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Abstract An older geometric technique for the study of invariance groups of partial differential 
equations, originally proposed by one of the authors and F. B. Estabrook, is generalized and extended 
to problems involving exterior equations for vector-valued or Lie algebra-valued exterior differential 
forms. Use of the method is demonstrated in the study of the symmetry groups of the two-dimensional 
Dirac equation and the full Yang-Milis free-field equations in Minkowski spacetime. 
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1. Introduction 

This paper presents a certain generalization of an older geometric technique [1] 
which employs exterior differential forms for the derivation of symmetries of 
partial differential equations (PDEs). Specifically, the range of applicability of the 
technique is extended to comprise vector-structured (and, in particular, matrix- 
structured) PDEs that would otherwise have to be treated by resolution to 
components. The latter practice often proves to be inconvenient, as the total 
number of equations constituting the system increases, and so does the number of 
dependent variables. It is thus desirable in such cases to retain the original 
(vector) form of the PDEs, which is also a simpler and, typically, more elegant 
form. 

Geometric techniques for symmetry analysis of PDEs were originally proposed 
by one of the authors (B.K.H.) and F. B. Estabrook [1] in 1971, and later further 
developed by Edelen [2]. These techniques provide an alternative to other 
established algebraic formulations (see, for example, the excellent recent book by 
Olver [3] and the extensive references therein). Both approaches have been 
successful in treating PDEs for scalar-valued fields. It is our opinion, however, 
that more can be said about PDEs in which the dependent variables have values 
in some arbitrary vector space (technically we would say that the equations define 
sections of some arbitrary vector bundle over the manifold of the independent 
variables). It turns out that, in such a case, the system of PDEs is geometrically 
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equivalent to a set (actually, a differential ideal) of vector-valued differential 
forms defined on a manifold with inhomogeneous 'coordinates' (a mixture of 
scalars and vectors). 

There are two technicalities in this more general problem that never emerge in 
problems for scalar fields. First, when imposing invariance (closure) of the ideal 
of forms that represent the system, under the action by the Lie derivative, it must 
be kept in mind that the Lie derivative preserves the degree and the specific 
vector-valuedness of any form on which it operates, and that any form in the 
ideal must exhibit the same vector-valuedness as the forms that generate the 
ideal. As it turns out, this forces us to seek automorphisms of the underlying 
vector space before any actual calculations may begin. Second, if by x ~ and y~ 
we denote the independent and dependent variables, respectively, of the PDEs, 
and if F(x ~, y~) is a function of these variables, then the vectorial nature of the y~ 
generally does not permit us to write the exterior derivative of the 0-form F in 

the usual way as 

OF i+OF d 
d F = ~ x / d x  0 ~  y (1.1) 

(the derivatives of F with respect to the y~ are not defined, in general). We thus 
replace the last term on the right-hand side of Equation (1.1) by a quantity which 
we denote d F  and formally define as the difference between the (total) exterior 
derivative dF  and the well-defined quantity dx i OF/Ox ~. The operator a can be 
thought of as an exterior derivative in the fiber space; thus it may appropriately 
be given the name internal exterior derivative. It should be clear that the 
expression d F  may involve the 1-forms dy e, but not the 1-forms dx i. 

Rather than overwhelm the reader with generalities, we have chosen to 
illustrate the use of the method through two well-known examples: the two- 
dimensional Dirac equation (Section 3) which involves multispinor-valued 
differential forms, and the full classical Yang-Mills free-field equations in Min- 
kowski spacetime (Section 4) which involve Lie algebra-valued forms. Although 
the calculations in these examples may seem lengthy and involved to the reader, 
we believe that by no other technique could one derive the symmetries faster and 
in a less complicated way (see our concluding remarks in Section 5). As noted in 
Section 5, another example, with new results, is treated in [4]. 

Two final remarks. First, our attention is focused on the derivation of isovec- 
tors of invariance groups, i.e., on symmetry transformations alone; no attempt is 
made in this article to apply or extend the solution-generating techniques 
described in [1]. Second, our domain of interest in the present work is restricted 
to point (and, in particular, projectable) transformations. (The question, whether 
the isogroup of projectable symmetries is exhaustive, is not addressed in this 
paper.) The search for 'generalized' symmetries by employing geometric tech- 
niques is a much more difficult problem, on which research is in progress. 
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2. Exterior Differential Systems 

We are given the following problem: Given a partial differential equation (PDE) 
or a set of PDEs. Is there an equivalent set of differential forms in involution with 
respect to the independent variables, i.e., a set whose integral manifolds are 
solutions of the PDEs? 

Cartan [5] has set up criteria for the equivalence of a given set of PDEs (in 
n - p  dependent variables and p independent variables) with a closed set of 
differential forms on a differentiable n-manifold M. The above set of forms is the 
basis of a differential ideal of the algebra of forms on M. If an integral manifold 
N of dimension p exists, we can choose p freely varying variables as coordinates 
of N and we can functionally specify, in terms of these coordinates, the remaining 
(n-p)  variables. Such an integral manifold then represents geometrically a 
solution of the original set of PDEs. 

Let F be a differential ideal of forms defined on M. An integral manifold of F is 
a pair (N, ~b), where N is a submanifold of M and ,h: N--~ M is a differentiable 
map such that the image under the dual map ~*, of any form 3' in F, vanishes 
identically: ~b*3"-= 0. This implies that the forms 3' in F are annihilated by the 
tangent vectors of N (actually, by the image of these vectors under the differen- 
tial map dtk m q~,). The integral manifold (N, th) defines a solution of the system 
of exterior equations {Yk = 0}, or the system of PDEs {¢#*Yk = 0}, where the forms 
3'k are a basis of F. The forms 3'k need not be of the same degree. 

Suppose now we are given a set of first-order PDEs in n - p  dependent and p 
independent variables, and let {3'k = 0} be the corresponding exterior system. We 
assume for the moment that the dependent variables in the PDEs are scalars (this 
includes the possibility that they are components of objects defined on a tensor 
bundle over the manifold of the independent variables). Let V(x) denote any 
vector field on the n-dimensional manifold M on which the forms 3"k are defined. 
Such a field defines a one-parameter group of diffeomorphisms of M [6]. We are 
interested in a special class of diffeomorphisms, namely those that map integral 
manifolds of the exterior system into integral manifolds of the same system. This 
amounts to requiring that the ideal F of the forms 3'k be invariant under Lie 
transport along the integral curves of V(x). This can be arranged by writing 

~3', = b~3,k (2.1) 
V 

where the left-hand side is the Lie derivative of 3'1 with respect to V, and where 
the b ~  bk(x) are fields of forms on M. The vector fields V(x) that satisfy 
Equation (2.1) are called isovectors [1, 7] and they are operator realizations of the 
Lie algebra of the isogroup of the ideal F (see Appendix for definition of group 
operators). In classical terms, the isogroup is the group of transformations that 
leave the original set of PDEs invariant (they preserve their forms and they map 
solutions into other solutions). 
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Assume now that the n - p dependent variables can be labelled as {y~}, where 
a may denote collectively any set of indices (a~ 3 2 . . . )  which are distinct from the 
single index i, where i = 1 . . . .  , m for some integer m. Assume further that we 
can find an m-dimensional vector space L with basis {ei} (i = 1 . . . . .  m), such that 
(a) the basis vectors ei are not functions of the coordinates of M and they 
commute with the elements of any tensor bundle over M, and (b) we can rewrite 
the original PDEs in terms of a new (and with fewer elements) set of dependent 
variables defined by 

i y~ = y~ei. (2.2) 

Clearly, the y~ are elements of the space L. Now, when the original PDEs are 
satisfied, the y~ are functions of the coordinates {x k} (k = 1 . . . .  ,p)  of the 
submanifold N. Thus the PDEs define sections of a vector bundle over N, the 
fibers of which are isomorphic to L. On the other hand, if we relax the 
requirement that the PDEs be satisfied (i.e. if we relax 3'k = 0) then we can define 
differential forms on M in n (independent) variables. With the introduction of the 
new variables ya satisfying conditions (a) and (b), the original set of forms {~/k} in 
n variables can be substituted by a set (with fewer elements) of forms {/3i} in n' 
variables (n' < n). These new forms are vector-valued with values in L: 

/3j =/3~e,. (2.3) 

Clearly, {/3~} = {~/k}. Note also that, by condition (a), 

d/3j = (d/3~)e~. (2.4) 

If L has the additional structure of a Lie algebra, then we define 

[~,, #~] = 13~ ^ f l ' ; [ek,  e . ]  

,, k /3~'e,, (2.5) = Ck,/3i ^ 
and one can show that 

d[/3,,/3/] = [d/3,,/3i] + (-1)q[/3,, d/3j] (2.6) 

where q is the degree of ¢1i. We note that the space L is in some sense a 
'bookkeeping' device which enables us to work with a smaller number n' of 
variables instead of the original number n. It is not to be confusedwith the space 
dual to the space of basis 1-forms underlying the differential forms used here. 
Contraction of forms with vectors in this dual space, such as Equation (2.10), 
gives us values in L, hence the term 'vector-valued'. 

Introduction of the new variables requires modification of Equation (2.1) to 
take into account the vector-valuedness of the forms /3k. The generalization of 
Equation (2.1) will depend on the nature of the problem at hand (see subsequent 
sections for examples). The general rule is that the action of the Lie derivative on 
the /3k should not alter their individual tensorial characters. In particular, the 
right-hand side of the generalization of Equation (2.1) must now accommodate 
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automorphisms of the space FP,(M)@ L, where FP,(M) is the space of all forms 
on M, of degree p~ equal to the degree of the form/3i on which the Lie derivative 
operates on the left-hand side. Furthermore, the vector field V is now defined on 
an n'-dimensional manifold with 'mixed' scalar and L-valued coordinates. Thus 
we expect that V will have both scalar and L-valued components [8]. 

As an example, consider the case where all forms 3'k are of the same degree 
and where the dependent variables in the given PDEs can be expressed as fields 
with values in gl(N, C) (a problem of this type is the self-dual Yang-Mills 
equations [4]). Then the /3s will be gl(N, C)-valued, and Equation (2.1) is 
generalized to 

~/3 ,  = bk/3k + A~/3k +/3kB~ (2.7) 
v 

where the b~ are scalars (0-forms) while the A~ and B~ are in gl(N, C) (0-form 
matrices). (Note that we have separated the coefficients that commute with the 13 i 
from those that do not commute with the/3j .) The vector V will have both scalar 
and gl(N, C)-valued components. 

In general, the vector V will have a formal representation 

0 0 (2.8) v = u  + 

where the U i are scalars and the W,~ k = W,~ek are L-valued. The literal use of 
O/Oy,~ as a differential operator is limited, due to the L-valuedness of y~. Quite 
generally, we define 0/Oy,, by the requirement 

0 
- -  (A°ya) = A" when [y~, A °] = 0 (all/3). (2.9) 

This definition, although not complete, is sufficient for all applications of interest. 
In the original variables yk the vector V is written as, by convention, 

V = U  i 0 . +  k O _----V~ 0 (2.10) 
0x' W,, 0y~ ,gz ----~ 

where by z ~' (/x = 1 . . . . .  n) we denote the members of the set of all n variables x i 

and y~. The components V ~ will depend on a set of r, say, parameters 
a 1 . . . . .  a ' .  It is possible (at least locally) to arrange a canonical parametrization 
of V*', so that 

V = akV• ( z )  ~ =-- akpk.  (2.11) 
Oz ~ 

The quantities Pk = V~O/Oz ~ are the infinitesimal operators of the isogroup. 
They are realizations of the Lie algebra of a group of transformations on the 
n-dimensional manifold M with coordinates {z~'}. Infinitesimal transformations 
on M are of the form 
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z ~''= z ~ - 6 a k V # ( z )  (2.12) 

(see Appendix; put V# = - U ~  to recover  the formulas therein; the sign in front 
of ~a k is required by group representation theory.) We remark that the relation 
between Equations (2.11) and (2.12) remains the same in the n' variables {x i, y~}. 

3. Dirac Equat ion  

Quite generally, the Dirac equation for a fermion field 0(x) in the presence of a 
vector  field A . ( x )  may be written [9] 

[y"(O. - A g ) -  1]0 = 0, (3.1) 

where 0 r =O/Ox~; tz = 0, 1,2, 3. The x ~ are coordinates in fiat spacetime M 4 

with the usual signature - 2 ;  the A .  are n x n complex matrices and the y"  are 
4 x 4 matrices. The  latter satisfy the anticommutation relations 

{y ~', y v} = - 2 g  "v" la (3.2) 

where g~'~= d i a g ( 1 , - 1 , - 1 , - 1 ) .  Finally, 0 is a 4n-component  object.  It can be 
written as an n-dimensional column vector  with entries 01 . . . .  , 0 , ,  where each 
entry is a four-dimensional complex vector.  Thus, at each point x of M 4, 0(x)  has 
values in a space L which is isomorphic to the tensor product  C" @ C 4. 

To  simplify the subsequent algebra, we make the assumption that we live in a 
two-dimensional submanifold of M 4, say M 2, with coordinates x ° - t, x I - x, and 

with signature g~'~ = diag(1, -1 ) .  We put A ~" --- (A °, A 1) - (~, A), so that A~, - 
( ~ , - A ) .  The Dirac equation then becomes (using a standard notation for 
derivatives) 

Toot + Yl0x -- Y°di)0 + T I A 0 - -  0 = 0. (3.3) 

Multiplying by the 2-form d t d x  we obtain the exterior equation 

r/=- yo dO dx + yl dt  d 0 -  (y°qb0 - y l A 0  + 0) dt  dx 

= 0 for solution. (3.4) 

The  condition ~q = 0 on M 2 is equivalent to the Dirac equation (3.3). We relax 
this requirement,  however,  and regard ~ as a 2-form in five independent  variables 
t, x, 0, ~ ,  A. (In order to define a differential ideal we must also consider the 
3-form drt. Since no other 3-forms exist in the system, however, we can disregard 
drt for the purpose of finding the isovectors.) Clearly, the form ~ has values in 
the space L in which 0 takes its values. 

To  find the isogroup of the ideal, we write 

~ n = b n  (3.5) 
v 

where b is assumed to be a tensor product  of an n × n matrix with a 4 × 4 matrix 



ISOGROUPS OF DIFFERENTIAL IDEALS 161 

[10] (SO that the Lie derivative produces an automorphism of the space of H, as 
desired). Let V be of the form 

V = D O _ + E  O + B  O _ + F o ~ + G  0 
Ot Ox Og/ O--A" (3.6) 

The D and E are scalar functions which we assume to depend only on t and x; B 
is a 4n-dimensional column vector, and F and G are n x n matrices [8]. 

We now substitute Equation (3.6) and the expression for ~/into Equation (3.5), 
using the familiar relations 

~yk= vk. ~ d y k  = d V k =  V k d y ,  
v v 

where V = V k c3/Oy k. There is a problem with ~ d~O = dB, since the derivative Bq, 
is not defined, in general. We can overcome this difficulty by defining an internal 

exterior derivative (i.e. an exterior derivative that acts only on the fields and not 
on the spacetime variables) as follows: 

ajf(x t,, ~,) - d[  - Or, [ dx ~ (3.7) 

where [ is any function of the spacetime variables x ~' and the fields tp i. It is 
expected that a [  will include terms in dq/.  Note that, by definition, 

df(x ") = 0; af(~b') = df(~b'). (3.8) 

We can now proceed with Equation (3.5) by putting 

~LC?dqs = dB = B, d t +  Bx dx + a B ,  
v 

where dB may include terms in dqs, dO, dA, but not in dt, dx. We thus arrive at 
an equation involving 2-forms. Equating terms in dt dx we get 

y°B, + y I Bx - y°F0  - y ° ~ B  + y 1 GO + ,~1AB -- B - 

- (Dr + Ex)(y°O~b - ylA~b + ~) 

= - b(y°d~ ~ - Y' A ~  + ~). (3.9) 

The remaining terms can be separated into those that contain dt and those that 
contain dx: 

( - E , y  ° + Dry 1) dt  d~b + yl dt  dB = b e  dt d~b, (3.10) 

(E~y ° - D~T 1) d~b dx + yo dB dx = by ° d~b dx. (3.11) 

From the above equations it is clear that B = B(t ,  x, ~b) and that B must depend 
linearly on ~. Thus we put 

B(t,  x, tk) = e(t, x)d/ + h(t, x), (3 .12)  

where e is a matrix and h is a column vector. Then d B =  e d~,  and Equations 
(3.10)-(3.11) give 
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- E , y ° l n  + D,'ylln + yle  = by 1, (3.13) 

Ex3,°l, - Dx3,11, + 3,°e = by °, (3.14) 

while Equation (3.9) becomes an equation of the form P ~ +  Q = R~, which is 
true for all ~b if[ Q = 0, P = R. Explicitly, 

3,°ht + 3,1h~ - y°qbh + y l A h -  h = 0 (3.15) 

(which says that h is a solution of the Dirac equation (3.3)) and 

3,°et + 3 , 1 e  x - 3,OF - y°~e  + T~G+ 3,~ A e  - e - 

- ( D ,  + E , , ) ( 3 , ° ~  - 3,1A+ 1) 

= - b ( y ° d P  - y l A +  1). (3.16) 

Using Equation (3.2) we Solve Equation (3.14) for b and substitute the result into 
Equations (3.13) and (3.16). This gives a pair of partial differential equations, 
which after pre-multiplication by 3,o are written 

E,I  + D,',/°3,11n = E x 3 , ° ' y l l n  + Dxl + [e, 3,071]) (3.17) 

- e t +  y°yle~ + 14F+ y ° y l G + [ e ,  7°]+ 

+D, (14~  + "y°3,1A- y ° l , )  

= D~(y°TI~ + 1 4 A -  3,11,) + [e, dp] + [e, 3,°viAl. (3.18) 

The matrix e is a tensor product of an n × n matrix with a 4 x 4 matrix. Thus e 
can be expanded in a basis of 16 linearly independent 4 × 4  matrices, the 
coefficients of expansion being n × n matrices. We choose as a basis the 16 Dirac 
matrices F ~ defined as follows: 

F 1 = 14, 

F2-5= 7o, 71, 72, ,~3~ ,~p.) 

F 6-11 ~ 0 -01, O -02, O -03, 0 -12) 0 -13) 0 -23 ~. O-g.v 

F12-15 = 757~ =--7~75, 

F16 = ,)/0717273 ~ 3,5, 

where 

o .~  = ½[y~, yv] = y~y~ + g ~ .  14. 

We thus make the expansion 

e ( t ,  x) = ot14 + #o3,o + •13,1 -.I- #2  y2 -Jr- #33,3 ..[.. 

+ ~10r01 -I'- ~20"02 4" ~30r03 -]'- ~40r12 "st" ~50r13 "l- ~60r23 -st- 

.jr_ •03,53,0..1_ e13,53,1 + e23,53,2 ..l_ e33,53,3 ..]_ ~-3,5, (3.19) 

where the a , / 3  ~', 8 k, e ", ~ are n × n matrices which depend on t and x (tensor 
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products between the two types of matrices are assumed in Equation (3.19)). 
Substituting Equation (3.19) into Equations (3.17) and (3.18), and comparing 
similar terms in the basis F", we obtain the following set of equations: 

~ 0 =  /31 = /~2-- /33 = O, ~2-- ~3-- 8 4 -  #5= O, 

~°=El=0, ~=0, 

Dt= Ex =0,  D x l , =  E , l , = - 2 8 1 ,  

q, - [~, q] = q~ + [A, q] = 0, q = 86, ~z, 23, 

- o t , + F = D ~ A + [ a , ~ ] ,  a ~ + G = D ~ + [ a , A ] .  

Remembering that the variables ~,  A are independent of the variables t, x, we 
integrate the partial differential equations to give 

D(x) = tox + ~'o, E(t) = tot + Xo, 8~ to = - ~ -  1,,, 

q = constant. 1, =- q.  1.,  q _ 86, ¢2, ¢3, 

F(t, x, d~, A)  = toA + [or, dp] + a,, 

G(t, x, ~,  A)  = to~ + [or, A] - ax, 

where the to, ~o, Xo, 8 6, ¢2, ¢3 are constants, while a(t, x) is a matrix function. 
The above solutions, together with Equations (3.12), (3.15) and (3.19), give the 
solution for the vector V of Equations (3.5)-(3.6): 

V = (tox + ~'o) + ( tot+ Xo) ax 

0.) 86or23 i/t + ,~(t, x ) ¢ , -  ~- ~°'q, + + 

~ eE.yS~/2qj + ¢3~,5~3q~ + h(t, x) - -  + 
oO 

+(a~A + [a, 0]  + a,) + 

O 
+(tocP + [a, A] - a,) ~--~. (3.20) 

Using Equation (2.11), we can write the infinitesimal operators Pk correspond- 
ing to the consiants to, ~'o, Xo, which represent standard Lorentz transformations, 
time translations, and space translations, respectively. The constants 86, ¢2 and ¢3 
represent accidental symmetries of the two-dimensional model, while the 
presence of the arbitrary solution h(t, x) as an additive factor reflects the linearity 
of the Dirac equation. Finally, the matrix a(t,  x) defines the following infinitesi- 
mal transformations: 
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~b = - a ( t ,  x)~, ~A~ = - [ a ,  A ~ ] -  a,~, 

The corresponding finite transformations are 

~b'= U~b, A'~ = UA~,U - 1 -  U O~U -1 

C. J. PAPACHRISTOU AND B. KENT HARRISON 

(p = 0, 1). (3.21) 

(3.22) 

where U(x  ~) = exp{-a(x~')}. These are a general type of gauge transformations. 
Note that when a is a constant multiple of the identity matrix, then Equation 
(3.22) is simply a scale change of ~. 

For useful related work on the symmetries of the Dirac equation the reader is 
referred to [11] and [12]. The latter of these has a very nice treatment of 
separation of variables for the Dirac equation. 

4. Yang-Miils Free-Field Equations 

We now study a case where'the space L has the structure of a Lie algebra, so that 
the exterior equations are defined by Lie algebra-valued differential forms. 
Consider again the Minkowski space M 4 with metric g~ of signature -2.  The 
Yang-Mills (YM) free-field equations in this space may be written 

O~F ~'~ - [A N , F ~v] = 0, (4.1) 

F ~v = O~A ~ - OVA ~ - [ A  ~', AV], (4.2) 

where the spacetime functions Ag(x), F"~(x)  ( x - x  ~, / z=0 ,  1, 2, 3, in this 
section) have values in some arbitrary Lie algebra L with basis {Lk}: 

A g ( x )  = A k ( x ) L k ,  F~,~(x) = F ~ ( x ) L k ,  (4.3) 

[L,, Li] = C ~ L k .  (4.4) 

The antisymmetric tensor F "~ has six independent spacetime components. We 
put 

(F 01, F 02, f 03, f 12, F 13, F 23) _-- (F 1, F 2, F 3, F 4, F 5, F6). 

Multiplying Equations (4.1) and (4.2) by the 4-form 

1 
4~ " ex~p dx a dx ~ dx ~ dx p = dt dx dy dz, 

we obtain a set of ten exterior equations which are equivalent to the YM system. 
Stated differently, we define a set of ten 4-forms (in 14 variables) whose 
restriction to M 4 is required to vanish identically in order that the YM equations 
be satisfied: 

yl = d t d F  ~ d y  d z  + d t d x  d F  2 dz + d t d x  dy d F 3 +  
+([A l, F 1] + [A 2, F 2] + [A 3, F3]) dt dx dy dz,  
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3,2 -- d F  l dx dy dz - dt  dx d F  4 dz - dt  dx dy d F  5 - 
- ([A °, F 1 ] + [A 2, F 4] + [A 3, Fs]) dt dx dy dz,  

3'3 = d F  2 dx dy dz + dt  d F  4 dy dz - dt  dx dy d F  6 + 

+ ( - [ A  °, F 2] + [A 1, F 4] - [A 3, Ft])  dt  dx dy dz, 

3'4 = d F  3 dx dy dz + dt  d F  5 dy dz + dt  dx d F  6 dz + 

+ ( - [ A  °, F 3] + [31, F 5] + [A 2, F6]) dt  dx dy dz, 

3,5 = d A1 dx dy dz + dt  dA  ° d y dz - (F  ~ + [A °, A~]) dt  dx dy dz,  

3,6 = dA 2dx d y d z  + d t d x  dA ° d z - ( F  2 + [ A  °, A2])d tdx  d y d z ,  

3,7 = dA 3 dx dy dz  + dt dx dy dA ° - (F  3 + [A °, A3]) dt  dx dy dz,  

3,8 = - d t d A  2 dy dz + d t d x  dA 1 d z - ( F  4 + [ A  1, A2]) d t d x  dy dz, 

3'9 = - d r  dA 3 dy dz + dt  dx dy dA ~ - (F  5 + [A ~, A3]) dt  dx dy dz,  

3'10 = - d t d x  dA 3 dz + d t d x  dy dA 2 - (F6 + [A 2, A3]) d t d x  dy dz. 

It can be shown that the forms d3'k are in the ideal of the "/k (note, for example, 
that d3'5 = dt(3'2 + [A °, 3,5])+ dx[ys, A1]). Thus this ideal is closed. 

The action of the Lie derivative on the Yk must preserve the Lie algebra- 
valuedness of these forms. We are thus seeking automorphisms of L. For this 
purpose we write 

~3,, = a~3'k + Ad(bf)vk 
v 

= akvk+[b  k, "Yk], (4.5) 

where the a, k are scalar functions, the b~ are L-valued functions, and where 
Ad(b) denotes an operator associated with the adjoint representation of L for 
some element b of L. We seek symmetries for which the a k and the b, k may 
depend on the x ", but not on the A ~" and F k (this means that the parameters of 
the symmetry group are, at most, functions of x). 

We write V as 

V =  D , ( x )  O__O_+ B~,(x, AV, Fk) O 
Ox ~' OA ~" 

0 
+ G' (x, A v, F k) 

OF i' 
(4.6) 

+ 

where the D ~" are scalars, while the B ~' and G'  are L-valued. Substituting 
Equation (4.6) into Equation (4.5), and using Equation (3.7) to write 

dB~" = B,~ dxX + a B  ~', d G k =  G,~ dxA + d G  k, 

we obtain a set of 10 equations involving 4-forms. We proceed by equating the 
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coefficients of dt dx dy dz on both sides of each equation. This again gives a set 
of 10 equations which we write below. For brevity we do not display the 
right-hand sides explicitly, but we introduce the symbol ['k to denote the 
coefficient of d t d x  dy dz in 7k: 

3 /~ 1 G~ + G z + Gz + D, , , ( [A  , F 1] + [A 2, F 2] + [A 3, F3]) + 

+ [B  1 , F ' ]  + [A 1 , G ' ]  + [82 , F 2 ] + [A  z , G 2] + [B 3, F 3 ] + [A 3 , G 3 ] 

=a~rk +[b, ~, rd, 

4 5 D~([AO, F1]+[A2, F4]+[A3, FS])_ G~- Gy- G~- 
- ( [ B  °, F 1 ] + [A °, G 1 ] + [B 2 , F 4] + [A 2 , G 4] + [B 3 , F 5 ] + [A 3, Gs]) 

= a~rk + [b~, r d ,  

G~ + G 4 - G~ + D ~ ( - [ A  °, F 2] + [A' ,  F 4] - [A 3, V6]) - 

- [ 8  °, F 2 ] -  [A °, G2] + [B ', F4] + [A 1 , G 4 ] - [ 8 3  , F 6 ] - [ A  3 , G 6] 

= agr~ + [b~, Fk], 
6 G~ + G~ + Gy + D ~ ( - [ A  °, F 3] + [A' ,  F 5] + [A 2, F 6 ] )  - 

- [ B  °, F 3] - [A °, G3]+ [B 1 , F 5] + [A ' ,  G s ] + [B 2 , F 6] + [A 2 , G 6 ] 

= a~rk + [b~,  rk], 

8~ + 8 ° - D ~ ( F  1 + [A °, A1]) - (G  1 + [ S  °, A 1 ] + [A °, B1]) 

= aff'~ + [b~, Fk], 

B 2, + S o - D ~ ( F  2 + [A °, A2]) - (G  z + [B °, A 2] + [A °, B2]) 

= ~ r ~  + [b~, rk], 

83, + B ° _ D ~ ( F  3 + [A °, A3]) - (G  3 + [ 8  °, A 3] + [A °, B3]) 

= akFk + [b~ ,  Fk], 

- B  2 + B~ - D ~ ( F  4 + [A' ,  A2]) - ( G  4 + [ 8 1 ,  A 2] + [ a  I , 82] )  

=a~r~ +Ibm, r~], 

- B~ + B~ - D ~ ( F  s + [ A  ~, A3]) - (O  5 + [B 1 , A 3] + [A 1 , B3]) 

= a } I ' k  + [b9 k , Fk], 

- B ~  + BE -- D ,~ (F  6 + [A 2, A3]) - ( G 6 -~- [ 8  2 , A 3] + [A 2, 83]) 

= a~or~ + [b~o, r~].  

We now put 

B ~" = a ~ " ( x ) A  " + [3~'k(x)F k + BU~(x, A" ,  Fk),  

G ~ = 8iU'(x)A *" + e~k(x)F k + G~(x, A" ,  Fk) ,  

(4.7) 

(4.8) 

where the a, fl, & e are scalars (note the summations). Then 
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a B  ~' = c? "v d A  ~ + [3 ~'k d F  k + d B  ~', 

a G  i = 6i~ d A  ~" + e ik d F  k + d G  i. 

After these expansions are made, the remaining terms in the 10 equations 
obtained by expanding Equation (4.5) can be divided into (a) those that are scalar  

multiples of the various basis 4-forms (i.e., multiples in which the coefficients 
commute with the basis 4-forms), and (b) those (terms) that are not of the type 
(a). 

There  are 40 different terms of type (a) (we do not include terms in dt  dx dy  dz 
that were taken care of earlier). Comparison of coefficients of similar terms thus 
yields a set of 400 equations (certain of which are trivial identities). Using these 

equations we can eliminate the a ~ from our problem by expressing them in terms 
of other  quantities. By this process we also obtain a number of algebraic and 
differential equations for unknown quantities., (We regret  that we cannot display 
all of our results explicitly, but this would be practically impossible for a paper of 
average length. We invite the interested reader to undertake the filling-in of 
missing steps as an instructive exercise.) From the 400 equations mentioned 
above we also obtain information about the coefficients a,  /3, 6, 6 in Equation 
(4.8): 

/3 ~'k = O, all /z, k; 

612 = - -621  = - - 6 4 0 ~  61,  

623 = --  632 = - - 6 6 0  ~ 63,  

all other  6 ~ are zero; 

v 
a È v = k D , ~ , ,  t z ~ v ,  

613 = - - 6  31 = - - 6 5 0 ~  62 ' 

643 = - - 6  52 ~___ 661 ~ 64;  

where k = +1 or - 1  according as the p roduc t /xv  = 0 or ~ 0 (the a ~v with ~ = v 
will be specified later); 

6 1 6 ~  661 ~--" 625 ~ 652-~" 634 ~ 643 ~ 0 ,  

612 = 656 = D~, 613 = - -646  = D 1, 

6 1 4 =  _ _ 6 3 6 =  - D  O ' 6 1 5 =  I 6 2 6 = - D  O ' 

621 = 665 = D~, 623 = 645 = D 2, 

E 24 = 635 = D O ' E 31 = - 6 6 4 =  9 3 ' 

632 = 654 = 0 3 ' 641 = - -663  = - 0  2, 

642 = E 53 = DJ,  651 = 662 = - D  3 

( t h e  Eik with i = k will be specified later). 
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For  the 

a ~ =  

a 2 =  

a33= 

a 4 =  

a ~ =  

a 6 =  

a 7 =  

a s o 1 3 = D t  + Dx + D z  + 

a99= O°t + O~ + O2 + 

10 0 1 2y a l o = D , + D ~ + D  + 

- a  2 = a 6 = a 7 = D °, 

a 4= a 5 = a 6 0 = - D  O ' 

a 3 = - a ~ = - a 9 0 =  D~, 

- a ~  = - a  8 = a 1 °=  D~,  

a 4 = - a  6 = - a 8 9  = D 2, 

a42 = - a  7 = a8 m =  D 3, 

- a  8 = a 6 = - a 3 5  = 8 ' ,  

- a ~  ° =  a~ = - a  6 =  8 3 , 

the remaining a k are zero.  
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coefficients a k we have:  

D O +  D I + D  2 +  e a3 = D O +  D ~ +  0 3 + e 22 = D O +  D 2 +  D 3 + , ' 1 ,  

D O + D ~ +  2 ~55 1 = D ~ + D y + D z +  D y +  = D ° + D x + D 3 + e  44 2 3 E l l ,  

D ° + D : + D 2 + e  66=D°+D2+D3+,aa=D1+Dy+Dz+2 3 ~22, 

D o + D~ + D 3 + ,66 = D o + D~ + D3z + ~55 = D~ + Dy+Dz+2 3 ff33, 

O° + O2 + O3 + ot°°= Dlx + O2 + O3 + 0/11, 

DO + D~ + D3 + aOO= D~ + Dy + D3 a22, 

D O 1 2 0/00 1 2 3 33 + D x + D y +  = D ~ + D y + D z + a  , 

0/11 0 2 0 / 2 2  = D t + D y + D 3 +  

0/11 0 2 0/33, = D , + D y + D 3 z +  

0/22 0 I 0 /33  = D t + D x + D 3 +  

~ a ~ = - a 5 8 =  a70= D O , 

- a ~  = a~= a 9 = D~, 

a'~ = -a57 = a~o = D 1- , 

2 __ 6 _ 10 __ r'~2 
a 3  - -  - a s  = - 0 , 9  - / J x ,  

a41 = a 9 = a ~ O = - D  3, 

a43 = - a  7 = - a  9 =  D 3, 

_ a  9 = a 7 = - a 4 5  = 8 2 ' 

a 2 1 0 = - a  9 = a84 = 84; 

We  now turn to the terms of type (b) in the expansion of Equa t ion  (4.5). These  

terms can  be divided into four  kinds, accord ing  to their dependence  on  the basis 

3- forms d t  dx  dy ,  d t  dx  dz ,  d t  d y  dz  or  dx d y  dz .  T h e  L - v a l u e d  coefficients of 
each  of  these basis 3- forms must  be equa ted  in each  of  the 10 exterior  equat ions,  

the process  thus yielding a set of 40 equat ions  for  1-forms. These  equat ions  are of  

two genera l  types: 

and 

where  

[ Ck, d yk  ] = 0 (4.9) 

a /~ r, = [e~,, dYk] ,  

the Ck and eL 

(4.10) 

are e lements  of  the set {±b~} (note howeve r  that  the 
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indexing of the eL is totally irrelevant to that of the b{), where the yk denote the 
A ~" and F k, collectively, and where the H i denote the B ~' and G k, collectively. 
Given the independence of the 1-forms d yk, and the fact that the Ck and yk do 
not commute,  Equation (4.9) implies Ck = 0, all k. Also, given that, by definition, 
d yk ' a yk,  eel(x)  = 0, Equation (4.10) can be integrated immediately: 

f t  i = [e~, yk] + h'(x), 

where h~(x) is an arbitrary function. We now state our results explicitly: 

b~ = b 2 = b 3 = b~--- b 1, 

b 8 = - b  6=  b3 s_= b 3, 

b[0=-b73=56--b 5, 

all other b k are zero; 

/~" = [b 2, A*'] + A*'(x), 

where the 

j l  = 

j3 = 

j5 = 

b~ = b66 = b~ = b~ = b 9 = / ~ 1 0 _  /.~2 ulO ~ u , 

b 9 = - b  7 = b s - b 4, 

b ~  0 =- _ b  9 -__ 5 8 ~ _  5 6 ;  

~k  = [ b  1, F k]+ gk(x )+ Jk, 

A"(X) and gk(x) are arbitrary functions, and where 

_[b  3, A 2 ] _ [b 4 ' A3], jz  = [b 3 ' A ' ] -  [b 5 , A3], 

[ b  4, A ~ ] + [b ~, A2], j 4  = [b 3, A o] + [5 6, A3], 

[b 4, A o] _ [b 6, A2], j6 = [b 5 ' A o] + [b 6, All.  

Making the appropriate substitutions into Equation (4.8), we obtain expressions 
for B"  and G i which we substitute back into the 10 equations (4.7). The 
coefficients a ~ appearing in these equations can be eliminated in favor of other 
quantities, as we have seen already, while certain substitutions can also be made 
with regard to the b~. The result is a set of equalities between expressions that 
can be loosely described as a generalized type of 'polynomials' in the variables A ~" 
and F k, with x-dependent coefficients. The 'constant '  term in such a 'polynomial' 
is a matrix function f(x),  while the other terms are of the following kinds: 
qA ~', qF k , q[A ~', A~], q[A ~', Fk], [Q, A~'], [Q, Fk], [Q, [A ~', AV]], 

[Q, [A ~', Fk]], where q(x) is a scalar function while Q(x) is an L-valued function. 
Coefficients of similar terms are then equated in each of the 10 polynomial 
equations, this process yielding an enormous set of algebraic and partial differen- 
tial equations which, however, are not hard to solve. Indeed, by a straightforward 
procedure, we find: 

~1 = ~2  = ~3 ~ ~4  = 0 ;  

b 1 = b2-b (x ) ,  b 3 = b 4 = b 5 = b 6 = 0 ;  

gk(x)=O, k = l  . . . . .  6; 

A~(x) = Oab(x) = garb v. 
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We also obtain the following set of partial differential equations: 

o ° = O x  = o = - 0 , o ,  

0__ O 0 = O ~ -  031, O y - -  0 2 ~  032 , O 0 = 0 3 ~  (0 3 , 

D~ 2 __ I __ 3 DZ 3 _ = - D x  = 0)  4 ,  D~ - - D x  -- 0)s, = - D y  = 0 ) 6 ,  

where the to ~ are functions of x. Finally, we have the relations 

0 / 0 0 ~  O/11 = O/22~  0 / 3 3 =  __0)0, 

Gill = ff22 ___ ff33 ~ G44 = G55 ~ G66 ~ __20)0. 

