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Abstract 

 
In a previous article the axiomatic foundations of Newtonian mechanics were  
revisited for pedagogical purposes and a certain axiomatic approach to the  
subject was proposed. Motivated by questions raised by deep-thinking students, 
this article clarifies some related issues and explains the rationale for seeking a 
more “economical” axiomatic basis for the theory.  

 
 
1.  Introduction  
 
In a previous article [1] we pointed out certain difficulties in teaching introductory 
mechanics in a class of deep-thinking students. These difficulties pertain to the very 
foundations of the theory and manifest themselves in questions like the following:  
 

• Is the law of inertia (Newton’s first law) redundant, being no more than a spe-
cial case of the second law? More generally, do Newton’s laws form an inde-
pendent set of physical principles?  

• Is the second law a true law or a definition (of force)?  
• Should the third law be considered more fundamental than conservation of 

momentum, or should it be the other way around?  
• Does the “parallelogram rule” for composition of forces on a particle follow 

trivially from Newton’s laws, or is an additional, fourth law required?  
• Finally, what is the minimum number of independent laws needed in order to 

build the entire theory of mechanics?  
 
      In Ref. [1] we described an axiomatic and, hopefully, pedagogical approach to 
fundamental-level mechanics by proposing a “two-dimensional” axiomatic basis for 
the theory. As independent postulates we chose the conservation of momentum and 
the independence of interactions on a particle (leading to the principle of superposi-
tion). We showed that Newton’s laws, as well as all standard ideas of mechanics, fol-
low from these two basic principles.  
      This theoretical scheme offers plausible answers to students’ questions like those 
listed above. It is our opinion, however, based on various discussions with intelligent 
students, that more can be said to justify the rationale for revisiting the axiomatic 
foundations of Newtonian mechanics. This justification is the subject of this article.  
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2.  A critical look at Newton's theory  
 
There have been several attempts to reexamine Newton’s laws even since Newton’s 
time. Probably the most important revision of Newton’s ideas – and the one on which 
modern mechanics teaching is based – is that due to Ernst Mach (1838-1916) (for a 
beautiful discussion of Mach’s ideas, see the classic article by H. A. Simon [2]). Our 
approach differs in several aspects from those of Mach and Simon, although all these 
approaches share common characteristics in spirit. (For a historical overview of the 
various viewpoints regarding the theoretical basis of classical mechanics, see, e.g., the 
first chapter of [3].)  
      The question of the independence of Newton’s laws has troubled many genera-
tions of physicists. In particular, still on this day some authors assert that the first law 
(the law of inertia) is but a special case of the second law. The argument goes as fol-
lows:  
 

“According to the second law, the acceleration of a particle is proportional to 
the total force acting on it. Now, in the case of a free particle the total force 
on it is zero. Thus, a free particle must not be accelerating, i.e., its velocity 
must be constant. But, this is precisely what the law of inertia says!”  

 
      Where is the error in this line of reasoning? Answer: The error rests in regarding 
the acceleration as an absolute quantity independent of the observer that measures it. 
As we well know, this is not the case. In particular, the only observer entitled to con-
clude that a non-accelerating object is subject to no net force is an inertial observer, 
one who uses an inertial frame of reference for his/her measurements. It is precisely 
the law of inertia that defines inertial frames and guarantees their existence. So, with-
out the first law, the second law becomes indeterminate, if not altogether wrong, since 
it would appear to be valid relative to any observer regardless of his/her state of mo-
tion. It may be said that the first law defines the “terrain” within which the second 
law acquires a meaning. Applying the latter law without taking the former one into 
account would be like trying to play soccer without possessing a soccer field!  
      The completeness of Newton’s laws is another issue. Let us see a significant ex-
ample: As is well known, the principle of conservation of momentum is a direct con-
sequence of Newton’s laws. This principle dictates that the total momentum of a sys-
tem of particles is constant in time, relative to an inertial frame of reference, when the 
total external force on the system vanishes (in particular, this is true for an isolated 
system of particles, i.e., a system subject to no external forces). But, when proving 
this principle we take it for granted that the total force on each particle is the vector 
sum of all forces (both internal and external) acting on it. This is not something that 
follows trivially from Newton’s laws, however! In fact, it was Daniel Bernoulli who 
first stated this principle of superposition after Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a total of four – rather than just three – inde-
pendent laws.  
      The question now is: can we somehow “compactify” the axiomatic basis of New-
tonian mechanics in order for it to consist of a smaller number of independent princi-
ples? At this point it is worth taking a closer look at the principle of conservation of 
momentum mentioned above. In particular, we note the following:  
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• For an isolated “system” consisting of a single particle, conservation of mo-
mentum reduces to the law of inertia (the momentum, thus also the velocity, 
of a free particle is constant in time relative to an inertial frame of reference).  

