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Abstract 

The charging capacitor is the standard textbook and 
classroom example for explaining the concept of the so-
called Maxwell displacement current. A certain aspect of 
the problem, however, is often overlooked. It concerns the 
conditions for satisfaction of the Faraday-Henry law inside 
the capacitor. Expressions for the electromagnetic field are 
derived that properly satisfy all four of Maxwell’s equations 
in that region.  

1. Introduction 

The charging capacitor is the standard paradigm used in 
intermediate-level Physics courses, textbooks and articles to 
demonstrate the significance of the Maxwell “displacement 
current” (see, e.g., [1-7]). The point is correctly made that, 
without this “current” term, the static Ampère’s law would 
be incomplete with regard to explaining the conservation of 
charge as well as the existence of electromagnetic radiation. 
Also, the line integral of the magnetic field around a closed 
curve would be an ill-defined concept.  
      There is, however, a certain subtlety of the situation 
which is often passed by. It concerns the Faraday-Henry 
law both inside and outside the capacitor. The purpose of 
this short note is to point out the need for a more careful 
examination of the satisfaction of this law in the former 
region, i.e., in the interior of the capacitor. We will seek 
expressions for the electromagnetic field that properly 
satisfy the entire set of Maxwell’s equations; in particular, 
the Faraday-Henry law as well as the Ampère-Maxwell law.  

2. The standard approach to the charging 
capacitor problem  

We consider a parallel-plate capacitor with circular plates of 
radius a, thus of area A=πa2. The space in between the 
plates is assumed to be empty of matter. The capacitor is 
being charged by a time-dependent current I(t) flowing in 
the +z-direction. The z-axis is perpendicular to the plates 
(the latter are therefore parallel to the xy-plane) and passes 
through their centers, as seen in Fig. 1 (by ˆ

zu  we denote the 
unit vector in the +z direction):  
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Figure 1: A current I charging a parallel-plate capacitor 
 
      The capacitor is being charged at a rate dQ/dt=I(t), 
where +Q(t) is the charge on the right plate (as seen in 
the figure) at time t. If σ(t)=Q(t)/πa2=Q(t)/A is the 
surface charge density on the right plate, then the time 
derivative of σ is given by  
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      We assume that the plate separation is very small 
compared to the radius a, so that the electromagnetic 
(e/m) field inside the capacitor is practically independent 
of z, although it does depend on the normal distance ρ 
from the z-axis. (We will not be concerned with edge 
effects, thus we will restrict out attention to points that 
are not close to the edges of the plates.) In cylindrical 
coordinates (ρ,φ,z) the e/m field at any time t will thus 
only depend on ρ (it will not depend on the angle φ, as 
follows by the symmetry of the problem).  
      The magnetic field inside the capacitor is azimuthal, 
of the form  
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A standard practice is to assume that the electric field in 
that area is uniform, of the form  
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while everywhere outside the capacitor the electric field 
vanishes. With this assumption the magnetic field inside 
the capacitor is found to be [2,3,6]  
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      Expressions (2) and (3) must, of course, satisfy the 
Maxwell system of equations in empty space, which 
system we choose to write in the form [1,8]  
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By using cylindrical coordinates and by taking (1) into 
account, it is not hard to show that (2) and (3) satisfy 
three of Eqs. (4), namely, (a), (b) and (d). This is not the 
case with the Faraday-Henry law (4c), however, since by 
(2) and (3) we find that  
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An exception occurs if the current I is constant in time, 
i.e., if the capacitor is being charged at a constant rate, 
so that I΄(t)=0 (this is, e.g., the assumption made in [2]). 
But, for a current I(t) with arbitrary time dependence, the 
pair of fields (2) and (3) does not satisfy the third 
Maxwell equation.  

3. A more general formula for the e/m field inside 
the capacitor  

To remedy the situation and restore the validity of the full 
set of Maxwell’s equations in the interior of the capacitor, 
we must somehow correct the expressions (2) and (3) for the 
e/m field. To this end, we make use of the following Ansatz:  
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where f (ρ,t) and g(ρ,t) are functions to be determined 
consistently with the given current function I(t) and for 
given initial conditions. It is easy to check that the solutions 
(5) automatically satisfy the first two Maxwell equations 
(4a) and (4b). By the Faraday-Henry law (4c) and the 
Ampère-Maxwell law (4d) we get the following system of 
partial differential equations:  
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Note in particular that the “classical” solution with f (ρ,t)≡0 
and g(ρ,t)≡0 is possible only if I΄(t)=0 ⇔ I=constant in time 
(i.e., if the capacitor is being charged at a constant rate), as 
mentioned earlier.  
      As a special case, let us assume that the functions f and g 
are time-independent, i.e., ∂f /∂t =  ∂g /∂t=0  ⇔ f=f  (ρ), g=g(ρ). 
From (6a) we get:  
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This can only be valid if I΄(t)=constant ⇔ I΄΄(t)=0. On the 
other hand, (6b) yields: ρg=constant ≡ λ ⇔ g(ρ)=  λ/ρ. In 
order for g(ρ) to be finite for ρ=0, we must set λ=0, so that 
g(ρ)≡0. The solution (5) for the e/m field inside the capacitor 
is then written:  
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This formula preserves the familiar expression (3) for the 
magnetic field but corrects Eq. (2) for the electric field in 
order that the Faraday-Henry law be satisfied.  

4. Summary  

The purpose of this note was to point out the need to revisit 
the problem of the charging capacitor and to carefully 
examine the expressions for the e/m field in the interior of 
this system. As was noted, the standard formulas assumed 
for this field, tailor-made to satisfy the Ampère-Maxwell 
law, fail to satisfy the Faraday-Henry law except in the 
special case where the capacitor is being charged at a 
constant rate. We have derived a general expression for the 
e/m field that satisfies the full set of Maxwell’s equations 
for arbitrary charging rate of the system. This result reduces 
to the familiar set of equations in the case of a constant 
charging rate.  
      Analogous corrections need to be made to the standard 
expressions for the e/m field in the exterior of the capacitor. 
This will be the subject of a subsequent paper.  
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