube, wherg is the cross-sectional
area of the tube. Hencé must be constant as well. We conclude that

the hydrostatic pressure is constant along a hariabtube of flow having a
constant cross-sectional area.

According to (8.25), in horizontal flow the hgdtatic pressur® increases where
the flow speeds decreases. Now, according to the equation of coityinthe flow
speed decreases where the cross-sectionafharkthe tube increases. Therefore,

in a horizontal tube of flow the hydrostatic pregsincreases (decreases)
where the cross-sectional area of the tube increédecreases).

As an application, consider a horizontal pipgariable cross-sectional ardgFig.
8.16). Consider two points — say, 1 and 2 — ofptipe and let4; andA4, be the cross-
sectional areas of the pipe at these points, witerd, . A liquid of densityp flows in
the pipe. The pressure differend®—-P,) between the two points is measured and
found equal ta\P. What is the volume flow rate of this horizonta\i?
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1
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P

Fig. 8.16 A horizontal pipe of variable cross-sectionalsare

Letv; andv; be the flow speeds at the considered two pointh@fpipe (which
pipe constitutes a horizontal tube of flow). We éiavsystem of two equations:

AV, = Ay, (equation of continuity)
1 1 ., . :
P +§,ov1 = PZ+§,0 v, (Bernoulli's equation)

By the equation of continuity,

Vv, = A A (8.26)

A,
Substituting this result into Bernoulli’'s equatiave find:
2 a2
P-P=AP-= p(AéAzzAz ) V2 (8.27)

We notice thaP1>P,, given that4,>4, . By solving (8.27) forv; and by using (8.26)
for v», we have:

2AP 1 2AP e
=A— S|  w= A 8.28
) Az[p(Al—AzJ k A’{p(a—m} (629

The volume flow rate is

1/2
2AP } (8.29)

II=Av,= Av,= ﬁ%l:m

Reference
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APPENDICES

A. Composition of Forces Acting in Space

Consider a system of forcd:q, Ifz,---, acting at various points of space with corre-
sponding position vectorg, 1, ,---, relative to a fixed reference poi@itthat is chosen

to be the origin of our coordinate systexny(z). These forces are assumed to act on a
specific physical system; e.g., on individual mersbaf a system of particles or at
certain points of a rigid body. We now ask the ¢oes Under what conditions can
the above set of forces be replaced by a singte fthrat will produce the same trans-
lational and rotational effects on the physicateyg?

It is apparent that, if it exists, this forcélwe theresultantR of the given system
of forces:

—

R=F+F+-=>F (A.1)

The question now isvhereexactly must we placR ? If a well-defined answer to this
question exists, then the replacement of a sebroe$ by a single force is possible.
The necessary condition for this to be the caieeisollowing:

The torque of the resultant forde, relative to_anypoint O of spacemust be
equal to the vector sum of the torques of the compoforcesF,, F,,---,
relative toO.

"\

e

X

Fig. A.1 A system of forces acting at various points @fcgp the resultant
force is assumed to apply@t

LetC be the point of application dR (assuming that such a point exists), with po-
sition vectorf, with respect t@ (Fig. A.1). The torques ohfl, If2 .-+, with respect to
0, are

T,=fxF, T,=FxF,,

and the total torque of the system of forces, iraddb O, is

144
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T=

!

+ T+ z T= ZT x F (A.2)
On the other hand, the torque Rfrelative toO is
r.xR= [ z lfi .
Thus, the necessary condition stated above isanritt
x2F=2T < ©xR=T (A.3)

The question then is whether the vector equatioB)(Bas a solution for., for given
R andT and forarbitrary choice of reference poin.

A particular situation is that in which all t@s Factat the same point, which
has position vector . Thent, =1, for all values ofi, and

T Zr, xF = Zr xF = Z* FxR .
Hence, relation (A.3) has the solutign=r". We conclude that

a system of forces that are concurrent at a poimhdy be replaced by their
resultant, applied at the same point A .

Things aren’t that simple in the case of nonetorent forces, since the equation
(A.3) may not admit a solution fag. in that case. We can state, however, heoes-

sary conditiondor the existence of such a solution:

1. The resultant forcdR must not be zeroR=0). Indeed, if the resultant is
zero, equation (A.3) will either be impossible tve for . (if T #0) or will
be indeterminate (if =0). For example, in the case otauple F and —F
(see Sec. 7.8) the vectdr is not defined, sinc&® =0 while T #0; hence the
solution of (A.3) is impossible.

2. The total torquel of the system, relative tany point O, must be normato
the resultant forceR. This follows from (A.3) and from the definitiorf the
vector product.

We remark that, although the position vedtoof the point of applicatio of the

resultant force depends on the choice of the nefer@ointO, the location ofC rela-
tive to the system of forcesust beuniquelydetermined, independently of the choice
of O.

A case where all the above conditions arelfedfiis that of a system qfarallel
forces

F=FG, i=12;- (A.4)
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where 0 is a unit vector in the common direction of thecés, and wherg&; is the
magnitude ofF . The resultant force is

R=>F=2(F0
or, after factoring out the unit vectar,
F?:(Z Fijﬁz RU (A.5)

whereR is the magnitude oR. We notice thatR = 0; thus the first necessary condi-
tion is satisfied. Furthermor is parallel to theF and its magnitude equals the sum

of the magnitudes of thE :
R=> F=F+F+ (A.6)

!

-
*—

]

X

Fig. A.2 A system of parallel forces and their resultant.

Now, letO be an arbitrary point of space, chosen to be thggnoof our system of
coordinatesX, y, z). Also, lett, be the position vector, relative & of the point of

application of the forcé= (Fig. A.2). The total torque of the system of &screlative
to O, is

f=2f=ZTXﬁ=Z(TXEO)=Z(ET><0)=(Z'FTJ><G
where we have used a property of the vector prodachely,
AxAB=(1Ax B

and we have factored out the unit vecforWe notice that the total torque is nor-

mal to G, thus also to the total ford®, in accordance with the second necessary con-
dition stated above.

Let C be the point of application dR, and letf. be the position vector of that
point relative toO. In order to determin& we must solve the vector equation J)
for the givenR andT :
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The above equation is satisfied by requiring that

RL=Y RT =

C

:lz F1F1+F2F2+"' (A?)
R4 F+FK+--

The coordinates of the poi@t which is called theenter of the parallel forcesire
1 1 1
E— F , =— F , =— ll: A.8
RZ.x Y RZ.y z RiZ z (A9

We observe that the location Gfis independent of the direction of the parallel
forces [indeed, notice that(7) does not contairti]. We must now verify that the
location ofC in space is also independent of the choice of éference poinO. Let

us assume, however, that the point of applicatfofR cdoes depend on the choice of
reference point. Thus, |€& andC" be two different points of application, correspond

ing to the reference pointd and O’ (Fig. A.3). We callf, andT." the position vec-

tors of C andC’ relative toO andO’, respectively, and we cail and T’ the position

vectors of the point of application ¢ with respect ta0 andO’". We denote byb

the vectorOO' .

Fig. A.3 Hypothetically different location€ andC” of the center of a system of parallel
forces, relative to the reference poiGtendO’.

Equation A.7), expressed with respect to batlandO’, yields

ZFH, == ZF”'

wheret’ =T —b . Now, by a slight generalization of what was sai®ec. 1.1 regard-
ing the sum of vectors, we have:
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CC'=CO+ OO0+ OC=—7r+ b+ ¢

=
~~ Q!_”__l = =
cc ———ZFr+b+RZ ['=b-—=2 F(f-T)

by which we conclude that the poirtsandC’ coincide. Hence, the point of applica-

tion of the total forceR is independent of the choice of the origin of oaordinate
system.

We conclude that

a system of parallel forces is equivalent to a k&rfgrce, their resultant, lo-
cated at the center of the parallel forces.

Fig. A.4 Center of gravityC of a system of point masses.

As an application, we now define tbenter of gravityof a system of particles and
we demonstrate that this point coincides with teeter of mass of the system. Con-
sider a system of particles of massgsny,..., located at points with position vectors
i, T, relative to the originO of our coordinate system (Fig. A.4). The weights
W, W,,--- of the particles constitute a system of parathetés:

=mgu= Wi (A.9)

where wi=m; g and wherel is a unit vector perpendicular to the surfacenefEarth
and directed downward. The total weight of theeaysof particles is

W= W= (m gi):(z mj gu=
w= Mgl= wu (A.10)

wherel is the total mass of the system, and whereMg.
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Thecenter of gravityof a system of particles is the cen@of the parallel forces
W ; that is, the point of application of the totaliglet W of the system. (Note that the

location of this point does not have to coincidéwthat of a particle!) The position of
Crelative toO is found from equation (A.7) by settifg=w;, and R=w:

S R SR
rc—WiZwin—Mgingr MggiZm.r =
A =izmif (A.11)

We observe that

the center of gravity of a system of particles cmias with the center of mass
of the system

[see equation (6.2)]. As shown previously,
the location of this point with respect to the systof particles is uniquely de-
termined; in particular, it does not depend on timice of the origin of our

coordinate system.

The Cartesian coordinates of the center ofityrgequivalently, of the center of
mass) of the system are given by the algebraictemsa

1 1 1 .
Xe= g ZMX s Y=g D my. Z=gr)m (A.12)
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B. Some Theorems on the Center of Mass

Consider a system of particles of masse§=1,2,...). The total mass of the system is

M=m+m,+ rrg+~~-:Zm (B.1)

Thecenter of massf the system is defined as the pdinwith position vector

21 . . 1 -
rC:V(mlrlerzerr--):MZmr (B.2)
relative to the origirD of our coordinate system (see Fig. 6.1).

Theorem 1The location ofC relative to the system of particles does not demend
the choice of the reference pot

Proof: See Appendix A. For a more direct proof, notet firmt equation (B.2) be-
comes identical to (A.7) if we pl; andR in place ofmy andM, respectively; then,
simply follow the discussion after equation (A.8).

Thetotal angular momenturof the system of particlas at timet, relative to an
arbitrary reference poir®, is

L=2L=2m(FxY) (B.3)

In particular, the total angular momentum relativehe center of ma<s of the sys-
temis

C=Ym( x¥) (B.4)
where primed quantities are measured with respect t

Theorem 2The total angular momentum of the system, witpeesto a poin©, is
the sum of the angular momentum relative to theeresf mass“6pin angular mo-
mentum’) and the angular momentum, relativetoof a hypothetical particle of mass
equal to the total mass of the system, moving wghcenter of massqrbital angu-
lar momentum}.

Proof: We have:
F=F

— — — ! —

Substituting these into (B.3), and using (B.1) éBdl), we get:

L=L"+M(f; xVg) + HZmi ﬁ'jxvC}r {?szmv’} :
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But, Tm ¥ =0 and *mY =0, since these sums are proportional to the position

vector and the velocity, respectively, of the cemtemass relative to itself. Thus, fi-
nally,

L=L"+M (. xV.) (B.5)

Now, suppos® is the origin of annertial reference frame. Leltfi be the external

force acting omm at timet. Thetotal external torquecting on the system at this time,
relative toO, is given by

=D TixF (B.6)

If we make the assumption that adternal forces in the system apentral then the
following relation exists between the total angutamentum and the total external
torgue, both quantities measured with respe€ (see Sec. 6.3):

dL_I:

= Tex (B.7)

Equation (B.7) is always valid relative to tbegin O of aninertial frame. How
about its validity relative to the center of m&®f the system? I€C moves at con-
stant velocity relative t@, thenC is a proper choice of point of reference for tiee-v
tor relation (B.7). But, what i€ is acceleratingrelative toO ?

Theorem 3Equation (B.7) isalwaysvalid with respect to the center of mass
even ifC is accelerating relative to an inertial frameeference.

Proof: By differentiating (B.5) with respect to time, bging (B.7) and (B.6), and
by taking into account that the total external éomn the system i§.,, = M&. (see
Sec. 6.2), we have:

% = %Jr M (g x@c) (+M (Ve x Vi), which vanishep =
dL’
ext_erF _+(rCXFext) =
dL’

whereT,,, is the total external torque with respect to telter of mass.

The above theorem justifies using (B.7) to yralthe motion of a rolling body on
an inclined plane, even though the axis of rotapasses through theccelerating
center of mass of the body.
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Thetotal kinetic energyf the system of particles, relative to an exteobserver
O, is

1
E=25my’ (B.8)

The total kinetic energy with respect to the cenfenasC is

’ 1 !
B =2omy” (B.9)
i
where, as before, primed quantities are measulaiiveeto C.

Theorem 4The total kinetic energy of the system, relatoveah observeD, is the
sum of the kinetic energy relative to the centemas and the kinetic energy, relative
to O, of a hypothetical particle of mass equal to thitaltmass of the system, moving
with the center of mass.

Proof: We have:
V=Ye = V= VV= W @2y
Substituting this into (B.8), and using (B.1) aBd9), we get:
! 1 — —
B =B+ S MV (Z mvj- ¥ -

But, as noted previously, the sum in the last teamishes, being proportional to the
velocity of the center of mass relative to itséhus, finally,

E =E/ +% M v (B.10)

Theorem 5.

(@ Consider a system of particles of masseas;, m,, ... ,my. LetC be the center
of mass of the system. If a new patrticle, of nrasss placed aC, the center of mass
of the enlarged system dfi{1) particles will still be aC.

(b) Consider a system of particles of massas,, m, ... ,my. It is assumed that
the location of one of the particles, sayf, coincides with the center of maSsof
the system. If we now remove this particle from $lgstem, the center of mass of the
remaining system ofN-1) particles will still be aC.

Proof:

(@ The total mass of the original systemMparticles isM=m;+my+...H1y . The
center of mass of this system is located at thet@dwith position vector

_ 1 . - .
fc :V (My T+ my Tyt + My Ty)
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relative to some fixed reference pofdt For the additional particle, which we name
My+1, We are given thatmy.;=m andr_; =f.. The total mass of the enlarged sys-

tem of (N+1) particlesmy, m,, ... ,my, My+1 IS M= M+m, and the center of mass
of this system, relative tO, is located at

1
— ! — — —
fc = (M +--+myTy+mTy) .

Now, mT%+---+myTy = MT;, so that

;1
i = MFe+mTg) = Fe .
C M+m( C C) C

(b) Although this statement is a corollary of pa} ¢f the theorem, we will treat
this as an independent problem. Here we are ghatity§ = .. Thus,

i( L+-+MT)=T,
M m My In)=Th -

The mass of the reduced systemM#X) particlesm , my, ... ,mMy4g is M'= M-y,
while the center of mass of this system is located

— !

1 - -
e = IV (M B+ +my Ty g -

MA++ My = (M—m) iy = M'Fy .

Thus, finally,

e e
e = Miry=ry=rc.

1
MI
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C. Table of Moments of Inertia

Solid cylinder of radiug, relative to its axis:

Cylindrical shell of radiug, relative to its axis:

Circular disk of radiug, relative to a normal axis through

its center:

Ring of radiusR, relative to a normal axis through its center:

Solid sphere of radiug, relative to an axis through its center:

Spherical shell of radiug, relative to an axis through its center:

Thin rod of lengthl, relative to a normal axis through

its center:

Thin rod of lengthl, relative to a normal axis through one

end (not a principal axis):

! By M we denote the mass of the rigid bodly.

| ==MR?

| = MR?

MR?

| = MR?

MR?

MR?

MI?
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D. Principal Axes of Rotation
A principal axis of rotatiorof a rigid body is an axis having the followingperties:

e It passes through the center of mass of the body;

e the angular momenturh of the body has the same value for all pointse®f r
erence belonging to that axis, and the directioh a§ parallel to the axis.

We note that

e every axis of symmetry passing through the cenitenassC of the body is a
principal axis.

The angular momentum of the rigid body andtttal external torque on the body
are related by the equation

|

o db
dT= i (D.1)

which is valid relative to a fixed poil@ of an inertial reference frame, or, relative to
the center of mass of the body (even i€ accelerates with respect®@). If the body
rotates about a principal axis, the derivativelenright-hand side of (D.1) is a vector
that does not depend on the location of the pdiméf@rence on that axis. The same
must be true, therefore, with regard to the tatadjie =T on the left-hand side of
(D.1).

Fig. D.1 Two diametrically opposite and equal elementaagsesn in a horizontal disk
rotating about a vertical axis passing througlcéster.

As an example, let us consider a thin horizogitk rotating about a fixed vertical
axis passing through the cent@rof the disk. The axis of rotation is a principalsa
since it is an axis of symmetry passing throughddeter of mass of the disk. Due to
that symmetry, for every elementary massan the disk (see Fig. D.1), moving with
velocity V., there is an equal, diametrically opposite massingowith velocity —v,,

as seen in Fig. D.2.
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Fig. D.2 The configuration of Fig. D.1 as seen from abftkie verticalz-axisis normal to the
page and directed toward the reader).

The two masseas contribute to the total angular momentum of thé dedative to
O a quantity equal to the vector sum

L+ L =m(Txy)+m| 7 x(9) |= mGr-T)xv= m(ABY.
It is easily seen that this vector quantity isha tirection of the-axis of rotation and,
moreover, it does not depend on the location ofpihiat of referenc& on this axis.
Now, the total angular momentum of the disk, rektio O, is the vector sum of the
angular momenta of aflairs of diametrically opposite elementary masses. Sthee
angular momentum of each pair is in the directibthe axis of rotation and does not
depend on the location of the reference p6irdn that axis, the same will be true for

the total angular momentuin of the disk.

N

F

Fig. D.3 A horizontal force applied along the circumferernd the disk of Fig. D.1
(hereRis the radius of the disk).