• For an isolated system of two particles, conservation of momentum takes us 
back to the action-reaction law (Newton’s third law).  

 
      Thus, starting with four fundamental laws (the three laws of Newton plus the 
principle of superposition) we derived a more general principle (conservation of mo-
mentum) that yields, as special cases, two of the laws we started with. The idea is 
then that, by taking this general principle as our fundamental physical law, the num-
ber of independent laws necessary for building the theory would be reduced.  
      How about Newton’s second law? We take the view, adopted by several authors 
including Mach himself (see, e.g., [2,4-7]) that this “law” should be interpreted as 
simply the definition of force as the rate of change of momentum.  
      We thus end up with a theory built upon two fundamental principles, i.e., the con-
servation of momentum and the principle of superposition. In the following sections 
these ideas are presented in more detail (see also [1]).  
 
 
3.  The fundamental postulates and their consequences  
 
First some definitions:  
 

• A frame of reference (or reference frame) is a system of coordinates, or axes, 
used by an observer to measure physical quantities such as the position, the 
velocity, the acceleration, etc., of any particle in space. The position of the ob-
server him/herself is assumed fixed relative to his/her own reference frame.  

• An isolated system of particles is a system subject to no external interactions, 
i.e., subject only to their mutual interactions. In particular, an isolated “sys-
tem” consisting of a single particle is called a free particle.  

 
      We now state our fundamental postulates, which will henceforth be referred to as 
P1 and P2:  
 
      P1. A class of frames of reference, named inertial frames, exists such that, for any 
isolated system of particles, a vector equation of the form  
 

        constant in timei i
i

m v =∑ �

                                             (1) 

 
is valid, where iv

�

 is the velocity of the particle indexed by i ( 1,2,i = ⋯ ) and where mi  

is a constant quantity associated with this particle and independent of the number or 
nature of interactions the particle is subject to.  
 
      We call mi the mass and i i ip m v=

� �

 the momentum of the ith particle. Also, we call  

 

         i i i
i i

P m v p= =∑ ∑
�

� �

                                                 (2) 
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the total momentum of the system relative to the considered reference frame. Postulate 
P1, then, leads to the principle of conservation of momentum:  
 

• The total momentum of an isolated system of particles, relative to an inertial 
reference frame, is constant in time.  

 
This is true, in particular, for a free particle.  
 
      P2. If a particle of mass m is subject to interactions with particles m1 , m2 , ... , 
then, at each instant t, the rate of change of this particle’s momentum relative to an 
inertial reference frame is equal to  
 

     
i i

d p d p

dt dt

 
=  

 
∑

� �

                                                       (3) 

 
where ( )/

i
d p dt
�

 is the rate of change of the particle’s momentum due solely to the 

interaction of that particle with the particle mi (i.e., the rate of change of p
�

 if the par-
ticle m interacted only with mi ). This postulate expresses the independence of interac-
tions in which a particle participates.  
 