The general solutions of the partial differential equations can be found by a 

power series expansion of the D ~'. The  solutions are 

D O =  Co+0/ t+0 / l x+0/2y+0/3z+ 

+/3o(t2 + x z + y2 + z 2) _ 2(/31 tx + /3z t y  +/33tz ) ,  

D I = Cl+0/X+Otl t+0/4y+0/5Z--  

_/31(t 2 + x 2 _ y2 _ z z) + 2(/3otX - /32xy - /33xz) ,  

D 2 = c2 + 0/y + a2t  - a4x  + 0/6z - 

_ /32( t  2 _ x 2 + y2 _ z 2) + 2(/3oty - /3~xy  - /33 yz), 

D 3 = C3 + 0/z + 0/3t - 0/5x - 0/6y - 

_ / 3 3 ( t 2  _ X 2 _ y2 + Z2) + 2(/30tz - / 3 1 x z  - /32 yz), 

where the ca,  a ,  ak, /3. are real constants. Having  the D "  at our  disposal, we 

can now evaluate the quantities 0 ) k  ( k  = 0 ,  1 . . . . .  6) and use them, in turn, to 
evaluate the 0/.v and G ig of Equat ion (4.8) (recall that the/3~k and 6 i" are zero). 

Then,  given that we have already olatained expressions for the B J" and G i, we 

can write the solutions for B ~ and G i. We leave this straightforward construct ion 

to the reader,  and we urge her or him to check that the result includes the correct  

transformations of the tensors A ~ and F ~", corresponding to the infinitesimal 

coordinate changes [13] 

x t ' '=  x "  - D " ( x ;  8c~,  60/, ~ak ,  8/3,,) 

where the parameters  ~%, etc., are infinitesimal versions of the previously 
defined parameters .  We remark  that the general forms of the solutions for B ~ 
and G i - G t'" ( g  < v) found in this way are 

B t" = O t ' ( A " ;  0/, at, , /3x) + [ b ( x ) , A  t'] + Ot'b(x), 

G t"  = R~'"(F~°; a ,  ak , /3A)  +[b(x) ,  F~'"], 

where the O ~' and R ~'~ are linear functions of the A ~ and F x°, respectively, and 
where O ~' = R t"  = 0 for a = 0/k =/3A = 0. The  case O t' = R t'" = 0 corresponds to 
the gauge transformation (cf. Equations (3.21) and (3.22)) 
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A'~ = U A ~ U  - 1 -  UO~U -1, F'~,, = UF~,~,U -~ (4.11) 

where U(x)= exp{-b(x)} and b(x)=--Ok(x)Lk,  the O k being real, x-dependent 
parameters, and the Lk being the basis of the Lie algebra L. 

We now find expressions for the infinitesimal group operators. The vector V of 
Equations. (4.5) and (4.6) is parametrized by the 15 real parameters c , ,  or, 
a k - a , ,  ( ~ <  u), /3,, and by the real parameters Ok(x). The 15-parameter 
subgroup corresponds to coordinate transformations, so it is sufficient to express 
the corresponding 15 operators in the basis {O/Ox~'}. From the solutions for D*" 
and from Equation (2.11), we find, in the notation of Equation (A4) of the 
Appendix: 

0 
Pc,. Ox ~ = ~ ,  P~ = x"O,,  

P~,,,v = x,O~ - x~a~ (/x < v), Pt3,, = 2x,,xVO, - xvx~a,. 

These are readily identified as the infinitesimal operators of the conformal group. 
Conformal invariance is a familiar property of the Yang-Mills equations. 

Let Vg be the part of the vector V that corresponds to the internal (gauge) 
transformations of Equation (4.11). We write, in the spirit of Equations (2.8) and 
(2.10), 

Vg = fib, A~] + 0,,b) ~ + [b, E~]  0/~ ~o 

_ _  ~ , ; k ,3 _ C ~ O , F ~  ~ , - (C°OA~+O'~)-d-A~ O F ~  

where we have used Equations (4.3) and (4.4). From the above expression we can 
read off the operators corresponding to the parameters O ~ and 0k~,: 

_ k j Pi - C i j ( A ~  ~S--~,k + ~ f i  a_~_] OA~, ~'~ O F k J  ' 

0 
P ~ -  OA k. 

With the aid of the Jacobi identity, the reader may show that the P~ satisfy 
isomorphic commutation relations with the L~ (Equation (4.4)). We thus conclude 
that the P~ constitute a realization of the Lie algebra L. A comparison with 
Equation (A6') shows that these operators are associated with the action of a Lie 
group, via its adjoint representation, on a manifold with coordinates A~ and F~v. 

5. Concluding Remarks 

As a conclusion to this paper we would like to make a few comments on the 
usefulness of the method described in the previous sections. The advantages of 
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this method (as we perceive them) are manifest on both the conceptual and the 
practical or computational levels. At the conceptual level, new insights are 
gained on the transformation character of certain geometrical objects with 
complex tensorial structures. At the computational level, the technique provides 
a faster and more compact way to derive symmetries. 

The reader may question the validity of the last statement above, in view, for 
example, of the length of the previous section on the Yang-Mills equations. Let 
us thus briefly compare our present approach to the aforementioned problem 
with other approaches at our disposal. 

First, let us sketch one possible treatment based on the original technique as 
proposed in [1]. To begin with, Equations (4.1) and (4.2) must be written in 
component form by using Equations (4.3) and (4.4): 

C~kA~F i =0 ,  (5.1) 

C k A  i AJ 

where the i, j, k run from 1 to n, the latter denoting the dimension of the Lie 
algebra L. Thus, we have a total of 10n equations, which may be represented by 
a set of 10n 4-forms tOk in the (4+ 10n) variables x '~, A~ and F~ v. We then 
demand that 

~toi = aktok, (5.3) 
v 

where the a k are scalar quantities and where 

V=D,__0__O + u ,  0 + i O 
Ox ~, " k  OA~ Gk - ~  (5.4) 

(here we have re-labelled the F~ ~ as F~). 
Substituting Equation (5.4) into Equation (5.3) we obtain a system of 10n 

exterior equations, which involve a total of 1 +40n  different basis 4-forms. 
Equating coefficients of similar terms we finally obtain a system of 10n + 400n 2 
differential and algebraic equations (some of which will be trivial identities). 
Using these relations we can then eliminate the coefficients a ~ and solve for the 
components of the vector V. 

Given that for the lowest-order non-Abelian gauge group, SU(2), it is n = 3, 
we see that such an approach would require the solution of a minimum of 3630 
equations! (In fact, there are now computer programs that do just this.) We now 
see the advantage of using the generalized method: we were able to calculate the 
symmetries of the YM system for any gauge group, no matter how large its 
order. ('Accidental' or 'hidden' symmetries, associated with a particular gauge 
group, can be found only by allowing generalized vector fields, in the sense of 
[31.) 

As a second alternative, the reader may try using the algebraic techniques 
described in Chapter 2 of [3] (remember that we are concerned with point 
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transformations only). In this approach we again write the YM equations in their 
component form (5.1)-(5.2), but now represent this system as a set of algebraic 
relations 

A ~,(A~, O~,Af, OxOpAr) = 0 

in the variables indicated, where v = 0, 1, 2, 3 and k = 1 . . . .  , n, and where the 
quantities Aye can be easily inferred from Equations (5.1)-(5.2). We then define 
the vector field 

V =  D~'--~O + O 
Ox ~ B~ OA[ '  

construct its second prolongation pr (2) V (which is by no means an easy task), and 
demand that 

pr (2) V(A ~) = 0 when A; = O. 

It turns out then that the coefficients of a large number of monomials in A f  and 
its derivatives must vanish, which eventually gives an enormous set of partial 
differential equations for the coefficients of V. Again, the higher the order of the 
gauge group, the more cumbersome the problem becomes. 

One final word. It seems to us that there are problems in which it is absolutely 
important to retain the vector or matrix structure of the given PDEs. An example 
is the self-dual Yang-Mills equation in the J formulation, discussed in [4]. (The 
reader is invited to try this problem in component form, using any method she or 
he prefers.) It is remarkable that, in this problem, the generalized isovector 
approach gives, besides symmetry transformations, an explicit construction of a 
linear system, as well as of infinitesimal B~icklund transformations for the self- 
dual system. 

6. Appendix: Group Operators 
Consider first an n-dimensional Lie group G of transformations on an m- 
dimensional manifold M. Denote by { x l , . . . ,  x"} a local set of coordinates on M 
and by {a 1 . . . . .  a"} a real, faithful parametrization of G near the identity (the 
identity, by convention, corresponds to a k = 0, all k.) For every g in G define the 
operator T(g), acting on functions F on M, by 

[ r (g)F](x)  -- F(g-Xx) (A1) 

where x is a point on M, and where gx generally denotes the action of G on M. 
Infinitesimally the group transformations can be expressed as 

x ~''--- x ~' + 8akU~(x), (A2) 

with ~ = 1, . . . ,  m; k = 1 . . . . .  n. Therefore 



174 C.J. PAPACHRISTOU AND B. KENT HARRISON 

[ Z(g)F](x) = F(x  ~" - 8akU ~) 

-~ [ ( 1  - ~a~U~O~)F](x) 
- [(1 + V)F](x) (A3) 

where 0,=-0/Ox ~. The  operator  V =  k ~, _ --~a UkO ~ = 8akPk is an infinitesimal iso- 
vector  in the geometric language. 

Infinitesimal group operators Pk (k = 1 , . . . ,  n) are defined by 

=- 0-~ [T(g)F](x)l al . . . . .  a" = 0 [PkF](x) 

= [ -  U ~ (x)O.F](x). ( i4 )  

The  operators T(g) and Pk constitute realizations of G and its Lie algebra, 
respectively. 

Consider now the case where G is a representation of a linear Lie group and 

assume that, infinitesimally, 

x' = gx = (1 + ~akLk)X, (A5) 

where the matrices Lk (k = 1 , . . . ,  n) satisfy the usual commutat ion relations 

[L,, Li] = C~Lk.  

The  operators Pk of Equation (A4) are now written 

Pk = -(Lk)~xVO. (A6) 

and they satisfy [P,, P/] = C~Pk. 
In particular, if x is a vector  transforming according to the adjoint represen- 

tation of G: (Li)~ = C~, then Equations (A5) and (A6) are written, respectively, 

x k'~- x k + C~Sa'x j, (A5') 

P, = --CkxJak. (A6') 
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Lax pair, hidden symmetries, and infinite sequences of 
conserved currents for self-dual Yang-Mills fields 
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Abstract. A Lax pair which linearizes the self-dual Yang-Mills (SDYM) equation is found 
and shown to be intimately related to the general symmetry problem far SDYM. The linear 
system is used to derive an invertible recursion operator that produces new infinite sequences 
of non-local symmetries and associated conservation laws for SDYM. 

The integrability properties of the self-dual Yang-Mills (SDYM) equation have been a 
subject of extensive study over the past fifteen years. As is well known, this nonlinear 
equation, when properly formulated, displays many of the typical characteristics of 
an 'integrable' system, such as  parametric Backlund transformations [ 1-41, infinite 
sequences of conservation laws, both non-local [5-71 and local [8], linear system (Lax 
pair) [9 ,  10, 61, PainlevC property [ l l ,  121, etc. In  particular, the Lax pair was shown 
to be related both to the presence of a Kac-Moody 'hidden' symmetry [13-15] and to 
the existence of an infiite number of non-local conserved currents [lo]. 

This letter makes the observation that the SDYM equation can be linearized in more 
than one way. We propose a new Lax pair for SDYM which allows the relationship 
between the symmetry and integrability aspects of this equation to become most 
+-n-.̂ ..n-n..t TI.:" T -- ..-A ir t- rn-.+l..C~ .." :n.mrt:hln .P,-l.,.L:An nnam+nr ss,h:,-h LLLL""pLL'C1.t. l , , , D  -a,, pa.. 10 U I C "  L" I " . I 9 L . " I . .  Y.. ...I*... U,., .*.,".I.".. "y""L"1 n..,.,.. 

produces new infinite sequences of non-local symmetries and associated conservation 
laws for SDYM. The previously mentioned Kac-Moody symmetry appears naturally as 
a subsymmetry generated by purely internal transformations. 

We write the SDYM in gauge-invariant form [16, 17, 61: 

F ( J )  = Dj(J-'J,)+D,(J- 'J , )  = O  ( 1 )  

(where we use the notation Jy = D,J = J J / J Y ,  etc, for partial derivatives). The variables 
y, z, f, Z are constructed from the coordinates of an underlying complexified Euclidean 
space in such a way that f and 2 become the complex conjugates of y and 2. respectively, 
when the above space is real. The variable J is, in general, an N-dimensional complex, 
non-singular matrix. For real SU( N )  gauge theory, J is required to be a Hermitian 

Let J ' =  J + a Q ( J )  be an infinitesimal symmetry transformation, i.e. one which 
leaves equation ( 1 )  invariant. Here Q ( J )  is a functional which may be local or non-local 

C l  h, P\ ..."ti" i" .-"I -""eP 
YL.,'., c, .11LL,llA 111 .CLL1 "pa.,-. 
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in 3, while a is an infinitesimal parameter. 'The symmetry condition in order that 
F(J ' )  = 0, whenever F ( J )  = 0, is 

(2) 

One often says that the functional Q(J)  is a symmetry cboructeristic for ( 1 ) .  
Equation ( 2 )  has been solved for the particularly simple case of point symmetries 

by using isovector techniques [ 2 , 3 ] .  Moreover, the internal symmetry: Q ( J )  = JM, 
where M is a constant matrix, serves as a hasis for constructing the Kac-Moody 
'hidden' symmetry of SDYM [13-15] .  We will'presently extend the invariance group 
by adding infinite sequences of symmetries associated with coordinate transformations. 
To begin with, we propose the following linearization of SDYM. 

Proposition 1. Consider the pair of linear equations for I): 

D j ( J - ' [ Q ( J ) J - ' l , J l  + D z I J - ' [ Q ( J ) J - l l , J J  = 0. 

J ( J - l $ ) f = A ( $ J - ' ) y J  J ( J - ' $ ) F  = -A($J.r'),J (3) 
where A is a complex parameter and J is a matrix function. This system is integrable 
for $ if J is a solution of (1): F ( J )  = 0. Moreover, if $ ( J ;  A )  is a solution of the linear 
system (3), for some SDYM field J, then $ is a symmetry characteristic, i.e. satisfies (2). 

Proof: The integrability condition ( J - ' $ ) 2 j  = ( J - ' $ ) j 2  yields 

D p [ J - ' ( $ J - ' ) , J l  + D J J - ' ( $ J - ' ) , J ]  = 0. (4) 

The integrability condition (rY. =$zy  yields (after a lengthy calculation, and by using 
(4)): 

[J - '$ ,  F ( J ) ] = O .  

For this to be satisfied independently of $, one must have F ( J )  =O.  A comparison of 
(4) and (2) then implies that $ ( J ;  A )  is a symmetry characteristic of (1). 

Thus, equations (3) constitute a Lax pair for SDYM, the solution $ of which pair 
is a symmetry generator. It is natural to seek an explicit construction of $ for given J 
and A. To this end, we try a Laurent expansion in powers of the parameter A: 

tm 

$ ( J ;  A )  = 1 A"Q'"'(J). ( 5 )  
n=-m 

Substituting this into equations (3), and equating the coefficients of A"+', we obtain 
the pair of equations: 

J[J-'Q'"+''l i  = [Q'"'J-'] ,J JIJ- lQ'"+l '  = - [Q'"'J- ' ]J .  ( 6 )  

The consistency of these relations requires that both Q'"' and Q'""' satisfy ( 2 ) .  
Technically speaking, equations (6) are a strong Backlund transformation for the 
symmetry condition (2) of SDYM, for a given solution J of ( I ) .  Equations (6) may be 
rewritten in the form of an invertible non-local recursion operator: 

Q'""'= JD;'{J- ' [Q'")J-~] ,  J) Q'""'= -DT'IJ"-'O'"'IiJ"}J, (7) 
Starting with a known symmetry Q'''(J) of SDVM (say, a local symmetry), one may 
construct an infinite sequence of symmetries Q ' " ' ( J )  (where n = *I,  i 2 , * 3 , .  . . , i 00 )  

simply by employing the recursion relations (7). At the same time, the solution ( 5 )  of 
the Lax pair is formally represented as an infinite sum of symmetry characteristics of 
SDVM. 
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If the original (untransformed) solution J satisfies det I= 1 and It= J in real space, 
the conditions in order that a symmetry Q ( J )  preserve these properties of I, are 
tr(I-'Q) = O  and Q'= Q in real space (where the dagger denotes Hermitian conjuga- 
tion). Let Q'"' be a characteristic with these properties. In general, neither Q'""' nor 
Q"-", as given by equations (7), will be Hermitian. To take care of this problem, we 
use the fact that the symmetry condition (2) is linear in Q ( J ) ,  hence the difference of 
two solutions is again a solution (for the same I). Thus we consider the following 
recursion relation in place of those of equations ( 7 ) :  

(8) 

It is readily verified that this operator preserves the required properties of 0'"' for 
Hermitian SL(N, C) SDYM solutions. 

The recursion operator does more than produce new symmetries. Returning to the 
symmetry condition (2) we observe that it has the form of a continuity equation which 
is satisfied for all symmetry characteristics @"'(I ) :  

Q'""' = JD;'(J-'[ Q'"'J-'],I] + D;'(J[J- '  Q'"'IjJ-')J. 

D,(J-'[Q'"'(I)I-'l,Il+ D,{I- ' [Q'"'(I)I- ' l , I )  = 0. (9) 

We thus obtain an infinite sequence of non-local conservation laws for SDYM, corre- 
sponding to the infinite sequence of non-local characteristics Q'"'(J) .  We note that 
the conserved 'charges' are linearly dependent upon symmetry characteristics. This 
feature is new, not present in older conservation laws for SDYM [ 5 , 7 ] ,  and may suggest 
that these currents are associated with some underlying Noether structure. 

We now study the relationship of our Lax pair (3) to the one known previously 
[6, 9, 101 for SDYM: 

Xi= A(Xy + J - ' I , X )  X,= - A ( X z + I - ' I z X ) .  (10) 

We have found a simple algebraic' relation which allows one to construct solutions * 
of (3) from solutions X of (10) (but not vice versa) for the same I: 

Proposifion 2. Let X ( J ;  A) be a solution of equations (10). for a given SDYM solution 
J. Consider the function # ( I ;  A )  defined by 

J, = J X T X - ~  (11) 

T = f ( y + A i ,  z - A j ,  A )  (12) 

where 

is an arbitrary function of the indicated variables. Then, J, is a solution of equations (3). 

ProoJ We first note that, according to (121, T satisfies the relations & = A T , .  and 
T,= -AT,. Putting 4 = X T X - ' ,  and using equations (lo), we find that 4 satisfies the 
pair of equations 

&=A(4y+[J-'Jy,  +I)  4.0 = - A ( + ,  + [ J - ' J z ,  41). 
By substituting 4 = I - '@,  we recover the linear system (3) for J,. 

Thus, ( I t )  and (12) constitute a weak, non-auto-Backlund transformation which 
produces solutions of the Lax pair (3) from solutions of the Lax pair (10) (this does 
nof imply, however, that a / /  solutions of (3) may be obtained in this way). This 
transformation is of practical value when seeking solutions of (3). considering the fact 
that several solutions of (10) are known (see, for example, [9] and [lo] for results 
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related to the multi-instanton solution). Special solutions JI of the Lax pair (3)  are 
important since, as we have seen, they yield new hidden symmetries and conservation 
laws for SDYM. 

In concluding this letter, we give examples of new symmetries by constructing a 
few of them explicitly. The conditions det J = 1 and J' = J will be assumed throughout. 

(1) First, we remark that the known symmetries can be recovered by using our 
symmetry-generating process. Let us start with the internal symmetry Q'O'(J)  = 
J M  + M'J, where M is a constant, traceless matrix. Application of the recursion 
operator (8) yields, after a straightforward calculation 

Q"'(J)  = J [ P ,  M I  + [ M I ,  P ] J  

where P and P are potentials for the SDYM equation, defined by J-'J, = P i ,  J- 'J ,  = -PF 
and JpJ-' = pz, J J '  = -py (note that, by the conditions imposed on J, the P and p 
are traceless and Hermitian-conjugately related in real space). 

Repeated application of the recursion operator, and expansion of the matrix M in 
the basis of SI(  N, C ) ,  yield an infinite set of infinitesimal transformations which 
constitute the familiar Kac-Moody symmetry of SDYM [13-151. In the literature [I31 
this symmetry was found by exploiting the infinitesimal transformation 6J = - J X M X - ' ,  
where X is a solution of system (IO) and M is an infinitesimal constant matrix. (The 
connection of the aforementioned transformation with (11) is evident.) 

(2) Let us start with the translational symmetry [3] Q " ' ( J ) = J Y + J p  (note that 
tr(J-'J,) = 0, etc). Application of the recursion operator (8) yields 

Q"'(J)  = J(P,+  PJ+  (FY+ &)J 

and so forth. We thus obtain an infinite sequence of new non-local symmetries and 
conservation laws; the latter are found by direct substitution of the 0'"' into (9). 

(3) The dilational symmetry Q'"'= yJy + zJ, + j J F +  ZJ? yields 

Q"' = J(YP,  + ZP, + jp9  + ZPJ + (yFy + zP, +j@, + ~ P & J  
and so forth. 

We work similarly for the remaining coordinate symmetries [2,3]; i.e., the transla- 
tional symmetry Q"'= J z + J z ,  and the'rotational'symmetry Q ' o ' = z J y - y J , + Z J F - ~ J z .  

In summary, we have proposed a linearization of SDYM which makes the connection 
between symmetry and integrability most transparent. The Lax pair was used to 
construct an invertible recursion operator which, in turn, produced new hidden non- 
local symmetries and conservation laws. We have discussed possible representations 
for solutions of the Lax pair, either as infinite sums of symmetry characteristics, or as 
images, under a weak Backlund map, or solutions of the Belavin-Zakharov-PohImeyer- 
Chau linear system. The aforementioned map, being non-surjective, does not yield the 
general solution of the Lax pair; this probably explains why the older linear system 
fails to produce the complete symmetry group of SDYM, in contrast to the new one. 
The solution-generating aspects of the latter system will be explored in future publica- 
tions. 
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Abstract: A systematic construction of a Lax pair and an infinite set of conservation laws for

the Ernst equation is described. The matrix form of this equation is rewritten as a differential

ideal of gl(2,R)-valued differential forms, and its symmetry condition is expressed as an exterior

equation which is linear in the symmetry characteristic and has the form of a conservation law.

By means of a recursive process, an infinite collection of such laws is then obtained, and the

conserved “charges” are used to derive a linear exterior equation whose components constitute

a Lax pair.
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1. Introduction

The search for the connections between symmetry and integrability has always been a

central problem in the study of nonlinear partial differential equations (PDEs). For

those PDEs having an underlying variational structure, the work of E. Noether and its

extensions (see, e.g., [1,2]) provide an important link between variational symmetries

and conservation laws. Non-variational connections between symmetry and integrability,

however, also exist. They are often related to the possibility of “linearizing” a nonlinear

PDE by use of a Lax pair, i.e., a pair of coupled PDEs linear in an auxiliary function ψ and

integrable for ψ on the condition that the original (nonlinear) PDE is satisfied.Linearity

is an important issue here,since the symmetry condition (characteristic equation) of a

∗ papachristou@snd.edu.gr
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PDE is itself a linear PDE for the symmetry characteristic [1,2].

A given nonlinear PDE may often be linearized in more than one way by different

choices of a Lax pair. A particularly useful choice is the one in which the Lax pair plays

the role of a Bäcklund transformation connecting the PDE with its symmetry condition

[3], so that the solution ψ of the pair is a symmetry characteristic for the PDE (or, more

generally, is linearly dependent on a symmetry characteristic). Hence, in a sense, the

symmetry condition is “built” into the Lax pair. In this way, one obtains a symmetry of

the PDE by integrating the associated linear system.

A well-known example where these ideas find wide applications is the self-dual Yang-

Mills equation [4,5]. Interestingly, this has been shown to be a sort of prototype equation

from which several other known PDEs are derived by reduction [6,7]. One such PDE is

the Ernst equation of General Relativity describing stationary, axially symmetric grav-

itational fields. In a previous paper [8] the authors proposed a new Lax pair for this

equation (an older one was found by Belinski and Zakharov [9]) and showed that the

solution ψ of this pair is indeed linearly related to a symmetry characteristic. In addition

to giving new “hidden” symmetries, the Lax pair also leads to the construction of infinite

collections of conservation laws for the Ernst equation.

Admittedly, finding a Lax pair with specific properties almost always requires a certain

amount of guessing, as well as a lot of patience in a long trial-and-error process. We now

ask the question: Can a linear system such as that of [8] be derived in a systematic way?

This article answers this question in the affirmative. As we show, the symmetry condition

alone leads one straightforwardly to the discovery of infinite sets of conservation laws,

as well as a Lax pair having the desired properties. Our formalism is expressed in the

language of exterior differential forms which is both elegant and economical. Hence, for

example, differential equations expressing conservation laws, as well as systems of PDEs

constituting differential recursion relations or Lax pairs, will now be represented by single

exterior equations. In this regard, it would be more appropriate to speak of an exterior

linearization equation, rather than of a Lax pair in the ordinary sense of this term.

In short, the process is as follows: First, we rewrite the Ernst equation as a differ-

ential ideal of matrix-valued differential forms and express its symmetry condition as an

exterior equation which is linear in the symmetry characteristic. This latter equation is

in conservation-law form, and this fact allows us to introduce a first “conserved charge”

or “potential”. A second conservation law is then found, with a new potential, and

the process continues indefinitely, yielding a double infinity of conserved charges. These

charges are related to each other via a certain recursion relation and are used as Laurent

coefficients in a series whose terms involve powers (both positive and negative) of a com-

plex “spectral” parameter. This series (assuming it converges) represents some complex

function Ψ, which is shown to satisfy an exterior linearization equation equivalent to a

Lax pair.
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2. Mathematical Preliminaries

The variables xμ ≡ ρ, z (μ=1,2, respectively) will be regarded as local orthogonal coor-

dinates in a 2-dimensional Euclidean space with metric δμν . Geometrical objects defined

in this space (such as functions or differential forms) are assumed matrix-valued, with

values generally in gl(2,C) (with appropriate restrictions, such as real-valuedness, etc.,

in accordance with physical requirements).

The volume 2-form in our space is

τ = 1/2 εμν dx
μdxν = dρ dz

(the usual summation convention is assumed). For any 1-form

σ = σμ dx
μ = σ1 dρ+ σ2 dz,

the dual of σ with respect to τ is defined as the 1-form *σ with components

(∗σ)ν = τμν σ
μ = εμν δ

μλσλ ,

so that

∗σ = (∗σ)μ dxμ = −σ2 dρ+ σ1 dz.

In particular, *dρ=dz , *dz = −dρ. Also,

∗(∗σ) = − σ (1)

For 1-forms σ1 and σ2, we have that

∗σ1 ∧ ∗σ2 = σ1 ∧ σ2 , σ1 ∧ ∗σ2 = − (∗σ1) ∧ σ2 (2)

We note that the * operation is linear, so that

∗(ασ1 + β σ2) = α ∗ σ1 + β ∗ σ2 (3)

where α and β are 0-forms.

Given any differential forms ζ and ξ , we define the commutator

[ζ, ξ] ≡ ζ ∧ ξ − ξ ∧ ζ.

In particular, if σ is a 1-form and ψ is a 0-form, then [σ,ψ]=σψ − ψσ and, by the

antiderivation property of the exterior derivative,

d [σ, ψ] = [dσ, ψ] − {σ, dψ} (4)

where, in general, curly brackets denote anticommutators:

{σ1 , σ2} ≡ σ1 ∧ σ2 + σ2 ∧ σ1.
We note that, to simplify our notation, we will often omit the symbol ∧ of the exterior

product. It should be kept in mind, however, that exterior multiplication of differential

forms will always be assumed. Thus, an expression like σ1σ2 should be understood as

σ1∧σ2.
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3. Ernst Equation: Geometrical Formulation and Symmetry

We adopt the following matrix form of the Ernst equation [6,7]:

(ρg−1gρ)ρ + (ρg−1gz)z = 0 (5)

where subscripts denote partial derivatives with respect to the variables ρ, z, collectively

denoted xμ (μ=1,2, respectively). The matrix function g is assumed to be SL(2,R)-valued

and symmetric. With the parametrization

g =
1

f

⎡
⎢⎣ 1 ω

ω f 2 + ω 2

⎤
⎥⎦

and by setting E = f+iω, we recover the Ernst equation in the usual form,

(ReE)∇2E = (∇E)2.

With the substitutions

A = g−1gρ , B = g−1gz ,

equation (5) becomes equivalent to the system of PDEs

A+ ρ (Aρ +Bz) = 0 (6)

Bρ − Az + [A , B] = 0 (7)

The second equation is just the integrability condition in order that g may be recon-

structed from A and B.

We introduce the matrix-valued “connection” 1-form

γ = g−1dg = Adρ+B dz (8)

The integrability condition d(dg)=0 in order that g may be recovered from γ, together

with the obvious requirement that g be nonsingular, yield the Mauer-Cartan equation

ω=0, where ω is the 2-form

ω = dγ + γ ∧ γ = dBdz − dρ dA+ [A , B] dρdz (9)

We also construct the 2-form

d (ρ ∗ γ) = A dρ dz + ρ (dAdz + dρ dB) (10)

where *γ =-Bdρ+Adz .

We now observe that Eqs.(6) and (7) correspond to the system of exterior equations

d (ρ ∗ γ) = 0 , ω = 0 (11)
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Indeed, one may consider d(ρ*γ) and ω as 2-forms in a jet-like space of four variables:

the scalar variables xμ=ρ,z and the gl(2,R) variables A and B. Equations (6) and (7)

are recovered by projecting Eqs.(11) onto the base space of the xμ.

Let I{d(ρ*γ), ω} be the ideal of forms [10-12] generated by the 2-forms d(ρ*γ) and

ω. The first form is exact, thus its exterior derivative is trivially a member of the ideal,

while, as we can easily show, dω = ω ∧ γ − γ ∧ ω, which also belongs to I. We thus

conclude that I is a differential (closed) ideal.

The first of Eqs.(11) implies the existence of a matrix potential X such that ρ*γ=dX

(that is, ρA=X z, ρB=-X ρ).Then, *dX=- ργ, and, by the Mauer-Cartan equation ω=0,

we get

dρ ∗ dX − ρ d ∗ dX + dXdX = 0 (12)

[where use has been made of the first of Eqs.(2)]. In component form,

Xρ − ρ (Xρρ +Xzz) + [Xρ , Xz] = 0 (13)

We introduce the covariant derivatives

Dρ = ∂ρ + [A , ] , Dz = ∂z + [B , ] (14)

(where ∂ρ=∂/∂ρ and ∂z=∂/∂z) which are seen to be derivations on the Lie algebra of

gl(2,C)-valued functions. We also define an exterior covariant derivative D which acts

on gl(2,C) functions Φ as follows:

DΦ = dΦ + [γ, Φ] = (DρΦ) dρ+ (DzΦ) dz (15)

We now look at the symmetry problem for system (11). We first note that all symmetries

of a system of PDEs can be expressed as infinitesimal transformations of the dependent

variables alone [1,2]. Thus, all symmetries may be represented by “vertical” vector fields,

i.e., vectors with vanishing projections on the base space of the xμ. Let δg=αQ [g] be an

infinitesimal symmetry transformation of Eq.(5), where α is an infinitesimal parameter

and Q is a matrix-valued function which may depend locally or nonlocally on g. It is

convenient to set Q=gΦ, where Φ is another matrix 0-form. The infinitesimal symmetry

of Eq.(5) is then written as

δg = αgΦ (16)

(with appropriate restrictions on Φ in order that the transformation preserve the sym-

metric SL(2,R) character of g). This induces the symmetry transformations δA = αDρΦ,

δB=αDzΦ of system (6)-(7). These are summarized by the formal vector field

V = DρΦ
∂

∂A
+ DzΦ

∂

∂B
(17)

The symmetry condition on the ideal I of the 2-forms d(ρ*γ) and ω is that the Lie

derivative with respect to V should leave this ideal invariant [10-12]:

LV I ⊂ I .
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This is satisfied by requiring that

LV d(ρ ∗ γ) = LV ω = 0 mod I {d(ρ ∗ γ), ω } (18)

By using Eq.(9) for ω, taking into account that the Lie derivative commutes with the

exterior derivative and satisfies the Leibniz rule, and by noting that

LV γ = LV (Adρ+B dz) = (DρΦ) dρ+ (DzΦ) dz = DΦ = dΦ + [γ, Φ] ,

we find that

LV ω = ω Φ− Φω ≡ [ω , Φ],

which is automatically a member of the ideal I, hence satisfies the condition for ω in

Eq.(18). On the other hand, by noting that

LV ∗ γ = LV (−B dρ+ Adz) = ∗ DΦ,

we find that the condition for d(ρ*γ) is expressed as an exterior equation which is linear

in Φ:

d (ρ ∗DΦ) = 0 on solutions (19)

(where “on solutions” means: when Eqs.(11) are satisfied). In component form,

(ρDρΦ)ρ + (ρDzΦ)z = 0 on solutions (20)

The reader is invited to derive the symmetry condition (20) directly from the Ernst

equation (5) by assuming a symmetry characteristic Q=gΦ and by applying the abstract

formalism described in [3]. (Note, however, that our present notation is different from

that of [3]. Specifically, the symbols Dρ and Dz, which here denote covariant derivatives,

have the meaning of total derivatives in [3].)

4. Conservation Laws and Exterior Linearization Equation

We now turn to integrability characteristics of the Ernst equation. As is well known,

the hallmark of integrability is the existence of a linear system or Lax pair. This system

may be compactified into a single exterior equation involving 1-forms, which will be

referred to as an exterior linearization equation. The purpose of this section is to describe

a systematic construction of such a linearization equation for the Ernst equation, or

equivalently, for the exterior system (11).

We begin with the symmetry condition (19):

d (ρ ∗DΦ) = 0 (21)

The corresponding infinitesimal symmetry transformation is g′ = g + αgΦ, according

to Eq.(16). This means that g′ is a solution of the general PDE (5) when g is a solu-

tion. However, we will not require here that the new solution g′ conform to the extra
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physical restrictions imposed on the original solution g, namely, of being symmetric and

having unit determinant. Thus, all real solutions Φ of the exterior equation (21) will be

admissible (e.g., Φ = g−1gz = B).

As its component form (20) suggests, the exterior equation (21) expresses a conserva-

tion law valid for solutions of the Ernst equation. Equation (21) also implies the existence

of a “conserved charge” or “potential” Φ′, such that

dΦ′ = ρ ∗DΦ = ρ (∗dΦ + [∗γ, Φ] )

[where use has been made of the linearity property (3) of the star operation]. Starring

this equation, solving for dΦ, and requiring that d(dΦ)=0, we find another conservation

law:

d (ρ ∗DΦ′ − 2Φ′dz) = 0 ,

by which we introduce a new potential Φ′′ such that

dΦ′′ = ρ ∗DΦ′ − 2Φ′dz = ρ (∗dΦ′ + [∗γ, Φ′ ] )− 2Φ′dz .

Starring this and applying d(dΦ′)=0, we obtain yet another conservation law:

d (ρ ∗DΦ′′ − 4Φ′′ dz) = 0 , etc.

This process suggests that we consider the following exterior recursion relation:

dΦ (n+1) = ρ ∗DΦ (n) − 2nΦ (n)dz

= ρ (∗dΦ (n) + [∗γ, Φ (n) ] )− 2nΦ (n)dz
(22)

with Φ(0)=Φ representing a symmetry characteristic of the Ernst equation in its general

form (5) [i.e., a solution of Eq.(21)].

In order that the exterior equation (22) be integrable for Φ(n+1) for an already known

Φ(n), the integrability condition d(dΦ(n+1))=0 must be satisfied. This yields

d
(
ρ ∗DΦ (n) − 2nΦ (n)dz

)
= 0 (23)

We will now show that Eq.(23) is a conservation law valid for solutions of the Ernst

equation. The left-hand side of (23) is written as

l.h.s. (23) = d (ρ ∗ dΦ (n) + [ρ ∗ γ, Φ (n) ] − 2nΦ (n)dz)

= dρ ∗ dΦ (n) + ρ d ∗ dΦ (n) + d [ρ ∗ γ, Φ (n) ] − 2n dΦ (n)dz .

By using property (4) and the second property (2), we have:

d [ρ ∗ γ, Φ (n) ] = [d(ρ ∗ γ), Φ (n) ] − ρ ∗ γ dΦ (n) − ρ dΦ (n) ∗ γ
= [d(ρ ∗ γ), Φ (n) ] + ρ γ ∗ dΦ (n) + ρ ∗ dΦ (n)γ ,

dΦ (n)dz = dΦ (n) ∗ dρ = dρ ∗ dΦ (n) .
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Therefore,

l.h.s. (23) = (1−2n) dρ ∗ dΦ (n) +ρ d∗ dΦ (n) + [d(ρ∗ γ), Φ (n) ]+ ρ γ ∗ dΦ (n) + ρ ∗ dΦ (n)γ.

Now, by rewriting the recursion relation (22) with (n−1) in place of n, we can express

dΦ(n), thus also *dΦ(n), in terms of Φ(n−1). Substituting for *dΦ(n) into the expression

for the l.h.s. of (23), and taking into account that dγ + γγ = ω, we finally find:

l.h.s. (23) = [d (ρ ∗ γ) , Φ (n)] − ρ2 [ω , Φ (n−1)] .

We note that this expression vanishes when d(ρ*γ)=0 and ω=0, i.e., for solutions of the

Ernst equation. This proves the conservation-law property of Eq.(23).