Assume now that we exert a horizontal fof€eon the disk (e.g., by winding a
thread around the disk and by pulling the edgehefthread), as shown in Fig. D.3.
Since the fixed axis of rotation passes throughcttrger of mas€ of the disk, the
point C is at rest relative to our inertial reference fearAccordingly, the total exter-
nal force on the disk must be zero. In additiorine force F that we exert on the

disk, there is also the reactioh from the pivot aC. Hence,

F+N= @& N=-F.
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We notice thatt and N form acouple As shown in Sec. 7.8, the torque of a couple
with respect t@, equal here to the total torq@d on the disk, is

- —

> T=CPxF.

We observe thaET does not depend on the location of the referenas  on the
axis of rotation, in accordance with a remark meadier in connection with equation
(D.1).

In the case of a rolling body, as well as inoggopic motion (Sec. 7.12), the prin-
cipal axis of rotation is not fixed in our inerti@ference frame. Indeed, this axis often
accelerates with the center of m&shrough which it passes. Nevertheless, relation
(D.1) is always valid with respect @ thus with respect to any point of the principal
axis. All our previous conclusions, therefore, remaalid.
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E. Variation of Pressure in the Atmosphere
The infinitesimal differential relation
dP = - pgdy (E.1)

derived in Sec. 8.3, is valid fa&il fluids, both liquids and gases (remember that, to
prove this equation, we did not make any specifisuanption regarding the com-
pressibility or not of the fluid). In particularebause of the compressibility of the at-
mospheric air, the densipy of the air is not constant but varies with thetadte y
above the surface of the Earth.

The air density at a given altitude is approximately proportiotathe pressur
of the air at that altitude. Indeed, let us consaléxed quantity of air, of mass. As-
sume that this mass can move to various altituithess, be subject to various condi-
tions of pressure and temperature. Consider twoifsgpeonditions, called 1 and 2.
The volumes occupied by the considered quantitgioareV; andV-, , respectively.
Applying the equation of state for an (almost) idgs to the magw of air, we have:

RAVi_hY,
Tl T2 '

If we make the isothermal approximatidn= 7> , then

PlV1: P2V2 — Fim: F%—m = i:& = —P:C()nstan'.
P1 P2 P1 P2 P

Thus, if P=Py and p=po are values at sea levgEQ) and if P, p are the correspond-
ing values at an arbitrary altitugiethen

Now, by (E.1),

dp=— |2 p gdy = E:—oz dy, Wherewehaveputxszg.
R P R

By integrating,

PE_
RP

y P o
—aj'ody = In(sz—ay = |P=Re®¥

0

(Show that, thenp=po e ®.) With po=1.2Kg/m® (20°C), P;=1atm and g=9.8m/s,
the value of the constaatis found to bea= 0.116Km *.
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F. Proof of Bernoulli’'s Equation

Y,

Y1

Fig. F.1 A section of a tube of flow, extending frario b.

Consider a small section of a tube of flow, exteagdiroma to b (Fig. F.1). Let4;
andA4, be the cross-sections of the tub@aindb, respectively (we will use the same
symbols for the cross-sectional areas). The floWorees are normal to the corre-
sponding cross-sections. We call v, and P, P, the flow speeds and the hydrostatic
pressures, respectively, at the cross-sectihnand 4,. Also, we cally; andy, the
heights at which the centers of the cross-sectwedocated, with respect to an arbi-
trary horizontal reference level.

As the considered section of the fluid movemglthe tube, within an infinitesimal
time intervaldt the cross-sectiod; advances frona to a’ by a distancealx=v,dt,
while the cross-sectios, advances fronb to b” by dx=v.dt. Since the ideal fluid is
incompressible, the volume of the fluid-sectiommehanged in the meantime. Hence,
the volumes of fluid contained betweganda’, and betweeb andb’, are equal:

Adx = A dx= dv (F.1)
The same is therefore true with regard to the sporeding masses of fluid:
dm, = dm = dm=p d\ (F.2)

wherep is the (constant) density of the fluid.

LetF4, F, be the forces exerted normally on the cross-sexig, 4> by the fluid
surrounding the considered section of the tubeséHterces have to be normal to the
corresponding cross-sections, given that, in génevery cross-section of the tube
moves in a direction perpendicular to itself). Assug that, at any point of the tube,
the hydrostatic pressure is constant (or approxdiypaionstant) over the entire cross-
section at that point, we write:

F=RA , FR=RA (F.3)
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We notice thaF; is in the direction of the flow, whilE; is opposite to the flow. This
means thaF; produceswork (its work is positive) whilé-, consumesvork (its work

Is negative). The total work ¢f; andF, for an elementary displacement of the sec-
tion ab of the tube within timelt, is

W=Fdx- Fdx= RPAd- PAdx=
W=(R-R) dV (F.4)
where we have used (F.3) and (F.1).
From the discussion in Sec. 6.5, extended toetiee case of a continuous medium,

it follows that the workW of the forced; andF, on the fluid-sectiorab, within a
time dt, equals the change of the total mechanical erartfyis section:

W=A(E+E)=AE+AE, (F.5)

We have:
AEk :(Ek)dh_(Ek) ab:(Ek) bb_( El) da (F.6)

[Since the flow is steady, the quantitk, )., for fixeda” andb, is constant in time;
thus it is eliminated by subtracting.] Now, by wsiif.2), equation (F.6) is written:

1 , 1 __1 B
AE, =5 (dm) ¥ ~—(dm ¥ =—( ¥~ ¥) dm=

AE =2 (%~ ) v (F.7)
By similar reasoning,

AE, =(Ep)ps —(Epaa=(dm gy-(dm gy=( dn @,y Jy =
AE,=pg(y,— y) dV (F.8)

Substituting (F.4), (F.7) and (F.8) into (F.&hd eliminatinglV, we find:

1
R-R=sp(W =) +pd -y =

1 1
R+5PW+pgY=R+2p Wtp gy

This is Bernoulli’'s equation for an ideal flow.

We note that both the equation of continuity tthe form we wrote it) and Ber-
noulli’'s equation can approximately be used foraa ¢e.g., atmospheric air) in some
limited region of space where the gas density dumsvary appreciably from one
point to another (the gas may thus be treated asnamst incompressiblguid in that
region).



SOLVED PROBLEMS

PROBLEMS FOR CHAP. 2 -3

1. The position of a particle moving along the x-agigiven as a function of time by
the equation x=21-3t%+6t-5, where x is in meters and t is in seconds. Findi{a)
direction of motion at all times and (b) the tinmervals during which the motion is
accelerated or retarded. Does the particle evep8to

Solution: The algebraic values of velocity and acceleratien a
v=2(:6(t2—t+1) , a=V_ 6(2- 1)
dt dt
Hence,
va=36(t - t+ 1)(2t— 1)

We notice thatt? — t+1>0 , for all values of. Thusv>0 for allt, which means that the
particle always moves in the positive directiontlo¢ x-axis, never stopping (even
momentarily). Also, it is easy to verify thaa>0 whent>0.5, while va<O0 when
t<0.5. Hence (cf. Sec. 2.4) the motion is retardedtf®.5 and accelerated for
t>0.5.

2. A particle moves on the x-axis, having startedraett=0 from the point x=0 with

initial velocity v=v . Find the velocity v and the position x of thetjmde as functions

of time, as well as the velocity as a function @$ipon x, if the acceleration of the
particle is given as a function of velocity by &) —kv; (b) a=—kv? (where k is a

positive constant).

Solution: (a) Let a= —kv:
N v Vo de= “E’z—kjt dt= |n(—"j:— kt=
dt Vv Y 0 v,

Y et o v=ye" ()
VO

dx ., skt X Ukt Vo -

=V = dx= e dt= jo dx 5{0 & dt 2 (1- £ (2)

Eliminating e ™ from (1) and (2), we find: v = v, — kx (3)
Alternatively, dv = adt, dx = vdt, and, by dividing these,

dN_23_ - dve—kdx= [Tae—f" de v g=- ke (3)
dx v Vo 0

(b) Let a= —kv?. Working similarly, show that

161
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VO
V=
1+kyt

, X:Tl(ln(1+ kyt), v=y e,

3. A body moves on the x-axis with acceleratisr{4x—2)m/<, where x is the instan-
taneous position of the body. The initial veloatyhe body isg=10m/s, at the initial
location x,=0. Find the velocity v of the body as a functidmosition x.

Solution: Since the acceleratianis given as a function of we use equation (2.5):

V=2 +2[  adx=10"+ zj:(4x— 2)dx = ¢= 4(k— x 25)
X0

We notice thatx’ — x+25>0 , for all values ok. Hence,v=+2(x* - x+ 25)'2. We

drop the negative sign, since it would yielg —10 forx=0, contrary to the given ini-
tial condition. Thus, finally,

v =2 (¢—x+25"2 m/s.

4. A particle moves on the circumference of a cirlteposition at time t is given by
the equation s=t+2t % where s is measured in meters along the circienfsr and
where t is in seconds. The magnitude of the acatsber of the particle at time t=2s is

a:16x/§ m/s?. Find the radius R of the circle.

Solution: The magnitude of the velocity of the particle = j—fz 3t° + 4t .

avy (Y
We know that a*=a;*+ a,°=| — | +| = | .
e know that a*=a,“ + a, (dtj +(Rj

2 4
Hence, a2:(6t+4)2+w .

Settingt=2 and a=16+/2, and solving foR, we find: R=25m.

5. A particle moves on the xy-plane. Its coordinatesict y are given as functions of
time t by the equations: *Z, y=(t-1)°>, wheret>1. Find:

(@) The equation of the trajectory in the form Fjx,constant;

(b) the componentar and ay of the acceleration, for all t;

(c) the radius of curvature, for all t.

Solution: (a) Noting thatx> 0, y> 0, and taking into account thet 1, we write:
Ix=t, \N:t—l. Eliminatingt, we find: F(X, y)zﬁ—\/_y/:l .

(b) We have:
d dv

dx dy
V=—"n=2t, v=—_=2(t-1), a=—*=2,a=—2=2
o dt Yoo dt -1 3, dt & dt
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If |[v]=v and f]|=a,
a’=a’+a’=8, V=v +y =8°-8t+4 .

Hence, v = 2(2* =2t + 1)Y?. Note thatv>0 for all t.

dv_ 4t-2
dt  (2t* —2t+1)2

Then, a; =

For ay we cannot make direct use of the relatieg = v?/p , since we do not yet
know p. We thus proceed as follows:
4 2

O ST

a‘+a’=a"=8 = g,°=8- ar2:—2t2—2t+1:>

2 V2

© a,=r = p=—=2(20-2+1? .
) a

N

6. Study themotion of a projectile (see figure). Find:

(@) The time4 for the projectile to reach the highest paibf the trajectory;

(b) the maximum height h;

(c) the timed at which the projectile hits the ground at paiht

(d) the total horizontal distance R=0B; show tHat, a given initial speedoy R is a
maximum when the angleis equal to 45 .

(e) Show that the speed Atis the same as the initial speed@talso show that the
anglesa andg are equal.

(f) Find the equation of the trajectory, in the foryaf(x).

y

v A #

0 ' VA

E
h

ay

(24

X

ol a
—— R

Fig. Problem 6

Solution: We assume that the projectile is ejected fi@mt timet=0, with initial ve-
locity V,. The projectile moves with constant acceleration g = - gU,; thus, its mo-

tion takes place in a constant vertical plane a@efiby the vectors of the initial veloc-
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ity and the acceleration (cf. Sec. 2.5). Consideragbitrary point of the trajectory,
with position vectori, and letv be the velocity of the projectile at that poinherl
vectorsr andv are given as functions of time by the equatiores(2.5)

o S
V=y,+at, r=v0t+§a12

or, in component form,

v O+ v, U= (g, u+ ¥y, W- gafy,

X0+ Yyl = (¥ U+ ¥,y P% ot'y.
By equating the coefficients o, and G, on the two sides of each equation, we ob-
tain the equations of motion of the projectilehe xyplane:

V, =V, = const, y= y,— gt

1
X=\,t, Y=\, t_E gf

where
Vox = VoCOS , V=V, Sinx M=1% 1)

(Note that the motion is uniform in the horizond@lection and uniformly accelerated
in the vertical direction.)

v .

Vo,” _Vy sifa
29 29

1
(b) h=y,= VOytA_E gtA2 = h=

2V,
(© y,=0= voth—%gtBZ:O:tB: g°y=2tA.

(d) R=x =y, t= Vo Voy _ 2v,” sina cosx

2 -
~ r Y sin& .
g g g
We notice thatR=max when sin 2=1 or o= 45 .

(e) At the return poinB, v, =V, , V,=V,— 0=\ ,~2Vy,=—V¥,.

Thus, |V, f=v2+ v, = w2+ ¥,°= ¥*= & ¥ y=[y |

v, | v
Moreover, tanﬁ=|—y|:ﬂ: tanr = f=a
Vx 0x
(f) x:VOXt:t:i: X Then,
Vo VpCOSx
y=\, t—lg€:> y:—+ X + (tana ) x
Y2 > cos a

which is an equation of the forny = x X% + A x (equation of a parabola).



PROBLEMS 165

7. Every body moving in the air “feels” a frictionabifce f (air resistance) the
magnitude of which is proportional to the speethefbody, while the direction of this
force is opposite to that of the velocitf:= —kV (where k is a positive constant). As-

sume that we let a body of mass m fall under thieraof gravity with zero initial ve-
locity. (a) Find the velocity of the body as a fuime of time. Does the body ever stop?
(b) Find the maximum value of the velocity during tree fall.

Solution: The body is subject to two forces (see figure); elgmts weightw and
the air resistancd . We write:

w=mgl, f=-kvl

wherev is the speedf the body. The total force on the body is

W
Y
Fig. Problem 7
The acceleration of the body is
_ dv d, . dv.
dt dt dt

By Newton’s law,F = ma, we have (after eliminating):

dv dv k dv
mg—-kv=m— = —= ¢g-— v= = dt=
dt dt m _k
g Y
jv dv —('dt = —Ln{ln(g——kvﬂ =t=
° q—K m /1y

We notice thatv>0 for all t>0. Thus the velocity never vanishes; hence the body
never stops. Also, as— « , the speed approaches a maximum value

VAR

max k
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8. A container of weight 5N has a total capacity of w=50N of water. The con-
tainer is placed on a scale and water falls intdrdm a height h=10m, at a rate of

4=0.5kg/s. Find the indication of the scale at thement when the container is ex-
actly half-full. (g=9.8m/$

AR
1/
N

Fig. Problem 8

Solution: The container is in balance under the action of flouces (see figure);
namely, its weightvs , the weightw/2 of the contained water, the forEe exerted by
the water that falls from height and the forcé&; exerted by the scale. By the action-
reaction law, the container exerts on the scalevend/ard force of magnitude;; it is
precisely this force that corresponds to the irtéhoaof the scale. The condition for
equilibrium is

F :W5+VEV+ F (1)
To find F, we work as follows: Letim be the mass of water added to the container
within an infinitesimal time intervadit. The massim falls in the container at timie
with a downward velocitw and then, within the intervalt, it becomes embodied in

the rest of the water and finally balances intd@ite momentum ofim at timest and
t+dt is

p()=(dmVv, THtw dj=(dm0=0.

dp=p(t+ d)— [ d=—(dm.

The force exerted odmby the rest of the system is

Thus,

dp dm_

—_—=——V =

dt dt
where use has been made of the fact that thedmth at which water falls into the
container ist. By the action-reaction lavdm exerts on the rest of the system a down-

ward force of magnitud&,=iv. Now, dm executes free fall from a height with no
initial velocity. The velocity with whichimfalls on the container is

v=4/2gh (show this!).

—AV

Hence,
F, =Av=4y2gh (2)

By (1) and (2), and by making numerical substitusiove finally have:
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w
F¢ZW5+E+1 2gh = 37N .

9. A chain of weight w=2N is kept vertical from itspap end, while its lower end
touches the floor. The chain is then allowed tt ff@lely. Find the force exerted on
the floor at the moment when exactly half the clhais fallen.

Solution: We basically work as in Problem 8. The total foocethe floor at the con-
sidered moment is

w
F=—+F, (1
2 o ()

whereF, is the force exerted on the floor due to the fgliaf the chain. Letimbe the
mass of a small fraction of the chain, locatechatdenter of the chain. This fraction
touches the floor at timee having fallen from heighi=L/2, whereL is the total length
of the chain. Within timelt, the fraction finally comes to rest on the floor.eTimo-
mentum ofdm at timest and t+dt is
piy=(dmv, Wt d=(dm0=0 =
dp= P(t+ dj - T(Y=—(dirv

whereV is the velocity with whicldmfalls on the floor, of magnitude

v=,/2gh= 29%=\/E_ (2)

The upward force exerted aimby the floor is

dp__dmg

dt dt
By the action-reaction law, thedm exerts a downward force on the floor, of magni-
tude

F,= d—mv

dt

Let dl be the length of the sectiam, and letM be the total mass of the chain. If
p=MIJL is the linear density of the chain, then

dm=pdi=M g = dM_Md_M
L d Ldt L
since the touchdown speedf dmis equal tadl/dt. By (3) and (4), and by using (2),
we have:

3)

M, M
F, =—Vv =—gL=Mg=w
@=L Lg g

wherew is the weight of the chain. Equation (1) finallghs:
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10. A train is moving on a horizontal rectilinear trackhe string of a pendulum sus-
pended from the ceiling of the train makes an afighéth the vertical. The train car-
ries a box placed on the floor of a compartmentteiaine the minimum coefficient
of static friction between the box and the flooths# train, in order that the box will
not slide on the floor.

l—‘f
X
Zi

Q|

W
Fig. Problem 10

Solution: Let m be the mass of the pendulum andMébe the mass of the box. The
forces onrm are its weightw and the tensioff of the string, while those oif are its
weight W, the normal forceN from the floor of the train, and the static franti f

(explain why its direction is to the right in thigudre). Both bodies move with the ac-
celerationa of the train. Newton’s law for these bodies istten:

T+Ww=ma, N+ W+ f= M.
Taking x- andy-components, we have:
Tsind=ma (1)
Tcos#—-mg=0 = Tcog=mg (2
f =Ma (3)
N-Mg=0 = N= Mg (4

[mwmgaﬂwQﬁ:tMW:gzza:gwm (5)

Dividing (3) by (4) and using (5

T2 a0 = f=Ntaw ()
N ¢

Now,

(6)
f<f . . =uN = Ntand<uN =

— ~max

u=tanld < u.,=tang .
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11. Two masses frand m are connected by a light string and through a eyllas

shown in the figure. (a) Find the minimum coeffitief static friction umin between

my and the horizontal surface, in order for the syst® be in equilibrium. (b) For a
coefficient of frictionu < umin , find the acceleration of the two masses, as agthe

tension of the string.