      A corollary to P1 states that  
 

• a free particle moves with constant velocity (i.e., with no acceleration) rela-
tive to an inertial reference frame.  

 
Consequently,  
 

• any two free particles move with constant velocities relative to each other 
(their relative velocity is constant and their relative acceleration is zero).  

 
These statements constitute alternate expressions of the Law of Inertia (Newton’s first 
law). Moreover,  
 

• the position of a free particle may define the origin of an inertial frame of ref-
erence.  

 
      An “intelligent” free particle – i.e., one that can make measurements of physical 
quantities such as velocity or acceleration – is what is called an inertial observer. It 
follows that  
 

• inertial observers move with constant velocities (i.e., they do not accelerate) 
relative to one another.  

 
      Consider now a system of two particles of masses m1 and m2 . Assume that the 
particles are allowed to interact with each other for some time interval ∆t within 
which the system may be considered isolated. By conservation of momentum relative 
to an inertial frame of reference, we have:  
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                      1 2 1 2 1 1 2 2( ) 0p p p p m v m v∆ ∆ ∆ ∆ ∆+ = ⇒ = − ⇒ = −
� � � � � �

 .   

 
We note that the changes in the velocities of the two particles within the (arbitrary) 
time interval ∆t are independent of the particular inertial frame used to measure the 
velocities (although, of course, the velocities themselves are frame-dependent!). This 
is a consequence of the constancy of the relative velocity of any two inertial observ-
ers. (The student is invited to explain the above statement analytically.) Taking mag-
nitudes, we have:  
 

           21

2 1

constant
mv

v m

∆
∆

= =
�

�                                              (4) 

 
regardless of the kind of interaction or the time ∆t. Equation (4) allows us to specify 
the mass of, say, particle 2 numerically, relative to the mass of particle 1 (which par-
ticle may arbitrarily be defined to possess a unit mass), by letting the two particles 
interact for some time. As argued above, the result will be independent of the inertial 
frame used by the observer who makes the measurements. That is, in the classical 
theory, mass is a frame-independent quantity.  
 
 
4.  The concept of force and the Third Law  
 
We now define the total force on a particle of mass m, at some instant t, to be the rate 
of change of the particle’s momentum (p mv=

� �

) relative to an inertial reference 
frame, at that instant:  
 

          
d p

F
dt

=
�

�

                                                             (5) 

Since m is assumed fixed,  
 

        
dv

F ma m
dt

= =
�

�
�

                                                       (6) 

where a
�

 is the particle’s acceleration at time t. Given that both the mass and the ac-
celeration (prove this!) are independent of the inertial frame used to measure them, we 
conclude that  
 

• the total force on a particle is a frame-independent quantity.  
 
      With this definition at hand, we can rewrite (3) in the more familiar form  
 

        i
i

F F= ∑
� �

                                                              (7) 

 

where F
�

 is the total force on m and iF
�

 is the force on m due to its interaction with mi 

alone. The vector relation (7) expresses the principle of superposition referred to in 
Sec. 2.  
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      We now use P1 and P2 to deduce the action-reaction law (Newton’s third law). To 

this end, consider two particles m1 and m2 . Let 12F
�

 be the force on m1 due to its inter-

action with m2 at time t, and let 21F
�

 be the force on m2 due to its interaction with m1 at 
this instant (note the simultaneity of action and reaction implicitly assumed here). By 

the independence of interactions (P2) the forces 12F
�

 and 21F
�

 are independent of the 

presence or not of other particles in interaction with particles m1 and m2 . Thus, with-
out loss of generality, we may assume that the system of the two particles is isolated. 
Then, by conservation of momentum and by using (5),  
 

                                    ( ) 1 2
1 2 0

d p d pd
p p

dt dt dt
+ = ⇒ = − ⇒

� �

� �

    

      12 21F F= −
� �

                                                         (8) 
 
which is precisely the Law of Action and Reaction.  