As we have just shown, the conservation law (23) is the necessary condition for Φ(n)

in order that the exterior equation (22) be integrable for Φ(n+1). For n =0, Eq.(23) is

just the symmetry condition (21), which is indeed satisfied by Φ(0) since the latter is, by

assumption, a symmetry characteristic. Now, we must show that the solution Φ(n+1) of

Eq.(22) also conforms to condition (23) with (n+1) in place of n. This will ensure that the

recursive process may continue indefinitely for all values of n, yielding an infinite number

of conservation laws from any given symmetry characteristic Φ(0). This time we need to

eliminate Φ(n) from Eq.(22) in favor of Φ(n+1). By this process we will actually derive

the necessary condition for Φ(n+1) in order that the exterior equation (22) be integrable

for Φ(n) when Φ(n+1) is already known. This will allow us to use the recursion relation

(22) “backwards” to obtain potentials Φ(n) and corresponding conservation laws (23) for

negative values of n also. Thus, the validity of Eqs.(22) and (23) will be extended to all

integral values n =0, ±1, ±2, . . .

Starring Eq.(22) and solving for dΦ(n), we get:

dΦ (n) = − 1

ρ
∗ dΦ (n+1) − [ γ, Φ (n)] +

2n

ρ
Φ (n)dρ (24)

We apply the integrability condition d(dΦ(n))=0, and use Eq.(24) again to replace dΦ(n)

where it appears. Then, a lengthy but relatively straightforward calculation, performed

with the aid of properties (2) and (4), shows that

d
(
ρ ∗DΦ (n+1) − 2 (n+ 1)Φ(n+1)dz

)
= [d (ρ ∗ γ) , Φ (n+1)] − ρ2 [ω , Φ (n)] .

So, the left-hand side of the above equation vanishes for solutions of the Ernst equation,

as it should.

In conclusion, starting with any symmetry characteristic Φ(0), we can use the recursion

relation (22) to find a double infinity of conserved charges (potentials) Φ(n) for n = ±1,

±2, . . . These charges are increasingly nonlocal in g, since they involve integrals of

increasing order of expressions containing the function g.

With these charges in hand, we now introduce a complex variable λ (to be identified

with a spectral parameter) and construct a function Ψ(xμ,λ) having the following series

representation for λ �=0:

Ψ(xμ, λ) =
+∞∑

n=−∞
λnΦ (n)(xμ) (25)
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We assume that the series (25) converges to the function Ψ which is single-valued and

analytic (as a function of λ) in some annular region centered at the origin of the λ-plane.

Hence, Eq.(25) represents a Laurent expansion of Ψ in this region.

Multiplying the recursion relation (22) by λn, summing over all integral values of n,

and using Eq.(25), we find an exterior equation linear in Ψ:

ρ ∗ DΨ− 2λΨλ dz =
1

λ
dΨ (26)

or explicitly,

ρ ∗ dΨ+ [ρ ∗ γ, Ψ]− 2λΨλ dz =
1

λ
dΨ (27)

Relation (26) is an exterior linearization equation for the Ernst equation, equivalent to a

Lax pair. Specifically, the exterior equation (26), linear with respect to Ψ, is integrable

for Ψ when the exterior equations (11) are satisfied.

The proof of this statement is outlined as follows: The integrability condition for

solution of Eq.(26) is d(dΨ)=0. So, the exterior derivative of the left-hand side of this

equation must vanish. By using algebraic manipulations which are by now familiar to

the reader (such as, for example, {*γ,dΨ}=−{γ,*dΨ}, dΨλdz=dρ*dΨλ, etc.), the above

requirement leads to the following exterior equation:

dρ ∗ dΨ+ ρ d ∗ dΨ+ [d(ρ ∗ γ) , Ψ] + ρ { γ, ∗ dΨ} − 2λ dρ ∗ dΨλ = 0 (28)

By starring the linear system (27), we find an expression for *dΨ:

∗dΨ = − λρ (dΨ+ [γ, Ψ] ) + 2λ2Ψλ dρ (29)

Differentiating this with respect to λ, we have:

∗dΨλ = − ρ (dΨ+ [γ, Ψ] ) − λρ (dΨλ + [γ, Ψλ] ) + 4λΨλ dρ+ 2λ2Ψλλ dρ

Substituting this equation and Eqs.(29) into the integrability condition (28), we finally

get:

[ d (ρ ∗ γ)− λρ2ω , Ψ ] = 0 ,

where ω=dγ + γγ . The above relation is valid independently of Ψ and λ if d(ρ*γ)=0

and ω=0, i.e., for solutions of the Ernst equation. This proves that the integrability of

the exterior equation (26) for Ψ is indeed dependent upon the satisfaction of the Ernst

equation.

In component form, Eq.(26) is written as a pair of linear first-order PDEs for Ψ:

ρDρΨ− 2λΨλ = 1
λ
Ψz

ρDz Ψ = − 1
λ
Ψρ

(30)

The reader is invited to show that the integrability of system (30) for Ψ requires that

equation (5) is satisfied (see also [8]). Thus, (30) represents a Lax pair for the Ernst equa-

tion. In fact, this pair is equivalent to that found by different means in [8]. What we have

shown is that this system may actually be constructed by a remarkably straightforward

process, by starting with the symmetry condition of the field equation.
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5. Connection to Other Linear Systems

It can be shown (see [8,3]) that, by solving the linear system (30) for Ψ, for a given

solution g of the Ernst equation, one simultaneously obtains an infinitesimal “hidden”

symmetry of this equation, given by the expression

δg =
α

2πi

∫
C

dλ

λ

(
gΨ(xμ, λ) + ΨT (xμ, λ) g

)
(31)

where α is an infinitesimal parameter, C is a positively oriented, closed contour around the

origin of the λ-plane, and ΨT denotes the transpose of the matrix Ψ. (Here, g is assumed

to conform to the physical restrictions of being real, symmetric, and of unit determinant.

Moreover, Ψ is required to be traceless and to assume real values when λ is confined to

the real axis. Then, the new solution g′ = g + δg obeys the same physical restrictions as

g.) Since solutions of the system (30) [or equivalently, the exterior linearization equation

(26)] are of importance in this regard, any mechanism for producing as many solutions as

possible would be useful. We now exhibit a simple transformation which maps solutions of

(a form of) the Belinski-Zakharov (B-Z) linear system [9] into solutions of our linearization

equation (26).

We recall the exterior linearization equation (27):

ρ (∗dΨ+ [∗γ, Ψ] )− 2λΨλ dz =
1

λ
dΨ (32)

where Ψ conforms to the physical conditions mentioned in the previous paragraph;

namely, trΨ=0 and Ψ(xμ,λ*)=Ψ*(xμ,λ) (the asterisk here denotes complex conjuga-

tion). On the other hand, a variant form of the B-Z linear system, adapted to the

particular form of our equations, is the following:

ρ (∗dΦ + ∗γ Φ)− 2λΦλ dz =
1

λ
dΦ (33)

Let Φ(g;λ) be a non-singular solution of the exterior equation (33) for some solution g of

the Ernst equation. We assume that Φ becomes real for real values of λ. Consider now

the function Ψ(g;λ) given by

Ψ = ΦT Φ−1 (34)

where T is an arbitrary traceless matrix function of the form

T = F

(
z − λρ2

2
+

1

2λ

)
(35)

subject to the condition that F be real-valued for real values of λ. It may then be

proven that Ψ(g;λ) is a solution of the linearization equation (32).

Although only a subset of the entirety of solutions of Eq.(32) can be produced in

this fashion, the transformation (34)-(35) is an effective way of taking advantage of our

knowledge regarding the B-Z formulation for the purpose of finding hidden symmetries

of the Ernst equation.
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Our method for finding a linear system and an infinite number of nonlocal conserved

currents for the Ernst equation is closely related to that of Nakamura [13]. In the latter

case, the Lax pair does not contain derivative terms with respect to the spectral param-

eter. Moreover, the infinite set of conservation laws is accompanied by a corresponding

infinite set of nonlocal symmetries, which is not the case with our method for the Ernst

equation but which is the case with regard to another familiar nonlinear system, the self-

dual Yang-Mills (SDYM) equation. To achieve these extra characteristics, however, one

has to perform an analytic continuation of g(ρ,z) into complex space and introduce more

independent variables. In this way the Ernst equation transforms into a reduced form

of the SDYM equation, and the mathematical treatments of these two systems become

quite similar.

Summary

In this article we have pursued our study of the relation between symmetry and inte-

grability characteristics of the Ernst equation. Taking advantage of the conservation-law

form of the symmetry condition, we have inductively produced a double infinity of non-

local conserved charges by means of a recursion relation. These charges were then used

as Laurent coefficients in an infinite series whose terms involve powers (both positive

and negative) of a complex “spectral” parameter. Within its domain of convergence,

this series represents a function Ψ which is seen to satisfy a certain linear system, the

integrability of which for Ψ is possible in view of the Ernst equation. Finally, we have

presented a simple transformation which maps all solutions of the Belinski-Zakharov Lax

pair [9] into solutions of our linear system, and we have compared our results to those of

Nakamura [13]. Our formalism was developed in the language of differential forms and

exterior calculus, which allowed us to present our equations in a more compact, as well

as a more elegant form.

It is remarkable that integrability properties of the Ernst equation, such as the ex-

istence of Lax pairs and an infinite number of conservation laws, can be derived in a

straightforward way by performing rather natural manipulations on the symmetry con-

dition. This characteristic, which is also observed in the case of the SDYM equation,

reveals a profound, non-Noetherian connection between symmetry and integrability. It

will be further explored in future publications.
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Abstract: A certain non-Noetherian connection between symmetry and integrability properties

of nonlinear field equations in conservation-law form is studied. It is shown that the symmetry
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1. Introduction

In a recent paper [1] an analytical method was described for constructing a Lax pair for the

Ernst equation of General Relativity. The starting point was the symmetry condition (or

linearized form) of the field equation. The latter equation is in conservation-law form, and

thus so is its associated symmetry condition. A doubly infinite hierarchy of conservation

laws was then constructed by a recursive process, and the conserved “charges” were used

as Laurent coefficients in a series representation (in powers of the spectral parameter) of

a function Ψ which was seen to satisfy the sought-for Lax pair.

It is natural to inquire whether this technique can also be applied to other nonlinear

partial differential equations (PDEs) of Mathematical Physics. This article describes a

general, non-Noetherian framework for connecting integrability characteristics of a given

nonlinear PDE to the symmetry properties of this PDE. It is remarkable that, by starting

∗ papachristou@snd.edu.gr
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with the symmetry condition, one may discover a number of important things such as

the existence of a recursion operator [2,3] for symmetries, a doubly-infinite set of (typi-

cally nonlocal) conservation laws, and a Lax pair which “linearizes” the nonlinear field

equation.

To illustrate the use of the method, application is made to two familiar nonlinear PDEs:

the chiral field equation and the self-dual Yang-Mills equation. In these examples, the

corresponding Lax pairs and infinite sequences of conservation laws are constructed ex-

plicitly. Moreover, the recursion operators for symmetries are derived. In the case of

the real Ernst equation, treated previously in [1], although a recursion operator doesn’t

seem to exist for that particular form of the equation (due to the coordinate “pathology”

which results in the explicit appearance of an independent variable in the PDE), one still

gets an interesting “hidden” symmetry transformation which leads to new approximate

solutions for stationary gravitational fields with axial symmetry [4].

2. The General Idea

Let F [u]=0 be a nonlinear PDE in the dependent variable u and the independent vari-

ables x, y, ... . The bracket notation [u] indicates that the function F may depend

explicitly on the variables u, x, y, ... , as well as on partial derivatives, of various orders,

of u with respect to the independent variables, denoted ux, uy, uxx, uyy, uxy, etc. We adopt

the definition according to which the PDE is integrable if it has an associated Lax-pair

representation, i.e., if it can be expressed as an integrability condition for solution of a

linear system of PDEs for an auxiliary field Ψ :

L i (Ψ ; u ; λ) = 0 i = 1, 2 (1)

where the differential expressions Li are linear in Ψ, and where λ is a (generally complex)

“spectral” parameter.

It has been observed that integrable PDEs often have an infinite number of symmetries

which may be produced, for example, with the aid of one or more recursion operators

(see, e.g., [2,3] and the references therein). This connection between symmetry and

integrability may be attributed to a variety of factors. For example, an integrable PDE

may have an underlying Hamiltonian structure in which the Lagrangian density possesses

an infinite number of variational symmetries. In this case, the Noether theorem provides

the connection between symmetry and integrability, the latter manifesting itself in the

presence of an infinite set of conservation laws. As is often the case, the existence of these

laws is associated with a Lax structure for the nonlinear problem.

Non-Noetherian connections between symmetry and integrability, however, may also ex-

ist. Let us recall that the nonlinear PDE F [u]=0 is a consistency condition for solution

of the system (1). On the other hand, the (generally complex) function Ψ will satisfy

some PDE of its own, also derived from system (1). This PDE will be linear in Ψ and

will contain u as a “parametric” function:
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G (Ψ ; u) = 0 (2)

where the expression G is linear in Ψ, and where u is a solution of F [u]=0 . We may say

that the system (1) is a Bäcklund transformation relating the nonlinear PDE F [u]=0 to

the linear PDE (2). Now, we already know an equation of the form (2): it is the symmetry

condition (linearized form) of F [u]=0 . Let u′ = u+αQ [u] be an infinitesimal symmetry

transformation for the latter PDE, where α is an infinitesimal parameter (we note that

any symmetry of a PDE can be expressed as a transformation of the dependent variable

alone [2,3], i.e., is equivalent to a “vertical” symmetry). The symmetry characteristic Q

[u] then satisfies a linear PDE of the form

S (Q ; u) = 0 mod F [u] (3)

where “mod F [u]” signifies that the PDE on the left is satisfied when u is a solution of

the nonlinear PDE F [u]=0 . Now, if it happens that Eqs.(2) and (3) become identical

when Ψ≡Q (i.e., if the functions G and S are the same), then the solution Ψ of the Lax

pair (1) will also be a symmetry characteristic of F [u]=0 :

S (Ψ ; u) = 0 mod F [u] (4)

Of course, as the examples of the self-dual Yang-Mills equation [5] and the Ernst equation

[1,4] have taught us, it is possible that a given nonlinear PDE admit more than one Lax

representation. What we are seeking here is a Lax pair which functions as a Bäcklund

transformation connecting the nonlinear PDE F [u]=0 to its (linear) symmetry condi-

tion (3). The symmetry condition itself is thus “built” into the Lax pair, and a very

fundamental connection between symmetry and integrability is established.

With regard to the complex parameter λ of the Lax pair (1), we remark the following:

Since the role of such a parameter is generally nontrivial, it will be required that λ be

nonzero (as well as, of course, finite in magnitude). We then expect that the solution

Ψ of system (1), for a given u satisfying F [u]=0 , will be an analytic function of λ for

λ �=0. This solution may thus be represented as a Laurent series expansion in powers of

λ, with u-dependent coefficients:

Ψ(u ; λ) =
+∞∑

n=−∞
λnQ (n)[u] (5)

where the functions Q(n)[u] may be local or nonlocal in u. Now, we recall that Ψ is

assumed to be a symmetry characteristic of F [u]=0 , and this must be true for all values

of λ in the Lax pair. Substituting Eq.(5) into Eq.(4) (which is linear in Ψ), and equating

coefficients of all λn to zero, we find a doubly infinite set of linear PDEs for Q(n), of the

form

S
(
Q (n) ; u

)
= 0 mod F [u] , n = 0, ± 1, ± 2, · · · (6)
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All Laurent coefficients Q(n)[u] are thus seen to be symmetry characteristics for the

nonlinear PDE F [u]=0 , and the presence of this infinite set of symmetries is intimately

related to the Lax pair.

Substituting the expansion (5) into the Lax pair (1), and equating coefficients of all

powers of λ to zero, we obtain a pair of linear PDEs containing Q(n) and (say) Q(n+1).

In essence, this is a Bäcklund transformation for the symmetry condition (3). This

differential recursion relation constitutes a recursion operator [2,3] for the PDE F [u]=0,

in the spirit of a new perception of this concept originally proposed by this author [5,6]

and, independently, by Marvan [7]. We thus have a method for the explicit construction

of such an operator. Starting with any symmetry Q(0), we can, in principle, use this

operator to derive a double infinity of symmetries Q(n) (although not all of them will

necessarily be nontrivial).

Finally, suppose that F [u] is a divergence, so that the PDE F [u]=0 has the form of a

conservation law. Then, its symmetry condition (3) also is in such form. Given that an

infinite number of symmetry characteristics Q(n)[u] are available, we immediately obtain

a doubly infinite collection of conservation laws for F [u]=0 from Eq.(6) (where now the

function S is a divergence). Typically, the recursion operator connecting the Q(n) to

each other is an integro-differential operator; thus, the conserved “currents” are generally

expected to be nonlocal in u .

3. Analytical Description of the Method

Our objective is the following: Given a nonlinear PDE F [u]=0 in conservation-law form,

we seek a Lax pair whose solution is a symmetry characteristic for this PDE, and, in the

process, we expect to derive a recursion operator for symmetries as well as an infinite

set of (nonlocal) conservation laws. Although the solution u of the PDE may depend on

more than two independent variables, we restrict ourselves to the case where F [u] is a

divergence in only two of them:

F [u] ≡ DxA [u] + DyB [u] = 0 (7)

where Dx and Dy denote total derivatives (see Appendix), which will also be indicated

by using subscripts: DxA ≡ Ax, etc. We will assume, in general, that u is square-matrix-

valued, and so are the functions A, B, F.

Let δu = αQ [u] be an infinitesimal symmetry of Eq.(7) (where α is an infinitesimal

parameter and Q is the matrix-valued symmetry characteristic). We write, in finite

form,

Δ u = Q [u] (8)

where, in general, Δ denotes the Fréchet derivative of any function f [u], with respect to

the characteristic Q (see Appendix). The symmetry condition for the PDE (7) is

ΔF [u] = 0 mod F [u] (9)
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where

ΔF [u] = DxΔA [u] + Dy ΔB [u]

(since Fréchet derivatives and total derivatives commute). Putting

ΔA [u] ≡ G (Q ; u) , ΔB [u] ≡ H(Q ; u) (10)

(where the functions G and H are linear in Q), we rewrite Eq.(9) in the form of a linear

PDE for Q :

S (Q ; u) ≡ DxG (Q ; u) + DyH (Q ; u) = 0 mod F [u] (11)

We note that S (Q ; u) is a divergence, so that the symmetry condition (11) is a conser-

vation law for the corresponding nonlinear PDE (7).

Equation (11) suggests that we introduce a “potential” function K , such that G = Ky

and H = −Kx (subscripts denote total differentiations). We assume that K is linearly

dependent on some new function Q′, and we write:

G(Q ; u) = DyK(Q′ ; u) , H(Q ; u) = −DxK(Q′ ; u) (12)

Clearly, this system is integrable for Q′ (mod F [u]) if Q satisfies the symmetry condition

(11). The integrability requirement for Q , on the other hand, will yield some linear PDE

for Q′. It is possible that, by an appropriate choice of the function K(Q′; u), this PDE
will be just the symmetry condition (11) for Q′:

S(Q′ ; u) = 0 mod F [u].

That is, Q′ will also be a symmetry characteristic. The system (12) then constitutes a

Bäcklund transformation (BT) for the symmetry condition (11). This BT may be viewed

as an invertible recursion operator for symmetries of the nonlinear PDE (7). Such an

operator will, in principle, produce a doubly infinite sequence of symmetry characteristics

Q(n) (n= ±1, ±2, ...) from any given characteristic Q(0).

To better display the recursive character of the BT (12), we rewrite this system as follows:

G
(
Q(n); u

)
= DyK

(
Q(n+1); u

)

H
(
Q(n); u

)
= −DxK

(
Q(n+1); u

) (13)

(n= 0, ±1, ±2, ...), where G and H are linear in Q(n), while K is linear in Q(n+1).

Now, since all the Q(n) satisfy the PDE (11), the BT (13) also yields a double infinity of

conservation laws for the field equation (7):

DxG
(
Q(n); u

)
+ DyH

(
Q(n); u

)
= 0 mod F [u] (14)

Starting with a known symmetry characteristicQ , we can evaluate the conserved “charges”

Q(n) (n= 0, ±1, ±2, ...) as follows: (a) We take the BT (13) with n=0 and set Q(0)=Q on
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the left-hand side. Then, Q(1) is found by integration. To find Q(2) we similarly integrate

the BT (13) with n=1, etc. We thus obtain all positively-indexed charges Q(n). (b) We

take the BT (13) with n= −1 and set Q(0)=Q on the right-hand side. We then solve for

Q(−1) . Working similarly for n= −2, −3, ... , we obtain all negatively-indexed charges

Q(n).

We now introduce a complex parameter λ, which we require to be nonzero and of finite

magnitude. Multiplying both sides of Eq.(13) by λn, summing over all integral values of

n, and taking into account that the functions G, H and K are linear in their respective

Q ’s, we find the following pair of PDEs:

G
(∑+∞

n=−∞ λnQ (n); u
)

= 1
λ
DyK

(∑+∞
n=−∞ λnQ (n); u

)

H
(∑+∞

n=−∞ λnQ (n); u
)

= − 1
λ
DxK

(∑+∞
n=−∞ λnQ (n); u

) (15)

We set

Ψ(u ; λ) =
+∞∑

n=−∞
λnQ (n)[u] (16)

Equation (16) has the form of a Laurent expansion of a complex function Ψ in powers of

λ, for a given solution u of the field equation (7). We note that Ψ is a linear combination

of symmetry characteristics of Eq.(7), hence Ψ itself is a symmetry characteristic of that

PDE. Substituting Eq.(16) into Eq.(15), we rewrite the latter in the form of a system of

linear PDEs for Ψ:

DyK(Ψ ; u) = λG (Ψ ; u) , DxK(Ψ ; u) = − λH (Ψ ; u) (17)

The consistency of this system requires that Ψ satisfy the linear PDE (11),

S (Ψ ; u) ≡ DxG (Ψ ; u) + DyH (Ψ ; u) = 0 (mod F [u]).

This verifies that Ψ is a symmetry characteristic. Moreover, the system (17) is linear in

Ψ, and its solvability demands that u satisfy the nonlinear PDE (7) [this was required

from the start in order that the BT (13), by which the charges Q(n) appearing in the

Laurent expansion (16) are defined, may be integrable for Q(n) and Q(n+1)] . We thus

conclude that the linear system (17) constitutes a Lax pair for the field equation (7),

and that, moreover, the solution Ψ of this system is a symmetry characteristic of that

equation.

A final comment before closing this section: The whole idea was based on the assumption

that an auto-Bäcklund transformation of the form (12) exists for the symmetry condition

(11). It is possible, however, that no choice for the functionK(Q′; u) in Eq.(12) exists such

that Q′ be a symmetry characteristic when Q is such a characteristic. In this case, the

method described above may still furnish an infinite number of conservation laws as well

as a Lax pair, albeit not a recursion operator for producing infinite sets of symmetries.

Moreover, the solution Ψ of the Lax pair will no longer represent a symmetry of the
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field equation (although, of course, it will somehow be related to a symmetry, since the

symmetry condition was the starting point for constructing the Lax pair). The example

of the Ernst equation, examined in detail in [1], made this point clear. In this case,

the absence of an infinite set of symmetries is not a property of the gravitational field

equations themselves (which, when properly formulated, do exhibit such an infinite set

[8]) but is a consequence of the chosen real form of the Ernst equation, in which a spatial

coordinate makes an explicit appearance.

4. Chiral Field Equation

The chiral field equation (a two-dimensional reduction of the self-dual Yang-Mills equa-

tion, to be discussed later) is of the form

F [g] ≡ (g−1g t) t + (g−1gx)x = 0 (18)

where g is a GL(N,C )-valued function of t and x (as usual, subscripts denote total

differentiations with respect to these variables). Let δg = αQ [g] be an infinitesimal

symmetry of Eq.(18), with symmetry characteristic Q [g ]. We have that Δg = Q [g],

where Δ denotes the Fréchet derivative with respect to Q (see Appendix). Moreover, by

the commutativity of the Fréchet derivative with total derivatives,

ΔF [g] = D tΔ(g−1g t) +DxΔ(g−1gx)

= D t Â t(g
−1Q) + Dx Âx(g

−1Q)

where we have introduced the “covariant derivative” operators

Â t = D t + [g−1g t , ] , Âx = Dx + [g−1gx , ]

(the square brackets denote commutators). It can be shown that these operators com-

mute, as expected from the fact that the “connections” g−1gt and g−1gx are pure gauges.

The symmetry condition (9) reads:

S(Q ; g) ≡ (D t Â t + Dx Âx) (g
−1Q) = 0 mod F [g] (19)

and it is obviously in conservation-law form.

We now seek an auto-Bäcklund transformation (BT) of the form (12) for the linear PDE

(19). This must be of the form

Â t(g
−1Q) = Kx , Âx(g

−1Q) = −K t

for some function K(Q′; g). Let us try K(Q′; g) = g−1Q′:

Â t(g
−1Q) = (g−1Q′ )x , Âx(g

−1Q) = − (g−1Q′ ) t (20)

Integrability for Q′ clearly requires that Q satisfy Eq.(19). The integrability condition

for Q can be written (by taking into account that covariant derivatives commute),
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[Â t , Âx] (g
−1Q) = 0.

After a somewhat lengthy calculation, and by using the operator identity

Â tD t + ÂxDx = D t Â t +Dx Âx − [F [g] , ]

= D t Â t +Dx Âx mod F [g]

we find that the above integrability condition yields the PDE

(D t Â t + Dx Âx) (g
−1Q′) = 0 mod F [g]

which is just the symmetry condition (19) for Q′. We conclude that Eq.(20) is indeed an

auto-BT for the aforementioned symmetry condition. This BT is equivalent to a recursion

operator for symmetries of the field equation (18). It can be rewritten in the form (13),

as follows:

Â t

(
g−1Q (n)

)
= Dx

(
g−1Q (n+1)

)

Âx

(
g−1Q (n)

)
= − D t

(
g−1Q (n+1)

) (21)

(n= 0, ±1, ±2, ...). The conservation laws of the form (14) (which form a doubly infinite

set) are written, in this case,

(D t Â t + Dx Âx)
(
g−1Q (n)

)
= 0 mod F [g] (22)

(where all conserved “charges” Q(n) are symmetry characteristics), while the Lax pair

(17) reads,

Dx (g
−1Ψ) = λ Â t (g

−1Ψ) , D t (g
−1Ψ) = −λ Âx (g

−1Ψ) (23)

The proof of the Lax-pair property of the linear system (23) is sketched as follows: By

the integrability condition (g−1Ψ)xt = (g−1Ψ) tx , we get:

S(Ψ ; g) ≡ (D t Â t + Dx Âx) (g
−1Ψ) = 0 (24)

On the other hand, the integrability condition λ [Â t , Âx] (g
−1Ψ) = 0, yields:

S (Ψ ; g) − [
F [g] , g−1Ψ

]
= 0

which, in view of Eq.(24), becomes [F [g] , g−1Ψ] = 0. This is valid independently of

Ψ if F [g ]=0, i.e., if g is a solution of the field equation (18). We conclude that the linear

system (23) is indeed a Lax pair for the nonlinear PDE (18), the solution Ψ of which

pair is a symmetry characteristic [as follows from Eq.(24)]. We note that this Lax pair is

different from that found several years ago by Zakharov and Mikhailov [9].
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We conclude this section by giving an example of using the BT (21) to find conserved

charges Q(n). Let us consider the symmetry characteristic Q (0) = gM , where M is an

arbitrary constant matrix. The BT (21) with n=0, integrated for Q(1), yields

Q (1) = g [X, M ],

where X is the potential of Eq.(18), defined by the system of equations

g−1g t = Xx , g−1gx = −X t (25)

We note that Q(1) is the characteristic of a potential symmetry [3,6]. Higher-order charges

Q(n) with n>1 (which also are higher-order potential symmetries) are similarly found by

recursive integration of the BT (21) with n= 1, 2, etc.

To find negatively-indexed charges and corresponding symmetries, we begin with the BT

(21) with n=−1, which we integrate for Q(−1). The result is a rather uninteresting local

symmetry: Q (−1) = Λg, where Λ is any constant matrix. Iterating for n=-2, however, we

find a new characteristic Q(−2), given by the system of equations

Q t − Qg−1g t = g (g−1Λg)x , Qx − Qg−1gx = − g (g−1Λg) t

(where we have put Q(−2) = Q , for brevity). Higher-order, negatively-indexed charges

are obtained by further iteration.

Unfortunately, in contrast to the “internal” symmetries considered above, the local co-

ordinate symmetries [such as Q (0) = g t, Q
(0) = gx, etc.] do not yield any new results by

applying the BT (21). These latter symmetries, however, play an equally important role

as internal ones in problems in more than two dimensions, as the example discussed in

the next section will show.

5. Self-Dual Yang-Mills Equation

The self-dual Yang-Mills (SDYM) equation is written in the form

F [J ] ≡ (J−1Jy) ȳ + (J−1Jz) z̄ = 0 (26)

where J is assumed SL(N,C )-valued (i.e., det J=1). The four independent variables (ap-

pearing as subscripts) are constructed from the coordinates of an underlying complexified

Euclidean space in such a way that ȳ and z̄ become the complex conjugates of y and z,

respectively, when the above space is real. As usual, subscripts denote total derivatives

with respect to these variables.

Let δJ = αQ [J ] be an infinitesimal symmetry of Eq.(26), where the characteristic Q

is subject to the condition that tr (J−1Q) = 0, required for producing new SL(N,C )

solutions from old ones. The symmetry condition is, in analogy with Eq.(19),

S(Q ; J) ≡ (D ȳ Â y + D z̄ Âz) (J
−1Q) = 0 mod F [J ] (27)
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where we have introduced the covariant derivatives

Ây = Dy + [J−1Jy , ] , Âz = Dz + [J−1Jz , ]

(note again that these operators commute). An auto-BT for the linear PDE (27) [analo-

gous to that of Eq.(20)], which is consistent with the physical requirement tr (J−1Q) = 0,

is the following:

Â y(J
−1Q) = (J−1Q′ ) z̄ , Â z(J

−1Q) = − (J−1Q′ ) ȳ (28)

Integrability for Q′ requires that Q satisfy Eq.(27). Integrability for Q , expressed by the

condition [Ây , Âz] (J
−1Q) = 0, and upon using the operator identity

ÂyD ȳ + ÂzD z̄ = D ȳ Ây +D z̄ Âz − [F [J ] , ]

= D ȳ Ây +D z̄ Âz mod F [J ]

leads us again to Eq.(27), this time for Q′. The BT (28) may be regarded as an invertible

recursion operator for the SDYM equation. It can be re-expressed as

Ây

(
J−1Q (n)

)
= D z̄

(
J−1Q (n+1)

)

Âz

(
J−1Q (n)

)
= − D ȳ

(
J−1Q (n+1)

) (29)

(n= 0, ±1, ±2, ...). From this we get a double infinity of conservation laws of the form

(D ȳ Â y + D z̄ Âz)
(
J−1Q (n)

)
= 0 mod F [J ] (30)

Finally, the Lax pair for SDYM [analogous to those of Eqs.(17) and (23)] is

D z̄ (J
−1Ψ) = λ Ây (J

−1Ψ) , D ȳ (J
−1Ψ) = −λ Âz (J

−1Ψ) (31)

The proof of the Lax-pair property is sketched as follows: By the integrability condition

(J−1Ψ) z̄ ȳ − (J−1Ψ) ȳ z̄ = 0 , we get:

S(Ψ ; J) ≡ (D ȳ Ây + D z̄ Âz) (J
−1Ψ) = 0 (32)

On the other hand, the integrability condition λ [Âz , Ây] (J
−1Ψ) = 0, yields:

S (Ψ ; J) − [
F [J ] , J−1Ψ

]
= 0

which, in view of Eq.(32), becomes [F [J ] , J−1Ψ] = 0. This is valid independently

of Ψ if F [J ]=0, i.e., if J is an SDYM solution. We conclude that the linear system

(31) is indeed a Lax pair for the SDYM equation (26), the solution Ψ of which pair is

a symmetry characteristic [as follows from Eq.(32)]. This Lax pair can be shown to be

equivalent to that reported previously by this author [5], although the systematic method

for explicitly constructing this system is presented here for the first time.
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We now give examples of using the BT (29) to find conserved chargesQ(n). Let us consider

the symmetry characteristic Q (0) = JM , where M is a constant traceless matrix. The

BT (29) with n=0, integrated for Q(1), yields

Q (1) = J [X, M ],

where X is the potential of Eq.(26), defined by the system of equations

J−1Jy = Xz̄ , J−1Jz = −Xȳ (33)

We note that Q(1) is the characteristic of a potential symmetry [3,6]. Higher-order charges

Q(n) with n>1 (which also are higher-order potential symmetries) are similarly found by

recursive integration of the BT (29) with n= 1, 2, etc.

To find negatively-indexed charges and corresponding symmetries, we begin with the BT

(29) with n=−1, which we integrate for Q(−1). The result is a familiar local symmetry:

Q (−1) = Λ J , where Λ is any constant traceless matrix. Iterating for n=-2, we find a new

characteristic Q(−2), given by the system of equations

Qy − QJ−1Jy = J (J−1Λ J) z̄ , Qz − QJ−1Jz = − J (J−1Λ J) ȳ

(where we have put Q(−2) = Q , for brevity). Higher-order, negatively-indexed charges

are obtained by further iteration.

In the preceding example, the initial symmetry characteristic Q(0) represented an “inter-

nal” symmetry (a symmetry in the fiber space). Local coordinate symmetries (symmetries

in the base space), however, also lead to the discovery of infinite sets of potential symme-

tries and associated conservation laws for SDYM. As an example, consider the obvious

symmetry of y-translation, represented by the characteristic Q (0) = Jy. The BT (29)

with n=0, integrated for Q(1), gives

Q (1) = JXy

[where X is the SDYM potential defined in Eq.(33)], which is another potential symmetry.

Higher-order potential symmetries, whose characteristics Q(n) (n>0) appear as conserved

charges in conservation laws of the form (30), can be found by repeated application of the

recursion operator (29). The infinite sets of potential symmetries generated by coordinate

transformations have been shown to possess a rich Lie-algebraic structure [10,11].

To conclude our example, let us find some negatively-indexed symmetries. The BT

(29) with n=−1 and Q (0) = Jy, integrated for Q(−1), gives: Q (−1) = Jz̄, which is the

characteristic for the obvious z̄-translational symmetry. The first nontrivial result is

found for n=-2, yielding a characteristic Q(−2) which is defined by the set of equations

Qy − QJ−1Jy = J (J−1Jz̄) z̄ , Qz − QJ−1Jz = − J (J−1Jz̄) ȳ

(where we have put Q(−2) = Q , for brevity).
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Summary

Motivated by the results of [1] for the Ernst equation, we have proposed a general, non-

Noetherian scheme for connecting symmetry and integrability properties of nonlinear

PDEs in conservation-law form. We have shown that, by starting with the symmetry

condition (which is itself a local conservation law for the associated nonlinear PDE), one

may derive significant mathematical objects such as a recursion operator for symmetries,

a Lax pair, and an infinite collection of (generally nonlocal) conservation laws. Such

objects are usually sought by trial-and-error processes, thus any systematic technique for

their discovery is useful.

The method was illustrated by using two physically significant examples, namely, the

chiral field equation and the self-dual Yang-Mills (SDYM) equation. The latter PDE has

been shown to constitute a prototype equation from which several other integrable PDEs

are derived by reduction [12,13]. Thus, the results regarding SDYM may also prove useful

for the study of other nonlinear problems.

Appendix: Total Derivatives and Fréchet Derivatives

To make this article as self-contained as possible, we define two key concepts that are being

used, namely, the total derivative and the Fréchet derivative. The reader is referred to the

extensive review article [14] by this author for more details. (It should be noted, however,

that our present definition of the Fréchet derivative corresponds to the definition of the

Lie derivative in that article. Since these two derivatives are locally indistinguishable,

this discrepancy in terminology should not cause any concern mathematically.)

We consider the set of all PDEs of the form F [u]=0, where, for simplicity, the solutions

u (which may be matrix-valued) are assumed to be functions of only two variables x and

t : u=u(x,t). In general, F [u] ≡ F (x, t, u, ux, u t, uxx, u tt, uxt, · · · ). Geometrically,

we say that the function F is defined in a jet space [2,15] with coordinates x, t, u, and as

many partial derivatives of u as needed for the given problem. A solution of the PDE F

[u]=0 is then a surface in this jet space.

Let F [u] be a given function in the jet space. When differentiating such a function with

respect to x or t, both implicit (through u) and explicit dependence of F on these variables

must be taken into account. If u is a scalar quantity, we define the total derivative

operators Dx and Dt as follows:

Dx = ∂
∂ x

+ ux
∂
∂ u

+ uxx
∂

∂ ux
+ uxt

∂
∂ u t

+ · · ·
D t =

∂
∂ t

+ u t
∂
∂ u

+ uxt
∂

∂ ux
+ u t t

∂
∂ u t

+ · · ·

(note that the operators ∂/∂x and ∂/∂t concern only the explicit dependence of F on

x and t). If, however, u is matrix-valued, the above representation has only symbolic

significance and cannot be used for actual calculations. We must therefore define the

total derivatives Dx and Dt in more general terms.
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We define a linear operator Dx, acting on functions F [u] in the jet space and having the

following properties:

1. On functions f (x, t) in the base space,

Dxf(x, t) = ∂f/∂x ≡ ∂x f.

2. On functions F [u]= u or ux, ut, etc., in the “fiber” space,

Dxu = ux , Dxux = uxx , Dxu t = u tx = uxt , etc.

3. The operator Dx is a derivation on the algebra of all functions F [u] in the jet space

(i.e., the Leibniz rule is satisfied):

Dx (F [u] G [u]) = (DxF [u]) G [u] + F [u]DxG [u].