Solution: We draw the forces separately for each mass. WeTcdlhe tension of the
string; f the frictional force betweem; and the horizontal surfacey, and W, the
weights of the two objects; and the normal force omy by the horizontal plane.
Note that the magnitudg of the tension of the string is constant alongstiag and
is not affected by the pulley, since the stringa$ wound around the pulley but sim-
ply glides on it without friction.

m, _a) N T y
o
f oL X
, Tk
m2 V_Vl \K(/Z

Fig. Problem 11

(a) The system is in balance. Hencd, F =0 < Y F,=>'F =0, for each mass
separately. We thus have:

T-f=0 = T=f D

N-w=0 = N=w=mg (2)

T-w=0 = T=w=mg (3
From (1) and (3)= =m,g (4)
But,

2).(4)
fF<fia=4N = mgsumg=
m
/uz_z & lumin:&'

1

(b) For u<umin , the two masses move with accelerations of theesaagnitudea.
By applying Newton’s law:

dYF=ma < Y F=mg, > E=mg,

for each mass separately, we have:
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T-f=ma = T= f+ ma (5)
N-w=0 = N=w=mg (6)
T-w=-ma = T=w-ma& meg ma(’)

The friction f is now kinetic, with coefficient. Thus,

(6)
f=uN = f=umaqg.

Then, from (5)= T=umg+me (8)

From (7) and 8 umg+ma=m g m a=
m —
azz—'urnl g (9)
m +m,

m
(Note thata>0 < m,—um>0 < /J<H2:,umm.)

1

Substituting (9) into (7=
T (u+1)m m, g

(10)
m, +m,
If the horizontal surface iictionless(u=0), relations (9) and (10) are written:
m
a=—=2—9g, T= m g.
m, +m, m+ m

12. A box of mass m is placed on a cart of misss in the figure. The cart may
move on a frictionless horizontal track. The caegfit of static friction between m
and M is u. Find the maximum horizontal force F that we caareon the cart, in or-
der for the box to move with the cart without sigion it.

Solution: We draw the forces separately for each body. WiefdhE static friction
between the two bodied, the normal force exerted on each body by the ptredR
the vertical reaction of the ground on the cartteNilnat the direction of on each
body is such as to prevent sliding between theskebovhen the exerted foréeis
directed to the right.

R
Loy
ml _a . 0 T_)
f
L I ™= T_) X
0O MgllN g

Fig. Problem 12
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If no sliding occurs, the two bodies move with ancoon acceleratiora. We apply
Newton’s law in thex- andy-directions, for each body separately:

F-f=Ma = F=Ma+ f (1)
R- Mg- N=0 = R= Mg+ N (2)
f =ma (3)
N-mg=0 = N= mg (4)
From (2) and (4= R=(M+m)g .
From (1) and (3= F= (M+m)a (5)

[equation (5) is simply Newton’s law for the syst@vit+m)]. Now,
(3).(4)
f<f,=uN = masumg = & u g (6)
Equation (6) gives the allowed values of the aceéilen in order that the masses
move together, with no sliding on each other. Fi&nand (6) we find the allowed
values of the external forde:

F<uM+mg < FEK,=u(M+mg.

13. A cart, moving on a horizontal track, pushes a baxshown in the figurd=ind
the values of the acceleration of the cart in ordeat the box will not fall to the
ground. The coefficient of static friction betwelea box and the cart s

Solution: Let a be the common acceleration of the box and the @&t.callm the
mass of the boxf the static friction between the box and the cartl & the normal
force on the box by the cart.

a
—

tf y

v [

O _o_ '™

Fig. Problem 13

By Newton’s law for the boxtF =ma < 2 F, = mg, F = mg, we have:

N=ma (1)
f-mg=0 = f=mg (2)
But,
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®.(2)
f<f ., =uN = mgsuma=

— max

azd o g,-9.

y7,

Notice thatamin —» © when u — 0. What does this practically mean?

14. A box of mass m is placed on a frictionless indiptane of angl®, as shown in
the figure. The incline is able to move with acagien of variable magnitude, di-
rected to the right. (a) Find the value of the decation of the incline for which the
box does not slide on the plane. What is the noforak on the box by the plane in
this case? (b) Find the values of the acceleratmnwhich the box moves upward or
downward on the incline. (c) For a given valuetw# ticceleration, generally different
from that found in part (a), and by assuming nowat tthe plane is nofrictionless,
find the values of the coefficient of static focti between the box and the inclined
plane in order that the box will not slide on tHane. [Note carefully that in parts (a)
and (b) there is no friction between the box arelplane.]

Solution: We consider amertial reference framay, which does not accelerate rela-
tive to the ground. The-axisis parallel to the incline while theaxisis normal to it.
All vectors will be resolved relative to that systef axes. (A system of axes moving
with the incline wouldn’t be a proper choice siniceyiew of its acceleration with re-
spect to the ground, it woultbt constitute an inertial frame; hence, we wouldmét b
allowed to apply Newton’s laws in that frame.)

Fig. Problem 14
(a) In order form to not slide on the inclinghe acceleration ah relative to thexy-
framemust be equal to the acceleratianof the plane. Thus, by Newton’s law for
we have:

YFx=ma, = mgsind =macoy) = a=gtarny (1)

ZFy=ma, = N-mgo¥ =masind =

@
N =m(gcod + asind) = mg(cod + sind tary) .
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(b) In order form to slide on the inclingts acceleratiord’ must differ from the ac-
celerationa of the plane. Here we only need to considerxdsemponent of the ac-
celeration (the one parallel to the plane):

YFx=ma’ = mgsid=ma’ = a'=gsind .
The body will slidedownwardif a;” > ax or
gsind>aco¥) = a<gtaryd (downward) (2)
while it will slide upwardif ay” < ax or
gsid<acoy = a>gtard (upward) (3)

(c) Conditions (2) and (3) describe the tendencyndd move downward or upward,
respectively, relative to the incline when no stétiction is present. Hence, friction is
necessary in order that doesn'’t slide on the plane, for acceleratiarf the incline
that are different from that given by relation (Obviously, the frictiorf will be di-
rected upward or downward along the plane, depgnoiinwhether the acceleration of
the latter obeys (2) or (3), respectively. Takiages (2) and (3) separately, as well as
taking into account that

f< fnax= uN
show that
S |gsind—aco9y |
~ gcosf+asip

15. A satellite moves in a circular orbit about the Harlnside the satellite an ob-
server is studying the motion of an object of nrasga) Explain why a use of New-
ton’s laws would lead this observer to physicatgarrect conclusions. (b) As an ex-
ample, show that, according to this observer, thect m is weightless!

Solution: The satellite is irffree fall since it moves under the sole action of gravity,
with acceleration equal to the acceleration of gyavj. (Don’t be deceived by the
fact that it moves circularly rather than fallinfyasght down to the Earth! The vector
g is always directed toward the Earth and plays bezeaole of centripetal accelera-
tion. The satellite would fall straight down hadit’been given an initial velocity per-
pendicular to the local direction of the radiustloé Earth.) The accelerating satellite
Is an example of aon-inertial frame of referencén observer moving with the satel-
lite (non-inertial observer) will come to incorremdnclusions if she tries to interpret
her measurements physically by using Newton’s lawsunderstand this, we need to
say a few things regarding measurements in notiah&ames, in general.

We consider two observers: an inertial ofeat rest on the surface of the Earth, and

a non-inertial oneQ’, moving with an acceleratiod relative toO. Both observers
study the motion of a particle of massand record respective acceleraticasand
a’'. By recalling what was said in Sec. 2.8 regardlgtive acceleration, it is not
hard to see that
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g=a-A (1

SinceO is an inertial observer, he may use Newton’'s lawetate the measured ac-
celerationd with the total forceF acting on the particle, which force is due to all
interactions in which this particle participatese Wius have:

— (DI - - -
F=ma = F=m(d+ A = ma= F mA& F (2)

The vectora’ on the left-hand side of (2) is the acceleratibma@as measured by ob-
serverO’. We notice that, if observe?’ chooses to use Newton's law in hen-
inertial frame of reference, she will come to the concluskat, in addition to the ac-

tual force F (which has thesamevalue for allinertial observers; cf. Sec. 3.2) the par-
ticle is subject to anothefictitious force (“pseudo-force”) equal temA, which, of

course, does not result from any real interactlmurtsis simply an effect related to the
acceleration ob’. Thus, if observe©’ insists on using Newton’s law after measuring

the acceleratiors’, she will make avrong evaluation, F’, of the total force omn,
different from the real forc& evaluated by the inertial obsen@r

'®) —_
‘glé_- 3 —

O

Earth

Fig. Problem 15

As an example, assume that the obse®/as in a chamber moving with acceleration

A relative to the Earth (thus, relative to the irmrobserverO who is at rest on the
surface of the Earth). Observef wants to determine the weight of an object of mass
m by using a scale hanging from the ceiling of tharsher, as shown in the figure.

The true total force on the body = mg+ T, whereT is the tension of the string
from which the body is suspended. The magnitlidé T corresponds to the indica-

tion of the scale. The accelerationmfwith respect to the inertial observéris A.
Thus, Newton’s law for this observisrwritten:

—

F=mg+T=m2 (3)
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On the other hand, according to the non-inertiaeolerO” [with respect to whom
Newton’s law is expressed in the form (2)] the ltédece on the objeanis

N C I
F'=F-mA = F=0.

Thus, relation (2) yield&' =0, which was to be expected given thatoes not ac-
celerate with respect 1@°. It is seen from (3) that the scale®@f does not show the

actual weight of the body but apparentweight equal tol= |T |, where
T=m(A-9 (4

In particular, if the chamber is a satellite inefriall, then A= g and it follows from
(4) thatT = 0. That is, for an observ&” inside the satellite, the objectigightless

16. A pendulum of length | and mass m is made to raeatend the vertical with
constant angular velocity (see figure). Find (a) the angtof the string with the
vertical, (b) the period” of the motion as a function f and (c) the tension F of the
string. (This arrangement is calledcanical pendulum, since the string describes the
surface of an imaginary cone.)

Solution: The bobm of the pendulunperforms uniform circular motion of radius

r=I sind andangular velocitys, on a horizontal plane that intersects the vdrtages
at a distance cos) below the point of suspension of the pendulum.

i ) F cost

L 2 mg

Fig. Problem 16

The forces omm are its weight,mg, and the tensiorF of the string. Their resultant
must yield the centripetal forde needed for the uniform circular motion wf We
resolveF into a horizontal and a vertical component. Sitheze is no vertical accel-
eration, the vertical componeRtog) must be equal in magnitude to the weigig
The only remaining force is the horizontal compdnésind, which is exactly the
needed centripetal fordg . We write Newton’s law separately for the horizdrdand
the vertical motion oimn:



176 PROBLEMS

2
szmv—: miw® (sincev=tw) = Fsind=mro®* (1)
r
Fcosd-mg= 0= Fcog=mg (2)

2 2
Dividing (1) by (2) = tan@:r‘s _lo ;'”9

cosd = | g (3)

2
(4

We notice tha¥ increases withw. To find the periodr’ of the circular motion, we

write:
1/2 1/2
w2 _[_9 o Togg|l¥ )
T lcosd g

From (2) and (3) we find the tension of the string:

F=mlo®.
We note the following:

1. As seen from (3), in the limib—o we have cad—>0 and 6#—=n/2. Also, for a
givenl, the angular velocity» cannot be less thafy/l )*? (explain).

2. For a given value df, the periodl’is independent of the mass of the pendulum.

3. For a givenw, the tensiorF does not depend on the valuegdi.e., is independent
of gravity).

17. You may have noticed that railroad tracks and hsgleed roads are banked at
curves, especially at points of high curvature.sTisidone in order for a vehicle to be
able to make the turn without relying on frictiohd is the angle of banking of a road
at a point where the radius of curvature of thehpetr, find the safest speed v with
which a car must move at that point if the roadristionless there. (Assume that v is
constant during the turn.)

Solution: In the figure we see a cross-section of the roabtlae car. The velocity
of the car, of constant magnitudeis normal to the page (its direction does nottenat
in the present analysis).

Rcosd

o

Fig. Problem 17
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The forces on the car are its weighig, and the normal reactioR from the road
(there is no friction). Their resultant must yiehee centripetal forc&x needed for the
turn. The forceFy is the horizontal component &, while the vertical component is
balanced by the weigihg (since there is no vertical acceleration). By Nevadaw
in the horizontal and in the vertical direction, ave:

2

F=m_ = Rsing=m~ (1)
r r

Rcosf-mg= 0= Rco®¥= mg (2

Dividing (1) by (2), we find:

2

tanezv— = v=,/rgtamn

rg

In practice, of course, the car may move at diffespeeds with the aid of sidewise
and/or frictional forces exerted by the road ontites.

18. A train moves uniformly on a curvilinear track thaically, has a radius of cur-
vature r. A pendulum suspended from the ceilintheftrain makes an angk with
the vertical. Find the local speed v of the tradidssume that v is constant.)

Solution: The bob of the pendulum, of mass moves with the velocity of the
train, which is normal to the page in the figured@esn’'t matter whether it is inward
or outward).

Fig. Problem 18

The forces omn are its weight,mg, and the tensio of the string. Their resultant
must yield the required centripetal forEgin order form to follow the curvilinear

path of the train. The forcEy is the horizontal component &f , while the vertical
component is balanced by the weighg (there is no vertical acceleration). By New-
ton’s law in the horizontal and in the verticaledition, we have:

2

F=m_ = Tsing= m~ ()
r r

Tcos#—-mg=0= Tcog=mg (2

Dividing (1) by (2), we get:
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2

tané':v— = v=,/rgtand

rg

19. According to Newton’s Law of Gravity, two massesamd m , a distance r
apart, attract each other with a force

F:Gﬁ?

where G is a constant. (For a rigid body, the digtar is measured from the center of
mass of the body.) We cail the mass and R the radius of the Earth. (a) Fincea
pression for the acceleration g of gravity near theface of the Earth. (b) A satellite
moves in a circular orbit about the Earth, with stemt speed and at a height h above
the surface of the Earth. Find the speed v of ttelli¢e, as well as the periof of the
circular motion.

Solution: (@) Consider a body of masslocated near the surface of the Earth, thus at
a distanca=R from its center. The Earth attracts the body witltorae equal to the
weight of the body:

mM

R2

Now, if g is the acceleration of gravity near the surfacthefEarth, and if the body is
only subject to the gravitational interaction, theyp Newton’s second law,

F=mg (2)

F=G

(1)

By comparing (1) and (2), we have:

M
g= GE .
Note thatg does not depend an. This means that, near the surface of the Ealtth, a
bodies move under the action of gravity with a cannacceleratiory (provided, of
course, that they are not subject to any additjor@i-gravitational interactions).

(b) The radius of the circular path of the satelster=R+h. Since the speedof the
satellite is constant, the satellite is only subjeca centripetal force equal to the
gravitational attraction from the Earth. Hencaniis the mass of the satellite,

2
mV—:Gmi\/I = V= —GM:\/ CM 3)
r r r R+h
Note again that the result is independennofVe also have:
(3) /12
V:wr:E = T:E = T:M .

T \Y vGM
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20. A particle moves on the xy-plane under the actiba force F =V x A, wherev
is the velocity of the particle and whefe is a constant vector parallel to the z-axis.
(a) Show thatF is a vector belonging to the xy-plane and deteentire direction of

F relative to the trajectory of the particle. (b) &hthatv and F are vectors of
constant magnitude. (c) Show that the particle etescuniform circular motion.

Solution: (a) Let v =V, @ + v, U, and A= Aly, where A=| A| (we choseA to be in
the positive direction of the-axis). Then,

F=vxA=(vU+yUx(AY= A Yy VY

which is a vector in they-plane. Moreover, by the definition of the vectooghuct,

F is normal to the velocityi, hence normal to the trajectory. This can alscden
as follows:

Fv=AMY -4 (Wur Y= Ayy yy=0.

(b) Since the total forcéc is normal to the velocity, the speéd | v is constant
(only the direction of motion changes). Furthermore

|F|=F =]V ||A |sin72£: VA= constal .

(c) Let p be the radius of curvature at an arbitrary pointhef trajectory, and leh be

the mass of the particle. Sin€e is centripetal at all points of the path,
2

Vv mv
F=m— = p:—F = constan

(since bothv andF are constant). We thus have a uniform motion otaagp along a
path with constant radius of curvature. What kihdhotion is this?

21. A particle of mass m is moving on the xy-planecdtsrdinates are given as func-
tions of time by the equations:=XA coswt , y= Asinwt, where A w are positive
constants.

