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Abstract

In a previous article the axiomatic foundationsNg#wtonian mechanics were
revisited for pedagogical purposes and a certaionaatic approach to the
subject was proposed. Motivated by questions rdigedeep-thinking students,
this article clarifies some related issues andarplthe rationale for seeking a
more “economical” axiomatic basis for the theory.

1. Introduction

In a previous article [1] we pointed out certaiffidulties in teaching introductory
mechanics in a class of deep-thinking studentss& luiifficulties pertain to the very
foundations of the theory and manifest themselwegiestions like the following:

e Is the law of inertia (Newton'’s first law) redundabeing no more than a spe-
cial case of the second law? More generally, dotNe\w laws form an inde-
pendent set of physical principles?

e Is the second law a true law or a definition (ot&)?

e Should the third law be considered more fundamethi@h conservation of
momentum, or should it be the other way around?

e Does the “parallelogram rule” for composition ofdes on a particle follow
trivially from Newton’s laws, or is an addition&burth law required?

e Finally, what is the minimum number of independemis needed in order to
build the entire theory of mechanics?

In Ref. [1] we described an axiomatic andpéfally, pedagogical approach to
fundamental-level mechanics by proposing a “twoatisional” axiomatic basis for
the theory. As independent postulates we chosedhservation of momentuand
the independence of interactiomms a particle (leading to th@inciple of superposi-
tion). We showed that Newton'’s laws, as well as alidsad ideas of mechanics, fol-
low from these two basic principles.

This theoretical scheme offers plausible arsvto students’ questions like those
listed above. It is our opinion, however, basedranous discussions with intelligent
students, that more can be said to justify theomale for revisiting the axiomatic
foundations of Newtonian mechanics. This justifimatis the subject of this article.
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2. A critical look at Newton's theory

There have been several attempts to reexamine N&nBws even since Newton’s
time. Probably the most important revision of Newgadeas — and the one on which
modern mechanics teaching is based — is that d&enst Mach (1838-1916) (for a
beautiful discussion of Mach’s ideas, see the mamsicle by H. A. Simon [2]). Our
approach differs in several aspects from those a¢iMand Simon, although all these
approaches share common characteristics in sfot. a historical overview of the
various viewpoints regarding the theoretical bas$islassical mechanics, see, e.g., the
first chapter of [3].)

The question of thendependencef Newton’s laws has troubled many genera-
tions of physicists. In particular, still on thiaydsome authors assert that the first law
(the law of inertia) is but a special case of theosid law. The argument goes as fol-
lows:

“According to the second law, the acceleration gfaticle is proportional to
the total force acting on it. Now, in the case dfee particle the total force
on it is zero. Thus, a free particle must not beederating, i.e., its velocity
must be constant. But, this is precisely what éwedf inertia says!”

Where is the error in this line of reasonidg®&wer: The error rests in regarding
the acceleration as an absolute quantity indeperafdhe observer that measures it.
As we well know, this is not the case. In particutae only observeentitledto con-
clude that a non-accelerating object is subjectamet force is amertial observey
one who uses aimertial frame of referencéor his/her measurements. It is precisely
the law of inertia thatlefinesinertial frames anduaranteegheir existence. So, with-
out the first law, the second law becomes indeteaisi, if not altogether wrong, since
it would appear to be valid relative to any obsemegardless of his/her state of mo-
tion. It may be said that the first law defines therrain” within which the second
law acquires a meaning. Applying the latter lawhwtit taking the former one into
account would be like trying to play soccer withpossessing a soccer field!

The completeness of Newton’s laws is anoig®re. Let us see a significant ex-
ample: As is well known, thprinciple of conservation of momentusna direct con-
sequence of Newton’s laws. This principle dictated the total momentum of a sys-
tem of particles is constant in time, relative toirzertial frame of reference, when the
total external force on the system vanishes (iniqdar, this is true for amsolated
system of particles, i.e., a system subject to xterpal forces). But, when proving
this principle we take it for granted that the tdtace on each particle is the vector
sum of all forces (both internal and external) ragtbn it. This isnot something that
follows trivially from Newton’s laws, however! Imatt, it was Daniel Bernoulli who
first stated thigrinciple of superpositiomafter Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a totdloofr — rather than just three — inde-
pendent laws.