We similarly define the operatorDt. Extension to higher-order total derivatives is obvious

(although these latter derivatives are no longer derivations, i.e., they do not satisfy the

Leibniz rule). The following notation has been used in this article:

DxF [u] ≡ Fx [u] , D tF [u] ≡ F t [u].

Finally, it can be shown that, for any matrix-valued functions A and B in the jet space,

we have

(A−1)x = −A−1AxA
−1 , (A−1) t = −A−1A tA

−1

and

Dx [A , B] = [Ax , B] + [A , Bx] , D t [A , B] = [A t , B] + [A , B t]

where square brackets denote commutators.

Let now δu � αQ [u] be an infinitesimal symmetry transformation (with characteristic

Q [u] ) for the PDE F [u]=0. We define the Fréchet derivative with respect to the

characteristic Q as a linear operator Δ acting on functions F [u] in the jet space and

having the following properties:

1. On functions f (x, t) in the base space,

Δ f(x, t) = 0

(this is a consequence of our liberty to choose all our symmetries to be in “vertical” form

[2,3]).

2. On F [u]= u ,

Δ u = Q [u].

3. The operator Δ commutes with total derivative operators of any order.

4. The Leibniz rule is satisfied:

Δ (F [u] G [u]) = (ΔF [u]) G [u] + F [u] ΔG [u].
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The following properties can be proven:

Δ ux = (Δ u)x = Qx [u] , Δu t = (Δ u) t = Q t [u]

Δ (A−1) = −A−1(ΔA) A−1; Δ [A , B] = [ΔA , B] + [A , ΔB]

where A and B are any matrix-valued functions in the jet space.

If the solution u of the PDE is a scalar function (thus so is the characteristic Q ), the

Fréchet derivative with respect to Q admits a differential-operator representation of the

form

Δ = Q
∂

∂u
+ Qx

∂

∂ux

+ Q t
∂

∂u t

+ Qxx
∂

∂uxx

+ Q t t
∂

∂u t t

+ Qxt
∂

∂uxt

+ · · ·

Such representations, however, are not valid for PDEs in matrix form. In these cases we

must resort to the general definition of the Fréchet derivative given above.

Finally, by using the Fréchet derivative, the symmetry condition for a PDE F [u]=0 can

be expressed as follows [2,3]:

ΔF [u] = 0 mod F [u].

This condition yields a linear PDE for the symmetry characteristic Q , of the form

S (Q ; u) = 0 mod F [u].
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1. Introduction

Recursion operators are powerful tools for the study of symmetries of partial differential
equations (PDEs). Roughly speaking, a recursion operator is a linear operator which pro-
duces a new symmetry characteristic of a PDE whenever it acts on an “old” characteristic
(see Appendix). The concept was first introduced by Olver [1, 2] and subsequently used by
many authors (see, e.g., [2, 3] and the references therein). An alternative view, based on
the concept of a Bäcklund transformation (BT), was developed in a series of papers by the
present authors [4–6] who studied the symmetry problem for the self-dual Yang–Mills equa-
tion (SDYM). The general idea is that a recursion operator can be viewed as an auto-BT
for the “linearization equation” (or symmetry condition) of a (generally nonlinear) PDE.
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This idea was later further developed and put into formal mathematical perspective by
Marvan [7].

It has been known for some time (see, e.g., [3, Sec. 7.4] and the references therein) that,
when two nonlinear PDEs are connected by a non-auto-BT, symmetries of either PDE may
yield symmetries of the other. This can be achieved by using the original BT to construct
another non-auto-BT which relates solutions of the linearization equations of the two PDEs.
In the particular case of the SDYM equation, the original BT associates this PDE with the
“potential SDYM equation” (PSDYM). The symmetries of the latter PDE can then be used
to construct the “potential symmetries” of SDYM [5, 8]. We now attempt to go one step
further: Can we find a BT which relates recursion operators of two PDEs? Given that, as
said above, a recursion operator is itself an auto-BT, what we are after is a BT connecting
two auto-BTs, each of which produces solutions of a respective linear PDE (symmetry
condition). Thus, we are looking for “a transformation of transformations” rather than a
transformation of functions.

Our “laboratory” model will again be SDYM, for good reasons. First, it possesses a rich
symmetry structure; second, this PDE has been shown to constitute a sort of prototype
equation from which several other integrable PDEs are derived by reduction (see, e.g., [9,
10]). By employing a non-auto-BT that connects SDYM with PSDYM, we will show how
symmetries and recursion operators of either system can be associated with symmetries
and recursion operators, respectively, of the other system. Moreover, we will prove that the
symmetry Lie algebras of these two PDEs are isomorphic to each other. This conclusion is
more than of academic importance, since it allows us to investigate the symmetry structure
of the SDYM problem by studying the relatively easier PSDYM problem. As an example,
we will recover the known infinite-dimensional symmetry algebras of SDYM [11–13] from
the symmetry structure of PSDYM [8] and show how these algebras are related to potential
symmetries.

2. The Symmetry Problem for the SDYM-PSDYM System

We write the SDYM equation in the form

F [J ] ≡ Dȳ(J−1Jy) + Dz̄(J−1Jz) = 0. (1)

We denote by xµ ≡ y, z, ȳ, z̄ (µ = 1, . . . , 4) the independent variables, and by Dy,Dz, etc.,
the total derivatives with respect to these variables. We will also use the notation DyF ≡ Fy,
etc., for any function F . We assume that J is SL(N,C)-valued (i.e., detJ = 1).

We consider the non-auto-BT

J−1Jy = Xz̄, J−1Jz = −Xȳ. (2)

The integrability condition (Xȳ)z̄ = (Xz̄)ȳ yields the SDYM equation (1). The integrability
condition (Jy)z = (Jz)y, which is equivalent to

Dy(J−1Jz) − Dz(J−1Jy) + [J−1Jy, J
−1Jz] = 0,

yields a nonlinear PDE for the “potential” X of (1), called the “potential SDYM equation”
or PSDYM:

G[X] ≡ Xyȳ + Xzz̄ − [Xȳ,Xz̄ ] = 0. (3)
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Bäcklund-Transformation-Related Recursion Operators 37

Noting that, according to (2), (trX)z̄ = [tr(ln J)]y = [ln(det J)]y, etc., we see that the con-
dition detJ = 1 can be satisfied by requiring that trX = 0 [this requirement is compatible
with the PSDYM equation (3)]. Hence, SL(N,C) SDYM solutions correspond to sl(N,C)
PSDYM solutions.

Let δJ = αQ and δX = αΦ be an infinitesimal symmetry of system (2) (α is an
infinitesimal parameter). This means that (J + δJ , X + δX) is a solution to the system
when (J,X) is a solution. This suggests that the integrability conditions F [J + δJ ] = 0 and
G[X + δX] = 0 are satisfied when the integrability conditions F [J ] = 0 and G[X] = 0 are
satisfied; that is, J +δJ and X +δX are solutions of (1) and (3), respectively. The functions
Q and Φ are symmetry characteristics for the above PDEs. Geometrically, the symmetries
of system (2) are realized as transformations in the jet-like space of the variables {xµ, J,X}
and the various derivatives of J and X with respect to the xµ. These transformations are
generated by vector fields which, without loss of generality, may be considered “vertical”,
i.e., with vanishing projections on the base space of the xµ [2]. We formally represent these
vectors by differential operators of the form

V = Q
∂

∂J
+ Φ

∂

∂X
(+ prolongation terms). (4)

Consider a function M(J,X). Denote by ∆M(J,X) the Fréchet derivative [2] of M with
respect to V . The infinitesimal variation of M in the “direction” of V is then δM = α∆M .
The linear operator ∆ is a derivation on the algebra of all gl(N,C)-valued functions. The
Leibniz rule is written

∆(MN) = (∆M)N + M∆N. (5)

In particular, for the Lie algebra of sl(N,C)-valued functions, the Leibniz rule may also be
written as

∆[M,N ] = [∆M,N ] + [M,∆N ]. (6)

By definition, the Fréchet derivatives of the fundamental variables J and X are given by

∆J = Q, ∆X = Φ. (7)

We also note that the Fréchet derivative with respect to a vertical vector field commutes
with all total derivative operators [2]. Finally, for an invertible matrix M ,

∆(M−1) = −M−1(∆M)M−1. (8)

(For a discussion of the general symmetry problem for matrix-valued PDEs, see [14].)
We introduce the covariant derivative operators (with square brackets denoting commu-

tators):

Ây ≡ Dy + [J−1Jy, ] = Dy + [Xz̄, ]

Âz ≡ Dz + [J−1Jz, ] = Dz − [Xȳ, ]
(9)

where the BT (2) has been taken into account. By using (3) and the Jacobi identity, the
zero-curvature condition [Ây, Âz] = 0 is shown to be satisfied, as expected in view of the fact
that the “connections” J−1Jy and J−1Jz are pure gauges. Moreover, the linear operators
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of (9) are derivations on the Lie algebra of sl(N,C)-valued functions, satisfying a Leibniz
rule of the form (6):

Ây[M,N ] = [ÂyM,N ] + [M, ÂyN ]

Âz[M,N ] = [ÂzM,N ] + [M, ÂzN ].
(10)

If Eqs. (1)–(3) are satisfied, then so must be their Fréchet derivatives with respect to the
symmetry vector field V of (4). We now derive the symmetry condition for each of the above
three systems. For SDYM (1), the symmetry condition is ∆F [J ] = 0, or

Dȳ∆(J−1Jy) + Dz̄∆(J−1Jz) = 0 (11)

(since the Fréchet derivative ∆ commutes with total derivatives). By using (5), (7), (8) and
(9), it can be shown that

∆(J−1Jy) = Ây(J−1Q), ∆(J−1Jz) = Âz(J−1Q). (12)

The SDYM symmetry condition (11) then becomes

(DȳÂy + Dz̄Âz)(J−1Q) = 0. (13)

The symmetry condition for PSDYM (3) is ∆G[X] = 0, or, by using (6), (7) and (9),

ÂyΦȳ + ÂzΦz̄ ≡ (ÂyDȳ + ÂzDz̄)Φ = 0. (14)

We note the operator identity

ÂyDȳ + ÂzDz̄ = DȳÂy + Dz̄Âz (15)

which is easily verified by letting the right-hand side act on an arbitrary function M . Then,
(14) is written in the alternate form,

(DȳÂy + Dz̄Âz)Φ = 0. (16)

Comparing (13) and (16), we observe that the symmetry characteristic Φ of PSDYM, and
the function J−1Q, where Q is an SDYM symmetry characteristic, satisfy the same sym-
metry condition. We thus conclude the following (see also [5]):

• If Q is an SDYM characteristic, then Φ = J−1Q is a PSDYM characteristic. Conversely,
• If Φ is a PSDYM characteristic, then Q = JΦ is an SDYM characteristic.

Finally, the Fréchet derivative with respect to V also leaves the system of PDEs (2)
invariant: ∆(J−1Jy) = (∆X)z̄ ,∆(J−1Jz) = −(∆X)ȳ. With the aid of (12) and (7) we are
thus led to a pair of PDEs,

Ây(J−1Q) = Φz̄, Âz(J−1Q) = −Φȳ. (17)

Equation (17) is a BT connecting the symmetry characteristic Φ of PSDYM with the sym-
metry characteristic Q of SDYM. Indeed, the integrability condition (Φz̄)ȳ = (Φȳ)z̄ yields
the symmetry condition (13) for SDYM. So, when Q is an SDYM symmetry characteristic,
the BT (17) is integrable for Φ. Conversely, the integrability condition [Âz, Ây](J−1Q) = 0,
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valid in view of the zero-curvature condition, yields the PSDYM symmetry condition (14)
for Φ and guarantees integrability for Q.

We note that, for a given Q, the solution of the BT (17) for Φ is not unique, and vice
versa. To achieve uniqueness we thus need to make some additional assumptions: (a) If
Φ is a solution for a given Q, then so is Φ + M(y, z), where M is an arbitrary matrix
function. We make the agreement that any arbitrary additive term of the form M(y, z) will
be ignored when it appears in the solution for Φ. (b) If Q is a solution for a given Φ, then so
is Q + ε(ȳ, z̄)J , where ε(ȳ, z̄) is an arbitrary matrix function. We agree that any arbitrary
additive term of the form ε(ȳ, z̄)J will be ignored when it appears in the solution for Q.

With the above conventions, the BT (17) establishes a 1-1 correspondence between
the symmetries of SDYM and those of PSDYM. In particular, the SDYM characteristic
Q = 0 corresponds to the PSDYM characteristic Φ = 0. It will be shown below that this
correspondence between the two symmetry sets is a Lie algebra isomorphism.

3. Recursion Operators and Lie-Algebra Isomorphism

Since the two PDEs in (17) are consistent with each other and solvable for Φ when Q is an
SDYM symmetry characteristic, we may use, say, the first equation to formally express Φ
in terms of Q:

Φ = D−1
z̄ Ây(J−1Q) ≡ R̂(J−1Q) (18)

where we have introduced the linear operator

R̂ = D−1
z̄ Ây. (19)

Proposition 1. The operator (19) is a recursion operator for PSDYM.

Proof. Let Φ be a symmetry characteristic for PSDYM. Then, Φ satisfies the symmetry
conditions (14) or (16). We will show that Φ′ ≡ R̂Φ also is a symmetry characteristic.
Indeed,

(ÂyDȳ + ÂzDz̄)Φ′ ≡ (ÂyDȳ + ÂzDz̄)R̂Φ

= ÂyD
−1
z̄ DȳÂyΦ + ÂzÂyΦ

= ÂyD
−1
z̄ (DȳÂy + Dz̄Âz)Φ + [Âz, Ây]Φ = 0,

in view of (16) and the zero-curvature condition [Ây, Âz] = 0.

For sl(N,C) PSDYM solutions, the symmetry characteristic Φ must be traceless. Then,
so is the characteristic Φ′ = R̂Φ. That is, the recursion operator (19) preserves the sl(N,C)
character of PSDYM.

Is there a systematic process by which one could derive the recursion operator (19)? To
this end, we seek an auto-BT relating solutions of the PSDYM symmetry condition (14).
As shown in [5], such a BT is

ÂyΦ = Φ′
z̄, ÂzΦ = −Φ′

ȳ. (19a)

The first of these equations can then be re-expressed as Φ′ = R̂Φ, with R̂ given by (19).
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Consider now a symmetry characteristic Q of SDYM, i.e., a solution of the symmetry
condition (13). Also, consider the transformation

Q′ = JR̂(J−1Q) ≡ T̂Q (20)

where we have introduced the linear operator

T̂ = JR̂J−1. (21)

Proposition 2. The operator (21) is a recursion operator for SDYM.

Proof. By assumption, Q is an SDYM symmetry characteristic. Then, as shown above,
Φ = J−1Q is a PSDYM characteristic. Since R̂ is a PSDYM recursion operator, Φ′ ≡ R̂Φ =
R̂(J−1Q) also is a PSDYM characteristic. Then, finally, Q′ = JΦ′, given by (20), is an
SDYM characteristic.

For SL(N,C) SDYM solutions, the symmetry characteristic Q must satisfy the condition
tr(J−1Q) = 0. As can be seen, this condition is preserved by the recursion operator (21).
[Note, in this connection, that the BT (17) or (18) properly associates SL(N,C) SDYM
characteristics Q with sl(N,C) PSDYM characteristics Φ.]

The recursion operator (21) also can be derived from an auto-BT for the SDYM sym-
metry condition (13). This BT was constructed in [6] by using a properly chosen Lax pair
for SDYM (we refer the reader to this paper for details). We may thus conclude that recur-
sion operators such as (19) or (21) in effect represent auto-BTs for symmetry conditions of
respective nonlinear PDEs (see also [7]).

Lemma. The Fréchet derivative ∆ with respect to the vector V of (4), and the recursion
operator R̂ of (19), satisfy the commutation relation

[∆, R̂] = D−1
z̄ [Φz̄, ] (22)

where Φ = ∆X, according to (7).

Proof. Introducing an auxiliary function F , and using the derivation property (6) of ∆ and
the commutativity of ∆ with all total derivatives (as well as all powers of such derivatives),
we have:

∆R̂F = ∆D−1
z̄ ÂyF = D−1

z̄ ∆(DyF + [Xz̄, F ])

= D−1
z̄ (Dy∆F + [(∆X)z̄ , F ] + [Xz̄,∆F ])

= D−1
z̄ (Ây∆F + [Φz̄, F ]) = R̂∆F + D−1

z̄ [Φz̄, F ],

from which there follows (22).

Proposition 3. The BT (17), or equivalently, its solution (18), establishes an isomorphism
between the symmetry Lie algebras of SDYM and PSDYM.

Proof. Let V be a vector field of the form (4), generating a symmetry of the BT (2). As
explained previously, since this BT is invariant under V , the same will be true with regard
to its integrability conditions. Hence, V also represents a symmetry of the SDYM-PSDYM
system of Eqs. (1) and (3). The SDYM and PSDYM characteristics are Q = ∆J and
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Φ = ∆X, respectively, where ∆ denotes the Fréchet derivative with respect to V . Consider
the linear map I defined by (18):

I : Φ = I{Q} = R̂J−1Q (23)

or

I : ∆X = I{∆J} = R̂J−1∆J. (24)

Consider also a pair of symmetries of system (2), indexed by i and j. These are generated
by vector fields V (r), where r = i, j. The Fréchet derivatives with respect to the V (r) will
be denoted ∆(r). The SDYM and PSDYM symmetry characteristics are Q(r) = ∆(r)J and
Φ(r) = ∆(r)X, respectively. According to (24),

∆(r)X = I{∆(r)J} = R̂J−1∆(r)J = R̂J−1Q(r); r = i, j. (25)

By the Lie-algebraic property of symmetries of PDEs, the functions [∆(i),∆(j)]J and
[∆(i),∆(j)]X also represent symmetry characteristics for SDYM and PSDYM, respectively,
where we have put

[∆(i),∆(j)]J ≡ ∆(i)∆(j)J − ∆(j)∆(i)J = ∆(i)Q(j) − ∆(j)Q(i),

[∆(i),∆(j)]X ≡ ∆(i)∆(j)X − ∆(j)∆(i)X = ∆(i)Φ(j) − ∆(j)Φ(i).

We must now verify that

[∆(i),∆(j)]X = I{[∆(i),∆(j)]J} = R̂J−1[∆(i),∆(j)]J. (26)

Putting r = j into (25), and applying the Fréchet derivative ∆(i), we have:

∆(i)∆(j)X = ∆(i)R̂J−1Q(j) = [∆(i), R̂]J−1Q(j) + R̂∆(i)J−1Q(j)

= D−1
z̄ [Φ(i)

z̄ , J−1Q(j)] + R̂∆(i)J−1Q(j),

where we have used the commutation relation (22). By (23) and (19),

Φ(i)
z̄ = Dz̄R̂J−1Q(i) = ÂyJ

−1Q(i).

Moreover, by properties (5) and (8) of the Fréchet derivative,

∆(i)J−1Q(j) = −J−1(∆(i)J)J−1Q(j) + J−1∆(i)Q(j)

= −J−1Q(i)J−1Q(j) + J−1∆(i)Q(j).

So,

∆(i)∆(j)X = D−1
z̄ [ÂyJ

−1Q(i), J−1Q(j)] − R̂J−1Q(i)J−1Q(j) + R̂J−1∆(i)Q(j).

Subtracting from this the analogous expression for ∆(j)∆(i)X, we have:

[∆(i),∆(j)]X ≡ ∆(i)∆(j)X − ∆(j)∆(i)X

= D−1
z̄ ([ÂyJ

−1Q(i), J−1Q(j)] + [J−1Q(i), ÂyJ
−1Q(j)])

− R̂[J−1Q(i), J−1Q(j)] + R̂J−1(∆(i)Q(j) − ∆(j)Q(i))
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= D−1
z̄ Ây[J−1Q(i), J−1Q(j)] − R̂[J−1Q(i), J−1Q(j)]

+ R̂J−1(∆(i)∆(j)J − ∆(j)∆(i)J)

= R̂J−1[∆(i),∆(j)]J

where we have used the derivation property (10) of Ây and we have taken (19) into account.
Thus, (26) has been proven.

Now, suppose P̂ is a recursion operator for SDYM, while Ŝ is a recursion operator for
PSDYM. Thus, if Q and Φ are symmetry characteristics for SDYM and PSDYM, respec-
tively, then Q′ = P̂Q and Φ′ = ŜΦ also are symmetry characteristics.

Definition. The linear operators P̂ and Ŝ will be called equivalent with respect to the
isomorphism I (or I-equivalent) if the following condition is satisfied:

ŜΦ = I{P̂Q} when Φ = I{Q}. (27)

By using (23), the above condition is written

ŜΦ = R̂J−1P̂Q when Φ = R̂J−1Q ⇒ ŜR̂J−1Q = R̂J−1P̂Q.

Thus, in order that P̂ and Ŝ be I-equivalent recursion operators, the following operator
equation must be satisfied on the infinite-dimensional linear space of all SDYM symmetry
characteristics:

ŜR̂J−1 = R̂J−1P̂ . (28)

Having already found a PSDYM recursion operator Ŝ = R̂, we now want to evaluate the
I-equivalent SDYM recursion operator P̂ . To this end, we put Ŝ = R̂ in (28) and write

R̂(R̂J−1 − J−1P̂ ) = 0.

As is easy to see, this is satisfied for P̂ = T̂ , in view of (21). We thus conclude that

• The recursion operators R̂ and T̂ , defined by (19) and (21), are I-equivalent.

We note that (28) is a sort of BT relating recursion operators of different PDEs, rather
than solutions or symmetries of these PDEs. Thus, if a recursion operator is known for
either PDE, this BT will yield a corresponding operator for the other PDE. Note that
we have encountered BTs at various levels: (a) The non-auto-BT (2), relating solutions of
two different nonlinear PDEs (1) and (3); (b) the BT (17), or equivalently (18), relating
symmetry characteristics of these PDEs; (c) the recursion operators (19) and (21), which
can be re-expressed as auto-BTs for the symmetry conditions (14) and (13), respectively;
and (d) the BT (28), relating recursion operators for the original, nonlinear PDEs. (We
make the technical observation that the first three BTs are “strong”, while the last one is
“weak”; see Appendix.)
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Example. Consider the PSDYM symmetry characteristic Φ = Xz (z-translation). To find
the I-related SDYM characteristic Q, we use (23):

R̂J−1Q = Φ ⇒ D−1
z̄ Ây(J−1Q) = Xz ⇒ Ây(J−1Q) = Xzz̄

(2)⇒ (J−1Q)y + [J−1Jy, J
−1Q] = (J−1Jy)z,

which is satisfied for Q = Jz. By applying the recursion operator T̂ on Q,

Q′ = T̂Q = JR̂J−1Q = JD−1
z̄ Ây(J−1Jz) = JD−1

z̄ {(J−1Jz)y + [J−1Jy, J
−1Jz]}

= JD−1
z̄ (J−1Jy)z

(2)
= JD−1

z̄ Xzz̄ = JXz.

To find the I-related PSDYM characteristic Φ′, we use (23) once more:

Φ′ = R̂J−1Q′ = R̂Xz = R̂Φ.

We notice that R̂Φ = I{T̂Q} when Φ = I{Q}, as expected by the fact that R̂ and T̂ are
I-equivalent recursion operators.

Now, let Q(0) be some SDYM symmetry characteristic. By repeated application of the
recursion operator T̂ , we obtain an infinite sequence of such characteristics:

Q(1) = T̂Q(0), Q(2) = T̂Q(1) = T̂ 2Q(0), . . . , Q(n) = T̂Q(n−1) = T̂ nQ(0), . . .

(we note that any power of a recursion operator also is a recursion operator). Also, let

Φ(0) = I{Q(0)} = R̂J−1Q(0) (29)

be the PSDYM characteristic which is I-related to Q(0). Repeated application of the
PSDYM recursion operator R̂ will now yield an infinite sequence of PSDYM character-
istics. Taking into account that R̂ and T̂ are I-equivalent recursion operators, we can write
this sequence as follows:

Φ(1) = R̂Φ(0) = I{T̂Q(0)}, Φ(2) = R̂2Φ(0) = I{T̂ 2Q(0)}, . . . ,
Φ(n) = R̂nΦ(0) = I{T̂ nQ(0)}, . . . .

Assume now that the infinite set of SDYM symmetries represented by the characteristics
{Q(n)} (n = 0, 1, 2, . . .) has the structure of a Lie algebra. This set then constitutes a
symmetry subalgebra of SDYM. Given that the set {Φ(n)} is I-related to {Q(n)} and that
I is a Lie-algebra isomorphism, we conclude that the infinite set of characteristics {Φ(n)}
corresponds to a symmetry subalgebra of PSDYM which is isomorphic to the associated
subalgebra {Q(n)} of SDYM.

More generally, let {Q(0)
k /k = 1, 2, . . . , p} be a finite set of SDYM symmetry character-

istics, and let {Φ(0)
k /k = 1, 2, . . . , p} be the I-related set of PSDYM characteristics, where

Φ(0)
k = I{Q(0)

k } = R̂J−1Q
(0)
k ; k = 1, 2, . . . , p. (30)
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Assume that the infinite set of characteristics

{Q(n)
k = T̂ nQ

(0)
k /n = 0, 1, 2, . . . ; k = 1, 2, . . . , p} (31)

corresponds to a Lie subalgebra of SDYM symmetries. Then, the I-related set of
characteristics

{Φ(n)
k = R̂nΦ(0)

k /n = 0, 1, 2, . . . ; k = 1, 2, . . . , p} (32)

corresponds to a PSDYM symmetry subalgebra which is isomorphic to that of (31).
Let us summarize our main conclusions:

• The infinite-dimensional symmetry Lie algebras of SDYM and PSDYM are isomorphic,
the isomorphism I being defined by (23) or (24).

• The recursion operators T̂ and R̂, defined in (21) and (19), when applied to I-related
symmetry characteristics [such as those in (29) or (30)], may generate isomorphic, infinite-
dimensional symmetry subalgebras of SDYM and PSDYM, respectively.

• Since the structures of the symmetry Lie algebras of SDYM and PSDYM are similar, all
results regarding the latter structure are also applicable to the SDYM case.

Comment. At this point the reader may wonder whether it is really necessary to go through
the PSDYM symmetry problem in order to solve the corresponding SDYM problem. In
principle, of course, the SDYM case can be treated on its own. In practice, however, it
is easier to study the symmetry structure of PSDYM first and then take advantage of
the isomorphism between this structure and that of SDYM. This statement is justified
by the fact that the PSDYM recursion operator is considerably easier to handle compared
to the corresponding SDYM operator. This property of the former operator is of great value
in the interest of computational simplicity (in particular, for the purpose of deriving various
commutation relations; cf. [8]).

4. Potential Symmetries and Current Algebras

We recall that every SDYM symmetry characteristic can be expressed as Q = JΦ, where Φ
is a PSDYM characteristic (we note that Φ is not I-related to Q). Let Φ be a characteristic
which depends locally or nonlocally on X and/or various derivatives of X. By the BT (2),
X must be an integral of J and its derivatives, and so this and its derivatives Xy and Xz are
nonlocal in J . On the other hand, according to (2), the quantities Xȳ and Xz̄ depend locally
on J . Thus, in general, Φ can be local or nonlocal in J . In the case where Φ is nonlocal in
J , we say that the characteristic Q = JΦ expresses a potential symmetry of SDYM [3, 5].
(See Appendix for a general definition of locality and nonlocality of symmetries.)

4.1. Internal symmetries

The PSDYM equation is generally invariant under a transformation of the form

∆(0)X = Φ(0) = [X,M ] (33)

where M is any constant sl(N,C) matrix. Since the characteristic Φ(0) is nonlocal in J , the
transformation

Q = JΦ(0) = J [X,M ]



April 16, 2010 16:41 WSPC/1402-9251 259-JNMP 00058
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is a genuine potential symmetry of SDYM. Note that the SDYM characteristic which is
I-related to Φ(0) is not Q, but rather Q(0) = JM , since we then have

R̂J−1Q(0) = R̂M = D−1
z̄ [Xz̄,M ] = [X,M ] = Φ(0).

Let {τk} be a basis for sl(N,C):

[τi, τj ] = Ck
ijτk.

Then M is expanded as M = αkτk, and (33) is resolved into a set of independent basis
transformations

∆(0)
k X = Φ(0)

k = [X, τk]

corresponding to the SDYM potential symmetries

Qk = JΦ(0)
k = J [X, τk].

These are not the same as the I-related characteristics

∆(0)
k J = Q

(0)
k = Jτk.

Consider now the infinite set of transformations

∆(n)
k X = Φ(n)

k = R̂nΦ(0)
k = R̂n[X, τk] (n = 0, 1, 2, . . .) (34)

As can be shown, they satisfy the commutation relations of a Kac–Moody algebra:

[∆(m)
i ,∆(n)

j ]X = Ck
ij∆

(m+n)
k X.

In view of the isomorphism I, this structure is also present in SDYM. Indeed, this is precisely
the familiar hidden symmetry of SDYM [11, 12]. The SDYM transformations which are
I-related to those in (34) are given by

∆(n)
k J = Q

(n)
k = T̂ nQ

(0)
k = T̂ nJτk (n = 0, 1, 2, . . .).

They constitute an infinite set of potential symmetries (note, for example, that ∆(1)
k J =

J [X, τk] = JΦ(0)
k ) and they satisfy the commutation relations

[∆(m)
i ,∆(n)

j ]J = Ck
ij∆

(m+n)
k J.

4.2. Symmetries in the base space

A number of local PSDYM symmetries corresponding to coordinate transformations are
nonlocal in J , hence lead to potential symmetries of SDYM. By using isovector methods
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[4, 15], nine such PSDYM symmetries can be found. They can be expressed as follows:

∆(0)
k X = Φ(0)

k = L̂kX (k = 1, 2, . . . , 9) (35)

where the L̂k are nine linear operators which are explicitly given by

L̂1 = Dy, L̂2 = Dz, L̂3 = zDy − ȳDz̄, L̂4 = yDz − z̄Dȳ,

L̂5 = yDy − zDz − ȳDȳ + z̄Dz̄, L̂6 = 1 + yDy + zDz ,

L̂7 = 1 − ȳDȳ − z̄Dz̄, L̂8 = yL̂6 + z̄(yDz̄ − zDȳ),

L̂9 = zL̂6 + ȳ(zDȳ − yDz̄).

The L̂1, L̂2 represent translations of y and z, respectively, while the L̂3, L̂4 represent rota-
tional symmetries. The L̂5, L̂6, L̂7 express scale transformations, while L̂8 and L̂9 represent
nonlinear coordinate transformations which presumably reflect the special conformal invari-
ance of the SDYM equations in their original, covariant form.

The first five operators L̂1, . . . , L̂5 form the basis of a Lie algebra, the commutation
relations of which we write in the form

[L̂i, L̂j] = −fk
ijL̂k (k = 1, . . . , 5).

Consider now the infinite set of transformations

∆(n)
k X = Φ(n)

k = R̂nΦ(0)
k = R̂nL̂kX (k = 1, . . . , 5). (36)

As can be shown [8], these form a Kac–Moody algebra:

[∆(m)
i ,∆(n)

j ]X = fk
ij∆

(m+n)
k X.

Consider also the infinite sets of transformations

∆(n)X = R̂nL̂6X and ∆(n)X = R̂nL̂7X. (37)

As can be proven [8], each set forms a Virasoro algebra (apart from a sign):

[∆(m),∆(n)]X = −(m − n)∆(m+n)X.

Taking the isomorphism I into account, we conclude that the SDYM symmetry algebra
possesses both Kac–Moody and Virasoro subalgebras (“current algebras” [16]), both of
which are associated with infinite sets of potential symmetries. The former subalgebras
are associated with both internal and coordinate transformations, while the latter ones are
related to coordinate transformations only. These conclusions are in agreement with those
of [13], although the mathematical approach there is different from ours.

5. Summary

By using the SDYM-PSDYM system as a model, we have studied a process for associating
symmetries and recursion operators of two nonlinear PDEs related to each other by a non-
auto-BT. The concept of a BT itself enters our analysis at various levels: (a) The non-auto
BT (2) relates solutions of the nonlinear PDEs (1) and (3); (b) the non-auto-BT (17) or
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Bäcklund-Transformation-Related Recursion Operators 47

(18) relates symmetry characteristics of these PDEs; (c) the auto-BTs for the symmetry
conditions (14) and (13) lead to the recursion operators (19) and (21), respectively; and (d)
the transformation (28) may be perceived as a BT associating recursion operators for the
original, nonlinear PDEs. We have proven the isomorphism between the infinite-dimensional
symmetry Lie algebras of SDYM and PSDYM, and we have used this property to draw
several conclusions regarding the Lie-algebraic structure of the potential symmetries of
SDYM.

For further reading on recursion operators, the reader is referred to [17–22]. A nice
discussion of the SDYM symmetry structure and its connection to the existence of infinitely
many conservation laws can be found in the paper by Adam et al. [23].
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Appendix:. Some Basic Definitions

To make the paper as self-contained as possible, basic definitions of some key concepts that
are being used are given below:

A.1. Recursion operators

Consider a PDE F [u] = 0, in the dependent variable u and the independent variables
xµ (µ = 1, 2, . . .). Let δu = αQ[u] be an infinitesimal symmetry transformation of the PDE,
where Q[u] is the symmetry characteristic. The symmetry is generated by the (formal)
vector field

V = Q[u]
∂

∂u
+ prolongation = Q

∂

∂u
+ Qµ

∂

∂uµ
+ Qµν

∂

∂uµν
+ · · · (A.1)

(where the Qµ ≡ DµQ, etc., denote total derivatives of Q). The symmetry condition is
expressed by a PDE, linear in Q:

S(Q;u) ≡ ∆F [u] = 0 mod F [u] (A.2)

where ∆ denotes the Fréchet derivative with respect to V . If u is a scalar quantity, then
(A.2) takes the form

S(Q;u) = V F [u] = Q
∂F

∂u
+ Qµ

∂F

∂uµ
+ Qµν

∂F

∂uµν
+ · · · = 0 mod F [u]. (A.3)

Since the PDE (A.2) is linear in Q, the sum of two solutions (for the same u) also is
a solution. Thus, for any given u, the solutions {Q[u]} of (A.2) form a linear space Su. A
recursion operator R̂ is a linear operator which maps the space Su into itself. Thus, if Q is
a symmetry characteristic of F [u] = 0 [i.e., a solution of (A.2)], then so is R̂Q:

S(R̂Q;u) = 0 when S(Q;u) = 0. (A.4)

We note that R̂2Q, R̂3Q, . . . , R̂nQ also are symmetry characteristics. This means that

any power R̂nof a recursion operator also is a recursion operator .
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Thus, starting with any symmetry characteristic Q, we can obtain an infinite set of such
characteristics by repeated application of the recursion operator.

A symmetry operator L̂ is a linear operator, independent of u, which produces a sym-
metry characteristic Q[u] when it acts on u. Thus, L̂u = Q[u]. We note that R̂L̂u is a
symmetry characteristic, which means that

the product R̂L̂ of a recursion operator and a symmetry operator is a symmetry operator.

Thus, given that R̂n is a recursion operator, we conclude that R̂nL̂u is a member of Su.
Examples of symmetry operators are the nine operators L̂k that appear in (35), as well as
the operator L̂ = [ ,M ] which is implicitly defined in (33).

A.2. “Strong” and “Weak” Bäcklund transformations

In the most general sense, a BT is a set of relations (typically differential, although in certain
cases algebraic ones are also considered) which connect solutions of two different PDEs (non-
auto-BT) or of the same PDE (auto-BT). The technical distinction between “strong” and
“weak” BTs [24, 25] can be roughly described as follows: In a strong BT connecting, say,
the variables u and v, integrability of the differential system for either variable demands
that the other variable satisfy a certain PDE. A weak BT, on the other hand, is much like a
symmetry transformation: u and v are not, a priori, required to satisfy any particular PDEs
for integrability. If, however, u satisfies some specific PDE, then v satisfies some related PDE.
(An example is the Cole–Hopf transformation, connecting solutions of Burgers’ equation to
solutions of the heat equation.)

The BT (2) is strong, since its integrability conditions force the functions J and X to
satisfy the PDEs (1) and (3), respectively. Similar remarks apply to the BTs (17) and (19a).
On the other hand, transformation (28) does not a priori impose any specific properties
on the operators P̂ and Ŝ. If, however, P̂ is an SDYM recursion operator, then Ŝ is the
I-equivalent PSDYM recursion operator. Thus, equation (28) is a Bäcklund-like transfor-
mation of the weak type, although this particular transformation relates operators rather
than functions.

A.3. Local and nonlocal symmetries

Let F [u] = 0 be a PDE in the dependent variable u and the independent variables xµ (µ =
1, 2, . . .). A symmetry characteristic Q[u] represents a local symmetry of the PDE if Q

depends, at most, on xµ, u, and derivatives of u with respect to the xµ. A symmetry is
nonlocal if the corresponding characteristic Q contains additional variables expressed as
integrals of u with respect to the xµ (or, more generally, integrals of local functions of u).
As an example, the PSDYM characteristic Φ = [X,M ] (where M is a constant matrix)
represents a local symmetry of this PDE (since it depends locally on the PSDYM variable
X), whereas the SDYM characteristic Q = J [X,M ] represents a nonlocal symmetry of
that PDE since it contains an additional variable X which is expressed as an integral of a
local function of the principal SDYM variable J [this follows from the BT (2)]. The infinite
symmetries (34), (36) and (37) are increasingly nonlocal in X for n > 0, since they are
produced by repeated application of the integro-differential recursion operator R̂.
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Abstract: A 3-dimensional reduction of the self-dual Yang-Mills (SDYM) equation, named

SDYM3, is examined from the point of view of its symmetry and integrability characteristics.