(a) Find the equation of the trajectory of the pelg, in the form F(x,y)= const.

(b) Find the velocitw = (v,,v,) and the acceleratiord = (a,, ) of the particle as

functions of time and show that these vectors aneuafly perpendicular at every
point of the trajectory. What do you conclude abiheat speed of the particle? Verify
your conclusion by calculating this speed directly.

(c) Find the tangential and the normal acceleratamfunctions of time.

(d) Find the radius of curvature, as a function of time and show that your ressilt i
consistent with that of part (a). Characterize the of motion of the particle.

(e) Show that the particle is subject to a totat&of constant magnitude. How is this
force oriented relative to the trajectory?

(f ) Show that the angular momentum of the partialigh respect to the origi® of
the coordinate system (X, is constant in time. What do you conclude rdgay the
total torque on the particle about O?
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Solution: (a) COSa)t:% ,sirwt:—z\. Then,

2 2

cofot+ sifot=1= > +¥ - 1= X+ y= A

NN

The trajectory is a circle of radius centered at the origi@ (x=y=0) of the coordi-
nate system.

(b) We have:
vx:%:—a)ASina)t , Vyzgza)ACOSﬁ)t
dt dt
dv, .
a, = N 2 Acosort , a=—2=-0°Asimt
dt dt
Hence, V-a=ya+V 8=’ A(sinw tose t com tsim t3

The acceleratior is normal to the velocity ; thus y/ | = constant. Indeed:
VP=v’+Vv’=0w’A = |VE v=0 A= constar (1)

© & :%: 0, sincev=|V|=constant To find ay we work as follows:

|§|2=a,r2+aN2=aX2+ ay2 = 0+ q\lzza)“A2 = aq=a)2/ (2)
2 ).(2)
(d) aN:V— = pzﬁ = p= A=constan.
P ay

The motion is uniform circular, of radius centered aP.

(e) Since the motion is uniform, the total force isgly centripetal:

®)
F=mg, = F=nw’A=constan.

(f) The position vector of the particle, relatived@is 1 =x0, + y{,. The angular
momentum with respect 19 is

L=m(Tx¥)=m( XY+ yyx(yy+ y'y =
L=m(xy—- yy) Y= nw A"y.
Alternatively, by relation (3.32),L=L0{, where L=|L |=m&w». We notice that
L = constant. Thus there is no torque ab@ugiven that, in general = dL/ dt.
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PROBLEMS FOR CHAP. 4 -6

22. A particle of mass m is moving on a circle of radi We call L the magnitude of
the angular momentum of the particle relative te tdenterO of the circle. (a) Show
that the kinetic energy of the particle is

N
““omR 21
where I=mR is the moment of inertia of m with respect to akis of rotation (this
axis is normal to the plane of the circle and passeough the center of the circle).

(b) If the circular motion is uniform, show thaketmagnitude of the total force on the
particle is

L2
mR

F =

Solution: (a) We know that

1 p°
E,=—mV=—  where p=mv.
2 2m
Moreover, for circular motion [see equation (3.32)]

L=mRv= Rp = pz% .

E_L(LT_ L L
*o2m\ R/ 2mBR 21’

(b) If the motion is uniform, the total force is plyreentripetal:
v m( LRJZ 12
F=m—=—|—| = :
R Rm mR

23. An electrically charged particle of charge q, mayiwith velocityv inside a
magnetic field of strengtiB, is subject to a magnetic forde =q(Vx B). (a) Show

that F does not produce any work. (b) If no other foraeson the particle, what do
you conclude regarding the particle’s kinetic engtg

Thus,

Solution: (a) The work of F from a pointa to a pointb is
b — b~ dr b
W=| F.di=| F-—dt=| (F-V) dt=0
.[a .[a dt .[a( V)

since
F-v=q(Vx B-v=0 (explain why!) .

(b) By the work-energy theoremV=AEx= 0 = Ex= constant Alternatively, since

the total force F is normal to the velocityi, the speedv is constant. Hence,
Ex= mV/2= constant.
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24. A stone of weight 20falls from a height h=10m and sinks b{0.5m into the
ground. Find the average force, f, from the grduo the stone as the latter sinks.

y
tA
A
mg
' h
o Y E -0
I

Y

thB

Fig. Problem 24

Solution: The ground is at height=0. The velocity of the stone at both the initial
point 4 and the final poinB (see figure)s zero. The stone is subject to the conserva-
tive forcemg and the non-conservative forteThe change of the total mechanical
energy EEp) of the stone fromt to B is equal to the work of :

A(E + Ep) =(E + Ep)B_( E+ E;) A=W =
(0—mgh)-(0+ mgh=- fh =

~mg(h+ H)
hl

f =420N .

(The potential energy & is negative since is located belowthe reference level
y=0. The work off is negative sincéd opposes the motion of the stone.)

25. Show that the tension of the string of an oscitig@gpendulum isT = mg(3cog) —
2co0%)) , whered is the instantaneous angle of the string withwlegical whiled, is
the angular amplitude of oscillation.

G
‘0 I b
N
| B C
! C Uy
Al
o
v
mg

Fig. Problem 25
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Solution: We call | the length of the string. The forces am(see figure)are its
weight, mg, and the tensioff of the string. We resolve the motion into two miifua
perpendicular directions, namely, a tangential gaeallel to the velocity, and a cen-
tripetal one, parallel to the string. We want t@lggNewton’s law in each direction.
To this end, we introduce the unit vectars and U, (drawn separately in the figure)

at the instantaneous positiénof m (Recall thatl, is tangent to the path whilg, is
normal to it and directed “inward”. The directioh 8, was chosen arbitrarily.) We
call F the total force orm and we letd be the acceleration ah:

—

F=mg+T=ma=
o . dv. V.
(mgsind 4 — mgco¥ Y  Ty= ot +J+T W =

mgsind i + (T—- mgeod Yy = rﬁ:jllt/ T nq\lli v@

By equating the coefficients af, and U, on the two sides of (B>
2
T —mgcosh = mvl— = T= rrE g:o§+|fj (2

. dv dv .
mgsind = m— — = gsind 3
g i praall (3)

Relation (3) is a differential equation for theedgaic valuer of the velocity. Its solu-
tion is not an easy task, thus we try to solveeipgation by using conservation of en-
ergy. LetE, be the gravitational potential energyrof As we know, the change of the
total mechanical energ¥{+Ep) is equal to the work of the forces that do nottdb-
ute to the potential energy(E+Ep) = W'. Here,W’ is the work of the tensiof.
Given thatT is always normal to the velocity, its work vanish¥=0. Hence,
A(ExtEp) =0 < E+Ep = constant In particular,

EctEp)c = (ExtEps  (4)

We chooseE,=0 at the lowest poin# (whered=0). Thus, at an arbitrary poi@
where the angle i,

Ep, = mg(l — I cos)) = mgl(1 - cod)

[where ( — | cod) is thevertical distance ofC from 4]. At the highest poinB of the
path we havé=6, andv=0. Equation (4) then yields:

%mvﬁr mg(1l- cos¥ )= O+ mgl(t- co8, )=
vZ =2gl(cos®— co®, ) (5)

Substituting (5) into (2), we find:
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T = mg(3co9 — 2co9) .

Note that the result is independent.of

Exercise: Show that the expression (5) fersatisfies the differential equation (3).
[Hint: Differentiate (5) with respect toand use the fact that= —Idé/dt (the minus
sign is related to the fact thats negative when the anglencreases).]

26. A bead of mass m is at rest on the highest ppwit a frictionless spherical sur-
face of radius r (see figure). We give the beadighispush, just to make it slide on
the surface. (a) Find the normal reaction R of sheface on the bead, as a function of
the angled. (b) Find the angl® at which the bead will detach from the sphere.

Fig. Problem 26

Solution: Let B beanarbitrarypositionof monthe spheregorrespondingp anangled.
We work as in Problem 25. We introduce the unitmecd, andd, atB, tangential

and normal, respectively, to the surface (draw jhaie then apply Newton's law
and take its components in the directions of thesevectors. Newton’s law for the
centripetal force is written:

v? Vo

mgcosd — R= mr— = R m g:osQ—T, Q)
The tangential component of the law leads to aewbfitial equation for the algebraic
valuev of the velocity. An alternative approach is by senvation of energy. Write:
A(ExtEp) = W', whereE, is the gravitational potential energy avd is the work of
the normal reactiorR (the force that does not contribute to the potérdrergy).
Here, W'=0, sinceR is always normal to the velocity. Thua(E+Ep) = 0 <
E+Ep = constant In particular,

EtEpa = (BtEp)s  (2)
We choose&E,=0 at the equilibrium pointt (whered=0). Thus, at the arbitrary posi-
tion B corresponding to an angle
Ep = —mg(r —rcos)) = —mgr(1—-cog) .

[The pointB is at avertical distance i — r co9)) belowthe reference poimt. This also
explains the negative value Bf atB5.] At the highest poind we haved=0 andv=0.
Equation (2) then yields:
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0+ Ozémv2 — mgr(1- co® ) =
vi=2gr(l-co¥) (3)
Substituting (3) into (1), we find:
R =mg(3co9 -2) .

For the beado remain in contact with the sphere, we must Haged = co¥ > 2/3.
Thus the bead willietach from the sphere whé= arccos(2/3).

27. In an ice-hockey game the player hits the puckngivi an initial velocity
Vo=20m/s. The puck slides on the ice, moving reeidity, and travels a distance
Ax=120m until it stops. Find the coefficient of Kinefriction, x«, between the puck
and the ice. (g=9.8ms

y
f «— | v,
X

mg

Fig. Problem 27

Solution: The forces on the puck are its weighig, the normal forcev from the ice,
and the kinetic frictior (see figure). We apply Newton’s law in tk@ndydirections:

YF,=ma = -f=ma (1)
YFy=ma, = N-mg=0= N=mg (2)

where a (= ay) is the algebraic value of the acceleration ofghek. Relations (1) and
(2), in combination withf = N , yield:

ma=-uN=-umg = a=-ug (3)

Notice thata<0 while v>0, so thatva<0. This means that the motion is retarded (cf.
Sec. 2.4) and indeed uniformly, since the acceteratis constant. We may thus use
the relation

V2= Vo2 + 2a(X — %) = Vo© + 2aAX

whereAx is the distance traveled by For the given distancgx, at the end of which

the object stops, the final velocity ¥s=0. Hence,

vy’

2AX

DV’ + 2aAX = a= —

(4)
By comparing (3) with (4), we find:

(5)
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Alternatively, we can make use of the work-enefggotem. The force§ andmgdo
not produce work since they are normal to the vglo@hus the total work om is
done by the frictiorf aloneand is equal to the change of the kinetic energy: of

AE =W = 0—%m\bz= —fAX.

(Explain the negative sign in the expressionvibr) We have:

2

1 2 V,
Zmw =f AX = uNAX = umgAx = = 2 ,
> U H“MAA U 20Ax

which is the same as (5). Substituting for the givalues, we find;u= 0.17.

28. A cube is let to slide down form the top of animed plane of length | and angle
of inclination @, which plane rests on a horizontal table (seeriyuThere is no fric-
tion between the cube and the incline, while theffament of kinetic friction between
the cube and the table is How far from the base of the incline will the euipo be-
fore it stops?

h
mg D f I—E v=0

Fig. Problem 28

w
<«
3
(@]
O

Solution: Along the pathdB, of lengthAB=l, the cube is subject to the conservative
forcemgand the normal reactia¥, which produces no work (why?). Thus,

A(EctEp) =Wn=0 = E+E, = constant.

In particular,
ExtEp)a = (Bc+Ep)s -

TakingE,=0 at the base of the inclined plane, and usindatiethatva=0, we have:
8 mgh =%mv82+ 0 = w?=2gh=2glsid (1)

Along the pathBC (whereC is the point at which the cube stops) only thetifsic f
produces work (why?), which work is negative sihopposes the motion of the cube.
By the work-energy theorem,

AE = Exc—Bg=W = o-%m\/ﬁ: -f(BC) =
mw? = 2f (BC) = 2uN'(BC) = 2umgBC) = vg?=2ug(BC) (2)
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By comparing (1) with (2), we find:
I sing
U

BC =

|z

29. The mass m in the figure is initially at a locatidrat which the two springs have
their natural length (they are not deformed). Thasmis then displaced a distance |
to the right, at pointB. There is no friction between m and the horizostaiface.
(@) If m is set free aB, find its velocity at the moment when it passesnfd.
(b) Find the maximum distance to the lefdptraveled by m Given: m=4kg, 1=0.2m,
k=8N/m, K=5N/m .

i

N

m
A

K | F'
1 ; m
B

mg

Fig. Problem 29
Solution: The forces om are its weightmg, the normal reactio¥ from the horizon-
tal surface, and the elastic fordesandF " by the springk andk’, respectively. The
reactionV does not produce work (why?) while the gravitatigp@ential energy om
Is constant, conveniently chosen to be zero. Tthestotal potential energy @h is
due to the springs alone and equal to
1 2 1 , 2 1 ’ 2
Ep==k(AD“+ =k"(Al)°= =(k+tk") (Al
P 5 (Al) > (Al) 2( ) (A1)
whereAl is the common deformation of the two springsti@rmore,
A(Ex+Ep) =Wn=0 = E+E, = constant.
(a) AtlocationB, Al=1 andvg =0, while at4, Al= 0. Thus,
_ 1 N2 L1 2
E<+E)s=(Ex+Epa = O+ E(k+k )I“= Eva +0 =

k+K
m

v, =1 =0.36m/s .

(b) Assume thaim stops momentarily at some pof@that isa distancex to theleft of
A. Then, vg= vc=0 and

EctEga= (Bt Ee = 0% - (kek') 1720 ~(kek)x® =

x=1=02m .
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30. A body of mass m is fired from the surface of thehz Find theescape velocity
of the body, that is, the minimum ejection speexésgary in order for the body to
free itself from the gravitational attraction ofgtiEarth and reach “infinity”. Given:
the mass\/ and the radius R of the Earth. (The potential ggesf m in the gravita-
tional field of the Earth is

Mm
Ep(r) =— GT

where G is a constant and where IR> is the distance of m from the center of the
Earth.)

Solution: Let vy be the ejection speed. The total mechanical engrgyat the mo-
ment of ejection is

1 m
E = Ek,0+ Ep(R)=— m\ﬁz_ GM_
2 R
(sincer=R on the surface of the Earth). Assume now thdtas sufficient energy to
escape from the Earth and reach “infinity= ¢o) with some speed, . The total en-
ergy ofm at infinity is
2

E.=E.+ Ep(oo):% m\42+0=% my* .

By conservation of mechanical energy (if we ignaireresistance),

E,=E, = %m\(f— GMT:n:—; my’>0 = aszGM

VOZZG—M.
V R

The minimum ejection speed is

2GM

VO,min = R

and we notice that it is independent of the nmass the body, as well as of the direc-
tion of ejection from the Earth. (Note, howevermttthe required kinetic energy for
escapeloesdependdn the mass of the body!)

31. Two masses frand m are connected by a vertical spring of constardskshown
in the figure. The upper mass m at rest at a positiod. We press mdownward to
position B and then let it free. The mass moves upward t€ and stops there mo-
mentarily before it starts moving downward agaia) Show that the vertical dis-
tancesdB andAC are equal. (b) Find the vertical displacemd®t of my in order that
the mass awill rise from the ground whenjmeaches C.

Solution: At positions4 and B the spring is obviously compressed relative to its
natural length. We cak, the compression of the spring whanis at the equilibrium
position 4. In order form, to rise from the ground, the spring must besxtension
whenm is atC. ThereforeC must be located above the heigtihat corresponds to
the natural length of the free spring.



PROBLEMS 189

y . m|c
freesprinc T
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m B k
§k
K
o m, m, m,

Fig. Problem 31

The equilibrium condition fomy at point4 is
kx=mg (1)
The total mechanical energy i at an arbitrary positiopis

E=E+Ey,= %ml\/2+mlgy+%kx2

wherex is the deformation of the spring (compression demesion) relative to its
natural length. At position8 andC, vg=vc=0. Also, Xg=xo+AB, Xc=AC—X. By con-
servation of mechanical energfg = Ec =

0-mgys+ k(o + ABP=0+mgyc+ Zk(AC- %) =
Kl + AB) ~(AC =% = m: g (Y- 1) =mig (BO) =
%k [(AB)? — (AC)?] + k % (AB+AC) = m, g (BC)
or, given thatAB+AC = BC,
~KI(ABY - (ACP] = (Mg ~k %)(BC) = 0

due to (1). Thus, finally,
AB=AC (2)

In order for the massy, to rise (even slightly), the extended spring nex&rt on it an
upward force at least equal to its weight:

kx>mg = k(AC-x)>mg.
Substituting AC= AB and kxo, = my g, according to (1) and (2), we find:
AB > (my +kmz) 9
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32. A pump raises water at a height H above a tanlg &tte of o kg/'s (mass of wa-
ter per unit time). The water reaches its finalgi¢ihaving acquired a speed v. Find
the work supplied per unit time by the pump.

_______________________________ Ah
by A v

Tank

Fig. Problem 32

Solution: The heightdy; andh, (see figure) are measured relative to an arbitrefry
erence level. Letim be the mass of water arriving at heidgjatand, within timedt,
added to the quantity of water already existinggh&he rate at which water is deliv-
ered ah; is

dm_

dt
The workdW supplied by the pump within timdt is equal to the change of the total
mechanical energy adm between the levels; andh;:

a (1)

AW =A (EEp) = (E+Ep)e — (EGEp): = [% (M2 + (dm)ghs] — [0 + (dm)ghy] .
That is,
dw = %(dm)vz+ (dmyg(hy — hy) = %(dm)v2+ (dm)gH .