      By using (2), (5), (7) and (8), we can prove that (cf. [1])  
 

• the rate of change of the total momentum of a system of particles at some in-
stant, relative to an inertial reference frame, is equal to the total external 
force acting on the system at that instant.  

 
In symbols,  
 

         i ext
i

dP
F F

dt
= =∑
�

� �

                                                 (9) 

 
where P

�

 is the total momentum of the system of particles, defined in equation (2).  
 
 
5.  Discussion of some conceptual problems  
 
After establishing our axiomatic basis and demonstrating that the standard Newtonian 
laws are consistent with it, the development of the rest of mechanics follows familiar 
paths. Thus, we can define concepts such as angular momentum, work, kinetic and 
total mechanical energies, etc., and we can state derivative theorems such as conser-
vation of angular momentum, conservation of mechanical energy, etc. (see [1]). Also, 
rigid bodies and continuous media can be treated in the usual way [3-9] as systems 
containing an arbitrarily large number of particles.  
      Despite the more “economical” axiomatic basis of Newtonian mechanics sug-
gested here, however, certain problems inherent in the classical theory remain. Let us 
point out a few:  
 
      1. The problem of “inertial frames”  
 
      An inertial frame of reference is only a theoretical abstraction: such a frame can-
not exist in reality. As follows from the discussion in Sec. 3, the origin (say, O) of an 
inertial frame coincides with the position of a hypothetical free particle and, more-



AXIOMATIC FOUNDATIONS OF NEWTONIAN MECHANICS 
 

 7  

over, any real free particle moves with constant velocity relative to O. However, no 
such thing as an absolutely free particle may exist in the world. In the first place, 
every material particle is subject to the infinitely long-range gravitational interaction 
with the rest of the world. Furthermore, in order for a supposedly inertial observer to 
measure the velocity of a “free” particle and verify that this particle is not accelerat-
ing relative to him/her, the observer must somehow interact with the particle. Thus, 
no matter how weak this interaction may be, the particle cannot be considered free in 
the course of the observation.  
 
      2. The problem of simultaneity  
 
      In Sec. 4 we used postulates P1 and P2, together with the definition of force, to 
derive the action-reaction law. Implicit in our arguments was the requirement that ac-
tion must be simultaneous with reaction. As is well known, this hypothesis, which 
suggests instantaneous action at a distance, ignores the finite speed of propagation of 
the field associated with the interaction and violates causality.  
 
      3. A dimensionless “observer”  
 
      As we have used this concept, an “observer” is an intelligent free particle capable 
of making measurements of physical quantities such as velocity or acceleration. Such 
an observer may use any convenient (preferably rectangular) set of axes  
(x, y, z) for his/her measurements. Different systems of axes used by this observer 
have different orientations in space. By convention, the observer is located at the ori-
gin O of the chosen system of axes.  
      As we know, inertial observers do not accelerate relative to one another. Thus, the 
relative velocity of the origins (say, O and O΄) of two different inertial frames of ref-
erence is constant in time. But, what if the axes of these frames are in relative rota-
tion (although the origins O and O΄ move uniformly relative to each other, or even 
coincide)? How can we tell which observer (if any) is an inertial one?  
      The answer is that, relative to the system of axes of an inertial frame, a free parti-
cle does not accelerate. In particular, relative to a rotating frame, a free particle will 
appear to possess at least a centripetal acceleration. Such a frame, therefore, cannot be 
inertial.  
      As mentioned previously, an object with finite dimensions (e.g., a rigid body) can 
be treated as an arbitrarily large system of particles. No additional postulates are thus 
needed in order to study the dynamics of such an object. This allows us to regard 
momentum and its conservation as more fundamental than angular momentum and its 
conservation, respectively (see also [1]). In this regard, our approach differs signifi-
cantly from, e.g., that of Simon [2] who, in his own treatment, places the aforemen-
tioned two conservation laws on an equal footing from the outset.  
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