By using a non-auto-Bäcklund transformation, this equation is connected to its potential form

(PSDYM3) and a certain isomorphism between the Lie algebras of symmetries of the two systems

is shown to exist. This isomorphism allows us to study the infinite-dimensional Lie algebraic

structure of the “potential symmetries” of SDYM3 by examining the symmetry structure of

PSDYM3 (which is an easier task). By using techniques described in a recent paper, the

recursion operators for both SDYM3 and PSDYM3 are derived. Moreover, a Lax pair and an

infinite set of nonlocal conservation laws for SDYM3 are found, reflecting the fact that SDYM3

is a totally integrable system. This system may physically represent gravitational fields or chiral

fields.
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1. Introduction

In a recent paper [1] we proposed a scheme by which symmetry and integrability aspects

of a certain class of nonlinear partial differential equations (PDEs) are interrelated. We

showed how, by starting with the symmetry condition of a PDE, one may derive in-

tegrability characteristics such as a Lax pair and an infinite set of (typically nonlocal)

conservation laws. Moreover, we described an algorithm for constructing a recursion op-

erator which, in principle, produces an infinite number of symmetries of the PDE from

any given one.
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As examples, we applied these ideas to two systems of physical interest: the two-

dimensional chiral field equation and the full, 4-dimensional self-dual Yang-Mills (SDYM)

equation. The former system is a 2-dimensional reduction of the latter, thus shares

some of its properties. However, there are differences: Although the SDYM recursion

operator produces infinite sets of nontrivial symmetries when acting on both internal

and coordinate symmetry transformations [2, 3], the chiral-field recursion operator yields

infinite sets of internal symmetries only.

In this paper, we study an intermediate model which represents a 3-dimensional reduc-

tion of SDYM. We will name it SDYM3. With appropriate adjustments, this model may

describe physical systems such as the complexified Ernst equation [4] or the 3-dimensional

chiral field equation [5]. Happily, some important symmetry properties of SDYM, which

are absent in the 2-dimensional chiral-field model, are restored in the 3-dimensional case.

Thus, the SDYM3 model possesses infinite sets of nontrivial symmetries on both the base

space (coordinate symmetries) and the fiber space (internal symmetries).

The Lie algebraic structure of symmetries of SDYM3 is certainly of interest. Although

this aspect of the problem will be treated in full in a subsequent paper, some basic ideas

are presented here. In the spirit of a recent paper on SDYM [6], we employ the concept

of a Bäcklund transformation (BT) to connect SDYM3 with its counterpart in potential

form, to be called PSDYM3. This BT also allows one to connect symmetries and recursion

operators of the two systems. In particular, the symmetries of PSDYM3 yield “potential

symmetries” [6-8] of SDYM3. It is proven that a Lie algebra isomorphism exists between

the symmetries of SDYM3 and those of PSDYM3. Thus, to determine the Lie algebraic

structure of symmetries of the former system, it suffices to study the corresponding

structure of the latter system. This is not just a matter of academic significance but is

important for practical reasons also, given that, as will be seen, the PSDYM3 recursion

operator is simpler in form compared to the corresponding SDYM3 operator, with the

result that the various commutation relations are easier to handle in the PSDYM3 case.

The paper is organized as follows:

In Section 2, the SDYM3-PSDYM3 system and its symmetry conditions are presented.

In Sec.3, the SDYM3 recursion operator is found in the form of a BT for the linear

symmetry condition. This operator produces, in principle, an infinite number of symme-

try characteristics, which are also seen to be conserved “charges” for SDYM3. A Lax

pair for this PDE is also found.

In Sec.4, it is shown that the symmetries of PSDYM3 can be used to construct

potential symmetries for SDYM3.

In Sec.5, a Lie algebra isomorphism is shown to exist between the symmetries of

SDYM3 and those of PSDYM3. The practical usefulness of this isomorphism is explained.

The concept of isomorphically related (equivalent) recursion operators [6] is intro-

duced in Sec.6. It is proven that the SDYM3 and PSDYM3 recursion operators are

equivalent, thus they produce isomorphic symmetry subalgebras for the respective PDEs.

Finally, in Sec.7 we study the existence of infinite-dimensional abelian subalgebras of

symmetries of PSDYM3, thus also of SDYM3. The presence of such algebras is a typical
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characteristic of integrable systems.

To facilitate the reader, we include an Appendix which contains definitions of the key

concepts of the total derivative and the Fréchet derivative. For fuller and more rigorous

definitions, the reader is referred to the book by Olver [9].

2. The SDYM3 – PSDYM3 System

We write the SDYM3 equation in the form

F [J ] ≡ Dȳ(J
−1Jy) + Dz(J

−1Jz) = 0 (1)

(the bracket notation is explained in the Appendix). We denote by xμ ≡ y, z, ȳ (μ =

1, 2, 3) the independent variables (assumed complex) and by Dy , Dz , D ȳ the total

derivatives with respect to these variables. These derivatives will also be denoted by

using subscripts [a mixed notation appears in Eq.(1)]. We assume that J is SL(N ,C)-

valued (i.e., det J = 1).

We consider the non-auto-BT

J−1Jy = Xz , J−1Jz = −Xȳ (2)

The integrability condition (Xȳ)z = (Xz)ȳ yields the SDYM3 equation (1). The integra-

bility condition (Jy)z = (Jz)y, which is equivalent to

Dy (J
−1Jz)− Dz (J

−1Jy) + [J−1Jy , J−1Jz] = 0,

yields a nonlinear PDE for the “potential” X of Eq.(1), called the “potential SDYM3

equation” or PSDYM3:

G [X] ≡ Xy ȳ + Xz z + [Xz , Xȳ] = 0 (3)

Noting that, according to Eq.(2), (trX)z = [tr (ln J)]y = [ln (det J)]y, etc., we see that

the condition det J = 1 can be satisfied by requiring that trX=0 [this requirement is com-

patible with the PSDYM3 equation (3)]. Hence, SL(N ,C) SDYM3 solutions correspond

to sl(N ,C) PSDYM3 solutions.

At this point we introduce the covariant derivative operators

Ây ≡ Dy + [J−1Jy , ] = Dy + [Xz , ]

Âz ≡ Dz + [J−1Jz , ] = Dz − [Xȳ , ]

where the BT (2) has been taken into account. By using Eq.(3) and the Jacobi identity,

the zero-curvature condition [Ây , Âz] = 0 is shown to be satisfied, as expected in view of

the fact that the “connections” J−1Jy and J−1Jz are pure gauges. Moreover, the above

operators are derivations on the Lie algebra of sl(N ,C)-valued functions, satisfying a

Leibniz rule of the form

Ây [M, N ] = [ÂyM, N ] + [M, ÂyN ]

Âz [M, N ] = [ÂzM, N ] + [M, ÂzN ]
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for any matrix functions M , N .

Let δJ = αQ [J ] and δX = αΦ [X] be infinitesimal symmetries of Eqs.(1) and (3), re-

spectively (α is an infinitesimal parameter), with corresponding symmetry characteristics

Q and Φ. (We note that any symmetry of a PDE can be expressed as a transformation of

the dependent variable alone [7, 9], i.e., is equivalent to a “vertical” symmetry.) We will

denote by ΔM [J ] the Fréchet derivative (see Appendix) of a function M with respect

to the characteristic Q. Similarly, by ΔN [X] we will denote the Fréchet derivative of

a function N with respect to Φ. In particular, Δ J = Q and ΔX = Φ. The symmetry

conditions for the PDEs (1) and (3) are, respectively,

ΔF [J ] = 0 mod F [J ] and ΔG [X] = 0 mod G [X] .

By using the commutativity of the Fréchet derivative with total derivatives (see Ap-

pendix), and the fact that

Δ (J−1Jy) = Ây (J
−1Q) , Δ(J−1Jz) = Âz (J

−1Q) ,

the first of the above conditions leads to a linear PDE for the characteristic Q:

S(Q ; J) ≡ (D ȳ Â y + Dz Âz) (J
−1Q) = 0 mod F [J ] (4)

which represents the symmetry condition for SDYM3.

The symmetry condition for PSDYM3 reads:

(ÂyDȳ + ÂzDz) Φ = 0 .

By using the operator identity

ÂyD ȳ + ÂzDz = D ȳ Ây +Dz Âz − [F [J ] , ]

= D ȳ Ây +Dz Âz mod F [J ]
(5)

we get the linear PDE for Φ :

S (Φ ; X) ≡ (D ȳ Â y + Dz Âz) Φ = 0 mod G [X] (6)

By comparing Eqs.(4) and (6), we notice that J −1Q and Φ satisfy the same PDE. Hence,

we conclude that

if Q is an SDYM3 symmetry characteristic, then Φ = J −1Q is a PSDYM3 charac-

teristic.

Conversely,

if Φ is a PSDYM3 symmetry characteristic, then Q = JΦ is an SDYM3 characteris-

tic.

3. Recursion Operator, Conserved Charges, and Lax Pair

We seek a recursion operator [9] for SDYM3, i.e., a linear operator which produces new

symmetry characteristics Q′ from “old” ones, Q. As in [1], we want to express this oper-

ator in the form of an auto-BT for the linear PDE (4) (which represents the symmetry
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condition for SDYM3). Moreover, this transformation must be consistent with the phys-

ical requirement tr (J−1Q) = 0 (i.e., Q′ must satisfy this property if Q does), which is

necessary in order that the SL(N ,C) character of the SDYM3 solution be preserved.

The auto-BT for the PDE (4) is similar to that found in [1] for SDYM. Specifically,

Â y(J
−1Q) = (J−1Q′ )z , Â z(J

−1Q) = − (J−1Q′ ) ȳ (7)

Integrability for Q′ requires that Q satisfy Eq.(4). Integrability for Q, expressed by the

condition [Ây , Âz] (J
−1Q) = 0, and upon using the operator identity (5), leads us again

to Eq.(4), this time for Q′. The BT (7) may be regarded as an invertible recursion

operator for the SDYM3 equation. It can be re-expressed as

Ây

(
J−1Q (n)

)
= Dz

(
J−1Q (n+1)

)

Âz

(
J−1Q (n)

)
= − D ȳ

(
J−1Q (n+1)

) (8)

(n =0,±1,±2,...). From this we get a doubly infinite set of nonlocal conservation laws of

the form

(D ȳ Â y + Dz Âz)
(
J−1Q (n)

)
= 0 mod F [J ] (9)

where the “conserved charges” Q (n) are symmetry characteristics.

Finally, the Lax pair for SDYM3, analogous to that found in [1] for SDYM, is

Dz (J
−1Ψ) = λ Ây (J

−1Ψ) , D ȳ (J
−1Ψ) = −λ Âz (J

−1Ψ) (10)

(where λ is a complex “spectral” parameter). The proof of the Lax-pair property is

sketched as follows: By the integrability condition (J−1Ψ)z ȳ − (J−1Ψ) ȳ z = 0, we get:

S(Ψ ; J) ≡ (D ȳ Ây + Dz Âz) (J
−1Ψ) = 0 .

On the other hand, the integrability condition [Ây , Âz] (J
−1Ψ) = 0, by using the oper-

ator identity (5), yields:

S (Ψ ; J) − [
F [J ] , J−1Ψ

]
= 0 .

Therefore, [F [J ] , J−1Ψ] = 0. This is valid independently of Ψ if F[J]=0, i.e., if J

is an SDYM3 solution. We conclude that the linear system (10) is a Lax pair for the

SDYM3 equation (1), the solution Ψ of which pair is a symmetry characteristic satisfying

Eq.(4): S (Ψ ; J) = 0. This Lax pair is different from that found by Nakamura for the

Ernst equation [4].

4. Potential Symmetries of SDYM3

We recall that every SDYM3 symmetry characteristic can be expressed as Q=JΦ, where Φ

is a PSDYM3 characteristic. Let Φ be a characteristic which depends locally or nonlocally

on X and/or various derivatives of X. By the BT (2), X must be an integral of J and
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its derivatives, and so it and its derivative Xy are nonlocal in J . On the other hand,

according to Eq.(2), the quantities Xȳ and Xz depend locally on J . Thus, in general,

Φ can be local or nonlocal in J . In the case where Φ is nonlocal in J , we say that the

characteristic Q=JΦ expresses a potential symmetry of SDYM3 [7, 8].

Clearly, to obtain the complete set of potential symmetries of SDYM3, one must first

find the totality of symmetries of PSDYM3. To this end, we need the recursion operator

for the latter system. Having found the analogous operator for SDYM3, expressed by

the BT (7), and by using the fact that Φ = J −1Q is a PSDYM3 symmetry characteristic

when Q is an SDYM3 characteristic, we easily get the recursion operator for PSDYM3

in the form of a BT for the symmetry condition (6):

ÂyΦ = Φ′z , ÂzΦ = − Φ′ȳ (11)

Since the above two PDEs are consistent with each other, we can use the first one to

write Φ′ = R̂Φ, where we have introduced the linear operator

R̂ = D−1
z Ây (12)

To show that the operator (12) is indeed a recursion operator for PSDYM3, we consider

a symmetry characteristic Φ of Eq.(3), i.e., a solution of Eq.(6): S(Φ ;X) = 0. Then, by

using the operator identity (5), and by taking into account the commutativity of covariant

derivatives (zero-curvature condition), we have:

S(Φ′;X) = S(R̂Φ ;X) = (ÂyDȳ + ÂzDz) R̂Φ

= ÂyD
−1
z Dȳ ÂyΦ + Âz ÂyΦ

= ÂyD
−1
z (Dȳ Ây + Dz Âz) Φ + [Âz , Ây] Φ

= ÂyD
−1
z S(Φ ;X) + [Âz , Ây] Φ = 0

which proves that Φ′ = R̂Φ is a symmetry when Φ is a symmetry.

For sl(N ,C) PSDYM3 solutions, the symmetry characteristic Φ must be traceless.

Then, so will be the characteristic Φ′ = R̂Φ. That is, the recursion operator (12)

preserves the sl(N ,C) character of PSDYM3.

As is easy to see, any power R̂n (n = 0, ± 1, ± 2, · · · ) of an invertible recursion

operator also is a recursion operator. Thus, given any symmetry characteristic Φ(0), one

may obtain, in principle, an infinite set of characteristics:

Φ (n) = R̂Φ (n−1) = R̂nΦ (0) (n = 0, ± 1, ± 2, · · · ) (13)

Let us see some examples of using the recursion operator (12) to find PSDYM3 symmetries

and corresponding SDYM3 potential symmetries:

1. Take Φ (0) = M , where M is a constant, traceless matrix. Then,

Φ (1) = R̂Φ (0) = [X, M ] .
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The corresponding potential symmetry of SDYM3 is

Q (1) = JΦ (1) = J [X, M ] .

(This is nonlocal in J due to the presence of X.) Higher-order potential symmetries

are found recursively by repeated application of the recursion operator (12). We thus

obtain an infinite sequence of “internal” symmetries (i.e., symmetry transformations in

the “fiber” space), of the form:

Q (n) = JΦ (n) = J R̂nΦ (0) (n = 0, 1, 2, · · · ) (14)

In the case of the complexified Ernst equation, these are precisely the internal symmetries

found by Nakamura [4].

2. Take Φ (0) = Xy, which represents a coordinate symmetry (symmetry transforma-

tion in the “base” space of the independent variables xμ), specifically, invariance under

y−translation. By applying the recursion operator, we get:

Φ (1) = R̂Φ (0) = D−1
z (Xyy + [Xz , Xy] ) = D−1

z (Xyy + [J −1Jy , Xy] ) .

Both Φ (0) and Φ (1) are nonlocal in J (due to the presence of the y−derivatives of X,

as well as of the integral operator with respect to z). We thus obtain the potential

symmetries of SDYM3,

Q (0) = J Φ (0) = JXy ,

Q (1) = J Φ (1) = JD−1
z (Xyy + [J −1Jy , Xy] ) .

We note that, by applying the recursion operator to the translational characteristics

Φ (0) = Xz and Φ (0) = Xȳ [both of which are local in J , in view of the BT (2)], we get,

respectively, Φ (1) = Xy (which is nothing new) and Φ (1) = −Xz (again, nothing new).

3. Take Φ (0) = yXy + zXz + ȳXȳ, which represents a scale change of the xμ. This

is nonlocal in J due to Xy. We leave it to the reader to show that

Φ (1) = R̂Φ (0) = zXy − ȳ J −1Jy + yD−1
z (Xyy + [J −1Jy , Xy] ) ,

where the PSDYM3 equation (3) and the BT (2) have been taken into account. This

is also nonlocal in J . We conclude that JΦ (0) and JΦ (1) are potential symmetries for

SDYM3.

5. Lie Algebra Isomorphism

We now study the connection between the Lie algebras of symmetries of SDYM3 and

PSDYM3. If these algebras are isomorphic, then any Lie algebraic conclusion regarding

the PSDYM3 equation will also be true for the SDYM3 equation. What is the practical

value of this? As we saw, the recursion operator for PSDYM3 is given by Eq.(12):

R̂ = D−1
z Ây .
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On the other hand, from the BT (7) we get, by using the first equation,

Q′ = JD−1
z Ây(J

−1Q) = J R̂ (J −1Q) ≡ T̂ Q

where T̂ is the operator form of the SDYM3 recursion operator:

T̂ = JD−1
z Ây J

−1 = J R̂ J −1 (15)

Obviously, R̂ is of a simpler form compared to T̂ . Accordingly, the Lie algebraic structure

of the infinite sequences of symmetries generated by the former operator will be easier

to study compared to the corresponding structure of symmetries produced by the latter

operator. So, we are seeking an isomorphism between the Lie algebras of symmetries of

the PDEs (1) and (3).

In the spirit of [6], where the 4-dimensional SDYM case was studied, we consider the

pair of PDEs:

Ây (J
−1Q) = Φz , Âz (J

−1Q) = −Φȳ (16)

Equation (16) is a BT connecting the symmetry characteristic Φ of PSDYM3 with the

symmetry characteristic Q of SDYM3. Indeed, the integrability condition (Φz)ȳ =

(Φȳ)z yields the symmetry condition (4) for SDYM3, while the integrability condition

[Ây , Âz] (J
−1Q) = 0, valid in view of the zero-curvature condition, yields the PSDYM3

symmetry condition (6). Please note carefully that the Q and Φ in Eq.(16) are not re-

lated by the simple algebraic relation Q=JΦ. Note also that the system (16) is compatible

with the constraints that Φ and J −1Q be traceless, as required for producing sl(N ,C)

PSDYM3 solutions and SL(N ,C) SDYM3 solutions, respectively.

We observe that, for a given Q, the solution of the BT (16) for Φ is not unique, and

neither is the solution for Q, for a given Φ. Indeed, in either case the solution may contain

arbitrary additive terms. We normalize the process by agreeing to ignore such terms, so

that, in particular, the characteristic Q =0 corresponds to the characteristic Φ=0. In

this way, the BT (16) establishes a one-to-one correspondence between the symmetries

of SDYM3 and those of PSDYM3. We will now show that this correspondence is a Lie

algebra isomorphism.

Lemma: The Fréchet derivative Δ with respect to the characteristic Φ, and the

recursion operator R̂ of Eq.(12), satisfy the commutation relation

[Δ , R̂] = D−1
z [Φz , ] (17)

where Φ = ΔX .

Proof: Introducing an auxiliary matrix functionM , and using the derivation property

of Δ and the commutativity of Δ with all total derivatives (as well as all powers of such

derivatives), we have:

Δ R̂M = ΔD−1
z ÂyM = D−1

z Δ (DyM + [Xz , M ] )

= D−1
z (DyΔM + [(ΔX)z , M ] + [Xz , ΔM ] )

= D−1
z (ÂyΔM + [Φz , M ] ) = R̂ΔM + D−1

z [Φz , M ] ,
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from which there follows (17).

Now, by the first equation of the BT (16), we can write:

Φ = D−1
z Ây (J

−1Q) = R̂ (J−1Q) (18)

Equation (18) defines a linear map from the set of symmetries Q=ΔJ of the PDE (1)

to the set of symmetries Φ = ΔX of the PDE (3). With the normalization conventions

mentioned earlier, this map can be considered invertible, thus constituting a one-to-one

correspondence between the symmetries of SDYM3 and those of PSDYM3, for any given

solutions J and X connected to each other by the BT (2). Calling this map I, we write:

I : Φ = I {Q} = R̂ J −1Q or ΔX = I {Δ J} = R̂ J −1Δ J (19)

[Note: We may omit parentheses, such as those in Eq.(18), by agreeing that an operator

acts on the entire expression (e.g., product of functions) on its right, not just on the

function adjacent to it. Hence, P̂MN ≡ P̂ (MN).]

Proposition 1: The map I defined by Eq.(19) is an isomorphism between the sym-

metry Lie algebras of SDYM3 and PSDYM3.

Proof: Consider a pair of symmetries of Eq.(1), indexed by i and j, generated by the

characteristics Q ( l ) = Δ ( l )J , where l = i, j. Similarly, consider a pair of symmetries of

Eq.(3), generated by Φ( l ) = Δ ( l )X (l = i, j). Further, assume that

Φ ( l ) = I {Q ( l )} or Δ ( l )X = I {Δ ( l )J } .

That is,

Φ ( l ) = Δ ( l )X = R̂ J −1Δ ( l )J = R̂ J −1Q ( l ) ; l = i, j (20)

By the Lie-algebraic property of symmetries of PDEs, the functions [Δ (i), Δ (j)] J and

[Δ (i), Δ (j)]X also are symmetry characteristics for SDYM3 and PSDYM3, respectively,

where we have put

[Δ (i), Δ (j)] J ≡ Δ (i)Δ (j)J − Δ (j)Δ (i)J = Δ (i)Q (j) − Δ (j)Q (i) ,

[Δ (i), Δ (j)] X ≡ Δ (i)Δ (j)X − Δ (j)Δ (i)X = Δ (i)Φ (j) − Δ (j)Φ (i) .

We must now show that

[Δ (i), Δ (j)]X = I {[Δ (i), Δ (j)] J } = R̂ J−1 [Δ (i), Δ (j)] J (21)

Putting l = j into Eq.(20), and applying the Fréchet derivative Δ (i), we have:

Δ (i)Δ (j)X = Δ (i)R̂ J−1Q (j) = [Δ (i), R̂] J−1Q (j) + R̂Δ (i)J−1Q (j)

= D−1
z [Φ

(i)
z , J−1Q (j)] + R̂Δ (i)J−1Q (j) ,

where we have used the commutation relation (17). By Eq.(20),

Φ(i)
z = DzR̂ J−1Q (i) = Ây J

−1Q (i).
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Moreover, by the properties of the Fréchet derivative listed in the Appendix,

Δ (i)J−1Q (j) = −J−1 (Δ (i)J) J−1Q (j) + J−1Δ (i)Q (j)

= − J−1Q (i)J−1Q (j) + J−1Δ (i)Q (j) .

So,

Δ (i)Δ (j)X = D−1
z [ÂyJ

−1Q (i), J−1Q (j)] − R̂ J−1Q (i)J−1Q (j) + R̂ J−1Δ (i)Q (j).

Subtracting from this the analogous expression for Δ (j)Δ (i)X, we have:

[Δ (i), Δ (j)]X ≡ Δ (i)Δ (j)X − Δ (j)Δ (i)X

= D−1
z

(
[ÂyJ

−1Q (i), J−1Q (j)] + [J−1Q (i), ÂyJ
−1Q (j)]

)

− R̂ [J−1Q (i), J−1Q (j)] + R̂ J−1(Δ (i)Q (j) − Δ (j)Q (i))

= D−1
z Ây [J

−1Q (i), J−1Q (j)] − R̂ [J−1Q (i), J−1Q (j)]

+ R̂ J−1(Δ (i)Δ (j)J − Δ (j)Δ (i)J )

= R̂ J−1 [Δ (i), Δ (j)] J

where we have used the derivation property of Ây. Thus, Eq.(21) has been proven.

6. Isomorphically Related Recursion Operators

Following [6], we now introduce the concept of isomorphically related (I-related) recursion

operators. Let Ŝ be a recursion operator for the SDYM3 equation (1) [not necessarily

that of Eq.(15)], and let P̂ be a recursion operator for the PSDYM3 equation (3) [not

necessarily that of Eq.(12)].

Definition: The linear operators P̂ and Ŝ will be called equivalent with respect to

the isomorphism I (or I-equivalent, or I-related) if the following condition is satisfied:

P̂ Φ = I { Ŝ Q } when Φ = I {Q } (22)

where Q and Φ are symmetry characteristics for the PDEs (1) and (3), respectively.

Proposition 2: Any I−related recursion operators P̂ and Ŝ satisfy the following

operator equation on the infinite-dimensional linear space of all SDYM3 symmetry char-

acteristics:

P̂ R̂ J −1 = R̂ J −1Ŝ (23)

where R̂ is the operator defined in Eq.(12).

Proof: By Eqs.(19) and (22),

P̂ Φ = R̂ J −1Ŝ Q when Φ = R̂ J −1Q ⇒ P̂ R̂ J −1Q = R̂ J −1Ŝ Q
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for all SDYM3 characteristics Q.

Proposition 3: The recursion operators R̂ and T̂ , defined by Eqs.(12) and (15), are

I−equivalent.
Proof: Simply note that the operator equation (23) is satisfied by putting P̂ = R̂

and Ŝ = T̂ , and by taking Eq.(15) into account.

Now, let Q (0) be some SDYM3 symmetry characteristic, and let Φ(0) be the I−related
PSDYM3 characteristic:

Φ (0) = I {Q (0)} = R̂ J −1Q (0) (24)

Consider also the infinite sets of symmetries of the PDEs (1) and (3), respectively:

Q (n) = T̂ nQ (0) ; n = 0, 1, 2, · · · (25)

Φ (n) = R̂nΦ (0) ; n = 0, 1, 2, · · · (26)

Proposition 4: If the set (25) generates an infinite-dimensional Lie subalgebra of

SDYM3 symmetries, then the set (26) generates an infinite-dimensional Lie subalgebra

of PSDYM3 symmetries, isomorphic to the SDYM3 symmetry subalgebra.

Proof: Since the operators R̂ and T̂ are I−equivalent, by Eq.(24) we have:

R̂Φ (0) = I { T̂ Q (0)} .

By iterating,

R̂nΦ (0) = I { T̂ nQ (0)} or Φ (n) = I {Q (n)} ; n = 0, 1, 2, · · · (27)

Call V and W the infinite-dimensional linear spaces spanned by the basis functions (25)

and (26), respectively. The elements of V and W are, correspondingly, symmetry char-

acteristics of SDYM3 and PSDYM3. Equation (27) defines an isomorphism between V

and W . By assumption, the characteristics belonging to V generate a Lie subalgebra of

the complete Lie algebra of symmetries of SDYM3. We must show that the elements of

W generate an isomorphic subalgebra of PSDYM3 symmetries. To this end, consider two

basis elements Q (i) = Δ (i)J and Q (j) = Δ (j)J of V . From these we construct the Lie

bracket,

[Δ (i), Δ (j)] J ≡ Δ (i)Δ (j)J − Δ (j)Δ (i)J = Δ (i)Q (j) − Δ (j)Q (i)

which is an SDYM3 symmetry characteristic. This characteristic belongs to the subspace

V (since this space generates a Lie algebra). Now, let

Φ (l) = Δ (l)X = I {Q (l)} ; l = i, j

be the basis elements of W which are I−related to the Q (l) (l = i, j), in the way dictated

by Eq.(27). By Eq.(21),

[Δ (i), Δ (j)]X ≡ Δ (i)Φ (j) −Δ (j)Φ (i) = I {[Δ (i), Δ (j)] J } .

The quantity on the left is a PSDYM3 symmetry characteristic. Given that I is a map

from V to W , this characteristic belongs to the subspace W . Thus, W is closed under

the Lie bracket operation, which means that its elements generate a Lie subalgebra of

PSDYM3 symmetries. This subalgebra is I−related, i.e. isomorphic, to the corresponding

subalgebra of SDYM3 symmetries generated by the elements of V .
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7. Infinite-Dimensional Abelian Subalgebras

The study of the complete symmetry Lie algebra of SDYM3 will be the subject of a

future paper. Here, we confine ourselves to the existence of infinite-dimensional abelian

subalgebras, the presence of which is a typical characteristic of integrable systems. Since

the PDEs (1) and (3) constitute a 3-dimensional reduction of the 4-dimensional SDYM-

PSDYM system, certain symmetry aspects of the latter system are expected to be present

in the former one also. In particular, the PSDYM equation has been shown to possess

Kac-Moody symmetry algebras associated with both internal and coordinate transforma-

tions [2]. These algebras possess infinite-dimensional abelian subalgebras. Such abelian

structures exist for the reduced 3-dimensional system also. The following theorem follows

directly from a more general one concerning the 4-dimensional PSDYM equation [2]:

Theorem: Consider a PSDYM3 symmetry, having a characteristic of the form

Φ (0) = Δ (0)X = L̂X

where L̂ is a linear operator. By repeated application of the recursion operator (12), we

construct an infinite sequence of PSDYM3 characteristics,

Φ (n) = Δ (n)X = R̂nΦ (0) = R̂nL̂X ; n = 0, 1, 2, · · · (28)

We assume that the operator L̂ obeys the commutation relations

[Δ (n), L̂] = 0 and [L̂ , R̂] = D−1
z [Dz L̂X , ] .

Then, the set (28) represents an infinite-dimensional abelian symmetry algebra:

[Δ (m), Δ (n)]X ≡ Δ (m)Φ (n) −Δ (n)Φ (m) = 0 .

We note that the commutation relation (17) is written, in this case,

[Δ (n), R̂] = D−1
z [DzΔ

(n)X , ] = D−1
z [Dz R̂

nL̂X , ] .

As an example, it can be checked that the conditions of this theorem are satisfied for the

linear operators L̂ 1 = Dy and L̂ 2 = yDy + zDz + ȳD ȳ, corresponding to the PSDYM3

symmetries Φ (0) = Xy and Φ (0) = yXy + zXz + ȳX ȳ, respectively. The I−related
SDYM3 symmetries are Q (0) = Jy and Q (0) = yJy + zJz + ȳ J ȳ. We thus obtain two

infinite-dimensional abelian subsymmetries of PSDYM3:

Φ (n) = Δ (n)X = R̂nXy ; n = 0, 1, 2, · · ·

Φ (n) = Δ (n)X = R̂n( yXy + zXz + ȳX ȳ) ; n = 0, 1, 2, · · ·
and two I−related abelian (by Proposition 4) sybsymmetries of SDYM3:

Q (n) = Δ (n)J = T̂ nJy ; n = 0, 1, 2, · · ·

Q (n) = Δ (n)J = T̂ n( yJy + zJz + ȳ J ȳ) ; n = 0, 1, 2, · · ·
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Summary

We have explored the symmetry and integrability characteristics of a 3-dimensional re-

duction of the full 4-dimensional self-dual Yang-Mills system. The former model is phys-

ically interesting since, with appropriate adjustments, it may describe chiral fields [5, 10]

or axially-symmetric gravitational fields [4]. We have used the techniques described in

[1] to derive a recursion operator, a Lax pair, and an infinite set of conserved “charges”.

We have studied the existence of potential symmetries, and we have investigated certain

aspects of the Lie algebraic structure of symmetries of our model. The study of the full

symmetry algebra of this model will be the subject of a future paper.

Appendix

To make this article as self-contained as possible, we define two key concepts that are being

used, namely, the total derivative and the Fréchet derivative. The reader is referred to the

extensive review article [11] by this author for more details. (It should be noted, however,

that our present definition of the Fréchet derivative corresponds to the definition of the

Lie derivative in that article. Since these two derivatives are locally indistinguishable,

this discrepancy in terminology should not cause any concern mathematically.)

We consider the set of all PDEs of the form F [u] = 0, where, for simplicity, the solu-

tions u (which may be matrix-valued) are assumed to be functions of only two variables,

x and t: u = u(x,t). In general,

F [u] ≡ F (x, t, u, ux, u t, uxx, u tt, uxt, · · · ) .

Geometrically, we say that the function F is defined in a jet space [9, 12] with coordinates

x,t,u, and as many partial derivatives of u as needed for the given problem. A solution

of the PDE F [u] = 0 is then a surface in this jet space.

Let F [u] be a given function in the jet space. When differentiating such a function

with respect to x or t, both implicit (through u) and explicit dependence of F on these

variables must be taken into account. If u is a scalar quantity, we define the total derivative

operators Dx and D t as follows:

Dx = ∂
∂ x

+ ux
∂
∂ u

+ uxx
∂

∂ ux
+ uxt

∂
∂ u t

+ · · ·
D t =

∂
∂ t

+ u t
∂
∂ u

+ uxt
∂

∂ ux
+ u t t

∂
∂ u t

+ · · ·

(note that the operators ∂/∂x and ∂/∂ t concern only the explicit dependence of F on

x and t). If, however, u is matrix-valued, the above representation has only symbolic

significance and cannot be used for actual calculations. We must therefore define the

total derivatives Dx and D t in more general terms.

We define a linear operator Dx, acting on functions F [u] in the jet space and having

the following properties:
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1. On functions f(x,t) in the base space,

Dxf(x, t) = ∂f/∂x ≡ ∂x f.

2. On functions F [u] = u or ux , u t , etc., in the “fiber” space,

Dxu = ux , Dxux = uxx , Dxu t = u tx = uxt , etc.

3. The operator Dx is a derivation on the algebra of all functions F [u] in the jet space

(i.e., the Leibniz rule is satisfied):

Dx (F [u] G [u]) = (DxF [u]) G [u] + F [u]DxG [u] .

We similarly define the operatorD t. Extension to higher-order total derivatives is obvious

(although these latter derivatives are no longer derivations, i.e., they do not satisfy the

Leibniz rule). The following notation has been used in this article:

DxF [u] ≡ Fx [u] , D t F [u] ≡ F t [u] .

Finally, it can be shown that, for any matrix-valued functions A and B in the jet space,

we have

(A−1)x = −A−1AxA
−1 , (A−1) t = −A−1A tA

−1

and

Dx [A , B] = [Ax , B] + [A , Bx] , D t [A , B] = [A t , B] + [A , B t]

where square brackets denote commutators.

Let now δu � αQ [u] be an infinitesimal symmetry transformation (with characteristic

Q [u]) for the PDE F [u] = 0. We define the Fréchet derivative with respect to the

characteristic Q as a linear operator Δ acting on functions F [u] in the jet space and

having the following properties:

1. On functions f(x,t) in the base space,

Δ f(x, t) = 0

(this is a consequence of our liberty to choose all our symmetries to be in “vertical” form

[7, 9]).

2. On F [u] = u,

Δu = Q [u] .

3. The operator Δ commutes with total derivative operators of any order.

4. The Leibniz rule is satisfied:

Δ (F [u] G [u]) = (ΔF [u]) G [u] + F [u] ΔG [u] .

The following properties can be proven:

Δ ux = (Δ u)x = Qx [u] , Δu t = (Δ u) t = Q t [u]

Δ (A−1) = −A−1(ΔA) A−1 ; Δ [A , B] = [ΔA , B] + [A , ΔB]
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where A and B are any matrix-valued functions in the jet space.

If the solution u of the PDE is a scalar function (thus so is the characteristic Q), the

Fréchet derivative with respect to Q admits a differential-operator representation of the

form

Δ = Q
∂

∂u
+ Qx

∂

∂ux

+ Q t
∂

∂u t

+ Qxx
∂

∂uxx

+ Q t t
∂

∂u t t

+ Qxt
∂

∂uxt

+ · · ·

Such representations, however, are not valid for PDEs in matrix form. In these cases we

must resort to the general definition of the Fréchet derivative given above.

Finally, by using the Fréchet derivative, the symmetry condition for a PDE F [u] = 0

can be expressed as follows [7, 9]:

ΔF [u] = 0 mod F [u] .

This condition yields a linear PDE for the symmetry characteristic Q, of the form

S (Q ; u) = 0 mod F [u] .
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Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual 
subtleties that may cause some confusion to the deep-thinking student. These subtle-
ties concern fundamental issues such as, e.g., the number of independent laws needed 
to formulate the theory, or, the distinction between genuine physical laws and deriva-
tive theorems. This article attempts to clarify these issues for the benefit of the stu-
dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor-
ous axiomatic approach to the subject. This theoretical scheme is built upon two fun-
damental postulates, namely, conservation of momentum and superposition property 
for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are 
shown to follow from these basic principles.  

 
 
1.  Introduction  
 
Teaching introductory mechanics can be a major challenge, especially in a class of 
students that are not willing to take anything for granted! The problem is that, even 
some of the most prestigious textbooks on the subject may leave the student with 
some degree of confusion, which manifests itself in questions like the following:  
 

• Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is 
it a statement of existence (of inertial reference frames)?  

• Are the first two of Newton’s laws independent of each other? It appears that 
the first law is redundant, being no more than a special case of the second law!  

• Is the second law a true law or a definition (of force)?  
• Is the third law more fundamental than conservation of momentum, or is it the 

other way around?  
• Does the “parallelogram rule” for composition of forces follow trivially from 

Newton’s laws, or is an additional, independent principle required?  
• And, finally, what is the minimum number of independent laws needed in or-

der to build a complete theoretical basis for mechanics?  
 
      In this article we describe an axiomatic approach to introductory mechanics that is 
both rigorous and pedagogical. It purports to clarify issues like the ones mentioned 
above, at an early stage of the learning process, thus aiding the student to acquire a 
deep understanding of the basic ideas of the theory. It is not the purpose of this article, 
of course, to present an outline of a complete course of mechanics! Rather, we will 
focus on the most fundamental concepts and principles, those that are taught at the 
early chapters of dynamics (we will not be concerned with kinematics, since this sub-
ject confines itself to a description of motion rather than investigating the physical 
laws governing this motion).  
                                                 
1  See Note at the end of the article.  
2  papachristou@snd.edu.gr  
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      The axiomatic basis of our approach consists of two fundamental postulates, pre-
sented in Section 3. The first postulate (P1) embodies both the existence of inertial 
reference frames and the conservation of momentum, while the second one (P2) ex-
presses a superposition principle for interactions. The law of inertia is deduced from 
P1.  
      In Sec. 4, the concept of force on a particle subject to interactions is defined (as in 
Newton’s second law) and P2 is used to show that a composite interaction of a particle 
with others is represented by a vector sum of forces. Then, P1 and P2 are used to de-
rive the action-reaction law. Finally, a generalization to systems of particles subject to 
external interactions is made.  
      For completeness of presentation, certain derivative concepts such as angular 
momentum, work, kinetic energy, etc., are discussed in Sec. 5. To make the article 
self-contained, proofs of all theorems are included.  
 