The work supplied per unit time by the pump isréfhere,

——=_—V+—_gH =

dt 2 dt dt
d—WzlavszagH :
dt 2

33. A patrticle performs simple harmonic motion on thexis, according to the equa-
tion x= Acoswt, where w=2x/T. Determine the time intervals in which the mot®n
accelerated or retarded.

Solution: In accordance with the discussion in Sec. 2.4, @edrio examine the sign
of the productiva, wherev anda are the algebraic values of the velocity and tleelac
eration, respectively. We have:
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v:%:—a)Asina)t, azﬂlz—a)zACOS@t =
dt dt

32

va=w?~Asinw tcosw t= sint.

The motion isacceleratedvhen

va>0 = sinwt>0= X< t< (X+ ¥ =

k7r<a)t=$< k7r+£ = k—T<t<M

wherek =0,1,2,...Puttingk =0 and k =1, we find 0<t< T/4 and T/2< t< 3T/4,
respectively. (Determine the intervals where théiomos retarded.)

34. A mass m may be connected to two springs in thfesreht ways, as shown in
figure 1. Find the period of oscillation of m inakacase. [The masses of the springs
are negligible. In case (c) the horizontal surfasdrictionless and both springs are
extended at the equilibrium position wf.]

k1

m

(a) (b) (©
Fig. Problem 34 (1)

Solution: We will follow a process similar to that used iropblems with resistors or
capacitors in electricity. We will try to repladeet two-spring system with an equiva-
lent single spring that, when suffering deformatemjual to that of the system, it ex-
erts the same force at its end. We recall (Se¢.tbat, when a spring of constaaqis
deformed (either extended or compressedy, biyexerts forces of magnitude=kx at
its ends, opposing the deformation. Now, if we @mtrone end of the spring with a
massm while keeping the other end fixed, the system exiécute harmonic oscilla-
tions about the equilibrium position of with period

T= 272'\/% (1)
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a. Vertical springs kand k connected in serigsee figure 2)

F’
¢} K,
K,
K, =4
@]
@]
=

Fig. Problem 34 (2)

Assume that we apply a for€eat the end) of the system of springs. By the action-
reaction law, the system will exert on us an opeofirce of equal magnitude Let
x; andx; be the individual extensions kf andk;, respectively. The total extension of
the system will bex= x;+x,. We will show that the forcé exerted by the system is
proportional to the total deformatiorof the system, relative to its natural length.

We call F’ the internal force from one spring to the other.NB3wton’s law, sincé;
has negligible mass, the total force on it is zéhasF =F. Taking into account the
individual extensions of the springs, we have:

F:k2X2=k1X1 = X]_:F/k]_, X2=F/k2.
Hence,

F F 1 1
X=X+X=—+—=|—+—|F 2
X+ % <k (kl kj (@)

We define theequivalent constank” by

K,k
i:—l“r‘_l = k’: 12
K Kk K, K+ K,

Relation (2) is then written:

x:%F = F=k'x .

That is, when the system is extendedxpit exerts a force proportional 0 as if it
were a single spring of constdit If we now suspend a massat its endO, the sys-
tem will oscillate about the equilibrium positiohrawith period given by (1):

1/2
TIZH\/EZZE LLLVNLLE
% Kk

In particular, if ki;=k,=k, thenk’=k/2 and I'=2n/2m/k .
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b. Vertical springs k connected in paral(ske figure 3)

F
Fig. Problem 34 (3)

Assume that we apply a for€eat the end) of the system, causing the system an ex-
tensionx from its natural length. Obviously, both springdlwie extended by. By
the action-reaction law, the system will exert @ an opposite force of the same
magnitudd-, equal to the resultant of the forces exerteddapespring separately:

F=kx+kx=2kx= k' x, wherek'=2k .
If we now suspend a massat O, the system will oscillate with period

T:ZH\/E:ZH m
k 2k

c. Springs kand k connected to a mass m on a frictionless horizostaface(see
figure 4)

I:1 m FZ

—_— X
Fig. Problem 34 (4)

Initially, the masam balances while the springs are extended. Assumethat we
displacem by x to the right. The extension &f will thus increase by, while that of

k. will decreases byx. The massn will then be subject tadditional (unbalanced)
forces F1=k; x and Fy=k, X, both opposite to the displacement. Given the absence of
friction, the total force om will be

F=F1+F,=(kt+ k) x=k'x, where k"=Kk; +k, .
The period of oscillation is

TZZE\/EZZE m_
k’ Kk, +K,

35. An elevator of mas# is suspended from a spring of constant k, as showime
figure. A box of mass m rests on the floor of tegatbr. The system is displaced ver-
tically by a distance! from its equilibrium position and is then let fréand the val-
ues of4 for which the box will not separate from the eleva
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m

Fig. Problem 35

Solution: We assume that the elevator and the box move tegkkie a single body,
with common acceleration The situation is thus equivalent to that of a snystm)
hanging from a spring. Such a system executes harmonic oscillationstatsoequi-
librium position, of angular frequenay= [k /(M+m)]*2 If y is the instantaneous dis-
placement from the equilibrium position, the cop@dingtotal force on the system
has magnitudé=ky [see Sec. 5.4, equation (5.20)]. Thus, the magaitfdthe in-
stantaneous acceleration of the system is

F ky

a= = .
M+m M+m

Given that the maximum displacement equals the itwmpl 4 of oscillation, the
maximum value of the acceleration is

kA
M +m

Brnax (1)

Now, the box may separate from the floor of thevatler only when the system accel-
erates downward. Thus, if separation is to be adyithe downward acceleratiarof
the elevator must never exceed the accelergtmfrfree fallof the box:

@ (M+m)g
< A<—— .
amax g = k

36. Consider two particles mand m subject only to their mutual interaction (iso-
lated system). CalF,, the force on mdue to ra, and &, the acceleration of prela-

tive to m . (Then,F,, = -F,, and &, = —4&,,.) Show that
|f12 =ua;, (1)

where 1 is thereduced mass of the system:

Lo mmo 111
m, + m, aoomoom

Solution: Let &, &, be the accelerations ok, m, relative to arnertial frame of
reference. By Newton’s law, and given the absefiexiernal forces, we have:

£ £, E
a=-2, 6 g=-2-_T1
m, m m



PROBLEMS 195

Then,

1 1) 1
§,=8,-8,=|—+—|F,=—F, = (1)
a12 al a’Z {ml ran 12 ,U 12

37. Show that conservation of kinetic energy is imgmesn a completely inelastic
(plastic) collision where two bodies stick together

Solution: Assume that the masses andm, are moving along thg-axis and, just
before colliding, their velocities ar¢ = v, U, and v, = v, U, while right after the col-

lision the composite massy+m,) has velocityV =V {i (thevs, v, andV arealge-
braic valueghat may be positive or negative). By conservatibmomentum,

MY+ mu=(m+ m \
or, by factoring out and eliminatingj,,

m,V, +
mv+ my=(m+ m V = w“fi?%%%

The change of kinetic energy due to the collis®n i

(1)

1 1 1
A Ex = Ex after— B pefore= > (My+ my) V % — (E myvy° + > mov2°) .

SubstitutingV from (1), we finally have:

1 mm,
AE =--———(-w’=-Zuv, (2

where vi» = Vi — W% is the relative velocity of the masses just beftire collision,
while u is thereduced massf the system (see Prob. 36). Given that/, (otherwise
there would be no collision!), it follows from (#)at AEx= 0. That is, the kinetic en-
ergy of the system isot conserved. For example, = m, andv;= —v, , equation
(1) yieldsV=0, so that the composite mass produced by thesimrilihas no kinetic
energy: all the initial kinetic energy of the systdias been lost. According to the
work-energy theorem, this loss of kinetic energyiginly due to the work of the in-
ternal forces that act during the collision of the® bodies. These forces are responsi-
ble for the deformation of the bodies in the cowfthe collision.

38. Two carts with equal masses m=0.25kg are placea dmctionless horizontal
pathway, at the end of which there is a springarsfstant k=50N/m (see figure). The
left cart is given an initial velocityp#3m/s to the right, while the right cart is initigl
at rest. The two carts collide elastically and tight cart falls on the spring. Find the
maximum compression suffered by the spring.
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k‘_
m m| pwn —5

>

Fig. Problem 38

Solution: The indices 1 and 2 correspond to the left andritite cart, respectively.
Let v, =v, 0, andV, =v,0, be the velocities of the carts immediately aftesirt elas-

tic collision (thev; andv, are algebraic values). By conservation of momentum
my 4 +0=myy+ my'u= s M ; (1)
Kinetic energy is also conserved:

%m\/o2+0:%m\{2+;‘2L my = ¥=y+y (2

By squaring (1) and by taking (2) into account, fuel thatv,v,=0. The case,=0 is
impossible since (1) would then yielg=v, (this would mean that, after the collision,
cart 1 would go on moving to the right with itstial velocity while cart 2 would re-
main at rest!). The only possible solution of (hyi42) is, therefore,

Vi = 0 , Vo =Vqo .
That is, cart 2 takes on the velocity of cart 1jolhin turn, comes to a halt.

Let us concentrate now on cart 2 after its colfisiath cart 1. As is easy to see, the
total force on this cart is equal to the force &eakiby the compressed spring when the
cart and the spring are in contact. Since thisefasconservative, the total mechanical
energy of cart 2 is constant. Just before collidiridp the spring, cart 2 has the veloc-
ity Vo acquired previously, while the spring is uncompeeks After its collision with
the spring, cart 2 will stop momentarily at a positwhere the spring will suffer a
maximum deformation, sayl. By conservation of mechanical energy,

%m\/oz+0:0+—; k@Al = Al= vo\/%: 0.212m

39. A ballistic pendulum is a device used to measure the speed of a fastighpro-
jectile, such as a bullet fired from a gun. Thivide is described in the following ex-
ample (see figure): A cowboy fires horizontally drmin a close distance at a small
wooden plate of mase, hanging from a string at the entrance of a Westaloon.
The mass of the bullet is m. The bullet is wedgtdthe wood, which begins to oscil-
late like a pendulum, reaching a maximum heighbdwa its initial position. Find the
initial speed v of the bullet, as well as the log&inetic energy during the collision of
the bullet with the plate.
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Fig. Problem 39

Solution: We consider the system “bulletvood”. The total momentum of the system
just before the collision is the same as the moumeninmediately after:

mvly+0=(M+mMVy = mv( M mV=

v={1+MjV @
m

whereV is the velocity of the composite madd+m) right after the collision. The

external forces acting on the system after thastofi are its weight,M+m)g, which

IS a conservative force, and the tension of thagstivhich produces no work since it
is always normal to the velocity of the plate (explthis). Thus, the total mechanical
energy of the system is constant after the cotlisla particular, the mechanical en-
ergy right after the collision (when the system walcity V) equals the mechanical
energy at the maximum heigh{where the system is momentarily at rest):

%(M FMV210=0+ (M+ mgh = V=2 gh (2)

From (1) and (2) we have:

v=(1+%j@ (3)

By using (2) and (3), we find the loss of kinetieeegy during the collision:
1 1 M
A Ek = Ek’after_ E(’before: E(M + m) V2 _E m\; = = M(l"l‘ Ej gr.

What accounts for this loss of energy?

40. In figure 1, a bullet of mass m, moving horizoytathlls on a piece of wood of
massM and becomes embedded in it. The wood is connexgedpring of constant k.
The coefficient of friction (static and kinetic)tlween the wood and the horizontal
surface isu, while the spring has initially (i.e., before tbellision) its natural length.
Find the values of the initial velocity of the bullet, for which the wood will finally
come to rest.
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Fig. Problem 40 (1)

Solution: Since the collision is plastic, only the total mornan is conserved:

P

just before — I:)right after = m\6 UX-I-O:( M+ n) VL!< =

my=(M+mV (1)

whereV is the velocity of the system “woadbullet” right after the collision.

N N
T i equilibrium
motion
; KXe— o |—— kKXe—7] o |——>f
| |
(M+m) g (M+m) g

Fig. Problem 40 (2)

The forces on the systevitm), shown in figure 2, are its weighivitm)g, the nor-
mal reactionN by the horizontal surface, the frictidn and the forcekx from the
spring (wherex is the compression of the spring). The normal fo{t&sm)g and N
balance each other. When, after the collisionntlags ¥1+m) moves to the right, the
friction f is kinetic, directed to the left and equal fo= uN = y(M+m)g. If (M+m) fi-
nally balances at rest, the frictidnbecomesstatic it is now directed to the right
(why?) and satisfies the conditidn< uN .

The forcekx by the spring is conservative, with potential egerg
E,= % kx* .
Right after the collision, the system has an ihmachanical energy
E... :%(M +mV?+0 (sincex=0, so thatE,=0) .

When the wood comes to rest, having traveled amfigtx to the right(so that the
compression of the spring at that location is &soéhe final mechanical energy of the
system is

E :O+1kﬁ.
2

fin
The change of the mechanical energy of the systglmmthis time interval is equal
to the work of the kinetic frictiori (the normal reactiov does not produce work).
Taking into account that the direction fak opposite to that of the displacement, we
have:
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AE=E; -E,=W =
%kxz——;(M+m)V2:— fx=—u( M+ M gx=

kx> +2u(M+m)gx(M+ mV=0.

M +m

Setting 4 = , We write:

X2 +2ulgx—AVP=0 (2)

Keeping only the positive root of (2) (singe> 0), we have:

X=—pAQ+ ’A**+AV? (3)

Expression (3) gives the distance at which the womdes to a halt (even if this oc-
curs only momentarily) relative to its initial egjarium position. Now, in order that
the wood remain in equilibrium in this new positi@o that it doesn’t begin to move
backward (to the left), thetaticfriction f must be sufficient to balance the pksiby
the spring. That is,

kx=f<f  =uN=u(M+nmg= kxul kg=
x<uig (4)

Substituting (3) into (4), and solving fot we find:

V<ugd3r (5)

Solving now (1) foV, and substituting the result into (5), we findligve:

M +m

vos(1+%),ug\/§ where A= ”

41. A body that is initially at rest explodes into tivagments of masses; and m .
(&) Show that the kinetic energies of the fragmeangsinversely proportional to the
masses of the fragments. (b) If Q is the total gyédiberated by the explosion, find
the kinetic energies of the two fragments.

Solution: (&) This process is in effect equivalent to a timeersed plastic collision.
Since the explosion takes place almost instantamgoand since during this process
the external forces that act on the system aragilelgl compared to the internal ones,
we can consider that the total momentum of theegygtst before and right after the
explosion is the same (cf. Sec. 6.6):

Poe= P

before — ' after

= 0-h+h = h--]
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where p, and p, are the momenta of the two fragmentspifand p, are the magni-

tudes of the momenta, thegm= p,=p. Now, in general, the kinetic energy of a body
of massm and momentunp is equal to

g -
2m
Hence,
E.= p12: - E2= p22: P
2m,  2m 2m, 2m
and, by dividing these relations,
SRR e
Ek,2 1
(b) Assume now that
Ex1+Ek2=Q .

By applying a well-known property of proportions(iy, we have:

E. _ m, E.+ Eo _ m+ m
E..+E, m+m &> m
Thus,
m m
E = 2 , =
“m+m, ° Bz m+ m N

Notice that, if my<< mp, then Ex>, ~ 0 and Ex1~ Q. That is, almost all of the liber-
ated energyQ goes off as kinetic energy of the smaller fragmdihis is what hap-
pens, for example, in a radioactive decay of amatmucleus.
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PROBLEMS FOR CHAP. 7

42. A wheel of mas3/ and radius R may rotate about a horizontal pivassing
through its centerQ (see figure). A string wound around the wheebisnected to an
object of mass m. As the string unwinds, the mas®wes downward while the wheel
rotates. Find (a) the linear acceleration, a, of (b) the angular acceleratior;, of
the wheel; (c) the tension F of the string; and tft® reactionV by the pivot aD.

(The moment of inertia of the wheel, relative @ pivot, isl = %MR2 )

Solution: The massn performs purely translational motion, while the raotof the
wheel M is purely rotational. For the translational motiwa choose the positive di-
rection downward. For the rotational motion we c®the positive direction counter-
clockwise. Equivalently, iz is the axis of rotation, directed normal to the gaits
positive direction isoutward (i.e., toward the reader), in accordance with fgaty

hand rule.
N
S @y o
F M A M l

= mg Mg +

m| | a

Fig. Problem 42

The equation of translational motionrafis
mg- F=ma (1)
Since the wheelf does not perform translational motion,
Mg+F-N=0 = N= Mg+ F (2)

The equation of rotational motion &f is ZT~=la, wherea is the angular acceleration
of the wheel andT; is thez-component of the total torque relative@oequal to the
sum of thez-components of the torques of all forces actindnTheMg andN pass
throughO, thus they produce no torque relative to that pdihe total torque o,
therefore, is due to the tensibrof the string and is directed positively, sife¢ends
to turn the wheel counterclockwise. We have [cC.$@&.5)]:

> T,=>.(RR)=FR
so that FR=Ila = F:LRa (3)

We now notice that the velocity of the downward imotof mis equal, in magnitude,
to the linear velocity of revolutiorRw, of all points of the circumference of the wheel
(wherew is the instantaneous angular velocity of the whesitilarly, the linear ac-
celeration,a, of m equals théangentialaccelerationRa, of all points of the circum-
ference of the wheel. That is,
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a=Ra (4)
From (3) and (4) we have:

I 1.1 1
F_Ea_?(EMRZ)a: F=-Ma (5

Substituting (5) into (1), we find:

2m
vl
m+ M
Equation (4) then yields:
a_  2mg
R (2m+ MR’
By (5) and (6) we get:
mM
= (@)
m+ M
Finally, (2) and (7) yield:
N = Mg(1+ j .
2m+ M

What will happen if the mass of the wheel is nagle(A/=0)?