The question now is: can we somehow “comfyédtie axiomatic basis of New-
tonian mechanics in order for it to consist of aalen number of independent princi-
ples? At this point it is worth taking a closer koat the principle of conservation of
momentum mentioned above. In particular, we natfdhowing:
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e For an isolated “system” consisting of a singletipk, conservation of mo-
mentum reduces to the law of inertia (the momentinus also the velocity,
of a free patrticle is constant in time relativaatoinertial frame of reference).

e For an isolated system of two particles, consepmatif momentum takes us
back to the action-reaction law (Newton’s third Jaw

Thus, starting with four fundamental lawse(ithree laws of Newton plus the
principle of superposition) we derived a more gehprinciple (conservation of mo-
mentum) that yields, as special cases, two of dles lwe started with. The idea is
then that, by takinghis general principle as our fundamental physical ldé&, num-
ber of independent laws necessary for buildinghleery would be reduced.

How about Newton’s second law? We take tlsvyiadopted by several authors
including Mach himself (see, e.g., [2,4-7]) thatstHaw” should be interpreted as
simply thedefinition of force as the rate of change of momentum.

We thus end up with a theory built ugao fundamental principles, i.e., the con-
servation of momentum and the principle of supetjpos In the following sections
these ideas are presented in more detail (se¢ld)so

3. The fundamental postulates and their consequees
First some definitions:

e A frame of referencéor reference framgis a system of coordinates, or axes,
used by an observer to measure physical quansities as the position, the
velocity, the acceleration, etc., of any partictiespace. The position of the ob-
server him/herself is assumexied relative to his/her own reference frame.

¢ An isolated system of particles a system subject to mxternalinteractions,
l.e., subject only to their mutual interactions.particular, an isolated “sys-
tem” consisting of a single particle is callettee particle

We now state our fundamental postulates, lwhitl henceforth be referred to as
PlandP2

P1. A class of frames of reference, nameertial frames exists such that, for any
isolatedsystem of particles, a vector equation of the form

> mY = constant in tim (1)
is valid, wherev, is the velocity of the particle indexed bfi =1,2,--) and wheren
is a constant quantity associated with this partashd independent of the number or

nature of interactions the particle is subject to.

We callm themassand p, =m Y themomentunof theith particle. Also, we call

P=2>my=>"% ) (2
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thetotal momentunof the system relative to the considered referéracee. Postulate
P1, then, leads to tharinciple of conservation of momentum

e The total momentum of an isolated system of pagjdielative to an inertial
reference frame, is constant in time.

This is true, in particular, forfaee particle.

P2. If a particle of massn is subject to interactions with particles , np, ...,
then, at each instamnt the rate of change of this particle’s momentutatiee to an
inertial reference frame is equal to

dp <[ dp
w-2a) ©

Where(d p/ dt)i Is the rate of change of the particle’s momentura dolely to the

interaction of that particle with the partiai (i.e., the rate of change df if the par-

ticle m interactedonly with my). This postulate expresses thdependence of interac-
tionsin which a particle participates.

A corollary toP1 states that

e a free particle moves with constant velocity (iveith no acceleration) rela-
tive to an inertial reference frame.

Consequently,

e any two free particles move with constant velositielative to each other
(their relative velocity is constant and their relee acceleration is zero).

These statements constitute alternate expressidhe loaw of Inertia(Newton’s first
law). Moreover,

¢ the position of a free particle may define the origf an inertial frame of ref-
erence.

An “intelligent” free particle — i.e., oneadhcan make measurements of physical
guantities such as velocity or acceleration — isitwh called annertial observer It
follows that

¢ inertial observers move with constant velocities.(ithey do not accelerate)
relative to one another.

Consider now a system of two particles of seagy andm, . Assume that the
particles are allowed to interact with each oth@r Some time intervalit within
which the system may be considered isolated. Bgamation of momentum relative
to an inertial frame of reference, we have:
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AP+ P)=0 = AP=-4D, = MAY=- ma“y.

We note that thehangesin the velocities of the two particles within tferbitrary)
time interval4t are independent of the particular inertial franseduto measure the
velocities (although, of course, the velocitiesniselvesare frame-dependent!). This
Is a consequence of the constancy of the relagecity of any two inertial observ-
ers. (The student is invited to explain the abdaéement analytically.) Taking mag-
nitudes, we have:

|A\:/1| _ M _ constan (4)
EARY

regardless of the kind of interaction or the titte Equation (4) allows us to specify
the mass of, say, partickenumerically,relative tothe mass of particlé (which par-
ticle may arbitrarily be defined to possess a umaiss), by letting the two particles
interact for some time. As argued above, the resililtbe independent of the inertial
frame used by the observer who makes the measutemiédnat is, in the classical
theory,mass is a frame-independent quantity

4. The concept of force and the Third Law
We nowdefinethetotal forceon a particle of mass, at some instartf to be the rate

of change of the particle’s momentunp £ mv) relative to aninertial reference
frame, at that instant:

F=—Y (5)
Sincemis assumed fixed,
E-ma= miY (6)
dt

where a is the patrticle’s acceleration at tiheGiven that both the mass and the ac-
celeration (prove this!) are independent of thetiakframe used to measure them, we
conclude that

e the total force on a particle is a frame-indepentdguantity.

