Motion of a charged particlein a uniform magnetic field
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Several aspects of the motion of a charged paitickeuniform magnetic field
are examined, both by physical arguments and byic#xgolution of the
differential equation of motion.

Problem

A particle of massn and chargep0 enters a uniform magnetic fiel with initial
velocity V,, perpendicular to the field. The magnetic fieldigsumed to be oriented in

the positivez-direction.

1. Show that the particle will execute unifocircular motion on thexyplane and
determine the radiusof this motion.

2. Show that the larger the momentum of theigdey the smaller the curvature of
the path. Interpret this physically.

3. Determine the angular velocity of the particle and show that the period of
revolution is independent of the size of the orbit.

4. Suppose that the magnituglef the magnetic field increases with time, althoug
the field remains uniform (i.espatially constant) at all times. Show that the increase
of B produces a decrease of the size of the orbit.

5. Assume now that the particle enters the mgiield in a direction that isot
perpendicular to the field. Show that the motiorihaf particle will be uniform, while
the projection of this motion onto theplane will be uniform circular with angular
velocity w equal to that found in part 3. Describe the patbngetrically.

6. Show that the radiation losses due to ac@® become more significant the
smaller the mass of the patrticle.

7. By solving the differential equation of nwti of the charged particle, derive
explicit expressions for the coordinatesy( z) of the particle as functions of tinte
Demonstrate that the projection of the motion dhxy-plane is uniform circular, as
found previously, and verify the expression for grgyular velocityw. Explain why

this planar motion is clockwise for the given dtien of B.
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Solution

~

Both thez-axis and the magnetic field are normal to the Eagkdirected toward the reader;
the direction of motion is clockwise (why?).

1. The charged patrticle is subject to a magneticeforc
F=q(Vx B Q)
where, in componentsy =v, i+ v, U+ vu and B= By (B | B). Then,

F=agB(y,U-v1) (2)

which is a vector in they-plane; the same is true, therefore, with regardht®
acceleration of the particle (assuming no othecdsract on it). Given that, by
assumption, the initial velocity also is a vectorthe xy-plane, we conclude that the
motion of the particle takes place on that plane.

As seen in (1), the total force on the partislaormal to the particle’s velocity, i.e.,
normal to the trajectory of the particle. This me#mat the particle moves ebnstant
speedinside the magnetic field (see, e.g., Sectiond®.fil] and Sec. 7.1 of [2]). In
other words, the particle executesiform curvilinear motion. We must now show
that this motion igircular. Indeed, the magnitude of the magnetic force is

F = qvB = constant 3)

wherev is the (constant) speed of the particle, equ#théanitial speedyp, and where
we have taken into account that the velocity ve@soalways perpendicular to the
magnetic field. Now, since the motion is unifornmettotal force (1) is purely
centripetal. HenceF=mV?/p , wherep is the radius of curvature at any point of the
trajectory (see Sec. 3.6 of [1]). Given that bet#indF are constant, it follows that

Is constant also; that is, the motion is circulN8e may place the center of the circle at
the originO of our coordinate system (in particular, of #yeplane) so that the radius
p of the circle equals the distancef the particle fromO. From F=mV/r , and by
using (3), we find:
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_mv

[ =—
gB

(4)

2. Let p=mv be the (constant) magnitude of the momentum op#récle. Relation
(4) may then be rewritten asp/qB. We observe thatis an increasing function qf
the larger the momentum, the larger the radius dherefore, the smaller the
curvature of the path. Physically, this means #mtthe momentum increases it
becomes more difficult for the magnetic field t@guce a change in the direction of
motion of the patrticle.

3. We writev=wr, wherew is the angular velocity. Substituting this intg,(#e
find

w=— (5)

We notice thato is independent of the radiu®f the orbit; so is, therefore, the period
T=2rn/w of the circular motion.

4. Sincev=Vvp=constant, independent of the magnetic-field stieBgta change of
B will not affect the speed of the particle. Fron itdthen follows that an increase of
B will produce a decrease nfi.e., of the size of the orbit. This means thatparticle
will revolve closer to thez-axis. This effect is used in fusion reactors toieah
plasma heating and confinement.

5. As argued in part 1 of the problem, since thel tot@e on the particle is normal
to the particle’s velocity, the speadof the particle is constant, equal to the initial
speedy,, and the motion igniform curvilinear Furthermore, the total force, given by
(1) and (2), is a vector parallel to thkgplane, and so is the acceleration of the
particle. These results are independent of thectilire of the initial velocity of the
charge upon its entrance into the magnetic fielotid¢ also that Eq. (2) is valid even
if the velocity has a-component.