43. The string in the figure is wound around the whiéé are given the masgand
the radius R of the wheel, as well as the masseswof the two objects hanging
from the ends of the string, wherg<m, . Find the linear accelerations of the two
masses, the angular acceleration of the wheel, and the tensiong F, of the string.

(The moment of inertia of the wheellis: %M R%))

/\(Z
4 e
aT m, m, la '
m, g
m, g

Fig. Problem 43

Solution: For the translational motion afy andm, we take the positive direction
downward. For the rotational motion &fwe choose the positive direction clockwise.
That is, we consider that tlezeaxis of rotation, which is normal to the page, @sip
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tively directedinto the page. We arbitrarily assume that the wheelcrselerating
clockwise and, correspondingly, the massgsny, accelerate as shown in the figure.
If our assumption is correct, we will find positivalues for the magnitudes of the ac-
celerations at the end; otherwise these valueswifbound negative.

We note that, in contrast to Problem 11 where é&msion of the string was constant
along the string and was not affected by the puleye the string isvoundaround
the wheel without gliding on it, which allows thed sections of the string to develop
independent tensiorkg andF, . The equations of motion fom andnm, are

mg-F=-ma= k-mg m. (1)
m,g-F=ma (2)

Notice that the linear accelerationsmof andm, are equal in magnitude and equal to
the tangentialaccelerationRa, of all points of the circumference of the whekhat
IS,

a-a=a=R (3)

(the a anda representmagnitudesthus they are positive). The equation of rotalon
motion of M is £T=l a . Of the forces acting on the wheel, only the tensk,; andF;
produce torque relative t0 (what are the remaining forces?). The torqud-pis
positive, while that oF; is negative (why?). We have:

>T.=>(RR)=KR-ER=(E- B R
Thus, by using (3),

| |

F,-F)R=la = F,-F=—a=—;

(2 1) 2 1 R Rz
1

F,-F=-Ma (4

1.1
a—E(EMRZ) a =

Adding (1) and (2), solving fol/;,—F1), and comparing with (4), we find:

o= (mz_ml)g and 0{23: (mz_nl)g

M :
ml+mz+7 R (ml+mz+'\;jR

We notice thata>0 and a>0 (sincemy<m,). Thus the assumed direction for the ac-
celerations was correct. From (1) and (2) we edsity the tension§&; andF; (this is
left as an exercise). If the wheel is consideradogtmasslesg)M=0), then, as we can
show,

m, — 2
_(m-m)g FoF-2mn
m, + m, m+ m

The device described in this problem is cagdood’s machinand is useful in the
study of uniformly accelerated motion, as well mshe experimental measurement of
the acceleration of gravitg. By choosing the masses andn, so that their differ-
ence (np—my) is very small, we achieve a valaeof the acceleration that is small
enough to be easily measurable.

a
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44. A wooden disk of madg and radius R may rotate without friction about @ik
zontal pivot passing through the center O of thek dsee figure). A bullet of mass m
and horizontal velocity v hits the disk at its fopint 4 and is wedged there, setting
the disk in rotation. Find the velocity and the alecation of the bullet at poing,

where the angld OB is #/2. (The moment of inertia of the disklis- %M R%.)

Fig. Problem 44

Solution: We choose as positive the clockwise direction tdtron. That is, we con-
sider that the-axis of rotation (pivot)which is normal to the page, is positively di-
rectedinto the page (this is, by definition, the directiontioé unit vectori, ). We call
w4 andwg the angular velocities of the disk when the bulledt4 (right after the col-
lision) andB, respectively. Also, we call, andvg the linear velocities of the bullet at
these points. Obviously,

Va= RwA o B = R‘)B (1)

Consider the system “bulletdisk”. Its angular momentum relative €@ just before
the collision, equals its angular momentum rigterafcf. Sec. 6.6):

=L

before — ™ after

L = MRVU+0= MRy y+ &,y =

mRv= MRy+ &, = m?b)ﬁ% MR, =

2mv
= (2
A= omi MR D)
From (1) and (2
2mv
= 3
YA ome M ®)

(Note that, after the bullet is embedded in thd,dise center of mass of the system
doesnot coincide with the fixed poin® but rotates with the disk.) To findz we will
use conservation of mechanical energy (rememberthieae is no friction aD). For
the gravitational potential energy, we takg=0 at the horizontal plane passing
throughO. The external forces on the system are the weigh@sndMg and the reac-
tion N from the pivot. The forc#lg acts at the center of mag@f the disk and corre-
sponds to a potential energyv=0. The forcemg corresponds to a potential energy
Eonmmgy, wherey is the instantaneous vertical distancenofrom the horizontal
plane passing throug. The forceN does not produce work\g=0) since its point
of application,0, remains fixed. The change of total mechanicatgnef the system
is given byAE=W\=0 = E=constant. We may thus apply conservation of mechani
energy at the two instants when the bullet ig @ind atB, taking into account rela-
tions (1):
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EA:%va2+%Ia>A2+ ng:—;( mMZj Rv,’+ mgR
Es =1mvB2 N Ia)Bz+O:—1( m+Mj Rog’ .
2 2 2 2
Equating £,=E3 , we find:

1/2
2 4amg
_ 4
e {”A T ems M)R} )

wherew, is given by (2). By the second of relations (1)ca@ then evaluate; .

We now want to find the acceleratiag of mat B. The bulletm performs circular mo-
tion of radiusR. If ag is the angular acceleration of the disk winers atB, we have
[see equations (2.36) and (2.37)]:

aB:léBIZ"aT2+a1\,2 where aT:RaB' aN:mBZ-

a,=RJa +w,* (5

To find ag, we use the relation

ZTZ = ItotaB (6)

where XT, is thez-component of the total external torque relativ&twhenm s at B
(equal to the sum af-components of the torques of all forces acting 'l dystem)
and wherdy is thetotal moment of inertia of the system “bultedisk”. The forces
Mg andN pass througl®, thus they produce no torque. Therefore, the totgue on
the system is due tmg alone and is directed positively, sintg tends to rotate the
disk clockwise:

Thus,

> T,=mgR whenmis atB.

To find I, we think as follows: We imagine that the digkis partitioned into ele-
mentary masses at distances; from the axis of rotation. Given that the bulieis
at a distanc® from the axis, we have:

hot=Y M PP+ mR = I+ mﬁ:% MR+ mﬁ:( mMZj R
Equation (6) now yields:

ng:(erMj Ro, = oszﬂ (7)
2 (2m+ M)R

By substituting (4) and (7) into (5), we firag .

Exercise:Suppose now that the bullet is not wedged intadikk but just bounces at

A, giving the disk an initial angular velocity, . What will then be the angular veloc-
ity wp and the angular acceleratiap of the disk when the point of impact moves to
locationB? (Notice that, now/j,=1. Is there an external torque?)
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45. A wooden rod of length | and ma&&may rotate without friction about a hori-
zontal pivot passing through one end of the roe (ggure). The rod is initially verti-
cal and at rest. A bullet of mass m, moving hotialbyy falls on the center C of the
rod and becomes embedded in the wood. (a) Findaloeity v of the bullet for which
the rod will reach the horizontal position (whetewill stop momentarily). (b) Find
the angular and the linear acceleration of the eer€@ of the rod when the rod is at

the horizontal position. (The moment of inertiahaf rod is| :%M 12.)

Fig. Problem 45

Solution: We define the positive direction of rotation todminterclockwise. That is,
the z-axis of rotation(pivot), which is normal to the page, is positivelyectedout-
ward (this is also the direction af,). We callw, the angular velocity of the rod right
after the collision, when the rod is still vertiqg@losition4). At the final, horizontal
position B the rod stops momentarily, which means thgt0. We work as in Prob-
lem 44. We thus consider the system “bulebd”. By applying conservation of an-
gular momentum during the collision, relative te fixed endO of the rodwe have:

I:before: l:after = m\/(l—zj UZ+O: mvﬁ(l_zj Auz+ h) A’\u

whereva is the velocity of the bullet right after the celbn. Substituting for, and

: I
using the fact thav, = 3 ®, , We get:

1mIv:(erMj Po, = VZMM)A (1)
2 4 3 an

To find w4 we apply conservation of mechanical energy. We sbdbe zero level of
gravitational potential energy at heidf belowO. The external forces on the system
are the weightsngandMg and the reactiow from the pivot. The potential energy of
the system is

Ep = Epm+ Epm = mgy + Mgy = (m+M) gy

wherey is the instantaneous vertical distanceCdirom the horizontal plane of zero
potential energy [cf. Sec. 7.9, equation (7.66}e TeactionV produces no work, thus
the mechanical energy of the system is constarnthé\extreme position$ andB, we
have (taking into account thg=0, yg=I/2 and wz=0):
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1 1fm M
EAZEIIOt C()A2+(m+ M)gyAZE(Z-I-—Sj |260A2+0 ,

E. :%Itot g’ +(M+ M) gy, =0+ (m+ M)gla ,

(E+Mjl2 :
4" 3

1/2
12(m+ M
w,=| 220G )
(Bm+4M)l
Substituting (2) into (1), we have:

1 1/2
v=6—m [12(m+ M)(Bm+ 4M) gl ™ .

where we have put

1 1Y’
|tot=:—3M|2+m(Ej

By equatingE4=Ej3 , we find:

The angular acceleratia atB is found by using the relation

ZTZ =lot O3 :(%-‘r%j Pay,  (3)

The reactionV produces no torque with respectd in contrast to the weightsg
and Mg that cause torque in the negative direction (stheg tend to rotate the rod
clockwise). ThangandMg act at the cente of the rod. At the horizontal positiah
of the rod,

I I 1
T,=—mg=-— Mg—=—(mt .
2T, =-mg; - Mgz =—-—(m M g
Substituting this into (3), we get the algebraitueaf the angular acceleration at po-
sition B:
__6(m+M)g

%= gmiamy D

Now, the pointC performs circular motion of radid®. The magnitude of its linear
acceleration aB is

a, =|§(a82 +a)B4)1/2 _L lag| (sincewg =0).
Substituting forag from (4), we finally have:

a_3(m+M)g
® 3m+4M
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46. A homogeneous sphere of magsand radius R is let to roll from the top of an
inclined plane of anglé and maximum height h. Find the velocity of theesplat the

moment when it reaches the base of the inclineisbyg two methods: (a) conserva-
tion of mechanical energy; (b) the equations ofiamobf the sphere. Also, find the
minimum value of the coefficient of static frictianin order that the sphere may roll

without slipping on the incline. (The moment oftileeof the sphere id =§MR2.)

v,=0
v y
T N
h 1 Ve
y —
J v 2@ E -0
B p

Fig. Problem 46 (1)

Solution: Consider an arbitrary position of the sphere aglitey above the base of
the incline (see figure 1). Call the angular velocity of rotation of the sphere bater
be the velocity of the center of mass of the spla¢réhat position. Since the sphere
executes pure rolling (without slipping),

v=Row (1)

The total mechanical energy of the sphere at theidered position is
1 1
E= =MV + =+ Mgy .
5 5 ay

The value off is constant during the motion. Indeed, the foraeshe sphere are its
weight Mg (to which there corresponds the potential en&gMagy), the normal re-
actionN from the incline, and thstaticfriction f that prevents slipping. The reaction
N produces no work, being normal to the veloeitylhe frictionf also doesn’t pro-
duce work, given that the motion is pure rollinggsSec. 7.11). Hence,

AE=Wy+W;=0 = E=constant.

In particular, for the extreme positiodsandB we have that,=Eg . Explicitly,
0 + OMgh = %MVBZ+ %Iwgz +0 .

Substituting forZ, and using the fact that, by (Ms=Rwjp , we have:

1 ., 1 »,_ 7 /10
h=Z=w "+ =vg°=— V = vg=,/—gh 2
g 23 53 10 B B 79 (2)

The result is independent &1, R, 6. It is interesting to note that, if in place okth
sphere we had, e.g., a cuslaling without frictionon the inclined plane, the corre-

sponding velocity at the base of the incline wobddvg” =./2gh > vg . This is un-

derstood by noting that, in the case of the spheag, of the total kinetic energy is
used as kinetic energy of rotatidm{/2) at the expense of translational kinetic energy
(MV?/2), and thus at the expense of the final velogitgf the sphere.
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Alternatively, we can use the equations of motibthe sphere. The forces acting on
it are the weighiMg, the normal reactio®v from the incline, and the static frictidn
(see figure 2). The frictiohis directed toward the top of the incline in order to pre-
vent slipping.

Fig. Problem 46 (2)

Consider an arbitrary position of the sphere onitliséne. Calla the linear accelera-
tion of the center of mas3 of the sphere and letbe the angular acceleration of rota-
tion of the sphere. Theaxis of rotation, which is moving down the inclingh the
sphere, passes throughand is normal to the page and directedard (that is, the
positive direction of rotation is clockwise). Thguations of translational motion of
the sphere are

> F,=Ma,, > F=Ma,, where a=a, a=0.

Explicitly,
Mgsih—f=Ma (3)

Mgco - N=0 = N=Mgcoy (4
The equation of rotation about the center of m@ass XT,=la . The only force pro-
ducing torque about is the static frictiorf (given thatMg and N pass througlIC).
This torque is positively directed sinteends to rotate the sphere clockwise. We thus
have:
f R:(EMsza = =2 MRx:—Z Mz (5)
5 5 5

where we have used the pure-rolling condit@nR«a . Substituting (5) into (3) and
solving for a, we find:

a= > gsingd  (6)
7
(Note thata is independent dR.) Substituting, now, (6) into (5), we have:
f :%Mgsina 7)

Taking into account thdtis static friction (since there is no slipping), and using (4
and (7), we have:
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f<f _ =uN = %Mgsineé,uMgcosﬁ =

U zétane & U :% tand  (8)

Note thatumin=0 whenf=0. This means thahe sphere may perform pure rolling on
a horizontalsurface without the aid of static frictioin other wordspure rolling is
possible on a frictionless horizontal surfasee also Problem 47).

We also need to find the velociy of the sphere at the baBeof the inclined plane.
Along the incline (i.e., along theaxis) the cente€ of the sphere executes uniformly
accelerated motion with constant acceleratigiven by (6). We thus use the formula

vZ=ve® + 2a(x — %)

with v=Vvg, Vo=va= 0 andx—x,= AB= L :
sing
5 . h 10 10
V.2=0+2 =gsind |—=—gh = =,— gh ,
® (79 jsine 79 % 7 9

in accordance with (2).

If in place of the sphere we hadhamogeneous cylinder radiusR (I=MR?%2), rela-
tions (2), (6) and (8) would read, respectively,

sz,/%gh, azé gsing , ,uzétarﬂ

(show this!). We notice that the accelerat@arof the sphere along the incline is
greater than that of the cylinder. We also notlta the accelerations of both these
objects are independent of their respective adidence, if a sphere and a cylinder
start to roll simultaneously from the top of anlined plane, the sphere will arrive at
the base of the incline firstggardless of the dimensions of the two objects

47. A disk of radius R is at rest on a frictionlegs@) horizontal surface. (a) At what
vertical distance h above the center of m&ssf the disk must we apply a constant
horizontal force F in order for the disk to roll thout slipping? (b) Show that free
rolling (F=0) on a horizontal surface is possiblatlout the aid of static friction.
(The moment of inertia of the diskis 2 MR..)

Fig. Problem 47
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Solution: The positive directions for translational and nata&l motion are indicated
in the figure. Thez-axis of rotation, which is moving with the digkasses throug®
and is normal to the page and diredrad it. We callM the mass of the disk and we
denote bya and o the linear and the angular acceleration, respdgfioé the disk.
The forces on the disk are its weidlg, the normal reactiov by the horizontal sur-
face (equal in magnitude to the weight), and thezbatal forceF that we apply
(there is no friction). The forcE is the total force on the disk. The total torquie-re
tive to O is due toF alone, given thaMg and N pass throughD. The equations of
translational and rotational motion are:

dYF=Ma = F=Ma (1)

dT,=la = Fh:(%Msza:%MRa (2)

where we have used the pure-rolling conditeorRa . Dividing (2) by (1), we have:

h :g for pure rolling without friction .

Note that, forF=0, the result is independent BfandM. In the case ofree rolling
(F=0) relations (1) and (2) yield=0 anda=0. That is,the disk rolls with constant
velocity and without slipping on the frictionlessrizontal surface

48. A disk of radius R and mass rolls without slipping on a horizontal surface un-
der the action of a constant horizontal force Fe(§igure).

1. Find the values of the vertical distance h abinecenter of masg of the disk, at
which we must apply F in order for the static fioct f exerted on the disk to be di-
rected (a) to the left, (b) to the right.

2. For the values h=0 and h=R, find the valueshaf static coefficient of friction;,

in order that the disk may perform pure rolling.

(The moment of inertia of the diskis 2 MR%.)