 
2.  A critical look at Newton’s theory  
 
There have been several attempts to reexamine Newton’s laws even since Newton’s 
time. Probably the most important revision of Newton’s ideas – and the one on which 
modern mechanics teaching is based – is that due to Ernst Mach (1838-1916) (for a 
beautiful discussion of Mach’s ideas, see the classic article by H. A. Simon [1]). Our 
approach differs in several aspects from those of Mach and Simon, although all these 
approaches share common characteristics in spirit. (For a historical overview of the 
various viewpoints regarding the theoretical basis of classical mechanics, see, e.g., the 
first chapter of [2].)  
      The question of the independence of Newton’s laws has troubled many genera-
tions of physicists. In particular, still on this day some authors assert that the first law 
(the law of inertia) is but a special case of the second law. The argument goes as fol-
lows:  
 

“According to the second law, the acceleration of a particle is proportional to 
the total force acting on it. Now, in the case of a free particle the total force 
on it is zero. Thus, a free particle must not be accelerating, i.e., its velocity 
must be constant. But, this is precisely what the law of inertia says!”  

 
      Where is the error in this line of reasoning? Answer: The error rests in regarding 
the acceleration as an absolute quantity independent of the observer that measures it. 
As we well know, this is not the case. In particular, the only observer entitled to con-
clude that a non-accelerating object is subject to no net force is an inertial observer, 
one who uses an inertial frame of reference for his/her measurements. It is precisely 
the law of inertia that defines inertial frames and guarantees their existence. So, with-
out the first law, the second law becomes indeterminate, if not altogether wrong, since 
it would appear to be valid relative to any observer regardless of his/her state of mo-
tion. It may be said that the first law defines the “terrain” within which the second 
law acquires a meaning. Applying the latter law without taking the former one into 
account would be like trying to play soccer without possessing a soccer field!  
      The completeness of Newton’s laws is another issue. Let us see a significant ex-
ample: As is well known, the principle of conservation of momentum is a direct con-
sequence of Newton’s laws. This principle dictates that the total momentum of a sys-
tem of particles is constant in time, relative to an inertial frame of reference, when the 
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total external force on the system vanishes (in particular, this is true for an isolated 
system of particles, i.e., a system subject to no external forces). But, when proving 
this principle we take it for granted that the total force on each particle is the vector 
sum of all forces (both internal and external) acting on it. This is not something that 
follows trivially from Newton’s laws, however! In fact, it was Daniel Bernoulli who 
first stated this principle of superposition after Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a total of four – rather than just three – basic 
laws.  
      The question now is: can we somehow “compactify” the axiomatic basis of New-
tonian mechanics in order for it to consist of a smaller number of independent princi-
ples? At this point it is worth taking a closer look at the principle of conservation of 
momentum mentioned above. In particular, we note the following:  
 

• For an isolated “system” consisting of a single particle, conservation of mo-
mentum reduces to the law of inertia (the momentum, thus also the velocity, 
of a free particle is constant relative to an inertial frame of reference).  

• For an isolated system of two particles, conservation of momentum takes us 
back to the action-reaction law (Newton’s third law).  

 
      Thus, starting with four fundamental laws (the three laws of Newton plus the law 
of superposition) we derived a new principle (conservation of momentum) that yields, 
as special cases, two of the laws we started with. The idea is then that, by taking this 
principle as our fundamental physical law, the number of independent laws necessary 
for building the theory would be reduced.  
      How about Newton’s second law? We take the view, adopted by several authors 
including Mach himself (see, e.g., [1,3-7]) that this “law” should be interpreted as the 
definition of force in terms of the rate of change of momentum.  
      We thus end up with a theory built upon two fundamental principles, i.e., the con-
servation of momentum and the principle of superposition. In the following sections 
these ideas are presented in more detail.  
 
 
3.  The fundamental postulates and their consequences  
 
We begin with some basic definitions.  
 
      Definition 1. A frame of reference (or reference frame) is a system of coordinates 
(or axes) used by an observer to measure physical quantities such as the position, the 
velocity, the acceleration, etc., of any particle in space. The position of the observer 
him/herself is assumed fixed relative to his/her own frame of reference.  
 
      Definition 2. An isolated system of particles is a system of particles subject only 
to their mutual interactions, i.e., subject to no external interactions. Any system of 
particles subject to external interactions that somehow cancel one another in order to 
make the system’s motion identical to that of an isolated system will also be consid-
ered “isolated”. In particular, an isolated system consisting of a single particle is 
called a free particle.  
 
      Our first fundamental postulate of mechanics is stated as follows:  
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      Postulate 1. A class of frames of reference (inertial frames) exists such that, for 
any isolated system of particles, a vector equation of the following form is valid:  
 

        constant in timei i
i

m v =∑ �

                                             (1) 

 
where iv

�

 is the velocity of the particle indexed by i ( 1,2,i = ⋯ ) and where im  is a 

constant quantity associated with this particle, which quantity is independent of the 
number or the nature of interactions the particle is subject to.  
 
      We call im  the mass and i i ip m v=

� �

 the momentum of the ith particle. Also, we call  

 

         i i i
i i

P m v p= =∑ ∑
�

� �

                                                 (2) 

 
the total momentum of the system relative to the considered reference frame. Postulate 
1, then, expresses the principle of conservation of momentum: the total momentum of 
an isolated system of particles, relative to an inertial reference frame, is constant in 
time. (The same is true, in particular, for a free particle.)  
 
      Corollary 1. A free particle moves with constant velocity (i.e., with no accelera-
tion) relative to an inertial reference frame.  
 
      Corollary 2. Any two free particles move with constant velocities relative to each 
other (their relative velocity is constant and their relative acceleration is zero).  
 
      Corollary 3. The position of a free particle may define the origin of an inertial 
frame of reference.  
 
      We note that Corollaries 1 and 2 constitute alternate expressions of the law of in-
ertia (Newton’s first law).  
      By inertial observer we mean an “intelligent” free particle, i.e., one that can per-
form measurements of physical quantities such as velocity or acceleration. By 
convention, the observer is assumed to be located at the origin of his/her own inertial 
frame of reference.  
 
      Corollary 4. Inertial observers move with constant velocities (i.e., they do not ac-
celerate) relative to one another.  
 
      Consider now an isolated system of two particles of masses 1 2andm m . Assume 

that the particles are allowed to interact for some time interval ∆t. By conservation of 
momentum relative to an inertial frame of reference, we have:  
 
                   1 2 1 2 1 1 2 2( ) 0p p p p m v m v∆ ∆ ∆ ∆ ∆+ = ⇒ = − ⇒ = −

� � � � � �

 .   

 
We note that the changes in the velocities of the two particles within the (arbitrary) 
time interval ∆t must be in opposite directions, a fact that is verified experimentally. 
Moreover, these changes are independent of the particular inertial frame used to 
measure the velocities (although, of course, the velocities themselves are frame-



Foundations of Newtonian Dynamics  5 

dependent!). This latter statement is a consequence of the constancy of the relative 
velocity of any two inertial observers (the student is invited to explain this in detail). 
Now, taking magnitudes in the above vector equation, we have:  
 

           21

2 1

constant
mv

v m

∆
∆

= =
�

�                                              (3) 

 
regardless of the kind of interaction or the time ∆t (which also is an experimentally 
verified fact). These demonstrate, in practice, the validity of the first postulate. Equa-
tion (3) allows us to specify the mass of a particle numerically, relative to the mass of 
some other particle (which particle may arbitrarily be assigned a unit mass), by letting 
the two particles interact for some time. As argued above, the result will be independ-
ent of the specific inertial frame used by the observer who makes the measurements. 
That is, in the classical theory, mass is a frame-independent quantity.  
      So far we have examined the case of isolated systems and, in particular, free parti-
cles. Consider now a particle subject to interactions with the rest of the world. Then, 
in general (unless these interactions somehow cancel one another), the particle’s mo-
mentum will not remain constant relative to an inertial reference frame, i.e., will be a 
function of time. Our second postulate, which expresses the superposition principle 
for interactions, asserts that external interactions act on a particle independently of 
one another and their effects are superimposed.  
 
      Postulate 2. If a particle of mass m is subject to interactions with particles 

1 2, ,m m ⋯ , then, at each instant t, the rate of change of this particle’s momentum rela-

tive to an inertial reference frame is equal to  
 

     
i i

d p d p

dt dt

 
=  

 
∑

� �

                                                       (4) 

 
where ( )/

i
d p dt
�

 is the rate of change of the particle’s momentum due solely to the 

interaction of this particle with the particle im  (i.e., the rate of change of p
�

 if the par-

ticle m interacted only with im ).  

 
 
4.  The concept of force and the Third Law  
 
We now define the concept of force, in a manner similar to Newton’s second law:  
 
      Definition 3. Consider a particle of mass m that is subject to interactions. Let 

( )p t
�

 be the particle’s momentum as a function of time, as measured relative to an 
inertial reference frame. The vector quantity  
 

          
d p

F
dt

=
�

�

                                                             (5) 

 
is called the total force acting on the particle at time t.  
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      Taking into account that, for a single particle, p mv=
� �

 with fixed m, we may re-
write Eq. (5) in the equivalent form,  
 

        
dv

F ma m
dt

= =
�

�
�

                                                       (6) 

 
where a

�

 is the particle’s acceleration at time t. Given that both the mass and the ac-
celeration (prove this!) are independent of the inertial frame used to measure them, we 
conclude that the total force on a particle is a frame-independent quantity.  
 
      Corollary 5. Consider a particle of mass m subject to interactions with particles 

1 2, ,m m ⋯ . Let F
�

 be the total force on m at time t, and let iF
�

 be the force on m due 

solely to its interaction with im . Then, by the superposition principle for interactions 

(Postulate 2) as expressed by Eq. (4), we have:  
 

        i
i

F F= ∑
� �

                                                              (7) 

 

      Theorem 1. Consider two particles 1 and 2. Let 12F
�

 be the force on particle 1 due 

to its interaction with particle 2 at time t, and let 21F
�

 be the force on particle 2 due to 

its interaction with particle 1 at the same instant. Then,  
 

      12 21F F= −
� �

                                                             (8) 
 
      Proof. By the independence of interactions, as expressed by the superposition 

principle, the forces 12F
�

 and 21F
�

 are independent of the presence or not of other parti-

cles in interaction with particles 1 and 2. Thus, without loss of generality, we may as-
sume that the system of the two particles is isolated. Then, by conservation of mo-
mentum and by using Eq. (5),  
 

                      ( ) 1 2
1 2 12 210

d p d pd
p p F F

dt dt dt
+ = ⇒ = − ⇒ = −

� �
� �

� �

 .   

 
Equation (8) expresses the action-reaction law (Newton’s third law).  
 

      Theorem 2. The rate of change of the total momentum ( )P t
�

 of a system of parti-
cles, relative to an inertial frame of reference, equals the total external force acting on 
the system at time t.  
 

      Proof. Consider a system of particles of masses ( 1,2, )im i = ⋯ . Let iF
�

 be the total 

external force on im  (due to its interactions with particles not belonging to the sys-

tem), and let i jF
�

 be the internal force on im  due to its interaction with jm  (by con-

vention, 0i jF =
�

 when i=j ). Then, by Eq. (5) and by taking into account Eq. (7),  
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                                                     i
i i j

j

d p
F F

dt
= + ∑

�
� �

.   

 
By using Eq. (2) for the total momentum, we have:  
 

                                          i
i i j

i i i j

d pdP
F F

dt dt
= = +∑ ∑ ∑
�

�
� �

.   

But,  

                                   ( )1
0

2i j ji i j ji
i j j i i j

F F F F= = + =∑ ∑ ∑
� � � �

,    

 
where the action-reaction law (8) has been taken into account. So, finally,  
 

         i ext
i

dP
F F

dt
= =∑
�

� �

                                                      (9) 

 

where extF
�

 represents the total external force on the system.  
 
 
5.  Derivative concepts and theorems  
 
Having presented the most fundamental concepts of mechanics, we now turn to some 
useful derivative concepts and related theorems, such as those of angular momentum 
and its relation to torque, work and its relation to kinetic energy, and conservative 
force fields and their association with mechanical-energy conservation.  
 
      Definition 4. Let O be the origin of an inertial reference frame, and let r

�

 be the 
position vector of a particle of mass m, relative to O. The vector quantity  
 

      ( )L r p m r v= × = ×
�
� � � �

                                                 (10) 

 
(where p mv=

� �

 is the particle’s momentum in the considered frame) is called the an-
gular momentum of the particle relative to O.  
 
      Theorem 3. The rate of change of the angular momentum of a particle, relative to 
O, is given by  
 

       
dL

r F T
dt

= × ≡

�

� �
�

                                                    (11) 

 
where F

�

 is the total force on the particle at time t and where T
�

 is the torque of this 
force relative to O, at this instant.  
 
      Proof. Equation (11) is easily proven by differentiating Eq. (10) with respect to 
time and by using Eq. (5).  
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      Corollary 6. If the torque of the total force on a particle, relative to some point O, 
vanishes, then the angular momentum of the particle relative to O is constant in time 
(principle of conservation of angular momentum).  
 
      Under appropriate conditions, the above conservation principle can be extended to 
the more general case of a system of particles (see, e.g., [2-8]).  
 

      Definition 5. Consider a particle of mass m in a force field ( )F r
�
�

, where r
�

 is the 
particle’s position vector relative to the origin O of an inertial reference frame. Let C 
be a curve representing the trajectory of the particle from point A to point B in this 
field. Then, the line integral  
 

       ( )
B

AB A
W F r dr= ⋅∫

�
� �

                                                 (12) 

 
represents the work done by the force field on m along the path C. (Note: This defini-
tion is valid independently of whether or not additional forces, not related to the field, 

are acting on the particle; i.e., regardless of whether or not ( )F r
�
�

 represents the total 
force on m.)  
 

      Theorem 4. Let ( )F r
�
�

 represent the total force on a particle of mass m in a force 
field. Then, the work done on the particle along a path C from A to B is equal to  
 

       , ,( )
B

AB k B k A kA
W F r dr E E E∆= ⋅ = − =∫

�
� �

                                 (13) 

 
where  

                      
2

21

2 2k
p

E mv
m

= =                                                    (14) 

 
is the kinetic energy of the particle.  
 
      Proof. By using Eq. (6), we have:  
 

               21 1
( ) ( )

2 2

dv
F dr m dr mv dv m d v v m d v mvdv

dt
⋅ = ⋅ = ⋅ = ⋅ = =

�
�
� � � � � �

,   

 
from which Eq. (13) follows immediately.  
 

      Definition 6. A force field ( )F r
�
�

 is said to be conservative if a scalar function 

( )pE r
�

 (potential energy) exists, such that the work on a particle along any path from 

A to B can be written as  
 

    , ,( )
B

AB p A p B pA
W F r dr E E E∆= ⋅ = − = −∫

�
� �

                               (15) 
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      Theorem 5. If the total force ( )F r
�
�

 acting on a particle m is conservative, with an 

associated potential energy ( )pE r
�

, then the quantity  

 

        21
( )

2k p pE E E mv E r= + = +
�

                                         (16) 

 
(total mechanical energy of the particle) remains constant along any path traced by 
the particle (conservation of mechanical energy).  
 
      Proof. By combining Eq. (13) (which is generally valid for any kind of force) with 
Eq. (15) (which is valid for conservative force fields) we find:  
 
                  ( ) 0 .k p k p k pE E E E E E const∆ ∆ ∆= − ⇒ + = ⇒ + =    

 
      Theorems 4 and 5 are readily extended to the case of a system of particles (see, 
e.g., [2-8]).  
 
 
6.  Some conceptual problems  
 
After establishing our axiomatic basis and demonstrating that the standard Newtonian 
laws are consistent with it, the development of the rest of mechanics follows familiar 
paths. Thus, as we saw in the previous section, we can define concepts such as angu-
lar momentum, work, kinetic and total mechanical energies, etc., and we can state de-
rivative theorems such as conservation of angular momentum, conservation of me-
chanical energy, etc. Also, rigid bodies and continuous media can be treated in the 
usual way [2-8] as systems containing an arbitrarily large number of particles.  
      Despite the more “economical” axiomatic basis of Newtonian mechanics sug-
gested here, however, certain problems inherent in the classical theory remain. Let us 
point out a few:  
 
      1. The problem of “inertial frames”  
 
      An inertial frame of reference is only a theoretical abstraction: such a frame can-
not exist in reality. As follows from the discussion in Sec. 3, the origin (say, O) of an 
inertial frame coincides with the position of a hypothetical free particle and, more-
over, any real free particle moves with constant velocity relative to O. However, no 
such thing as an absolutely free particle may exist in the world. In the first place, 
every material particle is subject to the infinitely long-range gravitational interaction 
with the rest of the world. Furthermore, in order for a supposedly inertial observer to 
measure the velocity of a “free” particle and verify that this particle is not accelerat-
ing relative to him/her, the observer must somehow interact with the particle. Thus, 
no matter how weak this interaction may be, the particle cannot be considered free in 
the course of the observation.  
 
      2. The problem of simultaneity  
 
      In Sec. 4 we used our two postulates, together with the definition of force, to de-
rive the action-reaction law. Implicit in our arguments was the requirement that action 
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must be simultaneous with reaction. As is well known, this hypothesis, which sug-
gests instantaneous action at a distance, ignores the finite speed of propagation of the 
field associated with the interaction and violates causality.  
 
      3. A dimensionless “observer”  
 
      As we have used this concept, an “observer” is an intelligent free particle capable 
of making measurements of physical quantities such as velocity or acceleration. Such 
an observer may use any convenient (preferably rectangular) set of axes  
(x, y, z) for his/her measurements. Different systems of axes used by this observer 
have different orientations in space. By convention, the observer is located at the ori-
gin O of the chosen system of axes.  
      As we know, inertial observers do not accelerate relative to one another. Thus, the 
relative velocity of the origins (say, O and O΄) of two different inertial frames of ref-
erence is constant in time. But, what if the axes of these frames are in relative rota-
tion (although the origins O and O΄ move uniformly relative to each other, or even 
coincide)? How can we tell which observer (if any) is an inertial one?  
      The answer is that, relative to the system of axes of an inertial frame, a free parti-
cle does not accelerate. In particular, relative to a rotating frame, a free particle will 
appear to possess at least a centripetal acceleration. Such a frame, therefore, cannot be 
inertial.  
      As mentioned previously, an object with finite dimensions (e.g., a rigid body) can 
be treated as an arbitrarily large system of particles. No additional postulates are thus 
needed in order to study the dynamics of such an object. This allows us to regard 
momentum and its conservation as more fundamental than angular momentum and its 
conservation, respectively. In this regard, our approach differs significantly from, 
e.g., that of Simon [1] who, in his own treatment, places the aforementioned two con-
servation laws on an equal footing from the outset.  
 
 
7.  Summary  
 
Newtonian mechanics is the first subject in Physics an undergraduate student is ex-
posed to. It continues to be important even at the intermediate and advanced levels, 
despite the predominant role played there by the more general formulations of La-
grangian and Hamiltonian dynamics.  
      It is this author’s experience as a teacher that, despite its apparent simplicity, 
Newtonian mechanics contains certain conceptual subtleties that may leave the deep-
thinking student with some degree of confusion. The average student, of course, is 
happy with the idea that the whole theory is built upon three rather simple laws attrib-
uted to Newton’s genius. In the mind of the more demanding student, however, puz-
zling questions often arise, such as, e.g., how many independent laws we really need 
to fully formulate the theory, or, which ones should be regarded as truly fundamental 
laws of Nature, as opposed to others that can be derived as theorems.  
      This article suggested an axiomatic approach to introductory mechanics, based on 
two fundamental, empirically verifiable laws; namely, the principle of conservation of 
momentum and the principle of superposition for interactions. We showed that all 
standard ideas of mechanics (including, of course, Newton’s laws) naturally follow 
from these basic principles. To make our formulation as economical as possible, we 
expressed the first principle in terms of a system of particles and treated the single-
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particle situation as a special case. To make the article self-contained for the benefit of 
the student, explicit proofs of all theorems were given.  
      By no means do we assert, of course, that this particular approach is unique or 
pedagogically superior to other established methods that adopt different viewpoints 
regarding the axiomatic basis of classical mechanics. Moreover, as noted in Sec. 6, 
this approach is not devoid of the usual theoretical problems inherent in Newtonian 
mechanics (see also [9,10]).  
      In any case, it looks like classical mechanics remains a subject open to discussion 
and re-interpretation, and more can always be said about things that are usually taken 
for granted by most students (this is not exclusively their fault, of course!). Happily, 
some of my own students do not fall into this category. I appreciate the hard time they 
enjoy giving me in class!  
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Abstract.  The concept of electromotive force (emf) may be introduced in various ways in 
an undergraduate course of theoretical electromagnetism. The multitude of alternate 
expressions for the emf is often the source of confusion to the student. We summarize the 
main ideas, adopting a pedagogical logic that proceeds from the general to the specific. 
The emf of a “circuit” is first defined in the most general terms. The expressions for the 
emf of some familiar electrodynamical systems are then derived in a rather straightforward 
manner. A diversity of physical situations is thus unified within a common theoretical 
framework.  

1.  INTRODUCTION 

The difficulty in writing this article was not just due to the subject itself: we had to first 
overcome some almost irreconcilable differences in educational philosophy between an 
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer. 
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.  

Having taught intermediate-level electrodynamics courses for several years, we have come 
to realize that, in the minds of many of our students, the concept of electromotive force (emf ) is 
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC 
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the 
electric field along a closed path? And what if a magnetic rather than an electric field is present?  

Generally speaking, the problem with the emf lies in the diversity of situations where this 
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is 
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the 
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas, 
choosing a pedagogical approach that proceeds from the general to the specific. We begin by 
defining the concept of emf of a “circuit” in the most general way possible. We then apply this 
definition to certain electrodynamic systems in order to recover familiar expressions for the emf. 
The main advantage of this approach is that a number of different physical situations are treated 
in a unified way within a common theoretical framework.  

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5) 
application is made to particular cases, such as motional emf, the emf due to a time-varying 
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6, 
the connection between the emf and Ohm’s law is discussed.  
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2.  THE GENERAL DEFINITION OF EMF 

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general 
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the 
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or 
any other elements whose presence may contribute to the e/m field).  

We arbitrarily assign a positive direction of traversing the loop C, and we consider an element 

dl
���

 of C oriented in the positive direction. Imagine now a test charge q located at the position of 

dl
���

, and let F
�

 be the force on q at time t :  

 

                                               

dl
���

•

C

+

q

F
�

      
 
This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources 

(e.g., batteries) that can interact electrically with q. The force per unit charge at the position of 

dl
���

 at time t, is  

 

                   
F

f
q

=

�
�

                                                                (1) 

 

Note that f
�

 is independent of q, since the force by the e/m field and/or the sources on q is 

proportional to the charge. In particular, reversing the sign of q will have no effect on f
�

 

(although it will change the direction of F
�

).  
      We now define the electromotive force (emf ) of the circuit C at time t as the line integral 

of f
�

 along C, taken in the positive sense of C :  

 

                            E
C

f dl= ⋅∫
����

�                                                             (2) 

 
Note that the sign of the emf is dependent upon our choice of the positive direction of 

circulation of C: by changing this convention, the sign of E is reversed.  

We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial 

observers since at this limit the force F
�

 is invariant under a change of frame of reference.  
In the following sections we apply the defining equation (2) to a number of specific 

electrodynamic situations that are certainly familiar to the student.  
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3.  MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC 
FIELD 

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic 

field ( )B r
� �

. Let υ
�

 be the velocity of the element dl
���

 of C relative to our inertial frame of 

reference. A charge q (say, a free electron) at the location of dl
���

 executes a composite motion, 

due to the motion of the loop C itself relative to our frame, as well as the motion of q along C. 

The total velocity of q relative to us is totυ υ υ′= +
� � �

, where υ′
�

 is the velocity of q in a direction 

parallel to dl
���

. The force from the magnetic field on q is  

 

                               

( ) ( ) ( )

( ) ( )

totF q B q B q B

F
f B B

q

υ υ υ

υ υ

′= × = × + × ⇒

′= = × + ×

� � � �� � �

�
� � �� �            

 
By (2), then, the emf of the circuit C is  
 

                           E ( ) ( )
C C C

f dl B dl B dlυ υ ′= ⋅ = × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� �

� � �      

 

But, since υ′
�

 is parallel to dl
���

, we have that ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

           E ( )
C

B dlυ= × ⋅∫
�����

�                                                         (3) 

 
Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note 

also that the velocity υ
�

 may vary around the circuit.  
      By using (3), it can be proven (see Appendix) that  
 

      E 
d

dt

Φ
= −                                                                 (4) 

 

where B daΦ= ⋅∫
����

 is the magnetic flux through the wire C at time t. Note carefully that (4) 

does not express any novel physical law: it is simply a direct consequence of the definition of 
the emf !  

4.  EMF DUE TO A TIME-VARYING MAGNETIC FIELD 

Consider now a closed wire C that is at rest inside a time-varying magnetic field ( , )B r t
� �

. As 

experiments show, as soon as B
�

 starts changing, a current begins to flow in the wire. This 
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And, 
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed 

experimentally that, if the magnetic field B
�

 stops varying in time, the current in the wire 
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disappears. The only field that can put an initially stationary charge in motion and keep this 
charge moving is an electric field.  

      We are thus compelled to conclude that a time-varying magnetic field is necessarily 
accompanied by an electric field. (It is often said that “a changing magnetic field induces an 
electric field”. This is somewhat misleading since it gives the impression that the “source” of an 
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of 
any e/m field are the electric charges and the electric currents!)  

      So, let ( , )E r t
� �

 be the electric field accompanying the time-varying magnetic field B
�

. 

Consider again a charge q at the position of the element dl
���

 of the wire. Given that the wire is 

now at rest (relative to our inertial frame), the velocity of q will be due to the motion of the 

charge along the wire only, i.e., in a direction parallel to dl
���

: totυ υ′=
� �

 (since 0υ =
�

). The force on 

q by the e/m field is  
 

                             

[ ( )] [ ( )]

( )

totF q E B q E B

F
f E B

q

υ υ

υ

′= + × = + × ⇒

′= = + ×

� � � � �� �

�
� � ��       

 
The emf of the circuit C is now  
 

                              E ( )
C C C

f dl E dl B dlυ ′= ⋅ = ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � ��

� � �        

 

But, as explained earlier, ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

         E 
C

dlΕ= ⋅∫
����

�                                                                (5) 

 
      Equation (4) is still valid. This time, however, it is not merely a mathematical 

consequence of the definition of the emf ; rather, it is a true physical law deduced from 
experiment! Let us examine it in some detail.  

      In a region of space where a time-varying e/m field ( , )E B
� �

 exists, consider an arbitrary 

open surface S bounded by the closed curve C :  
 

                                                               

S

C

da
���

da

dl
���

     
 

(The relative direction of dl
���

 and the surface element da
���

, normal to S, is determined 

according to the familiar right-hand rule.) The loop C is assumed stationary relative to the inertial 
observer; hence the emf along C at time t is given by (5). The magnetic flux through S at this 
instant is  
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                                                  ( )m
S

t B daΦ = ⋅∫
����

        

 

(Note that the signs of E and Φm depend on the chosen positive direction of C.) Since the field 

B
�

 is solenoidal, the value of Φm for a given C is independent of the choice of the surface S. 
That is, the same magnetic flux will go through any open surface bounded by the closed curve 
C.  

      According to the Faraday-Henry law,  
 

               E m
d

dt

Φ
= −                                                                        (6) 

or explicitly,  
 

  
C S

d
E dl B da

d t
⋅ = − ⋅∫ ∫
��� ���� �

�                                                           (7) 

 
(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)  
      Equation (7) can be re-expressed in differential form by using Stokes’ theorem,  
 

                                           ( )
C S

E dl E da⋅ = ∇× ⋅∫ ∫
��� ���� � �

�             

 
and by taking into account that the surface S may be arbitrarily chosen. The result is  
 

B
E

t

∂
∇× = −

∂

�
� �

                                                                (8) 

 

We note that if / 0B t∂ ∂ ≠
�

, then necessarily 0E ≠
�

. Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B
�

 is static (

/ 0B t∂ ∂ =
�

), then E
�

 is irrotational: 0 0E E dl∇× = ⇔ ⋅ =∫
���� � �

� , which allows for the possibility 

that 0E =
�

.  

      Corollary:  The emf around a fixed loop C inside a static e/m field ( )( ) , ( )E r B r
� �� �

 is  E = 0  

(the student should explain this).  

5.  EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR 

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance) 
connected to an external resistor. As shown below, the emf of the circuit in the direction of the 
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the 
work per unit charge done by the source (battery).  
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i i+_
a b

I

I

0
f
�

E
�

                 
 
      We recall that, in general, the emf of a circuit C at time t is equal to the integral  
 

                                                      E 
C

f dl= ⋅∫
����

�                        

 

where /f F q=
� �

 is the force per unit charge at the location of the element dl
���

 of the circuit, at 

time t. In essence, we assume that in every element dl
���

 we have placed a test charge q (this 

could be, e.g., a free electron of the conducting part of the circuit). The force F
�

 on each q is 
then measured simultaneously for all charges at time t. Since here we are dealing with a static 
(time-independent) situation, however, we can treat the problem somewhat differently: The 

measurements of the forces F
�

 on the charges q need not be made at the same instant, given 
that nothing changes with time, anyway. So, instead of placing several charges q around the 

circuit and measuring the forces F
�

 on each of them at a particular instant, we imagine a single 
charge q making a complete tour around the loop C. We may assume, e.g., that the charge q is 
one of the (conventionally positive) free electrons taking part in the constant current Ι flowing in 

the circuit. We then measure the force F
�

 on q at each point of C.  
      We thus assume that q is a positive charge moving in the direction of the current Ι. We 

also assume that the direction of circulation of C is the same as the direction of the current 

(counterclockwise in the figure). During its motion, q is subject to two forces: (1) the force 
0

F
�

 by 

the source (battery) that carries q from the negative pole a to the positive pole b through the 

source, and (2) the electrostatic force 
eF q E=
� �

 due to the electrostatic field E
�

 at each point of 

the circuit C (both inside and outside the source). The total force on q is  
    

                        
0

0 0 0e

F F
F F F F qE f E f E

q q
= + = + ⇒ = = + ≡ +

� �
� �� � � � � � �

      

Then,  
 

   E 
0 0

C C C C
f dl f dl E dl f dl= ⋅ = ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫
��� ��� ��� ���� � ��

� � � �                                    (9) 

 

since 0
C

E dl⋅ =∫
����

�  for an electrostatic field. However, the action of the source on q is limited to 

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence, 

0
0f =

�
 outside the source, so that (9) reduces to  

 

  E
0

b

a
f dl= ⋅∫
����

                                                               (10) 
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Now, since the current Ι is constant, the charge q moves at constant speed along the circuit. 
This means that the total force on q in the direction of the path C is zero. In the interior of the 

resistor, the electrostatic force 
eF q E=
� �

 is counterbalanced by the force on q due to the 

collisions of the charge with the positive ions of the metal (this latter force does not contribute to 
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however, 

where there is no resistance, the electrostatic force 
eF
�

 must be counterbalanced by the 

opposing force 
0

F
�

 exerted by the source. Thus, in the section of the circuit between a and b,  

 

                     0 0 0
0 0

e

F
F F F f f E f E

q
= + = ⇒ = = + = ⇒ = −

�
� � �� � � � �

         

 
Equation (10) then takes the final form,  
 

  E
b

b a
a

E dl V V V= − ⋅ = − =∫
����

                                                     (11) 

 
where Va and Vb are the electrostatic potentials at a and b, respectively. This is, of course, 

what every student knows from elementary e/m courses!  
      The work done by the source on q upon transferring the charge from a to b is  
 

       
0 0

b b

a a
W F dl q f dl q= ⋅ = ⋅ =∫ ∫

��� �����
E                                                (12) 

 

[where we have used (10)]. So, the work of the source per unit charge is W/q= E . This work is 

converted into heat in the resistor, so that the source must again supply energy in order to carry 
the charges once more from a to b. This is something like the torture of Sisyphus in Greek 
mythology!  

6.  EMF AND OHM’S LAW 

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery) 
and may also be in motion relative to our inertial frame of reference. Let q be a test charge at 

the location of the element dl
���

 of C, and let F
�

 be the total force on q (due to the e/m field 

and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-

independent quantity.) The force per unit charge at the location of dl
���

 at time t, then, is 

/f F q=
� �

. According to our general definition, the emf of the circuit at time t is  

 

         E
C

f dl= ⋅∫
����

�                                                       (13) 

 
Now, if σ is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p. 

285 of [1]) we have:  
 

            J fσ=
��

                                                           (14) 
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where J
�

 is the volume current density at the location of dl
���

 at time t. (Note that the more 

common expression J Eσ=
� �

, found in most textbooks, is a special case of the above formula. 

Note also that J
�

 is measured relative to the wire, thus is the same for all inertial observers.) By 
combining (13) and (14) we get:  

 

          E
1

C
J dl

σ
= ⋅∫

����

�                                                     (15) 

 

Taking into account that J
�

 is in the direction of dl
���

 at each point of C, we write:  

 

                                               
I

J dl J dl dl
S

⋅ = =
����

     

 
where S is the constant cross-sectional area of the wire. If we make the additional assumption 
that, at each instant t, the current I is constant around the circuit (although I may vary with time), 
we finally get:  

 

          E 
l l

I I I R
S S

ρ
σ

= = =                                                 (16) 

 
where l is the total length of the wire,  ρ=1/σ  is the resistivity of the material, and R is the total 

resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.  
      As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery 

with internal resistance r. Let R0 be the external resistance connected to the battery. The total 
resistance of the circuit is R=R0+r. As before, we call V=Vb –Va the potential difference between 
the terminals of the battery, which is equal to the voltage across the external resistor. Hence, 
V=IR0 , where I is the current in the circuit. The emf of the circuit (in the direction of the current) 
is  

 

                                          E = I R = I (R0 + r) = V + I r    

 
Note that the potential difference V  between the terminals a and b equals the emf only when 

no current is flowing (I= 0) .  
      As another example, consider a circuit C containing an ideal battery of voltage V and 

having total resistance R and total inductance L :  

                                 

V

R
L

I
 

 
In this case, the emf of C in the direction of the current flow is  
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                                    E (t) ( )L

dI
V V V L I t R

dt
= + = − =            

 
To understand why the total emf of the circuit is V +VL , we think as follows: On its tour around 

the circuit, a test charge q is subject to two forces (ignoring collisions with the positive ions in the 
interior of the wire): a force inside the source, and a force by the non-conservative electric field 
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the 
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry 
law (6). The latter emf is precisely VL ; it has a nonzero value for as long as the current I is 
changing.  

Some interesting energy considerations are here in order. The total power supplied to the 
circuit by the battery at time t is  

 

                                         
2 d I

P I V I R L I
dt

= = +                                  

 
The term  I

 2R  represents the power irreversibly lost as heat in the resistor (energy, per unit 
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to 
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the 
source in order to maintain the current against dissipative losses in the resistor. On the other 
hand, the term  LI (dI/dt)  represents the energy per unit time required to build up the current 
against the “back emf ” VL . This energy is retrievable and is given back to the source when the 
current decreases. It may also be interpreted as energy per unit time required in order to 
establish the magnetic field associated with the current. This energy is “stored” in the magnetic 
field surrounding the circuit.  

7.  CONCLUDING REMARKS 

In concluding this article, let us highlight a few points of importance:  
1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”) 

in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain 
sources such as batteries.  

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of 
reference with respect to which it is measured.  

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence 
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present, 
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).  

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of 
the battery and represents work per unit charge done by the source.  

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s 
law can be expressed in terms of the emf by equation (16).  
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APPENDIX 

Here is an analytical proof of equation (4) of Sec.3:  
Assume that, at time t, the wire describes a closed curve C that is the boundary of a plane 

surface S. At time t΄= t+dt, the wire (which has moved in the meanwhile) describes another 

curve C΄ that encloses a surface S΄. Let d l
���

 be an element of C in the direction of circulation of 

the curve, and let υ
�

 be the velocity of this element relative to an inertial observer (the velocity 
of the elements of C may vary along the curve):  

                        

υ
�

dl
��� dl

���

S

S′

S′′ S′′da
���

da′
����

da′′
����

da′′
����

dtυ
�

C

C′ C′

C
      

The direction of the surface elements da
���

 and da′
����

 is consistent with the chosen direction of 

d l
���

, according to the right-hand rule. The element of the side (“cylindrical”) surface S΄΄ formed 

by the motion of C, is equal to  
 

                                       ( ) ( )da d l d t d l d tυ υ′′ = × = ×
���� ��� ���� �

     

 
Since the magnetic field is static, we can view the situation in a somewhat different way: 

Rather than assuming that the curve C moves within the time interval dt so that its points 
coincide with the points of the curve C΄ at time t΄, we consider two constant curves C and C΄ at 

the same instant t. In the case of a static field B
�

, the magnetic flux through C΄ at time t΄= t+dt 
(according to our original assumption of a moving curve) is the same as the flux through this 
same curve at time t, given that no change of the magnetic field occurs within the time interval 

dt. Now, we note that the open surfaces S1=S and S2= S΄ ∪ S΄΄ share a common boundary, 
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux Φm passes 
through S1 and S2 at time t. That is,  

 

                  
1 2

1 2
S S S S΄ S΄΄

B da B da B da B da B da′ ′′⋅ = ⋅ ⇒ ⋅ = ⋅ + ⋅∫ ∫ ∫ ∫ ∫
���� ���� ��� ���� ����� � � � �

       

 
But, returning to our initial assumption of a moving curve, we note that  
 

        ( )m
S
B da tΦ⋅ = =∫
����

magnetic flux through the wire at time t    

 
and  
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   ( )m
S΄

B da t dtΦ′⋅ = + =∫
�����

 magnetic flux through the wire at time t+dt    

 
Hence,  
 

            

( ) ( )

( ) ( ) ( )

( ) ( )

m m
S΄΄

m m m
S΄΄ C

m

C C

t t dt B da

d t dt t B da dt B dl

d
B dl B dl

dt

Φ Φ

Φ Φ Φ υ

Φ
υ υ

′′= + + ⋅ ⇒

′′= + − = − ⋅ = − ⋅ × ⇒

− = ⋅ × = × ⋅ =

∫

∫ ∫

∫ ∫

�����

���� ���� � �

��� ���� �� �

�

� � E

 

 
in accordance with (3) and (4).  
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Abstract 

In the literature of Electromagnetism, the electromotive 
force of a “circuit” is often defined as work done on a unit 
charge during a complete tour of the latter around the circuit. 
We explain why this statement cannot be generally regarded 
as true, although it is indeed true in certain simple cases. 
Several examples are used to illustrate these points.  
 

