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Several aspects of the motion of a charged particle in a uniform magnetic field  
are examined, both by physical arguments and by explicit solution of the 
differential equation of motion.  

 

 
Problem 

 
A particle of mass m and charge q>0 enters a uniform magnetic field B

�
 with initial 

velocity 0v
�

 perpendicular to the field. The magnetic field is assumed to be oriented in 

the positive z-direction.  
 
    1. Show that the particle will execute uniform circular motion on the xy-plane and 
determine the radius r of this motion.  
 
    2. Show that the larger the momentum of the particle, the smaller the curvature of 
the path. Interpret this physically.  
 
    3. Determine the angular velocity ω of the particle and show that the period of 
revolution is independent of the size of the orbit.  
 
    4. Suppose that the magnitude B of the magnetic field increases with time, although 
the field remains uniform (i.e., spatially constant) at all times. Show that the increase 
of B produces a decrease of the size of the orbit.  
 
    5. Assume now that the particle enters the magnetic field in a direction that is not 
perpendicular to the field. Show that the motion of the particle will be uniform, while 
the projection of this motion onto the xy-plane will be uniform circular with angular 
velocity ω equal to that found in part 3. Describe the path geometrically.  
 
    6. Show that the radiation losses due to acceleration become more significant the 
smaller the mass of the particle.  

    7. By solving the differential equation of motion of the charged particle, derive 
explicit expressions for the coordinates (x, y, z) of the particle as functions of time t. 
Demonstrate that the projection of the motion onto the xy-plane is uniform circular, as 
found previously, and verify the expression for the angular velocity ω. Explain why 
this planar motion is clockwise for the given direction of B

�
.  
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Solution 
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Both the z-axis and the magnetic field are normal to the page and directed toward the reader; 

the direction of motion is clockwise (why?). 
 
 
    1. The charged particle is subject to a magnetic force  
 

                                                          ( )F q v B= ×
� ��

           (1) 
 

where, in components,  ˆ ˆ ˆ ˆand ( | | )x x y y z z zv v u v u v u B Bu B B= + + = =
� ��

. Then,  

 

                                                  ˆ ˆ( )y x x yF qB v u v u= −
�

                (2) 

 
which is a vector in the xy-plane; the same is true, therefore, with regard to the 
acceleration of the particle (assuming no other forces act on it). Given that, by 
assumption, the initial velocity also is a vector in the xy-plane, we conclude that the 
motion of the particle takes place on that plane.  
 
    As seen in (1), the total force on the particle is normal to the particle’s velocity, i.e., 
normal to the trajectory of the particle. This means that the particle moves at constant 
speed inside the magnetic field (see, e.g., Section 2.4 of [1] and Sec. 7.1 of [2]). In 
other words, the particle executes uniform curvilinear motion. We must now show 
that this motion is circular. Indeed, the magnitude of the magnetic force is  
 
                                                  F = qvB = constant          (3) 
 
where v is the (constant) speed of the particle, equal to the initial speed v0 , and where 
we have taken into account that the velocity vector is always perpendicular to the 
magnetic field. Now, since the motion is uniform, the total force (1) is purely 
centripetal. Hence, F=mv2/ρ , where ρ is the radius of curvature at any point of the 
trajectory (see Sec. 3.6 of [1]). Given that both v and F are constant, it follows that ρ 
is constant also; that is, the motion is circular. We may place the center of the circle at 
the origin O of our coordinate system (in particular, of the xy-plane) so that the radius 
ρ of the circle equals the distance r of the particle from O. From F=mv2/r , and by 
using (3), we find:  
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mv

r
qB

=                (4) 

 
    2. Let p=mv be the (constant) magnitude of the momentum of the particle. Relation 
(4) may then be rewritten as r=p /qB. We observe that r is an increasing function of p: 
the larger the momentum, the larger the radius and, therefore, the smaller the 
curvature of the path. Physically, this means that as the momentum increases it 
becomes more difficult for the magnetic field to produce a change in the direction of 
motion of the particle.  
 
    3. We write v=ωr, where ω is the angular velocity. Substituting this into (4), we 
find  
 

                                                          
qB

m
ω =                 (5) 

 
We notice that ω is independent of the radius r of the orbit; so is, therefore, the period 
T=2π/ω  of the circular motion.  
 
    4. Since v=v0=constant, independent of the magnetic-field strength B, a change of 
B will not affect the speed of the particle. From (4) it then follows that an increase of 
B will produce a decrease of r, i.e., of the size of the orbit. This means that the particle 
will revolve closer to the z-axis. This effect is used in fusion reactors to achieve 
plasma heating and confinement.  
 
    5. As argued in part 1 of the problem, since the total force on the particle is normal 
to the particle’s velocity, the speed v of the particle is constant, equal to the initial 
speed v0 , and the motion is uniform curvilinear. Furthermore, the total force, given by 
(1) and (2), is a vector parallel to the xy-plane, and so is the acceleration of the 
particle. These results are independent of the direction of the initial velocity of the 
charge upon its entrance into the magnetic field. Notice also that Eq. (2) is valid even 
if the velocity has a z-component.  
 