(a) (b)

Fig. Problem 48

Solution: The positive directions for translational and nata&l motion are indicated
in the figure (the moving-axis of rotation is normal to the page and direatéal it).
We calla the linear acceleration amdthe angular acceleration of the disk. The pure-
rolling condition is

a=Ra (1)

The total force on the disk i& + f (the vertical forces, i.e., the weightg and the
normal reactiorN by the surface, balance each other). The fdfcasdf are the only
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ones that produce torque relativeQpgiven that the vertical forces pass throdgh
The equations of translational and rotational motce:

YF=Ma, >dT,=la (2

We apply relations (2) separately for cas®safpd ), taking into account condition
(1) and the fact that the torque frelative toO is positive, while the torque dfis
positive in cased) and negative in casb)(

(a) The static frictionf is directed to the left:
F-f=Ma (3
1 1
Fh+ f R:(E MR?jaza MRa (4)

Dividing (4) by (3), we find:

3R R

Given thatf >0 and F >0 (the f andF represenimagnitudeys we must have:

B—h>0 = Osh<B )
2 2

(b) The static frictionf is directed to the right:
F+f=Ma (6)

Fh- fR:(1 MR?jog:1 MRa (7)
2 2

Dividing (7) by (6), we find:
3R R
Si=(r-3)F @

This time we must have

h—B>O = B< h<R.
2 2

We now seek the static coefficient of frictigrfor pure rolling wherh=0 andh=R.
Settingh=0 in (5) andh=R in (8), we find that, in both cases,

f=—.
3
We thus have:

F F
f<f =uN=uyMg = —<uMg => u>——.
max — H HNQg 3 yZaVile! H 3Mg

Exercise: Show that, wherr=0 (free rolling), therf=0, a=0 anda=0. That is, the
disk rolls freely with constant velocity, withoube aid of static friction (see also
Problem 47).
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49. A disk of radius R and magd4 has a string wound around it. A mass m is at-
tached to the end of the string, as shown in figurés the string is unwound, the
mass m moves downward while the disk rolls witlsbpping on the horizontal sur-
face. Find the accelerationg and & of the disk and the mass, the tension F of the
string, and the static friction f (magnitude addection) at the point of contaed.
(The moment of inertia of the disk is | = %2 V)R

Fig. Problem 49 (1)

Solution: Since we don’t yet know the direction of the fractif, we will arbitrarily
assume that it is to the right. If we find a negatmagnitude fof at the end, our as-
sumption will prove to be incorrect. The accelenat; of the disk is, by definition,
the acceleration of its center of m&sselative to the horizontal surface, or, equiva-
lently, relative to the point of contact a;= aco . The acceleration, of m with re-
spect to the horizontal surface (directed downwadqual in magnitude to the ac-
celeration of the highest poiRtof the disk, relative to the surface (or, relative)):
a=apo . In Sec. 7.10 we showed thag o= 2ac . Therefore,

=2 (1)
We set
a=a, a=2a.

If « is the angular acceleration of the disk relatw€} the condition for pure rolling
demands that
a=a=Ra (2

N F

F

(Z/ R a l—’-i—
C o |m| lZa

M\ [R ()

f

\4

Mg mg

Fig. Problem 49 (2)

In figure 2 we draw the forces on each body sepiralhe positive directions for
translation and rotation are as indicated in tharg (the moving-axis of rotation of
the disk is normal to the page and direci®d it). The total force onV is (F+f)
(sinceN=Mg), while that oomis (mg-F). TheMg andX do not produce torque rela-
tive to C, since they both pass throughThus, the total torque ov relative toC is
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> T,=FR- fR=(F- ) F

(notice that the torque & is positive, while that of is negative). We write the equa-
tions of translational motion fan and forM, as well as the equation of rotational mo-
tion for M:

mg — F =nf2a) = 2ma (3)
F+f=Ma (4)

(F—f)RzIaz(%Msza 9 F f:—;Ma (5)

Dividing (4) by (5)= F=3f 6)
From (4) and (6} f= % (7)
From (6) and (7% F= 3%4& 8)

_ . _ _4mg
From (3) and (8% aza= o o 9 v
From (1) and (9% 8mg (10) Vv

= ——
8m+ 3M

Mmg F- 3Mmg

- _Mmg - p_ 11
8m+ 3M 8m+ 3M an v

From (7), (8) and (9

We notice that > 0; thus, the arbitrarily chosen direction faras correct. Equations
(9), (10) and (11) constitute the solution to thebpem.

50. A student is sitting on a stool that can rotate atba frictionless vertical axis.
The student is holding, with both arms extendqehiaof dumbbells, each of mass m,
while the stool is rotating with an initial angulaelocityw; . The student now pulls
the dumbbells closer to his body, so that thetiahdistance R from the axis of rota-
tion decreases to.R (a) Find the new angular velocity, of the stool. Assume, ap-
proximately, that the moment of inertia of the eyst'stool+ student” (withoutthe
dumbbells) remains unchanged, equalgo(b) Compare the initial with the final ki-
netic energy of the system (witte dumbbells).

Solution: Consider the system “stoslstudent dumbbells”. Its initial and its final
moment of inertia is, respectively,
l;= 1o+ mMRZ+ mR? =g+ 2mR? ,
l,= 1o+ 2mR? .

The angular momentum of the system, relative to @oigit of thez-axis of rotation
(which is a principal axis), is directed parallelthe axis. Its initial and its final value
is, respectively,



PROBLEMS 215

Li=lio,= (lo+ 2mMRA) o, ,
Ly =lw,= (Io+ 2mR) @, .

The external forces on the system are the weidhtsedbodies and the reaction of the
floor on the stool. Since all of these forces ar¢hie vertical direction, none of them
produces torque about the axis of rotation. Hek¢es 0, so that the angular momen-
tum of the system is constant:

L,=L, = lLo=1w, =

Lo l,+2mR?

W, = 1= @D -

l, l,+2mR,

Note that w,>w1 , given thatR;>R; .

The initial and the final kinetic energy of the t®ys is, respectivelyE, 1= ¥ liw:?
and Eco= ¥ l,w5” . Thus,

2 2
B _L[o: zl_z(l_lj g
E. Lo, AP I,

That is, Ex2 > Ex1. Given that the external forces produce no worky(®) the in-
crease of total kinetic energy is due to the wdrtheinternal forces (specifically, the
work done by the student in pulling the dumbbéeiiser to his body).
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PROBLEMS FOR CHAP. 8

51. A homogeneous sphere of dengitys let to sink inside a vessel containing a lig-
uid of density (wherep<pi), as seen in the figure. The height of the fretasa of
the liquid above the bottom of the vessel is h.Haj the time i it will take the
sphere to reach the bottom. (b) If a second spbkdensity,>p; is let to sink simul-
taneously with the first sphere, which sphere reiich the bottom first?

A
0 - ? i l l
h a, |0,
y Pl 1. "

Fig. Problem 51

Solution: (a) Call my, Vi, w; the mass, the volume and the weight, respectiatly,
the first sphere. Themm=p,V; and

w,=m, g=p, gV .
The buoyant force on the sphere is equal to thghweif the displaced liquid:

A=paV -
The total force on the sphere is

Fo=W+A=wl+(-AY)=(w- Ay=(p-p) oYV}
By Newton’s law,

lflzmlal: rnlai’g:(pl\{@ AV-
Hence,

oV, =(p,—p)oV, = a1:(1_£j g

P1

Since a;= constant, the motion of the sphere is uniformlyederated. Therefore,
1
y=y,+ v0t+5 at

where, in our casey,=0, Vo=0, y=h and t=t; . Thus,
h:%aitf = t= fz—h ., Wherea; is given by (1).
1

(b) Similarly, for the second sphere we have:

t, = 2h where azz( —ﬁjg.
a, P2

Given thatpi< p,, we see thal< a,, so thatt;>t,. That is,the denser spherg
will reach the bottom first, regardless of the dimsi®ns of the two spheres



PROBLEMS 217

52. Consider a metal sphere of radius R=5cm and depsit@.1g/cn? (see figure).
We want to cover it with a wooden spherical shetiensityp=0.7g/cn?, so that the
composite spherical structure will float on watgr{g/cnT) or at least will not sink
in it. Find the minimum thickness x of the woodwlls

oy Q

Ps
Fig. Problem 52

Solution: Call m, andV, the mass and the volume of the metal spherenar@hdV;:
the mass and the volume of the wooden shell. Thesraad the volume of the com-
posite sphere arev,—=m,+m; and Vo=V ,+V:. In order for that sphere to not sink, its
averagedensityp,” must not exceed the density of watey: < p , where

pr:mot:mﬁn}:pg\é+p§\g:pg\é+p¢(\ét— Y)
o V V V

\/tot tot tot tot

= p (o, p)

tot

Therefore,

: v
Py Sp = (pa—pg)v—“Sp—pg 1)

tot

But,

V. R+ x

tot

3
Va=g7rR3, \{ot:gﬂ'(R-i- ¥° and V—”:( R j :

From (1) we then have:
3 1/3
(Rjgp Pe _ Rex [Po=Pe|
R+X)  p,—p; R P =P

1/3
x> || PP _1|R .
P~ Pe

After making numerical substitutions, we fingn, = 5cm.
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53. In Sec. 5.4 we learned that, if we suspend a maerma spring of constant k
the mass will be able to execute vertical oscihlasi about its equilibrium position
with period T =2z~m/ k. We now place the system into a liquid of densggnaller
than the average density of the suspended massnthans that m would sink if it
were not held by the spring). Show that the pedbdscillation remains unchanged
inside the liquid.

T
e

k
P X=bm [ ] mg

Fig. Problem 53

Solution: The symbols in the figure are the same as in Sé()5The massn s ini-
tially in equilibrium atx=0, where the spring is extended Mlyrelative to its natural
length and exerts a for¢&'= kAl . The mass is then displaced a distanabove the
equilibrium position and is now subject to a foFgek(Al-X) by the spring. The only
new element is the constant buoyant foteggV, whereV is the volume of the mass
m. Notice that4<mg, since the density of the liquid is smaller than that of the im-
mersed mass. At the equilibrium positign0, we have:

F/'+A-mg=0 = kKl A mg=0 (1)

Theresultantforce onm at positionx is

@
F=F +A-mg=kA |- 3+ A~ mg= F- k (2

According to equation (2), the massmay execute harmonic oscillations about the
equilibrium positiorx=0, with periodT =27+ m/ k. We note that this period is inde-
pendent of the densipyof the medium that surrounds the oscillating mass.

54. A cylinder of height h and average dengityfloats with its axis vertical, par-

tially immersed in a liquid of densigy (wherep>py ). The cylinder is subjected to a
small vertical displacement from its equilibriumsg®mn and is then let free. Show
that the cylinder will execute harmonic oscillatsoabout its equilibrium position and
find the angular frequency. As an application, finéd for the case where the cylin-
der is half-immersed in the liquid at the stateqdilibrium.
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T I
X=0— | | T -------- b L £
W A, v% T

Fig. Problem 54

Solution: In the figure we see the cylinder at the equilibriposition §=0) and at an
arbitrary position a vertical distangdelow. LetVy be the volume of the cylinder. Its
weight is thenw,=px gVk. We callV, andV the volumes of the displaced liquid at the
considered positions=0 andx>0, respectively. The corresponding buoyant foraes o
the cylinder at these positions are

Ao=p9Vo , A4 =pgV.
If Sis the area of the base of the cylinder, thgaSh. Also,
V=VW+Sx < V-\p=5Sx.
At the equilibrium positionX=0) we havew,= Ay =
pMic=pVo (1)
Theresultantforce on the cylinder at the arbitrary positiois
F=wk—A=pcgVk—pgV = (pVk —pV ) g
or, by substituting forpVk from (1),
F=(pVo-pV)g=-p(V-M)g=-p(SX)g =
F=-(pgS)x=-kx (2)

According to (2), the cylinder may execute vertibarmonic oscillations about the

equilibrium position X=0) with angular frequencw =+k/m, wherem is the mass
of the cylinder. Settingn= pVk = pSh and k = pgS we find:

o= 2% @3
ph
In the special case whevg=V\/2, relation (1) yieldsp / px= Vk/ Vo= 2, so that from
(3) we have:w=./2g/h.

Exercise:Find the periodl’ and the frequencl/of oscillation. Would the oscillation
be perfectly harmonic if we had a sphere in pldddecylinder? A cube?
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55. A goldsmith tries to sell a crown to a king, asegrhim that it is golden and has
no internal cavities. Before he makes a decisibe, king seeks the advice of Ar-
chimedes, who weighs the crown immediately ands fitedweight to be w=7.84N.
Archimedes then weighs the crown while it is imedrs1 water, measuring an
apparentweight w,=6.86N. Knowing that the density of waterzs10%kg/nt, while
that of gold isp,=19.3x 10%g/n?, what does Archimedes conclude regarding the au-
thenticity of the crown?

Solution: In essence, Archimedes is seeking the averagetgensf the crown in
order to compare it with the denspy of gold. If V is the volume of the crown, the
actualweight of the crown is

w=p'gV (1)

We have an equation with two unknowns, nameghgndV. Assuming that we do not
have the experimental means needed in order tontie the volumeV directly, we
seek a second equation to eliminate that volumm ftiee problem. Thepparent
weight of the crown, when the latter is immersedha water, is equal to its true
weightminusthe buoyant forcd :

w,=w-A=p'gV-p gV =
w,=(p'-p)gV (2)
Dividing (2) by (1) and solving fop”, we find:

, w

p:WW
-

p =8x10°kg /InT < p, .

Thus, either the crown has internal cavities @ ot made of pure gold. (The histo-
rians of the period give no information regardihg fate of the goldsmith...)

56. A tank containing water is placed on a scale, whibbws a total weight w. What
will be the new reading of the scale if we add dagtone of volume V, totally im-
mersed in the water and kept at rest suspended $lyireg from a fixed support?
(b) a stone of volume V that is sinking freely hie tvater? (c) a piece of wood of
weight w, floating on the surface of the water? (d) a woodeibe of weight W
performing vertical oscillations of angular frequsrw about its equilibrium position,
at which position it floats at rest? (The dengityf water is assumed known.)
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VO VOL w Ag P
@ (b (c)-(d) i \;v IF

Q

Fig. Problem 56

Solution: In all cases the water exerts a buoyant fotaen the immersed bodyj-
rected upward (see figure). By the action-reacldanthe body exerts, in turn, a force
on the surrounding water, of equal magnitddend directedlownward The external
forces on the system “tankwater” are its weightv, the reactiord to the buoyant
force by the immersed body, and the foFcen the tank by the scale. The foi€és
the one that corresponds to the reading of the s€ahce the system “tarkwvater” is

in equilibrium (note that the immersed bodynist a part of the considered system!),
the following condition must be valid in all cases:

F=w+A (1)
For casesd) and p) we may argue as follows: Whether suspended arestbr sink-
ing freely, the stone is subject to the same bubj@ice, A=pgV, from the water.
Thus, in both these cases the stone exerts the dawrmward reactiond to the sur-
rounding liquid. For cases)and p), then, relation (1) yields:

F=w+pgV.

In case €), since the floating piece of wood is in equilibr, its weightw” is equal in
magnitude to the buoyant forcA&=w’. Equation (1) then gives:

F=w+w".
Regarding casel(), we note the following: When the wooden cubetida equilib-
rium, the buoyant force on it igo=w’. When the cube oscillates vertically (see also
Problem 54) the buoyant force changes periodicaillly time, according to an equa-
tion of the form:
A = Ao+ Bcoswt = W'+ Bcoswt

whereB is a constant quantity. Equation (1) then yields:

F=w+w'+ Bcoswt .
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57. A container of uniform cross-sectional argas filled with a liquid of density.
On the wall of the container, at a vertical distartt below the free surface of the lig-
uid, we open a hole of arem wherea<<A . Find the initial velocity of outflow of the
liquid from the hole, as well as the volume floweraf the initial outflow. (The liquid
is considered ideal.)

P
__________ L |2T y

. 4| h
Y, RN l

\ ey
S IR A
Y.

v y=0

Fig. Problem 57

Solution: As soon as we open the hole, a tube of flow (adeeamlines of which are
shown in the figure) is formed, extending from fhee surface of the liquid (cross-
sectiond,=A) to the hole (cross-section= a). The hydrostatic pressure at both these
cross-sections is equal to the atmospheric presBu=®,=P,. We callv;= v andv,

the flow velocities at the considered cross-sesti@amd we cal/, y. the heights at
which these cross-sections are located above atmaaybhorizontal reference level.
By the equation of continuity,

A a
Avi= AV, = VZZE \4:2\ v= y=0 (1)
since a<<A , by assumption, so that/A= 0. By Bernoulli’'s equation,
1 1 €)
R+o P +pa%= Bt p\Wip gy =

1
RSPV +PGY=Rpgy = ¥=2dy- Y =
v=,/2gh .

Notice that the velocity of initial outflow is indendent of the densigyof the liquid.
The volume flow rate is

[T=av=a,2gh.

Exercise:Do the problem again, this time assuming that tleaa of the hole isnot
negligible compared to the cross-sectional areéthe container. Show that the exact
value of the initial velocity of outflow is

1/2

2gh

(3

V= (=+/2gh When%«l).
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58. A horizontal tube of cross-sectional ardanarrows to a coaxial tube of cross-
sectiond, (4,<A41), as shown in the figure. A vertical tube is altad at position 1 of
the wider section, while another vertical tube taehed at position 2 of the narrower
section. Water flows inside this horizontal coaxsgktem of tubes, while inside the
vertical tubes the (static) water rises to correspimg heights hand . (a) In which

of the two vertical tubes does the water rise high{e) Find the volume flow rate of
the horizontal flow, given thdy, 4>, hy, h,.

Fig. Problem 58

Solution: We assume that the water columns in the two véridees are measured,
approximately, from the axis of the horizontal systof tubes. Since the water is
static inside the vertical tubes, we can use thddmental equation of Hydrostatics to
find the pressures at the cross-sections 1 and 2:

P=R+pgh, B=R+pgh (1)

where p is the density of water angly is the atmospheric pressure. Now, as we
showed in Sec. 8.13, in horizontal flow the pressargreater where the cross-section
of the tube of flow is greater. Given th&t> 4, , we must havé;> P, . It thus follows
from relations (1) thalh;>h,. That is, the water rises to a greater heighttetvertical
tube attached to theider section of the coaxial system.