1.   Introduction 
 
In a recent paper [1] the authors suggested a pedagogical 
approach to the electromotive force (emf) of a “circuit”, a 
fundamental concept of Electromagnetism. Rather than 
defining the emf in an ad hoc manner for each particular 
electrodynamic system, this approach begins with the most 
general definition of the emf and then specializes to certain 
cases of physical interest, thus recovering the familiar ex-
pressions for the emf.  
      Among the various examples treated in [1], the case of a 
simple battery-resistor circuit was of particular interest 
since, in this case, the emf was shown to be equal to the 
work, per unit charge, done by the source (battery) for a 
complete tour around the circuit. Now, in the literature of 
Electrodynamics the emf is often defined as work per unit 
charge. As we explain in this paper, this is not generally true 
except for special cases, such as the aforementioned one.  
      In Section 2, we give the general definition of the emf, E, 

and, separately, that of the work per unit charge, w, done by 
the agencies responsible for the generation and preservation 
of a current flow in the circuit. We then state the necessary 
conditions in order for the equality E=w to hold. We stress 

that, by their very definitions, E and w are different concepts. 

Thus, the equation E=w suggests the possible equality of the 

values of two physical quantities, not the conceptual identi-
fication of these quantities!  
      Section 3 reviews the case of a circuit consisting of a 
battery connected to a resistive wire, in which case the 
equality E=w is indeed valid.  

      In Sec. 4, we study the problem of a wire moving 
through a static magnetic field. A particular situation where 
the equality E=w is valid is treated in Sec. 5.  

       Finally, Sec. 6 examines the case of a stationary wire 
inside a time-varying magnetic field. It is shown that the 

equality E=w is satisfied only in the special case where the 

magnetic field varies linearly with time.  
 

2.   The general definitions of emf and work per 
unit charge 

 
Consider a region of space in which an electromagnetic 
(e/m) field exists. In the most general sense, any closed path 
C (or loop) within this region will be called a “circuit”  
(whether or not the whole or parts of C consist of material 
objects such as wires, resistors, capacitors, batteries, etc.). 
We arbitrarily  assign a positive direction of traversing the 

loop C, and we consider an element dl
��

 of C oriented in the 

positive direction (Fig. 1).  
 

dl
���

•

C

+

q

F
�

 
 

Figure 1: An oriented loop representing a circuit.  
 
      Imagine now a test charge q located at the position of 

dl
��

, and let F
�

 be the force on q at time t. This force is ex-

erted by the e/m field itself, as well as, possibly, by addi-
tional energy sources (e.g., batteries or some external me-
chanical action) that may contribute to the generation and 
preservation of a current flow around the loop C. The force 

per unit charge at the position of dl
��

 at time t, is  

 

        
F

f
q

=

�
�

                                 (1) 

 

Note that f
�

 is independent of q, since the electromagnetic 

force on q is proportional to the charge. In particular, revers-

ing the sign of q will have no effect on f
�

 (although it will 

change the direction of F
�

).  
      In general, neither the shape nor the size of C is required 
to remain fixed. Moreover, the loop may be in motion rela-
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tive to an external inertial observer. Thus, for a loop of (pos-
sibly) variable shape, size or position in space, we will use 
the notation C(t) to indicate the state of the curve at time t.  
      We now define the electromotive force (emf) of the 

circuit C at time t as the line integral of f
�

 along C, taken in 

the positive sense of C :  
 

        E (t) 
( )

( , )
C t

f r t d l= ⋅∫
� �

��

�                    (2) 

 

(where r
�

 is the position vector of dl
��

 relative to the origin 

of our coordinate system). Note that the sign of the emf is 
dependent upon our choice of the positive direction of circu-
lation of C: by changing this convention, the sign of E is 

reversed.  
      As mentioned above, the force (per unit charge) defined 
in (1) can be attributed to two factors: the interaction of q 
with the e/m field itself and the action on q due to any addi-
tional energy sources. Eventually, this latter interaction is 
electromagnetic in nature even when it originates from some 
external mechanical action. We write:  
 

        em appf f f= +
� � �

                          (3) 

 

where emf
�

 is the force due to the e/m field and appf
�

 is the 

applied force due to an additional energy source. We note 
that the force (3) does not include any resistive (dissipative) 
forces that oppose a charge flow along C; it only contains 
forces that may contribute to the generation and preservation 
of such a flow in the circuit.  
      Now, suppose we allow a single charge q to make a full 
trip around the circuit C under the action of the force (3). In 
doing so, the charge describes a curve C′  in space (not 
necessarily a closed one!) relative to an external inertial 

observer. Let d l′
���

 be an element of C′  representing an in-

finitesimal displacement of q in space, in time dt. We define 
the work per unit charge for this complete tour around the 
circuit by the integral:  
 

        
C

w f d l
′

′= ⋅∫
� ���

                           (4) 

 
For a stationary circuit of fixed shape, C′  coincides with the 
closed curve C and (4) reduces to  
 

        ( )
C

w f d l fixed C= ⋅∫
� ��

�                 (5) 

 
      It should be noted carefully that the integral (2) is evalu-
ated at a fixed time t, while in the integrals (4) and (5) time 
is allowed to flow! In general, the value of w depends on the 
time t0 and the point P0 at which q starts its round trip on C. 
Thus, there is a certain ambiguity in the definition of work 
per unit charge. On the other hand, the ambiguity (so to 

speak) with respect to the emf is related to the dependence 
of the latter on time t.  
      The question now is: can the emf be equal in value to the 
work per unit charge, despite the fact that these quantities 
are defined differently? For the equality E=w to hold, both E 

and w must be defined unambiguously. Thus, E must be 

constant, independent of time (dE/dt=0) while w must not 

depend on the initial time t0 or the initial point P0 of the 
round trip of q on C. These requirements are necessary con-

ditions in order for the equality E=w to be meaningful.  

      In the following sections we illustrate these ideas by 
means of several examples. As will be seen, the satisfaction 
of the above-mentioned conditions is the exception rather 
than the rule!  
 

3.   A resistive wire connected to a battery 
 
Consider a circuit consisting of an ideal battery (i.e., one 
with no internal resistance) connected to a metal wire of 
total resistance R (Fig. 2). As shown in [1] (see also [2]), the 
emf of the circuit in the direction of the current is equal to 
the voltage V of the battery. Moreover, the emf in this case 
represents the work, per unit charge, done by the source 
(battery). Let us review the proof of these statements.  
 

i i+
_

a b

I

I

E
�

appf
� +

R

 
Figure 2: A battery connected to a resistive wire.  

 
      A (conventionally positive) moving charge q is subject to 
two forces around the circuit C: an electrostatic force 

eF qE=
� �

 at every point of C and a force appF
�

 inside the 

battery, the latter force carrying q from the negative pole a 
to the positive pole b through the source. According to (3), 
the total force per unit charge is  
 

        e app appf f f E f= + = +
� � � ��

 .   

 
The emf in the direction of the current (i.e., counterclock-
wise), at any time t, is  
 

        E
C

f dl= ⋅∫
� ��

�  

          
appC C

b

appa

E dl f dl

f d l

= ⋅ + ⋅

= ⋅

∫ ∫

∫

��

�

�� ��

��

� �
               (6) 
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where we have used the facts that 0
C

E dl⋅ =∫
� �

�  for an elec-

trostatic field and that the action of the source on q is limited 
to the region between the poles of the battery.  
      Now, in a steady-state situation (Ι = constant) the charge 
q moves at constant speed along the circuit. This means that 
the total force on q in the direction of the path C is zero. In 

the interior of the wire, the electrostatic force 
e

F qE=
� �

 is 

counterbalanced by the resistive force on q due to the colli-
sions of the charge with the positive ions of the metal (as 
mentioned previously, this latter force does not contribute to 
the emf). In the interior of the (ideal) battery, however, 
where there is no resistance, the electrostatic force must be 
counterbalanced by the opposing force exerted by the 
source. Thus, in the section of the circuit between a and b, 

app ef f E= − = −
� � �

. By (6), then, we have:  

 

        E
b

b aa
E dl V V V= − ⋅ = − =∫
� ��

                (7) 

 
where Va and Vb are the electrostatic potentials at a and b, 
respectively. We note that the emf is constant in time, as 
expected in a steady-state situation.  
      Next, we want to find the work per unit charge for a 
complete tour around the circuit. To this end, we allow a 
single charge q to make a full trip around C and we use 
expression (5) (since the wire is stationary and of fixed 
shape). In applying this relation, time is assumed to flow as 
q moves along C. Given that the situation is static (time-
independent), however, time is not really an issue since it 
doesn’t matter at what moment the charge will pass by any 
given point of C. Thus, the integration in (5) will yield the 
same result (7) as the integration in (6), despite the fact that, 
in the latter case, time was assumed fixed. We conclude that 
the equality w=E is valid in this case: the emf does represent 

work per unit charge.  
 

4.   Moving wire inside a static magnetic field 
 
Consider a wire C moving in the xy-plane. The shape and/or 
size of the wire need not remain fixed during its motion. A 

static magnetic field ( )B r
� �

 is present in the region of space 

where the wire is moving. For simplicity, we assume that 
this field is normal to the plane of the wire and directed into 
the page.  
      In Fig. 3, the z-axis is normal to the plane of the wire and 

directed towards the reader. We call da
��

 an infinitesimal 
normal vector representing an element of the plane surface 
bounded by the wire (this vector is directed into the plane, 
consistently with the chosen clockwise direction of travers-

ing the loop C ). If ˆ
zu  is the unit vector on the z-axis, then 

ˆ( ) zda da u= −
��

 and ˆ( ) zB B r u= −
� �

, where ( ) | ( ) |B r B r=
�� �

.  

 

r
�

dl
���

cυ
�

x

y
+

( )rυ
� �

( )C t

da⊗
���

( )B r⊗
� �

z⊙
 

Figure 3: A wire C moving inside a static magnetic 
field.  

      Consider an element dl
��

 of the wire, located at a point 

with position vector r
�

 relative to the origin of our inertial 
frame of reference. Call ( )rυ

� �
 the velocity of this element 

relative to our frame. Let q be a (conventionally positive) 
charge passing by the considered point at time t. This charge 

executes a composite motion, having a velocity cυ
�

 along 

the wire and acquiring an extra velocity ( )rυ
� �

 due to the 

motion of the wire itself. The total velocity of q relative to 

us is tot cυ υ υ= +
� � �

.  

 

θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�( )B r⊗

� �

m totf υ⊥
� �

app cf υ⊥
� �

r cf υ↑↓
� �

 
Figure 4: Balance of forces per unit charge.  

 
      The balance of forces acting on q is shown in the dia-
gram of Fig. 4. The magnetic force on q is normal to the 

charge’s total velocity and equal to ( )m totF q Bυ= ×
� ��

. 

Hence, the magnetic force per unit charge is m totf Bυ= ×
� ��

. 

Its component along the wire (i.e., in the direction of dl
��

) is 

counterbalanced by the resistive force rf
�

, which opposes 

the motion of q along C (this force, as mentioned previously, 
does not contribute to the emf). However, the component of 
the magnetic force normal to the wire will tend to make the 
wire move “backwards” (in a direction opposing the desired 
motion of the wire) unless it is counterbalanced by some 
external mechanical action (e.g., our hand, which pulls the 
wire forward). Now, the charge q takes a share of this action 
by means of some force transferred to it by the structure of 
the wire. This force (which will be called an applied force) 
must be normal to the wire (in order to counterbalance the 
normal component of the magnetic force). We denote the 
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applied force per unit charge by appf
�

. Although this force 

originates from an external mechanical action, it is delivered 
to q through an electromagnetic interaction with the crystal 
lattice of the wire (not to be confused with the resistive 
force, whose role is different!).  
      According to (3), the total force contributing to the emf 

of the circuit is m appf f f= +
� � �

. By (2), the emf at time t is  

 

        E (t) 
( ) ( )m appC t C t

f d l f d l= ⋅ + ⋅∫ ∫
� ��� ��

� �  .   

 
The second integral vanishes since the applied force is nor-
mal to the wire element at every point of C. The integral of 
the magnetic force is equal to  
 

     ( ) ( ) ( )tot cC C C
B dl B d l B d lυ υ υ× ⋅ = × ⋅ + × ⋅∫ ∫ ∫
� � �� � �
�� �� ��

� � �  .  

 
The first integral on the right vanishes, as can be seen by 
inspecting Fig. 4. Thus, we finally have:  
 

        E (t) 
( )

[ ( ) ( )]
C t

r B r d lυ= × ⋅∫
�� � �

��

�              (8) 

 
      As shown analytically in [1, 2], the emf of C is equal to  
 

        E (t) ( )m

d
t

d t
= − Φ                      (9) 

 
where we have introduced the magnetic flux through C,  
 

        
( ) ( )

( ) ( ) ( )m S t S t
t B r da B r daΦ = ⋅ =∫ ∫

� � �
��

      (10) 

 
[By S(t) we denote any open surface bounded by C at time t; 
e.g., the plane surface enclosed by the wire.]  
      Now, let C′  be the path of q in space relative to the 
external observer, for a full trip of q around the wire (in 
general, C′  will be an open curve). According to (4), the 
work done per unit charge for this trip is  
 

        m appC C
w f dl f d l

′ ′
′ ′= ⋅ + ⋅∫ ∫

� ���� ���

 .   

 
The first integral vanishes (cf. Fig. 4), while for the second 
one we notice that  
 

        app app app appf d l f d l f d l f d l′ ′′ ′′⋅ = ⋅ + ⋅ = ⋅
� � � ���� �� ��� ���

 

 
(since the applied force is normal to the wire element eve-
rywhere; see Fig. 4). Thus we finally have:  
 

        appC
w f dl

′
′= ⋅∫

� ���

         (11a) 

 
with  

        app app appf d l f d l f d tυ′ ′′⋅ = ⋅ = ⋅
� � � �
��� ���

        (11b) 

 

where d l dtυ′′ =
�

���

 is the infinitesimal displacement of the 

wire element in time dt. 
 

5.   An example: Motion inside a uniform  
magnetic field 

 
Consider a metal bar (ab) of length h, sliding parallel to 
itself with constant speed υ on two parallel rails that form 
part of a U-shaped wire, as shown in Fig. 5. A uniform mag-

netic field B
�

, pointing into the page, fills the entire region.  
 

x

y

O
z⊙

x

h

I

+

.constυ =
�

dl
���

a

bc

d
B⊗
�

da
���

⊙

 
Figure 5: A metal bar (ab) sliding on two parallel rails 
that form part of a U-shaped wire.  

 
      A circuit C(t) of variable size is formed by the rectangu-
lar loop (abcda). The field and the surface element are writ-

ten, respectively, as ˆ
zB B u= −

�
 (where | | .B B const= =

�
) 

and ˆ( ) zda da u=
��

 (note that the direction of traversing the 

loop C is now counterclockwise).  
      The general diagram of Fig. 4, representing the balance 
of forces, reduces to the one shown in Fig. 6. Note that this 
latter diagram concerns only the moving part (ab) of the 
circuit, since it is in this part only that the velocity υ

�
 and 

the applied force appf
�

 are nonzero.  

θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�B⊗

�

cυ υ⊥
� �

x
 

 
Figure 6: Balance of forces per unit charge.  

 
      The emf of the circuit at time t is, according to (8),   
 

        E (t) 
( )

( )
C t

B dlυ= × ⋅∫
��
��

�  
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b b

a a
B dl B d l B hυ υ υ= = =∫ ∫  .   

 
Alternatively, the magnetic flux through C is  
 

        ( ) ( ) ( )
( ) ( )m S t S t S t
t B r da B da B da

Bhx

Φ = ⋅ = − = −

= −

∫ ∫ ∫
� �

��

 

(where x is the momentary position of the bar at time t), so 
that  
 

        E (t) ( )m

d d x
t B h Bh

dt dt
υ= − Φ = =  .   

 
We note that the emf is constant (time-independent).  
      Next, we want to use (11) to evaluate the work per unit 
charge for a complete tour of a charge around C. Since the 
applied force is nonzero only on the section (ab) of C, the 
path of integration, C′  (which is a straight line, given that 
the charge moves at constant velocity in space) will corre-
spond to the motion of the charge along the metal bar only, 
i.e., from a to b. (Since the bar is being displaced in space 
while the charge is traveling along it, the line C′  will not be 
parallel to the bar.) According to (11),  
 

        appC
w f d l

′
′= ⋅∫

� ���

    with     

        app app app appf d l f d l f d l f d tυ′ ′′ ′′⋅ = ⋅ = =
� ���� ���

   

 
(cf. Fig. 6). Now, the role of the applied force is to counter-
balance the x-component of the magnetic force in order that 
the bar may move at constant speed in the x direction. Thus,  
 

        cos cosapp m tot cf f B Bθ υ θ υ= = =    

 
and  
 

        app cf d t B d t B dlυ υυ υ= =    

 
(since υc dt represents an elementary displacement dl of the 
charge along the metal bar in time dt). We finally have:  
 

        
b b

a a
w B dl B d l B hυ υ υ= = =∫ ∫  .   

 
We note that, in this specific example, the value of the work 
per unit charge is equal to that of the emf, both these quanti-
ties being constant and unambiguously defined. This would 
not have been the case, however, if the magnetic field were 
nonuniform!  
 
 
 
 
 

6.   Stationary wire inside a time-varying  
magnetic field 

 
Our final example concerns a stationary wire C inside a 
time-varying magnetic field of the form 

ˆ( , ) ( , ) zB r t B r t u= −
� � �

 (where ( , ) | ( , ) |B r t B r t=
�� �

), as shown 

in Fig. 7.  
 

r
�

dl
���

cυ
�

x

y
+

da⊗
���

z⊙

C

( , )B r t⊗
� �

 
Figure 7: A stationary wire C inside a time-varying 
magnetic field.  

 
      As is well known [1-7], the presence of a time-varying 

magnetic field implies the presence of an electric field E
�

 as 
well, such that  
 

        
B

E
t

∂
∇× = −

∂

�
� �

                        (12) 

 
As discussed in [1], the emf of the circuit at time t is given 
by  
 

        E (t) ( , ) ( )
mC

d
r t dl t

d t
Ε Φ= ⋅ = −∫
� �

�

�         (13) 

 
where  
 

        ( ) ( , ) ( , )m S S
t B r t da B r t daΦ = ⋅ =∫ ∫

� � �
��

        (14) 

 
is the magnetic flux through C at this time.  
      On the other hand, the work per unit charge for a full trip 

around C is given by (5): 
C

w f dl= ⋅∫
� ��

� , where 

( )em cf f E Bυ= = + ×
� � � ��

,  so that  

 

        ( )cC C
w E dl B dlυ= ⋅ + × ⋅∫ ∫

� ��
�� ��

� �  .   

 
As is easy to see (cf. Fig. 7), the second integral vanishes, 
thus we are left with  
 

        
C

w E dl= ⋅∫
� ��

�                         (15) 
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      The similarity of the integrals in (13) and (15) is decep-
tive! The integral in (13) is evaluated at a fixed time t, while 
in (15) time is allowed to flow as the charge moves along C. 
Is it, nevertheless, possible that the values of these integrals 
coincide? As mentioned at the end of Sec. 2, a necessary 
condition for this to be the case is that the two integrations 
yield time-independent results. In order that E be time-

independent (but nonzero), the magnetic flux (14) – thus the 
magnetic field itself – must increase linearly with time. On 
the other hand, the integration (15) for w will be time-
independent if so is the electric field. By (12), then, the 
magnetic field must be linearly dependent on time, which 
brings us back to the previous condition.  
      As an example, assume that the magnetic field is of the 
form  
 

        0 0
ˆ ( .)zB B t u B const= − =

�
.   

 

A possible solution of (12) for E
�

 is, in cylindrical coordi-
nates,  
 

        0 ˆ
2

B
E uϕ

ρ
=
�

 .   

 
[We assume that these solutions are valid in a limited region 
of space (e.g., in the interior of a solenoid whose axis coin-
cides with the z-axis) so that ρ is finite in the region of inter-
est.] Now, consider a circular wire C of radius R, centered at 

the origin of the xy-plane. Then, given that ˆ( )d l d l uϕ= −
��

 ,  

 

        E 20
0

2C C

B R
E dl d l B Rπ= ⋅ = − = −∫ ∫
� ��

� � .   

 
Alternatively,  
 

        2

0m S
Bda B R tπΦ = =∫ ,    

 

so that  E 2

0/md dt B Rπ= − Φ = − . We anticipate that, due 

to the time constancy of the electric field, the same result 
will be found for the work w by using (15).  
 

7.   Concluding remarks 
 
No single, universally accepted definition of the emf seems 
to exist in the literature of Electromagnetism. The definition 
given in this article (as well as in [1]) comes close to those 
of [2] and [3]. In particular, by using an example similar to 
that of Sec. 5 in this paper, Griffiths [2] makes a clear dis-
tinction between the concepts of emf and work per unit 
charge. In [4] and [5] (as well as in numerous other text-
books) the emf is identified with work per unit charge, in 
general, while in [6] and [7] it is defined as a closed line 
integral of the non-conservative part of the electric field that 
accompanies a time-varying magnetic flux.  

      The balance of forces and the origin of work in a con-
ducting circuit moving through a magnetic field are nicely 
discussed in [2, 8, 9]. An interesting approach to the relation 
between work and emf, utilizing the concept of virtual work, 
is described in [10].  
      Of course, the list of references cited above is by no 
means exhaustive. It only serves to illustrate the diversity of 
ideas concerning the concept of the emf. The subtleties in-
herent in this concept make it an interesting subject of study 
for both the researcher and the advanced student of classical 
Electrodynamics.  
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Certain aspects of the concept of the electromotive force (emf) of a “circuit”, as 
this concept was defined in recent publications, are discussed. In particular, the 
independence of the emf from the conductivity of the circuit is explained and the 
role of the applied force in motional emf is analyzed.  

 
 
1.  Definition and analytical expression of the emf  
 
In recent articles [1,2] we studied the concept of the electromotive force (emf ) of a 
“circuit” and examined the extent to which the emf represents work per unit charge 
for a complete tour around the circuit. This educational note contains some additional 
remarks regarding the emf; it may be regarded as an addendum to the aforementioned 
publications.  
      We consider a closed path C (or loop) in a region of space where an electromag-
netic (e/m) field exists (Fig. 1). Generally speaking, this loop will be called a “cir-
cuit”  if a charge flow can be sustained on it. We arbitrarily  assign a positive direction 

of traversing the loop C and we consider an element dl
���

 of C oriented in the positive 
direction.  
 

dl
���

•

C

+

q

F
�

 
 

Figure 1 
 

      Let q be a test charge, which at time t is located at the position of dl
���

, and let F
�

 

be the force on q at this time. The force F
�

 is exerted by the e/m field itself as well as, 
possibly, by additional energy sources (such as batteries or some external mechanical 
action) that may contribute to the generation and preservation of a current around the 

loop C. The force per unit charge at the position of dl
���

, at time t, is /f F q=
� �

. We 

note that f
�

 is independent of q since the e/m force on a charge is proportional to the 
charge.  
      Since, in general, neither the shape nor the size of C is required to remain fixed, 
and since the loop may also be in motion relative to an external observer, we will use 
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the notation C(t) to indicate the state, at time t, of a circuit of generally variable shape, 
size or position in space.  
      The electromotive force (emf ) of the circuit C at time t is defined as the line inte-

gral of f
�

 along C, taken in the positive sense of C :  
 

           E (t) 
( )

( , )
C t

f r t d l= ⋅∫
���� �

�                                                (1) 

 

where r
�

 is the position vector of dl
���

 relative to the origin of our coordinate system. 
Obviously, the sign of the emf is dependent upon our choice of the positive direction 
of circulation of C. It should be noted carefully that the integral (1) is evaluated at a 

given time t. Thus, the force f
�

 must be measured simultaneously, at time t, at all 
points of C.  

      The force f
�

 can be attributed to two factors: (a) the interaction of q with the ex-
isting e/m field itself; and (b) the action on q by any additional energy sources that 
may be necessary in order to maintain a steady flow of charge on C. (This latter inter-
action also is electromagnetic in nature, even when it originates from some external 
mechanical action.) We write  
 

      em appf f f= +
� � �

                                                      (2) 

 

where emf
�

 is the force due to the e/m field and appf
�

 is the applied force due to an ad-

ditional energy source.  
      Two familiar cases of emf-driven circuits where an additional applied force is re-
quired are the following:  
      1. In a battery-resistor circuit [1-3] an applied force is necessary in order to carry a 
(conventionally positive) mobile charge from the negative to the positive pole of the 
battery, through the source. This force is provided by the battery itself.  
      2. In the case of a closed metal wire C moving in a time-independent magnetic 
field [2-5] the current on C is sustained for as long as the motion of C continues. This, 
in turn, necessitates the action of an external force on C (say, by our hand), as will be 
explained in Sec. 4.  
      Now, by (1) and (2),  
 

     E (t) 
( ) ( )em appC t C t

f d l f d l= ⋅ + ⋅ ≡∫ ∫
��� ���� �

� �   Eem (t) + Eapp (t)                        (3) 

 

We would like to find an analytical expression for Eem(t). So, let ( )( , ) , ( , )E r t B r t
� �� �

 be 

the e/m field in the region of space where the loop C(t) is lying. Let q be a test charge 

located, at time t, at the position of dl
���

 and let totυ
�

 be the total velocity of q in space, 

relative to some inertial frame of reference. We write  
 

tot cυ υ υ= +
� � �
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where cυ
�

 is the velocity of q along C (i.e., in a direction parallel to dl
���

) while υ
�

 is the 

velocity of dl
���

 itself due to a possible motion in space, or just a deformation over 
time, of the loop C(t) as a whole. The total e/m force on q is  
 

[ ( )]em totF q E Bυ= + ×
� � ��

 ,  

 
so that   
 

[( ) ]em c
F

f E B
q

υ υ= = + + ×

�
� � �� �

 . 

 
Hence,  
 

Eem (t) 
( ) ( ) ( )

( ) ( )cC t C t C t
E dl B dl B dlυ υ= ⋅ + × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� �

� � �  . 

 

Given that cυ
�

 is parallel to dl
���

, the last integral on the right vanishes. Thus, finally,  

 

Eem (t) 
( ) ( )

( , ) [ ( , ) ( , )]
C t C t

E r t dl r t B r t dlυ= ⋅ + × ⋅ ≡∫ ∫
��� ���� ��� � �

� �   Ee (t) + Em (t)           (4)    

 
      We note that, in our definition of the emf, the force per unit charge was defined as 

/f F q=
� �

, assuming that a replica of a test charge q is placed at every point of the cir-

cuit and that the forces F
�

 on all test charges are measured simultaneously at time t. 
Now, in the case of a conducting loop C (say, a metal wire) it is reasonable to identify 
q with one of the (conventionally positive) mobile free electrons. This particular iden-
tification, although logical for practical purposes, is nevertheless not necessary, given 

that the force f
�

 is eventually independent of q. Thus, in general, q may just be con-
sidered as a hypothetical test charge that is not necessarily identified with an actual 
mobile charge.  
 
 
2.  Independence from conductivity  
 
Let C(t) be a conducting loop (say, a metal wire) inside a given e/m field. The emf of 
C at time t is given by (3) and (4). We note from (4) that the part Eem of the total emf is 

independent of the velocity cυ
�

 of q along C (where q may be conveniently – although 

not necessarily – assumed to be a mobile free electron of the conductor, convention-
ally considered as a positive charge). We may physically interpret this as follows:  
      The e/m field creates an emf Eem that tends to generate a charge flow on C. How-

ever, this emf does not by itself determine how fast the mobile charges move along C. 
Presumably, this will depend on physical properties of the path C that are associated 
with its conductivity. (For example, in a battery-resistance circuit the potential differ-
ence at the ends of the resistance – thus the value of the electric field inside the con-
ductor – does not by itself determine the velocity cυ

�
 of the mobile charges along the 
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circuit, since this velocity is related to the current generated by the source, which cur-
rent depends, in turn, on the resistance of the circuit, according to Ohm’s law.)  
      Now, the role of the part Eapp of the total emf (3) is to maintain the charge flow on 

C(t) that is generated by Eem . We thus anticipate that Eapp will also be independent of 

cυ
�

 (this is, e.g., the case in our previous example, where Eapp is equal to the voltage of 

the battery [1-3]). In conclusion,  
 

the total emf E(t) of a conducting loop C(t) is not dependent upon the velocity 

of motion of the mobile charges q along the loop.  
 
      This leads us to a further conclusion:  
 

The total emf E(t) of a conducting loop C(t) inside an e/m field is not depend-

ent upon the conductivity of the loop.  
 
This can be justified by noting that, by its definition, the force (2) does not include 
contributions from resistive forces that oppose a charge flow on C; it only contains 
e/m interactions that may contribute to the generation and preservation of a current in 
the circuit. Note, however, that the current itself does depend on the conductivity σ of 

C, according to Ohm’s law (J fσ=
��

) [3].  

      Alternatively, as argued above, the emf does not depend on cυ
�

. Now, in a steady-

state situation under given electrodynamic conditions (thus, for a given f
�

) this veloc-
ity is a linear function of the mobility µ of q, according to the empirical relation 

c fυ µ=
��

 (by which Ohm’s law is deduced). On the other hand, the conductivity of C 

is given by σ=qnµ. The density n of mobile charges, as well as the value of q, cannot 
affect the value of the emf since that quantity is defined per unit charge. We thus con-
clude that the emf of C cannot depend on µ, as well as on n and q; hence, E is inde-

pendent of σ.  
 
 
3.  Emf and the Faraday-Henry law  
 

Consider a region of space in which a (generally time-dependent) e/m field ( , )E B
� �

 
exists. Let C be a fixed conducting loop in this region. There is no additional applied 
force on C, so (3) reduces to E(t)=Eem(t). Furthermore, since C is stationary, ( , )r tυ

� �
 

vanishes identically and, by (4), Em(t)=0 and Eem(t)=  Ee(t). Thus, finally,  

 

E (t) ( , )
C

E r t dl= ⋅∫
���� �

�                                                (5) 

 
      By Stokes’ theorem,  
 

( )
C S

E dl E da⋅ = ∇× ⋅∫ ∫
��� ���� � �

�  
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where S is any open surface bounded by C (Fig. 2).  
 

S

C

da
���

da

dl
���

 
 

Figure 2 
 
Moreover, by the Faraday-Henry law,  
 

B
E

t

∂
∇× = −

∂

�
� �

                                                    (6) 

 
So, (5) yields  
 

E (t) Φ ( )mS

d d
B da t

dt dt
= − ⋅ = −∫

����
                                    (7) 

 
where  
 

Φ ( ) ( , )m S
t B r t da= ⋅∫

���� �
 

 
is the magnetic flux through C at time t. As commented in [1], relation (7) expresses a 
genuine physical law, not a mere consequence of the definition of the emf.  
 
 
4.  Motional emf due to a static magnetic field  
 

Let C(t) be a conducting loop inside a static magnetic field ( )B r
� �

 (Fig. 3). The time 
dependence of C indicates a motion and/or a deformation of the loop over time. We 
will show that the emf of C at time t is given by the expression  
 

E (t) = Em (t) = 
( )

[ ( ) ( )]
C t

r B r dlυ × ⋅∫
����� � �

�                                  (8) 
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r
�

dl
���

cυ
� +

( )rυ
� �

( )C t

O

( )B r
� �

 
 

Figure 3 
 
      Let q be a mobile charge (say, a conventionally positive free electron) located at 

the position r
�

 (relative to our coordinate system) of the loop element dl
���

 at time t. As 

in Sec. 1, we denote the velocity of dl
���

 with respect to our frame of reference by 

( )rυ
� �

, the velocity of q along C by cυ
�

, and the total velocity of q relative to our frame 

by tot cυ υ υ= +
� � �

.  

      Since there is no electric field in the region of interest,  
 

Ee (t) ( , ) 0
C

E r t dl≡ ⋅ =∫
���� �

�     and    Eem (t) =  Em (t)                            (9) 

 

Also, if appf
�

 is the applied force per unit charge at the position of q, at time t,  

 

Eapp (t) 
( )

( , )appC t
f r t d l= ⋅∫

���� �

�                                             (10) 

 
The role of the applied force is to keep the current flowing. This will happen for as 
long as the loop C is moving or/and deforming, so that ( )rυ

� �
 is not identically zero for 

all t. Why is an external force needed to keep C moving or deforming? Let us care-
fully analyze the situation.  
      The magnetic force on q is  
 

( )m totF q Bυ= ×
� ��

    so that    m totf Bυ= ×
� ��

 . 

 
Now, imagine a temporary, local 3-dimensional rectangular system of axes (x, y, z) at 
the location r

�
 of q at time t. We assume, without loss of generality, that the z-axis is 

in the direction of dl
���

. (The orientation of the mutually perpendicular x and y-axes on 
the plane normal to the z-axis may be chosen arbitrarily.) Then we may write  
 

, , ,m m x m y m z cf f f f f f⊥= + + ≡ +
� � � � � �

 

 

where ,c m zf f=
� �

 is the component of the magnetic force along the loop (i.e., in a 

direction parallel to dl
���

) while , ,m x m yf f f⊥ = +
� � �

 is the component normal to the loop 

(thus to dl
���

).  
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      In a steady-state situation (steady current flow) cf
�

 is counterbalanced by the resis-

tive force that opposes charge motion along C (as mentioned before, this latter force 
does not contribute to the emf). However, to counterbalance the normal component 

f⊥
�

 some external action (say, by our hand that moves or deforms the loop C) is 
needed in order for C to keep moving or deforming. This is precisely what the applied 

force appf
�

 does. Clearly, this force must be normal to C at each point of the loop. 

From (10) we then conclude that  
 

Eapp(t) = 0 . 

 
Combining this with (3), (4) and (9), we finally verify the validity of (8).  
      It can be shown [1,3] directly from (8) that  
 

E (t) Φ ( )m

d
t

dt
= −                                                  (11) 

 
where Φm(t) is the magnetic flux through C at time t. This looks like (7) for a fixed 
geometrical loop in a time-dependent e/m field, although the origins of the two rela-
tions are different. Indeed, equation (11) is a direct consequence of the definition of 
the emf and may be derived from (8) essentially by mathematical manipulation (see, 
e.g., the Appendix in [1]). On the contrary, to derive (7) the Faraday-Henry law (6) 
was used. This is an experimental law, hence so is the expression (7) for the emf. In 
other words, relation (7) is not a mere mathematical consequence of the definition of 
the emf.  
 
 
5.  An example  
 
Consider a metal bar (ab) of length h, sliding parallel to itself with constant speed υ 
on two parallel rails that form part of a U-shaped wire, as shown in Fig. 4. A uniform 
magnetic field B

�
, pointing into the page, fills the entire region. A circuit C(t) of vari-

able size is formed by the rectangular loop (abcda).  
 

x

y

O
z⊙

x

h

I

+

.constυ =
�

dl
���

a

bc

d
B⊗
�

da
���

⊙

 
 

Figure 4 
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      In Fig. 4, the z-axis is normal to the plane of the wire and directed toward the 

reader. We call da
���

 an infinitesimal normal vector representing an element of the 
plane surface bounded by the wire (this vector is directed toward the reader, consis-
tently with the chosen counterclockwise direction of traversing the loop C). If ˆzu  is 

the unit vector on the z-axis, then the field and the surface element are written, respec-

tively, as ˆzB Bu= −
�

 (where | | .B B const= =
�

) and ˆ( ) zda da u=
���

.  

      The balance of forces is shown in Fig. 5 (by rf
�

 we denote the resistive force per 

unit charge, which does not contribute to the emf). Note that this diagram concerns 
only the moving part (ab) of the circuit, since it is in this part only that the velocity υ

�
 

and the applied force appf
�

 are nonzero.  

 

θ
θ

dl
���

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�B⊗

�

cυ υ⊥
� �

x
 

 
Figure 5 

 
      The emf of the circuit at time t is, according to (8),   
 

E (t) 
( )

( )
b b

C t a a
B dl B dl B dl Bhυ υ υ υ= × ⋅ = = =∫ ∫ ∫
�����

�  . 

 
Alternatively, the magnetic flux through C is  
 

( ) ( ) ( )
( )m S t S t S t
t B da B da B da BhxΦ = ⋅ = − = − = −∫ ∫ ∫

����
 

 
(where x is the momentary position of the bar at time t) so that, by (11),  
 

E (t) ( )m
d d x

t Bh Bh
dt dt

υ= − Φ = =  . 

 
      Now, the role of the applied force is to counterbalance the x-component of the 
magnetic force in order that the bar may move at constant speed in the x direction. 
Thus,  
 

cos cosapp m tot cf f B Bθ υ θ υ= = =  . 

 
We note that, although fapp depends on the speed υc of a mobile charge along the bar, 
the associated part of the emf is itself independent of υc ! Specifically, as argued in 
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Sec. 4, Eapp(t)=0. On the other hand, in this particular example the work w of fapp for a 

complete tour around the circuit is equal to the total emf (cf. [2]): w=E=Bhυ. This 

equality, however, is accidental and does not reflect a more general relation between 
the work per unit charge and the emf. (Another such “accidental” case is the battery-
resistance circuit [1-3].)  
 