With this definition at hand, we can rewi(8 in the more familiar form
F=>F (7)
i

whereF is the total force omandF, is the force omn due to its interaction wittn

alone. The vector relation (7) expressespheciple of superpositiomeferred to in
Sec. 2.
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We now us@1 andP2 to deduce the action-reaction law (Newton'’s tiend). To
this end, consider two particles andmy. Let F;, be the force omy due to its inter-

action withmy, at timet, and letF,, be the force omy, due to its interaction withm, at
this instant (note theimultaneityof action and reaction implicitly assumed here). B
the independence of interactior?2) the forcesF,, and F,, are independent of the

presence or not of other particles in interactioth\particlesm, andn, . Thus, with-
out loss of generality, we may assume that theesystf the two particles is isolated.
Then, by conservation of momentum and by using (5),

d . dp,  dp
Bl =0 o Rl v
t(|Dl+ P)=0 = dt dt
lf12=_|321 (8)

which is precisely theaw of Action and Reaction
By using (2), (5), (7) and (8), we can provat (cf. [1])
e the rate of change of the total momentum of a systeparticles at some in-
stant, relative to an inertial reference frame,dqual to the total external
force acting on the system at that instant.

In symbols,

_Tu
I|

) (9

QI
o

(3
where P is the total momentum of the system of partiaiieined in equation (2).

5. Discussion of some conceptual problems

After establishing our axiomatic basis and demantisty that the standard Newtonian
laws are consistent with it, the development ofrdst of mechanics follows familiar
paths. Thus, we can define concepts such as angularentum, work, kinetic and
total mechanical energies, etc., and we can stteative theorems such as conser-
vation of angular momentum, conservation of meatedrenergy, etc. (see [1]). Also,
rigid bodies and continuous media can be treatetienusual way [3-9] as systems
containing an arbitrarily large number of particles

Despite the more “economical” axiomatic basisNewtonian mechanics sug-
gested here, however, certain problems inheretitarclassical theory remain. Let us
point out a few:

1. The problem of “inertial frames”
An inertial frame of reference is only a tretecal abstraction: such a frame can-

not exist in reality. As follows from the discussim Sec. 3, the origin (sa) of an
inertial frame coincides with the position of a byipetical free particle and, more-
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over, any real free particle moves with constanbaity relative toO. However, no
such thing as an absolutely free particle may arighe world. In the first place,
every material particle is subject to the infinytédng-range gravitational interaction
with the rest of the world. Furthermore, in order & supposedly inertial observer to
measure the velocity of a “free” particle and wetiiat this particle is not accelerat-
ing relative to him/her, the observer must somelmeract with the particle. Thus,
no matter how weak this interaction may be, theigdarcannot be considered free in
the course of the observation.

2. The problem of simultaneity

In Sec. 4 we used postulaigk andP2, together with the definition of force, to
derive the action-reaction law. Implicit in our angents was the requirement that ac-
tion must be simultaneous with reaction. As is wlbwn, this hypothesis, which
suggests instantaneous action at a distance, gtloeefinite speed of propagation of
the field associated with the interaction and \tedacausality.

3. A dimensionless “observer”

As we have used this concept, an “obsengedhni intelligent free particle capable
of making measurements of physical quantities sischelocity or acceleration. Such
an observer may use any convenient (preferablyamgoiar) set of axes
(%, ¥, 2) for his/her measurements. Different systems @fsaxsed by this observer
have different orientations in space. By conventtbe observer is located at the ori-
gin O of the chosen system of axes.

As we know, inertial observers do not ac@kerelative to one another. Thus, the
relative velocity of the origins (sa@d andQO’) of two different inertial frames of ref-
erence is constant in time. But, what if the axethese frames are irlative rota-
tion (although the origin® and O" move uniformly relative to each other, or even
coincide)? How can we tell which observer (if arsyan inertial one?

The answer is that, relative to the systeraxafs of an inertial frame, a free parti-
cle does not accelerate. In particular, relativa totating frame, a free particle will
appear to possess at least a centripetal acceler&iuch a frame, therefore, cannot be
inertial.

As mentioned previously, an object with fndimensions (e.g., a rigid body) can
be treated as an arbitrarily large system of dadgidNo additional postulates are thus
needed in order to study the dynamics of such gacbbThis allows us to regard
momentum and its conservation as more fundamerdal angular momentum and its
conservation, respectively (see also [1]). In tieigard, our approach differs signifi-
cantly from, e.g., that of Simon [2] who, in his m#reatment, places the aforemen-
tioned two conservation laws on an equal footiognfthe outset.
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