By the equation of continuity,

A
17 2 2T A 2
Av,=Av, = V v (2

wherevy, Vv, are the flow velocities at the two cross-sectidsBernoulli’'s equation
for horizontal flow,

1 1
Pl"'apvf = F)z"'_zlovz2 (3)
Substituting (1) and (2) into (3), and solving Y@y we find:

et -n)T"
Vl_A2|:—A12—A22 } :
The flow rate is
29(h, - hz)r_

M=Ay= AA{ AT A
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59. At the bottom of a very large tank we open a hblerea a=1cm (which is con-
sidered negligible compared to the cross-secti@rab of the tank). We now place
the tank under a faucet from which water flows attume rate of/=140cni/s. At
what height h will the free surface of the wateerin the tank? (g=980cni)s

<« T —>

Fig. Problem 59

Solution: There is an incoming flow of water in the tank,aoinstant volume flow
rateIl (see figure). At the same time there is an outydiow through the hole. The
level of the water in the tank is initially risingince the outgoing flow rate, equal to
a.v (wherev is the velocity of outflow from the hole) is ledgan the incoming flow
rateIl. The water level will stop rising as soon as the tlow rates become equal:

[T=av (1)

Now, the hole is at a vertical distarftbelow the free surface of water in the tank. As
we showed in Problem 57, the outflow velocity fagigen (albeit now variabld) is

v=,2gh (2)

(it makes no difference that this time the holatithe bottom, rather than on the wall,
of the tank). From (1) and (2) we have:
2
h I1

= Zga2 =10cm .

60. Water is running from a faucet of cross-sectionaaaA, at a constant volume
flow rate 7I1. Find the cross-sectional area of the column ofewvat a vertical dis-
tance h below the faucet, as a functionHfA andh.

Fig. Problem 60



PROBLEMS 225

Solution: Let a be the cross-sectional area of the column of wattdistancén below
the faucet; lev be the flow velocity at that cross-section; andylée the height at
which the cross-sectioais located above an arbitrary horizontal referdegel (see
figure). At the “mouth” of the faucet (cross-seatid) the corresponding quantities
arevp andyp. The pressure at both cross-sectidrenda is equal to the atmospheric
pressurePy . We apply the laws of Hydrodynamics at these esessions, assuming
that all conditions of ideal flow are satisfied.

By the equation of continuity,

I[T=Avy,=av (1)

By Bernoulli’'s equation,
1 2 1
Rt PV +P9%=R+-p Vip gy =
VV=v2+2g9(%- Y = V=4 ¥+2gh (2)

From (1)=
-1 3) and a=% @)

where the flow ratél is assumed known. By substituting (2) and (3) i@ we fi-
nally have:



MATHEMATICAL SUPPLEMENT

1. Differential of a Function

Consider a functiony=f (x) . Let Ax be an arbitrary change of the independent vari-
able, from its initial valuex to x+Ax. The corresponding changeyok

Ay=f(X+AX)— f(X .

Note thatAy is a function otwo independent variables andAx.

Thederivativeof f at a pointxis defined as

f(x= lim LAY T(9 ) AY (1)
Ax—>0 AX Ax—>0 A X

It follows from (1) that a functiorz (X, AX) must exist such that

AY _fx)+e(xAX) where lim £(x AX)=0 @)
AX AX—>0

Thus,
Ay=f " (X)Ax+ (X, AX)A X 3)

The productf "(X)Ax is linear (i.e., of the first degree) ix, while the product
£ (X, AX)A x must only contain terms that aakleast of the second degreeAx (that

is, it may not contain a constant or a linear tehvi¢ write, symbolically,
(X, AX)Ax= OA ®) where AxX*=(AX)* (#A0A)!).

Equation (3) is then written as

Ay=f (X)Ax + O(AX?) (4)

We notice that\y is the sum of a linear and a higher-order termxnFurthermore,
the derivative off atx is the coefficient oAxin the linear term.

ExampleiLet y = f (x) =x3. Then,
Ay = f (x+AX) — f(X) = (x+AX) 3= x®= 3x? Ax + (3xAX? + AXP) ,
by which we have thaf "(x) = 3?2 and O(AX?)= 3xAx?+ Ax>.

The linear term in (4), which is a functionxofindAx, is called thalifferential of
the functiony = f (x) and is denotedly:

[dy=df(®=f (x)Ax| (5)

226
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Equation (4) is then written:

Ay = dy+ O(AX) (6)

If Ax is infinitesimal (JAx|<<1) we can make the approximatio®(Ax’)=0.
Hence,

Ay=dy= f ' (X)Ax for infinitesimalA x (7

Careful, however: fofinite (i.e., non-infinitesimal\x, thedifference Ay and thedif-
ferential dy are, in general, separate quantities!

An exception to the above general remark ocicutise case dinear functions. Let
y=1f (X)=ax+b. Then,

Ay = f (x+AX) — f(X) = [a(x+AX)+b] — (ax+b) = aAx

and
dy = f "(X) AX = (ax+b)" Ax = aAx = Ay..

That is, for linear functions (and_onlyor such functions) the differential dy is the
same as the differencgy, even if these quantities assume finite valuess Teans

that, for these function€(Ax°) =0.
Let us see a few applications of the defini{iyof the differential:
Forf(x)=x = d(»¥)=(¥)Ax= aX'A ;;

forf ke = dEF EN x &A

for f(x)=Inx = d(In X =(In Y'A x=£A >.
X
In particular, forf (X)=x , we havedx=(X)'Ax=1-A X =

®

in accordance with the remark made earlier reggrtivear functions. Equation (5)
may thus be rewritten in a more symmetric form:

[dy=df(®=f (xdx| (9)

By dividing the above relation lalx, we can express the derivative as follows:

f (x)= % = dgxx) (10)

In words: The derivative of a function is equal to the déferal of the function di-
vided by the differential (or, the change) of théapendent variable.
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2. Differential Operators
We introduce a notation that proves to be importahigher mathematics:

df(x) _ d
“ax ¥ (11)

Note that this notation tries to “mimic” the propes of ordinary multiplication of
numbers:

a- o
_'B :_.ﬂ
v Y
except that the express%ﬂ isnota number! The symb ! is called aifferential
X X

operatorand, when placed in front of a functidn(x), it instructsus to take the de-
rivative of f (xX). We thus write:

_df(x_d

0= g ¥ (12)

Relation (12) contains three different notationsth® derivative of a function.

Higher-order derivatives can also be expresserms of differential operators.
Thus, the second derivative gf f (X) is written:

f ”(x)—imz—d(—df(x)j:(—dg f(x):—j?xf(x)

T dx dx dx\ dx d
or
. d’f(x) d*y
f"X)=—-=32= 13
) dx? dx (13)

Exercise:Verify the following properties of the differential

1. dlf(¥+ o Q] = dil X+ dg X
2. d[f(QY o= (3 d§ x+ ¢ x df
3. d[cf(X]=cdi X (c=const)

d[f(x)}_ g(¥ df(® - (3 dg ¥
9(x) [ %]
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3. Geometrical Significance of the Differential

YA

O X X+ AX

Fig. MS.1 Graph of a functiog=f (xX) and the tangent line to it at a polt

We make thespecial assumptiothat the quantitiex andy are dimensionlessand,
moreover, equal lengths on tkeandy-axes correspond tual changesf x andy.

Figure MS.1 shows a section of the graph afirectiony= f (x). We consider an
arbitrary pointM= (x,y) of the curve and we draw the tangent line to thive at that
point. This line forms an anglé with the x-axis. As we see in the figure, to the
changeAx=MA of x there corresponds the chanigg=AM" of y. The linear section
AB, then, represents the differenttyl of f for the given values of and Ax. Indeed,
taking into account that " (x)=tarn9 , we have:

AB
dy =f " (X) Ax = (tanf) Ax = — MA = AB.
y ) (tan6) VA

Also, by equation (6),
O(AX?)= Ay —dy =AM’ —AB = BM .

If the functionf is linear, thenB= M’ so thatO(Ax*)= 0 and Ay=dy.

4. Derivative of a Composite Function

Consider two functiond and g such thaty=f (u) and u=g(x). Thecomposite func-
tion (fog) is defined as follows:

y=(feg) ) =flog(¥)].
To simplify our notation, we writey=y(u), u=u(x) and y=y(xX)=y[u(X)] .

We want to find an expression for the derivatdiy with respect tox. This deriva-
tive is equal to the quotierdy/dx. We write:

dy_dy du

o du o) WU,

y'(x) =

which expresses the familiar “chain rule” for ca#ting the derivative of a composite
function.
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5. Differential Equations

In the case of aalgebraic equatiorthe solution is a set sflumberqreal or complex).
On the other hand, the solution oflifferential equatioris a set ofunctions A first-
order differential equatiors an algebraic relation involving the derivativeam un-
known function as well as, possibly, the functitself. An equation of this kind ad-
mits aninfinite number of solutions. In order to specify a pattcisolution, in addi-
tion to the differential equation one must alsopbevided with aninitial condition.
Let us see a few examples:

1. Determine the functiog=y(x) that satisfies the differential equation
y'= & (14)
as well as the initial condition
y=1 for x=0 (15)

Solution:Equation (14) is written:

e dy= € d» (16)
dx
We can proceed in two ways:

(@) Take thandefiniteintegral of (16) in order to find thgeeneral solutiorof (14):
jdy:jezxdx = W Q:% &+ C = ys—; Br( & £
or, since the constan®, C, are arbitrary,
y= % €+ C 17)

Note that the general solution (17) representaénite set of functions correspond-
ing to the various values of the arbitrary constanBy applying the initial condition
(15) to (17), we can determine the value of thestamtC :

1:1e°+C = Cz—l :
2
By (17) we then find thearticular solution
1
==(e"+1) .
y=5( )

(b) Take thedefinite integrals of the two sides of (16), putting as éowmits the
corresponding values of and x given by the initial condition (15) (as upper limit
simply place the variablgsandx):

y X 1 1" 1 1 1
dy=| € dx = 1=| = &| == &-= &= —( %+1).
[ dy=] Y- [2 L 5 &3 ¥ B+1)
Note that this second way is the shortest if weoalg interested in finding a particu-
lar solution of the differential equation.
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2. Solve the differential equation = 5y , with the initial condition:y=3 for x=0.

Solution:

dy dy y dy x
&:Sy = —y:5dx = jg—y:SIde: [In)ﬂ;{:5x:>

In(%j:SX = y=3¢€".

, with the initial condition:y=0 for x=0.

3. Solve the equatiory” =
2x+1

Solution:
dy 2 2dx

x dx
_— = d = yd :2
dx 2x+1 = W 2x+1 = IO y IO 2x+ 1

X

y=2 E In(2x+ 1)} = In(2x+ 1) .

0

4. Solve the equation” = 2xy, with the initial condition:y=5 for x=1.

Solution:

ﬂ:2xy = ﬂ/=2xdx:> Iyﬂ/: ZIXxdx:
y >y !

dx
In(%j:xz—l = y=5&"1.

Exercise:Find the particular solutions of the differentiajuations of Examples
(2)—(4), this time by first finding the general gbns of the equations and then ap-
plying the initial conditions to determine the vauof the corresponding constants, as
in Example 1§).
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BASIC INTEGRALS

Idx: x+ C

a+l

jxadx: X

+C (az-1)
a+1l

j%:|n|x|+c

X

jexdx: e+ C
jcosxdx: sinx+ C

jsinxdx: —cosx+ C

=tanx+C

dx
I cos X

I ,dz( =—cotx+C
sin® X

=arcsinx+ C

dx

s

I Xzzarctanx+C
1+ x
jzd—lemx;]jm
-1 2 |X+

I Cix+1:|n(x+ x2i1)+C
X2+
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Accelerated motion, 17

Acceleration, 12, 16, 21

Acceleration of gravity, 34, 178
Amplitude (SHM), 64

Angular acceleration, 25, 98

Angular acceleration vector, 111
Angular frequency (SHM), 64
Angular momentum, 41, 81, 101
Angular velocity, 25

Angular velocity vector, 111
Archimedes’ principle, 132-134
Atmosphere (unit), 128

Atmospheric pressure, 128, 158
Atwood’s machine, 203

Average density, 135

Ballistic pendulum, 196

Bar (unit), 128

Bernoulli’'s equation, 140-142, 159, 160
Buoyant force (buoyancy), 133
Cartesian coordinates, 6

Center of buoyancy, 133

Center of curvature, 23

Center of gravity, 93, 148, 149
Center of mass, 76, 79, 92, 149, 150-153
Center-of-mass frame (C-frame), 81, 82
Center of parallel forces, 147

Central force, 46, 82, 151

Centripetal acceleration, 21
Centripetal force, 40

Circular motion, 24, 43

Closed line integral, 55, 56
Coefficients of friction, 36

Collision, 87

Communicating vessels, 129-131
Completely inelastic collision, 88, 195
Concurrent forces, 145

Conical pendulum, 175

Conservation of angular momentum, 45, 82, 88, 11®-1

Conservation of mechanical energy, 56, 85
Conservation of momentum, 31, 79, 87
Conservative force, 53, 54, 85

Coulomb force, 47, 61

Couple, 113, 145

Curvilinear motion, 15

Density, 93

Differential equation, 48, 230, 231
Differential equation of SHM, 74
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Differential of a function, 226
Differential operator, 228
Displacement, 12

Distance between points, 6, 7

Elastic collision, 88, 89, 90

Elastic force, 60, 68

Equation for rotational motion (rigid body), 104
Equation for translational motion (rigid body), 103
Equation of continuity, 139, 140
Equilibrium, 34, 113

Equilibrium position (SHM), 67
Escape velocity, 188

External force, 76, 78

External potential energy, 85, 116
Floating body, 135-137

Flow velocity, 137

Fluid flow, 137

Force, 30

Force field, 46, 48, 53

Force of gravity, 34, 58

Frame of reference, 26

Free fall, 173

Free particle, 29

Frequency (SHM), 66

Frequency (uniform circular motion), 26
Friction, 35, 36, 62, 119

Fundamental equation of Hydrostatics, 127, 142
Gauge pressure, 131

Gyroscope, 121

Gyroscopic compass, 121
Gyroscopic motion, 120, 121
Harmonic oscillation, 64

Hertz (unit), 26, 66

Horizontal flow, 142, 143

Hydraulic lever, 132

Hydrostatic pressure, 124

Ideal flow, 137

Ideal fluid, 123

Inelastic collision, 88

Inertia, 30

Inertial frame of reference, 29

Inertial observer, 29

Initial condition, 12, 48, 230

Internal force, 32, 76

Internal potential energy, 85

Isolated system, 31, 79

Joule (unit), 51

Kinetic energy, 52, 83, 88

Kinetic energy of rotation, 115, 116
Kinetic energy of translation, 115, 116
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Kinetic friction, 36, 62

Law of Action and Reaction (Newton’s Third Law), 32
Law of Inertia (Newton’s First Law), 29
Line integral, 50

Linear density, 94

Linear momentum, 30

Mass, 30

Mass-spring system, 68-72
Metacenter, 137

Moment of inertia, 98, 102, 106, 154
Momentum, 30, 77

Neutral equilibrium, 136

Newton (unit), 33

Newton’s Law of Gravity, 34, 178
Newton’s Second Law, 30, 78
Non-conservative force, 54, 57, 62, 85, 86
Non-inertial frame of reference, 173
Open-tube manometer, 131
Parallel-axis theorem, 107

Parallel forces, 145-148

Pascal (unit), 128

Pascal’s principle, 127, 131, 132
Pendulum, 72, 74

Period (SHM), 65

Period (uniform circular motion), 26
Periodic motion, 64

Phase (SHM), 64

Plane of rolling, 117

Plastic collision, 88, 89, 195

Polar coordinates, 6

Position vector, 5, 6

Potential energy, 54, 85

Power, 51

Principal axis, 110, 155-157
Projectile motion, 14, 163

Pure rolling, 117, 118

Radius of curvature, 23

Rectilinear motion, 11, 24

Reduced mass, 194

Relative acceleration, 27

Relative motion, 26

Relative velocity, 26

Restoring couple, 136

Restoring force, 69, 73

Resultant (total) force, 33, 144
Retarded motion, 17

Rigid body, 92

Rolling body, 117-120

Rolling without slipping, 117
Rotational equilibrium, 113
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Scalar (dot) product, 7, 8

Simple harmonic motion (SHM), 64
Speed, 11, 16, 17

Spinning top, 121

Stable equilibrium, 136

Static friction, 35, 36, 119, 120
Steiner’s theorem, 107

Streamline, 138

Tangential and normal acceleration, 21
Tangential and normal force, 40
Torque, 43

Torque of a couple, 114

Torr (unit), 128

Total angular momentum, 81, 150
Total external force, 78

Total external torque, 81, 151

Total kinetic energy, 84, 152

Total mechanical energy, 56, 85, 116
Total momentum, 77

Translational equilibrium, 113

Tube of flow, 138

Uniform circular motion, 25, 40, 64, 65
Uniform motion, 17, 24, 49

Uniform rectilinear motion, 13, 24
Uniformly accelerated motion, 13
Unit vector, 1

Unstable equilibrium, 136

Vector, 1

Vector (cross) product, 8, 9

Velocity, 11, 15, 20

Volume flow rate (volume flux), 140
Watt (unit), 51

Weight, 34, 92

Work, 49

Work-energy theorem, 52, 53, 83, 84