The motion, however, is no longer expected @optanar if the direction of the
velocity has &-component, as will now be assumed to be the cateid write

v=V+v U whereV =vi+y,U = vector parallel to they-plane (6)

Since thez-component of the acceleration is zero, the velabitgs not change in the
z-direction; that isy~=vo~=constant Hence, along the-axis (which is parallel to the

magnetic field) the motion is uniform rectiline&egarding the motion parallel to the
xy-slane, we note the following:

—

F-v=F-(V-vQ)=0,

since by (1) the total force is normal to the véaigowhile by (2) the force is also
normal to thez-axis. Alternatively, by using (2) and (6) we have:
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F-V=0B(\U-vYy)-(Vy+ Y= gByy yy=0.

It follows that the motion parallel to the/plane is uniform curvilinear, with speed
equal to

V=(V- vzz)l/2 =(v*- \622)1/2 = constan
where we have used the facts b, andv~=vg,. Furthermore,
UxB=(V+vl)x(Bu)="ix E,
so that, by (1),
F =q|Vx B|= qVB= constan (7)

If p”is the radius of curvature of the projection of thajectory onto they-plane,
then, given thaF is purely centripetal, we have:

VrZ 2
F=m— = p'=m— =constan (8)
- F

(since bothv” andF are constant). This means that the projectiomefmotion onto
the xy-plane is uniform circular. Overall, the motion betcharge is the resultant of a
uniform rectilinear motion parallel to the magnefield, and a uniform circular
motion on a plane perpendicular to the field. Tiagettory is aelix (uniform helical
motion. By (7) and (8) we get the radius of the circydesjection of the motion:

, mv

“ B 9

P

Then, by writingv'=wp’, we find that the angular velocity is again given by (5);
that is, w=gqB/m.

6. The total power radiated by a slowly moving acadlag charge is given by
Larmor’s formula(see Sec. 10.12 of [2])

2,2
p=d2
67g,C

(10)

wherea is the magnitude of the acceleration. Assuming tha charged particle is
moving circularly on a plane normal to the magnéigtd, and taking Eg. (3) into
account, we havea=F/m=qvB/m , wherev is the constant speed of the particle. We
observe that, for given values @fv andB, the smaller the mass of the particle, the
greater the radiated powerand hence the greater the power losses. Thatdgtion
losses become increasingly significant as the robHse particle decreases. Thus, for
example, protons radiate far less than electromascyclical accelerator.
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7. The equation of motion of the charged particle is

dv R
m—=q(Vv .
ol e

By expanding the left-hand side into componentsudsing Eq. (2) for the right-hand
side, and by equating corresponding componenti@mwo sides of the equation, we
obtain the following system of differential equaiso

dv
N v, Ny, Mg (11)
dt y dt dt

where we have putw=gB/m. Notice that the expression far is the same as that
found previously for the angular velocity of theccilar projection of the motion on
thexy-plane.

The system (11) may be integrated by emplotiegmethods described in [3] (cf.,
in particular, Sec. 4.1 and 5.1). The solutionhef $ystem is

Ww=Acojwt—-a), w=-Asin(wt—-a), Vv,=41 (12)
where theA>0, a, A are arbitrary constants. We notice that the spédle particle is
constant, equal ta=(A%+22)Y?; the motion is thus uniform. The constaAts, A can

be expressed in terms of the componewss, {.y , Vo) Of the initial velocity. Setting
t=0in (12), we find:

A= (ol + Vo )2, A=Ve , a= arctanVoy Vo) .
Relations (12) are rewritten as a system of difféa¢ equations:
dx/dt= A cogwt —a) , dy/dt=—Asin(wt—a), dzZdt=2
the solution of which system is (by ignoring arditr constants)
x (Alw) sin(wt —a) , y= (Alw) codwt—a), z=it (13)

Equations (13) express the coordinates of thegbaudis functions of time.

Projected to they-plane, the motion of the particle is uniform cienubf radius
r=Al/ew and with angular velocityp=qB/m. Define now the functiofi(t) by

O)=a—-owt+7n/2 < wt—a=7n2-60(1).
Equations (13) are then rewritten as

X=rcoh(t) , y=rsini(t).
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We observe that the pair, 0) represents polar coordinates onxligolane, describing
the circler=A/w=const. We also notice that, by its definitiofi(t) is a decreasing
function oft ; that is, the polar angleé decreases with time. This suggests that the
circular projection of the path on tixgplane is traversed in theegativedirection,
l.e., clockwise

It also follows from (13) that the motion inetl-direction is uniform rectilinear.
The overall path of the particle idhalix and the motion is, thereforgniform helical
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