    The motion, however, is no longer expected to be planar if the direction of the 
velocity has a z-component, as will now be assumed to be the case. Let us write  
 

        ˆz zv v v u′= +
� �

   where  ˆ ˆx x y yv v u v u′ = + ≡
�

 vector parallel to the xy-plane     (6) 

 
Since the z-component of the acceleration is zero, the velocity does not change in the 
z-direction; that is, vz=v0z=constant. Hence, along the z-axis (which is parallel to the 
magnetic field) the motion is uniform rectilinear. Regarding the motion parallel to the 
xy-plane, we note the following:  
 

( )ˆ 0z zF v F v v u′⋅ = ⋅ − =
� �� �

, 

 
since by (1) the total force is normal to the velocity, while by (2) the force is also 
normal to the z-axis. Alternatively, by using (2) and (6) we have:  
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ˆ ˆ ˆ ˆ( ) ( ) ( ) 0y x x y x x y y y x x yF v qB v u v u v u v u qB v v v v′⋅ = − ⋅ + = − =
� �

. 

 
It follows that the motion parallel to the xy-plane is uniform curvilinear, with speed 
equal to  
 

( ) ( )
1/2 1/22 2 2 2

0 0 constantz zv v v v v′ = − = − ≡  

 
where we have used the facts that v=v0 and vz=v0z . Furthermore,  
 

ˆ ˆ( ) ( )z z zv B v v u Bu v B′ ′× = + × = ×
� �� � �

 , 

 
so that, by (1),  
 

                                           | | constantF q v B qv B′ ′= × = ≡
��

     (7) 
 
If  ρ΄ is the radius of curvature of the projection of the trajectory onto the xy-plane, 
then, given that F is purely centripetal, we have:  
 

                                     
2 2

constant
v v

F m m
F

ρ
ρ

′ ′
′= ⇒ = ≡

′
   (8) 

 
(since both v΄ and F are constant). This means that the projection of the motion onto 
the xy-plane is uniform circular. Overall, the motion of the charge is the resultant of a 
uniform rectilinear motion parallel to the magnetic field, and a uniform circular 
motion on a plane perpendicular to the field. The trajectory is a helix (uniform helical 
motion). By (7) and (8) we get the radius of the circular projection of the motion:  
 

                                                             
mv

qB
ρ

′
′ =               (9) 

 
Then, by writing v΄=ωρ΄, we find that the angular velocity ω is again given by (5); 
that is,  ω=qB/m.  
 
    6. The total power radiated by a slowly moving accelerating charge is given by 
Larmor’s formula (see Sec. 10.12 of [2])  
 

                                                         
2 2

3
06

q a
P

cπε
=                      (10) 

 
where a is the magnitude of the acceleration. Assuming that the charged particle is 
moving circularly on a plane normal to the magnetic field, and taking Eq. (3) into 
account, we have: a=F/m=qvB/m , where v is the constant speed of the particle. We 
observe that, for given values of q, v and B, the smaller the mass m of the particle, the 
greater the radiated power P and hence the greater the power losses. That is, radiation 
losses become increasingly significant as the mass of the particle decreases. Thus, for 
example, protons radiate far less than electrons in a cyclical accelerator.  
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    7. The equation of motion of the charged particle is  
 

( )
dv

m q v B
dt

= ×

�
��

. 

 
By expanding the left-hand side into components, by using Eq. (2) for the right-hand 
side, and by equating corresponding components on the two sides of the equation, we 
obtain the following system of differential equations:  
 

                                    , , 0yx z
y x

dvdv dv
v v

dt dt dt
ω ω= = − =                       (11) 

 
where we have put  ω=qB/m . Notice that the expression for ω is the same as that 
found previously for the angular velocity of the circular projection of the motion on 
the xy-plane.  
 
    The system (11) may be integrated by employing the methods described in [3] (cf., 
in particular, Sec. 4.1 and 5.1). The solution of the system is  
 
                           vx = A cos (ωt – α) ,    vy = – A sin (ωt – α) ,    vz = λ               (12) 
 
where the A>0, α, λ are arbitrary constants. We notice that the speed of the particle is 
constant, equal to  v=(A2+λ2)1/2 ; the motion is thus uniform. The constants A, α, λ can 
be expressed in terms of the components (v0x , v0y , v0z) of the initial velocity. Setting 
t=0 in (12), we find:  
 

A = (v0x
2
 + v0y

2)1/2  ,    λ = v0z  ,    α = arctan (v0y /v0x) . 
 
Relations (12) are rewritten as a system of differential equations:  
 

dx/dt = A cos (ωt – α) ,    dy/dt = – A sin (ωt – α) ,    dz/dt = λ     
 
the solution of which system is (by ignoring arbitrary constants)  
 
                        x = (A/ω) sin (ωt – α) ,    y = (A/ω) cos (ωt – α) ,    z = λt               (13) 
 
Equations (13) express the coordinates of the particle as functions of time.  
 
    Projected to the xy-plane, the motion of the particle is uniform circular of radius 
r=A /ω  and with angular velocity  ω=qB/m . Define now the function θ(t) by  
 

θ(t) ≡  α – ωt + π/2    ⇔    ωt – α = π/2 – θ(t) . 
 
Equations (13) are then rewritten as  
 

x = r cos θ(t)  ,    y = r sin θ(t) . 
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We observe that the pair (r, θ) represents polar coordinates on the xy-plane, describing 
the circle r=A /ω=const. We also notice that, by its definition, θ(t) is a decreasing 
function of t ; that is, the polar angle θ decreases with time. This suggests that the 
circular projection of the path on the xy-plane is traversed in the negative direction, 
i.e., clockwise.  
 
    It also follows from (13) that the motion in the z-direction is uniform rectilinear. 
The overall path of the particle is a helix and the motion is, therefore, uniform helical.  
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