 
6.  Summary  
 
This article is an addendum to our study of the concept of the electromotive force 
(emf), as this concept was pedagogically approached in previous publications [1,2]. 
We have focused on some particular aspects of the subject that we felt are important 
enough to merit further discussion. Let us review them:  
      1. For a conducting loop C inside an e/m field, we explained why the emf of C 
does not depend on the conductivity of the loop. As “obvious” as this statement may 
seem, one still needs to justify it physically and to demonstrate its consistency with 
Ohm’s law.  
      2. We expressed the Faraday-Henry law in terms of the emf of a closed conduct-
ing curve inside a time-dependent e/m field.  
      3. We studied the case of motional emf in some detail (see also [2-5]). Particularly 
important is the role of the applied force in this case. In addition to analyzing this role 
and, in the process, deriving an explicit expression for the emf, we explained why the 
physics of the situation is different from that of the Faraday-Henry law, despite the 
similar-looking forms of the emf in the two cases. Of course, as Relativity has shown, 
this similarity is anything but coincidental!  
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Abstract 

The charging capacitor is the standard textbook and 
classroom example for explaining the concept of the so-
called Maxwell displacement current. A certain aspect of 
the problem, however, is often overlooked. It concerns the 
conditions for satisfaction of the Faraday-Henry law inside 
the capacitor. Expressions for the electromagnetic field are 
derived that properly satisfy all four of Maxwell’s equations 
in that region.  

1. Introduction 

The charging capacitor is the standard paradigm used in 
intermediate-level Physics courses, textbooks and articles to 
demonstrate the significance of the Maxwell “displacement 
current” (see, e.g., [1-7]). The point is correctly made that, 
without this “current” term, the static Ampère’s law would 
be incomplete with regard to explaining the conservation of 
charge as well as the existence of electromagnetic radiation. 
Also, the line integral of the magnetic field around a closed 
curve would be an ill-defined concept.  
      There is, however, a certain subtlety of the situation 
which is often passed by. It concerns the Faraday-Henry 
law both inside and outside the capacitor. The purpose of 
this short note is to point out the need for a more careful 
examination of the satisfaction of this law in the former 
region, i.e., in the interior of the capacitor. We will seek 
expressions for the electromagnetic field that properly 
satisfy the entire set of Maxwell’s equations; in particular, 
the Faraday-Henry law as well as the Ampère-Maxwell law.  

2. The standard approach to the charging 
capacitor problem  

We consider a parallel-plate capacitor with circular plates of 
radius a, thus of area A=πa2. The space in between the 
plates is assumed to be empty of matter. The capacitor is 
being charged by a time-dependent current I(t) flowing in 
the +z-direction. The z-axis is perpendicular to the plates 
(the latter are therefore parallel to the xy-plane) and passes 
through their centers, as seen in Fig. 1 (by ˆ

zu  we denote the 
unit vector in the +z direction):  
 

I I

Q+Q−

ˆzu

z

 
 

Figure 1: A current I charging a parallel-plate capacitor 
 
      The capacitor is being charged at a rate dQ/dt=I(t), 
where +Q(t) is the charge on the right plate (as seen in 
the figure) at time t. If σ(t)=Q(t)/πa2=Q(t)/A is the 
surface charge density on the right plate, then the time 
derivative of σ is given by  
 

        
( )

( )
I t

t
A

σ ′ =                                                        (1) 

 
      We assume that the plate separation is very small 
compared to the radius a, so that the electromagnetic 
(e/m) field inside the capacitor is practically independent 
of z, although it does depend on the normal distance ρ 
from the z-axis. (We will not be concerned with edge 
effects, thus we will restrict out attention to points that 
are not close to the edges of the plates.) In cylindrical 
coordinates (ρ,φ,z) the e/m field at any time t will thus 
only depend on ρ (it will not depend on the angle φ, as 
follows by the symmetry of the problem).  
      The magnetic field inside the capacitor is azimuthal, 
of the form  
 
        ˆ( , )B B t uϕρ=

�

.  
 
A standard practice is to assume that the electric field in 
that area is uniform, of the form  
 

        
0

( )
ˆ

z

t
E u

σ

ε
=
�

                                                       (2) 

 
while everywhere outside the capacitor the electric field 
vanishes. With this assumption the magnetic field inside 
the capacitor is found to be [2,3,6]  
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        0 0
2

( ) ( )
ˆ ˆ

22

I t I t
B u u

Aa
ϕ ϕ

µ ρ µ ρ

π
= =
�

                        (3) 

 
      Expressions (2) and (3) must, of course, satisfy the 
Maxwell system of equations in empty space, which 
system we choose to write in the form [1,8]  
 

 

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�

� � � �

�

� � � �

   (4) 

 
By using cylindrical coordinates and by taking (1) into 
account, it is not hard to show that (2) and (3) satisfy 
three of Eqs. (4), namely, (a), (b) and (d). This is not the 
case with the Faraday-Henry law (4c), however, since by 
(2) and (3) we find that  
 
        0E∇× =

� �

,  
 
while  
 

        0 ( )
ˆ

2

I tB
u

t A
ϕ

µ ρ′∂
=

∂

�

 . 

 
An exception occurs if the current I is constant in time, 
i.e., if the capacitor is being charged at a constant rate, 
so that I΄(t)=0 (this is, e.g., the assumption made in [2]). 
But, for a current I(t) with arbitrary time dependence, the 
pair of fields (2) and (3) does not satisfy the third 
Maxwell equation.  

3. A more general formula for the e/m field inside 
the capacitor  

To remedy the situation and restore the validity of the full 
set of Maxwell’s equations in the interior of the capacitor, 
we must somehow correct the expressions (2) and (3) for the 
e/m field. To this end, we make use of the following Ansatz:  
 

        

0

0

( )
ˆ( , ) ,

( )
ˆ( , ) ;

2

( ) ( ) /

z

t
E f t u

I t
B g t u

A

t I t A

ϕ

σ
ρ

ε

µ ρ
ρ

σ

= +

= +

′ =

 
 
 

 
 
 

�

�

                                (5) 

 
where f (ρ,t) and g(ρ,t) are functions to be determined 
consistently with the given current function I(t) and for 
given initial conditions. It is easy to check that the solutions 
(5) automatically satisfy the first two Maxwell equations 
(4a) and (4b). By the Faraday-Henry law (4c) and the 
Ampère-Maxwell law (4d) we get the following system of 
partial differential equations:  

        

0

0 0

( )
( )

2

( ) ( )
( )

I tf g
a

t A

g f
b

t

µ ρ

ρ

ρ ρ
ε µ

ρ

′∂ ∂
= +

∂ ∂

∂ ∂
=

∂ ∂

                               (6) 

 
Note in particular that the “classical” solution with f (ρ,t)≡0 
and g(ρ,t)≡0 is possible only if I΄(t)=0 ⇔ I=constant in time 
(i.e., if the capacitor is being charged at a constant rate), as 
mentioned earlier.  
      As a special case, let us assume that the functions f and g 
are time-independent, i.e., ∂f /∂t =  ∂g /∂t=0  ⇔ f=f  (ρ), g=g(ρ). 
From (6a) we get:  
 

        
2

0 ( )
( )

4

I t
f

A

µ ρ
ρ

′
=  . 

 
This can only be valid if I΄(t)=constant ⇔ I΄΄(t)=0. On the 
other hand, (6b) yields: ρg=constant ≡ λ ⇔ g(ρ)=  λ/ρ. In 
order for g(ρ) to be finite for ρ=0, we must set λ=0, so that 
g(ρ)≡0. The solution (5) for the e/m field inside the capacitor 
is then written:  
 

        

2
0

0

0

( )( )
ˆ ,

4

( )
ˆ ;

2
( ) 0 , ( ) ( ) /

z

I tt
E u

A

I t
B u

A

I t t I t A

ϕ

µ ρσ

ε

µ ρ

σ

′
= +

=

′′ ′= =

 
 
 

�

�

                                (7) 

 
This formula preserves the familiar expression (3) for the 
magnetic field but corrects Eq. (2) for the electric field in 
order that the Faraday-Henry law be satisfied.  

4. Summary  

The purpose of this note was to point out the need to revisit 
the problem of the charging capacitor and to carefully 
examine the expressions for the e/m field in the interior of 
this system. As was noted, the standard formulas assumed 
for this field, tailor-made to satisfy the Ampère-Maxwell 
law, fail to satisfy the Faraday-Henry law except in the 
special case where the capacitor is being charged at a 
constant rate. We have derived a general expression for the 
e/m field that satisfies the full set of Maxwell’s equations 
for arbitrary charging rate of the system. This result reduces 
to the familiar set of equations in the case of a constant 
charging rate.  
      Analogous corrections need to be made to the standard 
expressions for the e/m field in the exterior of the capacitor. 
This will be the subject of a subsequent paper.  
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    Abstract. The charging capacitor is used as a standard paradigm for illustrating the concept 

of the Maxwell “displacement current”. A certain aspect of the problem, however, is often 

overlooked. It concerns the conditions for satisfaction of the Faraday-Henry law both in the 

interior and the exterior of the capacitor. In this article the situation is analyzed and a 

mathematical process is described for obtaining expressions for the electromagnetic field that 

satisfy the full set of Maxwell’s equations both inside and outside the capacitor.  
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1.  Introduction 
 

The charging capacitor is the standard paradigm used in intermediate-level Physics courses, 

textbooks and articles to demonstrate the significance of the Maxwell “displacement current” 

(see, e.g., [1-7]). The point is correctly made that, without this “current” term, the static 

Ampère’s law would be incomplete with regard to explaining the conservation of charge as well 

as the existence of electromagnetic radiation. Also, the line integral of the magnetic field around 

a closed curve would be an ill-defined concept.  

      There is, however, a certain subtlety of the situation which is often passed by. It concerns the 

satisfaction of the Faraday-Henry law both inside and outside the capacitor. Indeed, although 

care is taken to ensure that the expressions used for the electromagnetic (e/m) field satisfy the 

Ampère-Maxwell law, no such care is exercised with regard to the Faraday-Henry law. As it 

turns out, the usual formulas for the e/m field satisfy this latter law only in the special case where 

the capacitor is being charged at a constant rate. But, if the current responsible for charging the 

capacitor is time-dependent, this will also be the case with the magnetic field outside the 

capacitor. This, in turn, implies the existence of an “induced” electric field in that region, 

contrary to the usual assertion that the electric field outside the capacitor is zero. Moreover, the 

time dependence of the magnetic field inside the capacitor is not compatible with the assumption 

that the electric field in that region is uniform, as the case would be in a static situation.  

      The purpose of this article is to exhibit the theoretical inconsistencies inherent in the 

“classical” treatment of the charging capacitor problem and to describe a mathematical process 

mailto:papachristou@snd.edu.gr
mailto:aris@snd.edu.gr
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for deriving expressions for the e/m field that satisfy the full set of the Maxwell equations 

(including, of course, the Faraday-Henry law) both inside and outside the capacitor.  

      After a preliminary discussion of the concept of the electric current through a loop (Section 

2), the standard “textbook” approach to the charging-capacitor example in connection with the 

concept of the displacement current is presented in Section 3. New and more general solutions of 

the Maxwell system of equations in the interior and the exterior of the capacitor are then derived 

in Sections 4 and 5, respectively.  

 

 

2.  The current through a loop 
 

Before we proceed to write the Ampère-Maxwell law in its integral form, we must carefully 

define the concept of the total current through a loop C (where by “loop” we mean a closed 

curve in space).  

      Proposition. Consider a region R of space within which the distribution of charge, expressed 

by the volume charge density ρ, is time-independent (ρ/t=0). Let C be an oriented loop in R, 

and let S be any open surface in R bordered by C and oriented accordingly. We define the total 

current through C as the surface integral of the current density J  over S :  

 

                                                          in
S

I J da              (1) 

 

Then, the quantity Iin has a well-defined value independent of the particular choice of S (that is, 

Iin is the same for all open surfaces S bounded by C ).  

      Proof. By the equation of continuity for the electric charge (see, e.g., [8], Chap. 6) and by the 

fact that the charge density ρ inside the region R is static (ρ/t=0), we have that 0J  . 

Therefore, within this region of space the current density has the properties of a solenoidal field. 

In particular, the value of the surface integral of J  will be the same for all open surfaces S 

sharing a common border C.  

      As an example, let us consider a circuit carrying a time-dependent current I(t). If the circuit 

does not contain a capacitor, no charge is piling up at any point and the charge density at any 

elementary segment of the circuit is constant in time. Moreover, at each instant t, the current I is 

constant along the circuit, its value changing only with time. Now, if C is a loop encircling some 

section the circuit, as shown in Fig. 1, then, at each instant t, the same current I(t) will pass 

through any open surface S bordered by C. Thus, the integral in (1) is well defined for all t, 

assuming the same value Iin=I(t) for all S.  

 

I I

C S

 
 

Figure 1 
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      Things change if the circuit contains a capacitor which is charging or discharging. It is then 

no longer true that the current I(t) is constant along the circuit; indeed, I(t) is zero inside the 

capacitor and nonzero outside. Thus, the value of the integral in (1) depends on whether the 

surface S does or does not contain points belonging to the interior of the capacitor.  

 

 

3.  Maxwell displacement current in a charging capacitor 
 

Figure 2 shows a simple circuit containing a capacitor that is being charged by a time-

dependent current I(t). At time t, the plates of the capacitor, each of area A, carry charges Q(t).  

 

I I

C

1S

2S

QQ

û

 

Figure 2 

 

      Assume that we encircle the current I by an imaginary plane loop C parallel to the positive 

plate and oriented in accordance with the “right-hand rule”, consistently with the direction of I 

(this direction is indicated by the unit vector û ). The “current through C ” is here an ill-defined 

notion since the value of the integral in Eq. (1) is Iin=I for the flat surface S1 and Iin=0 for the 

curved surface S2 (Fig. 2). This, in turn, implies that Ampère’s law of magnetostatics [1-4,8] 

cannot be valid in this case, given that, according to this law, the integral of the magnetic field B  

along the loop C, equal to μ0Iin , would not be uniquely defined but would depend on the surface 

S bounded by C.  

      Maxwell restored the single-valuedness of the closed line integral of B  by introducing the 

so-called displacement current, which is essentially the rate of change of a time-dependent 

electric field:  

 

                         0 0d d d
S S

E E
J I J da da

t t
 

 
     

           (2) 

 

The Ampère-Maxwell law reads:  
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0 0 0

0 0 0 0 ( )in d in
C S

E
B J

t

E
B dl I da I I

t

  

   


   




     

 

        (3) 

 

where Iin is given by Eq. (1).  

      Now, the standard “textbook” approach to the charging capacitor problem goes as follows: 

Outside the capacitor the electric field vanishes everywhere, while inside the capacitor the 

electric field is uniform – albeit time-dependent – and has the static-field-like form  

 

                                                    
0 0

( ) ( )
ˆ ˆ

t Q t
E u u

A



 
            (4) 

 

where σ(t)=Q(t)/A is the surface charge density on the positive plate at time t. This density is 

related to the current I, which charges the capacitor, by  

 

                                                    
( ) ( )

( )
Q t I t

t
A A




               (5) 

 

(the prime indicates differentiation with respect to t). Thus, inside the capacitor,  

 

                                                 
0 0

( ) ( )
ˆ ˆ

E t I t
u u

t A



 


 


            (6) 

 

Outside the capacitor the time derivative of the electric field vanishes everywhere and, therefore, 

so does the displacement current.  

      Now, on the flat surface S1 the total current through C is (I+Id)in = I+0 = I(t). The Ampère-

Maxwell law (3) then yields:  

 

                                                     0 ( )
C

B dl I t             (7) 

 

On the curved surface S2 , the total current through C is (I+Id)in = 0+Id,in = Id,in , where the quantity 

on the right assumes a nonzero value only for the portion S2΄ of S2 which lies inside the capacitor. 

This quantity is equal to  

 

                                    
2 2

, 0

( )
ˆ

d in
S S

E I t
I da u da

t A


 


   

          (8) 
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2S

da
û

ˆda u da  
plate of area 

  (side view)

A

Q

û

 

Figure 3 

 

The dot product in the integral on the right of (8) represents the projection of the surface element 

da  onto the axis defined by the unit vector û  (see Fig. 3). This is equal to the projection da of 

an elementary area da of S2΄ onto the flat surface of the plate of the capacitor. Eventually, the 

integral on the right of (8) equals the total area A of the plate. Hence, Id,in=I(t) and, given that 

Iin=0 on S2 , the Ampère-Maxwell law (3) again yields the result (7).  

      So, everything works fine with regard to the Ampère-Maxwell law, but there is one law we 

have forgotten so far; namely, the Faraday-Henry law! According to that law, a time-changing 

magnetic field is always accompanied by an electric field (or, as is often said, “induces” an 

electric field). So, the electric field outside the capacitor cannot be zero, as claimed previously, 

given that the time-dependent current I(t) is expected to generate a time-dependent magnetic 

field. For a similar reason, the electric field inside the capacitor cannot have the static-field-like 

form (4) (there must also be a contribution from the rate of change of the magnetic field between 

the plates).  

      An exception occurs if the current I which charges the capacitor is constant in time, since in 

this case the magnetic field will be static everywhere. This is actually the assumption silently or 

explicitly made in many textbooks (see, e.g., [2], Chap. 21). Physically this means that the 

capacitor is being charged at a constant rate. But, in the general case where I(t)constant, the 

preceding discussion regarding the charging capacitor problem needs to be significantly revised 

in order to take into account the entire set of the Maxwell equations; in particular, the Ampère-

Maxwell law as well as the Faraday-Henry law.  

 

 

4.  The Maxwell equations inside the capacitor 

 
We consider a parallel-plate capacitor with circular plates of radius a, thus of area A=πa

2
. The 

space in between the plates is assumed to be empty of matter. The capacitor is being charged by a 

time-dependent current I(t) flowing in the +z direction. The z-axis is perpendicular to the plates 

(the latter are therefore parallel to the xy-plane) and passes through their centers, as seen in Fig. 4 

(by ˆzu  we denote the unit vector in the +z direction).  
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I I

QQ

ˆ
zu

z

 
 

Figure 4 

 

      The capacitor is being charged at a rate dQ/dt=I(t), where +Q(t) is the charge on the right 

plate (as seen in the figure) at time t. If σ(t)=Q(t)/πa
2
=Q(t)/A is the surface charge density on the 

right plate, then the time derivative of σ is given by Eq. (5).  

      We assume that the plate separation is very small compared to the radius a, so that the 

electromagnetic (e/m) field inside the capacitor is practically independent of z, although it does 

depend on the normal distance ρ from the z-axis. (We will not be concerned with edge effects, 

thus we will restrict out attention to points that are not too close to the edges of the plates.) In 

cylindrical coordinates (ρ, φ, z) the magnitude of the e/m field at any time t will thus only depend 

on ρ (it will not depend on the angle φ, as follows by the symmetry of the problem).  

      We assume that the positive and the negative plate of the capacitor of Fig. 4 are centered at 

z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the plate separation d is 

much smaller than the radius a of the plates. The interior of the capacitor is then the region of 

space with  0  ρ < a  and  0 < z < d.  

      The magnetic field inside the capacitor is azimuthal, of the form ˆ( , )B B t u . As noted in 

Sec. 3, a standard practice is to assume that, at all t, the electric field in this region is uniform, of 

the form  

 

                                                          
0

( )
ˆ

z

t
E u




                  (9) 

 

while everywhere outside the capacitor the electric field vanishes. With this assumption the 

magnetic field inside the capacitor is found to be [2,3,6]  

 

                                         0 0

2

( ) ( )
ˆ ˆ

22

I t I t
B u u

Aa
 

   


                       (10) 

 

      Expressions (9) and (10) must, of course, satisfy the Maxwell system of equations in empty 

space, which system we write in the form [1,8]  

 

                           

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


    




   



                 (11) 
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By using cylindrical coordinates (see Appendix) and by taking into account that σ΄(t)=I(t)/A [Eq. 

(5)], it is not hard to show that (9) and (10) satisfy three of Eqs. (11), namely, (a), (b) and (d). 

This is not the case with the Faraday-Henry law (11c), however, since by (9) and (10) we find 

that 0E  , while  

 

0 ( )
ˆ

2

I tB
u

t A


 



 . 

 

An exception occurs if the current I is constant in time, i.e., if the capacitor is being charged at a 

constant rate, so that I΄(t)=0. But, for a current I(t) with arbitrary time dependence, the pair of 

fields (9) and (10) does not satisfy the third Maxwell equation.  

      To remedy the situation and restore the validity of the full set of Maxwell’s equations in the 

interior of the capacitor, we must somehow correct the expressions (9) and (10) for the e/m field. 

To this end, we employ the following Ansatz:  

 

                      

0

0

( )( )
ˆ ˆ( , ) , ( , ) ;

2

( ) ( ) /

z

I tt
E f t u B g t u

A

t I t A



 
 





   
      

  

 

               (12) 

 

where f (ρ,t) and g(ρ,t) are functions to be determined consistently with the given current function 

I(t) and the given initial conditions. It is easy to check that the solutions (12) automatically 

satisfy the first two Maxwell equations (11a) and (11b). By the Faraday-Henry law (11c) and the 

Ampère-Maxwell law (11d) we get the following system of partial differential equations:  

 

                                            

0

0 0

( )
( )

2

( ) ( )
( )

I tf g
a

t A

g f
b

t

 



 
 



 
 

 

 


 

                      (13) 

 

Note in particular that the “classical” solution with f (ρ,t)0 and g(ρ,t)0 is possible only if 

I΄(t)=0  I=constant in time (i.e., if the capacitor is being charged at a constant rate), as 

mentioned earlier.  

      As a special case, let us assume that the functions f and g are time-independent, i.e., f /t = 

g /t=0  f=f (ρ), g=g(ρ). From (13a) we get (ignoring an arbitrary constant):  

2
0 ( )

( )
4

I t
f

A

 



  . 

 

This can only be valid if I΄(t)=constant  I΄΄(t)=0. On the other hand, (13b) yields: ρg=constant 

 λ  g(ρ)= λ/ρ. In order for g(ρ) to be finite for ρ=0, we must set λ=0, so that g(ρ)0. The 

solution (12) for the e/m field inside the capacitor is then written:  
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2
0 0

0

( ) ( )( )
ˆ ˆ, ;

4 2

( ) 0 , ( ) ( ) /

z

I t I tt
E u B u

A A

I t t I t A



   





 
   
 

  

                  (14) 

 

We notice that, since I΄΄(t)=0, Eq. (6) is still valid and the displacement current inside the 

capacitor is again given by Id =I(t). What is different here is the correction to the electric field in 

order for the Faraday-Henry law to be satisfied.  

 

 

5.  The Maxwell equations outside the capacitor 
 

We recall that the positive and the negative plate of the capacitor of Fig. 4 are centered at z=0 

and z=d, respectively, on the z-axis, where the plate separation d is much smaller than the radius 

a of the plates. The space exterior to the capacitor consists of points with  ρ > 0  and  z(0,d ), as 

well as points with  ρ > a  and  0 < z < d. (In the former case we exclude points on the z-axis, with 

ρ=0, to ensure the finiteness of our solutions in that region.)  

      The e/m field outside the capacitor is usually described mathematically by the equations 

[2,3,6]  

 

                                               0 ( )
ˆ0 ,

2

I t
E B u




                       (15) 

 

As the case is with the standard solutions in the interior of the capacitor, the solutions (15) fail to 

satisfy the Faraday-Henry law (11c) (although they do satisfy the remaining three Maxwell 

equations), since 0E   while  

 

0 ( )
ˆ

2

I tB
u

t










 . 

 

As before, an exception occurs if the current I is constant in time, i.e., if the capacitor is being 

charged at a constant rate, so that I΄(t)=0.  

      To find more general solutions that satisfy the entire set of the Maxwell equations, we work 

as in the previous section. Thus, we assume the following general form of the e/m field 

everywhere outside the capacitor:  

 

                                0 ( )
ˆ ˆ( , ) , ( , )

2
z

I t
E f t u B g t u


 



 
   

 
                  (16) 

 

where f and g are functions to be determined consistently with the given current function I(t). The 

solutions (16) automatically satisfy the first two Maxwell equations (11a) and (11b). By Eqs. 

(11c) and (11d) we get the following system of partial differential equations:  
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0

0 0

( )
( )

2

( ) ( )
( )

I tf g
a

t

g f
b

t



 

 
 



 
 

 

 


 

                          (17) 

 

Again, the usual solution with f (ρ,t)0 and g(ρ,t)0 is possible only if I΄(t)=0, i.e., if the 

capacitor is being charged at a constant rate.  

      As a special case, let us assume that the functions f and g are time-independent, i.e.,  f=f (ρ), 

g=g(ρ). From (17a) we get:  

 

0 ( )
( ) ln( )

2

I t
f


 




  

 

where κ is a positive constant quantity having dimensions of inverse length. This can only be 

valid if I΄(t)=constant  I΄΄(t)=0. On the other hand, (17b) yields: ρg=constant  λ  g(ρ)= λ/ρ. 

Since ρ>0, by assumption, we could now let λ0. For reasons of continuity, however (see below), 

we set λ=0, so that g=0. The solution (16) for the e/m field outside the capacitor is then written:  

 

                                 

0 0( ) ( )
ˆ ˆln( ) , ;

2 2

( ) 0

z

I t I t
E u B u

I t



 


 


 

 

                       (18) 

 

Note, in particular, that the magnetic field in the strip  0 < z < d  is continuous for ρ=a, since the 

expression for B  in (18) matches the corresponding expression in (14) upon substituting ρ=a 

(remember that A=πa
2
). No analogous continuity exists, however, for the electric field. 

Physically, this may be attributed to fringing effects at the edges of the plates.  

 

6.  Summary 
 

The purpose of this article is to point out the need to revisit the problem of the charging 

capacitor, as this is discussed in connection with the Maxwell displacement current, and to 

carefully examine the expressions for the e/m field both in the interior and the exterior of this 

system. As was noted, the standard formulas assumed for this field, tailor-made to satisfy the 

Ampère-Maxwell law, fail to satisfy the Faraday-Henry law except in the special case where the 

capacitor is being charged at a constant rate. We have derived general expressions for the e/m 

field that satisfy the full set of Maxwell’s equations for arbitrary charging rate of the system. 

These results may reduce to the familiar set of equations in the case of a constant charging rate.  

 

 

Note 
 

This article is an extensively revised and expanded version of an article published previously in 

letter form [9]. In particular, the results contained in Sec. 5 of this article are new.  
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Appendix: Vector operators in cylindrical coordinates 
 

Let A  be a vector field, expressed in cylindrical coordinates (ρ, φ, z) as  

 

ˆ ˆ ˆ( , , ) ( , , ) ( , , )z zA A z u A z u A z u            . 

 

The div and the rot of this field, in this system of coordinates, are written respectively as follows:  

 

1 1
( ) z

A A
A A

z




   

 
   

  
 , 

 

1 1
ˆ ˆ ˆ( )z z

z

A A AA A
A u u A u

z z

  
  

     

         
           

          
 . 

 

In particular, if the vector field is of the form ˆ ˆ( ) ( )z zA A u A u    , then 0A  .  
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Abstract. In previous articles we derived a system of partial differential equations by 
means of which one may obtain expressions for the electromagnetic field in the interior 
and the exterior of a charging capacitor. In the present article a recursive process is 
described for finding solutions of this system in power-series form with respect to time. 
This allows one to find approximate solutions of Maxwell’s equations in a number of 
situations of physical interest.   
 
Keywords: Maxwell’s equations, Faraday’s law, charging capacitor  
 
 

1.  Introduction 
 
In previous articles [1,2] we described a mathematical process for finding expressions 
for the electromagnetic (e/m) field – i.e., solutions of Maxwell’s equations – in the 
interior and the exterior of a charging capacitor. These solutions generalize the 
“classical” results found in the educational literature of electrodynamics [3-9], which 
results were noted to not satisfy, in general, the Faraday-Henry law (Maxwell’s third 
equation).  
      Our method was based on a simple idea: we started with the known (incomplete) 
solutions and “corrected” them by adding unknown functions to be determined by 
using the Maxwell system. This led to a system of partial differential equations 
(PDEs) for these functions, in which system the (generally) time-dependent current 
that charges the capacitor appears as a sort of parametric function.  
      In the present article we suggest a mathematical process for obtaining solutions of 
the aforementioned system of PDEs in the form of power series with respect to time. 
This allows one to find approximate expressions for the e/m field in certain situations. 
For example, a slowly varying (thus almost time-independent) current allows for the 
“classical” solutions given in the literature, while a current that is almost linearly 
dependent on time (as may be assumed, in general, for any smoothly varying current 
in a very short time period) allows for new solutions that correct the standard 
expressions for the electric field while retaining the corresponding expressions for the 
magnetic field.  
      It should be noted that, regarding the solutions in the exterior of the capacitor, no 
retardation effects related to the finite speed of propagation of e/m interactions will 
concern us here. Indeed, as discussed in Sec. 4, our solutions are valid at points of 
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space not far from the capacitor, so that any change in the physical system will be felt 
“simultaneously” at all points of interest. 
 
 
 
 

2.   Solutions of Maxwell’s equations inside the capacitor 
 
We consider a parallel-plate capacitor with circular plates of radius a, thus of area 
A=πa2. The space in between the plates is assumed to be empty of matter. The 
capacitor is being charged by a time-dependent current I(t) flowing in the +z direction 
(see Fig. 1). The z-axis is perpendicular to the plates (the latter are therefore parallel 
to the xy-plane) and passes through their centers, as seen in the figure (by ˆzu  we 

denote the unit vector in the +z direction).  

I I

QQ

ˆzu

z

 
 

Figure 1 
 
      The capacitor is being charged at a rate dQ/dt=I(t), where +Q(t) is the charge on 
the right plate (as seen in the figure) at time t. If σ(t)=Q(t)/πa2=Q(t)/A is the surface 
charge density on the right plate, then the time derivative of σ is given by  
 

        
( ) ( )

( )
Q t I t

t
A A




               (1) 

 
      We assume that the plate separation is very small compared to the radius a, so that 
the e/m field inside the capacitor is practically independent of z, although it does 
depend on the normal distance ρ from the z-axis. In cylindrical coordinates (ρ, φ, z) the 
magnitude of the e/m field at any time t will thus only depend on ρ (due to the 
symmetry of the problem, this magnitude will not depend on the angle φ).  
      We assume that the positive and the negative plate of the capacitor of Fig. 1 are 
centered at z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the 
plate separation d is much smaller than the radius a of the plates. The interior of the 
capacitor is then the region of space with  0  ρ < a  and  0 < z < d.  

      The magnetic field inside the capacitor is azimuthal, of the form ˆ( , )B B t u


. A 

standard practice in the literature is to assume that, at all t, the electric field in this 
region is uniform, of the form  
 

        
0

( )
ˆz

t
E u







                (2) 

 
while everywhere outside the capacitor the electric field vanishes. With this 
assumption the magnetic field inside the capacitor is found to be [4,5,8]  
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        0 0
2

( ) ( )
ˆ ˆ

22

I t I t
B u u

Aa
 

   


 


             (3) 

 
      Expressions (2) and (3) must, of course, satisfy the Maxwell system of equations 
in empty space, which system we write in the form [3,10]  

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


     




   



   

   
           (4) 

 
By using cylindrical coordinates (see Appendix I) and by taking (1) into account, one 
may show that (2) and (3) satisfy three of Eqs. (4), namely, (a), (b) and (d). This is not 
the case with the Faraday-Henry law (4c), however, since by (2) and (3) we find that 

0E 
 

, while  
 

        0 ( )
ˆ

2

I tB
u

t A 
 





 .  

 
An exception occurs if the current I is constant in time, i.e., if the capacitor is being 
charged at a constant rate, so that I΄(t)=0. This is actually the assumption silently or 
explicitly made in many textbooks (see, e.g., [4], Chap. 21). But, for a current I(t) 
with arbitrary time dependence, the pair of fields (2) and (3) does not satisfy the third 
Maxwell equation.  
      To remedy the situation and restore the validity of the full set of Maxwell’s 
equations in the interior of the capacitor, we must somehow correct the above 
expressions for the e/m field. To this end we employ the following Ansatz, taking into 
account Lemma 1 in Appendix II:  
 

        

0

0

( )
ˆ( , ) ,

( )
ˆ( , ) ;

2

( ) ( ) /

z
t

E f t u

I t
B g t u

A

t I t A



 


  



 
  
 
   
 

 




             (5) 

 
where f (ρ,t) and g(ρ,t) are functions to be determined consistently with the given 
current function I(t) and the given initial conditions. It can be checked that the 
solutions (5) automatically satisfy the first two Maxwell equations (4a) and (4b). By 
the Faraday-Henry law (4c) and the Ampère-Maxwell law (4d) we get the following 
system of PDEs:  
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0

0 0

( )

2

1 ( )

I tf g

t A

g f

t

 


  
 

 
 

 
 


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               (6) 

 
Note in particular that the “classical” solution with f (ρ,t)0 and g(ρ,t)0 is possible 
only if I΄(t)=0, i.e., if the current I is constant in time, which means that the capacitor 
is being charged at a constant rate.  
      The quantity (1/ρ)(ρg)/ρ in the second equation, having its origin at the 

expression for B
 

 in cylindrical coordinates, must tend to a finite limit for ρ0 in 
order that the rot of the magnetic field be finite at the center of the capacitor. For this 
to be the case, (ρg)/ρ must only contain terms of at least first order in ρ. This, in 
turn, requires that g itself must be of at least first order (i.e., linear with no constant 
term) in ρ for all t, or else g must be identically zero. We must, therefore, require that  
 
        g (ρ,t)  0  for  ρ0              (7) 
 
for all t. Keeping this condition in mind, we can rewrite the system (6) in a more 
symmetric form:  
 

        

0

0 0

( )

2

( ) ( )

I tf g

t A

g f

t

 

  


 
 

 
 


 

              (8) 

 
      In principle, one needs to solve the system (8) for a given current I(t) and for 
given initial conditions. An alternative approach, leading to approximate solutions of 
various forms, is to expand all functions (i.e., f, g and I) in powers of time, t. We thus 
write:  
 

        
0

( ) n
n

n

I t I t




                                     (9a) 

        
0

( , ) ( ) n
n

n

f t f t 




                          (9b) 

        
0

( , ) ( ) n
n

n

g t g t 




                          (9c) 

 
Then, for example,  
 

        1
1

1 0

( ) ( 1)n n
n n

n n

I t nI t n I t
 




 

     ,  etc.  

 
Obviously, In has dimensions of current  (time)–n, while fn and gn have dimensions of 
field intensity (electric and magnetic, respectively)  (time)–n.  
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      Substituting the series expansions (9) into the system (8), and equating 
coefficients of similar powers of t on both sides of the ensuing equations, we get a 
recursion relation in the form of a system of PDEs:  
 

        

 

0
1 1

0 0 1

( ) ( 1) ( )
2

( ) ( 1) ( )

n n n

n n

f n g I
A

g n f

 
 
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 



     
 

  

                       (10) 

 
for n=0,1,2,... All non-vanishing functions gn(ρ) are required to satisfy the boundary 
condition (7); i.e., gn(ρ)0 for  ρ0.  
      An obvious solution of the system (10) is the trivial solution fn(ρ)0 and gn(ρ)0 
for all n=0,1,2,..., corresponding to f(ρ,t)0 and g(ρ,t)0. For this to be the case, we 
must have In+1=0 for all n=0,1,2,..., which means that I(t)=I0=constant (independent 
of t). This is the case typically treated in the literature, although the condition I=const. 
is usually not stated explicitly.  
      The simplest nontrivial solution of the problem is found by assuming that f and g 
are time-independent, i.e., are functions of ρ only. Then, by (9b) and (9c), f=f0(ρ) and 
g=g0(ρ), while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (10) for n=0 gives  
 

         0 1
0 0( ) and ( ) 0

2

I
f g

A

 
           

 
with solutions  
 

        
2

0 1
0 ( )

4

I
f C

A

 
      and   0 ( )g




  ,     

 
respectively. The boundary condition g0(ρ)0 for  ρ0 cannot be satisfied for λ0; 
we are thus compelled to set λ=0. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution 
of the system (8) is  
 

        
2

0 1( , ) , ( , ) 0
4

I
f t C g t

A

 
                        (11) 

 
      As is easy to check, by the first of Eqs. (10) it follows that In=0 for n>1. Therefore 
I(t) is linear in t, i.e., is of the form I(t)=I0+I1t. By assuming the initial condition 
I(0)=0, we have that I0=0 and  
 
        I(t) = I1 t                           (12) 
 
On the other hand, by integrating Eq. (1): σ΄(t)=I(t)/A, and by assuming that the 
capacitor is initially uncharged [σ(0)=0], we get:  
 

        
2

1( )
2

I t
t

A
                           (13) 
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      Finally, by Eqs. (5), (11), (12) and (13) the e/m field in the interior of the 
capacitor is  
 

        

2 2
1 0 1

0

0 1

ˆ ,
2 4

ˆ
2

z

I t I
E u

A A

I t
B u

A 
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 

 
   
 






                       (14) 

 
where we have set C=0 since, in view of the assumed initial conditions, there is no 
electric field inside the capacitor if I1=0. In order for the solution (14) to be valid, the 
current I(t) charging the capacitor must vary linearly with time, according to (12).  
 
 

3.   Solutions of Maxwell’s equations outside the capacitor 
 
We recall that the positive and the negative plate of the capacitor of Fig. 1 are 
centered at z=0 and z=d, respectively, on the z-axis, where the plate separation d is 
much smaller than the radius a of the plates. The space exterior to the capacitor 
consists of points with  ρ > 0  and  z(0,d ), as well as points with  ρ > a  and  0 < z < d. 
(In the former case we exclude points on the z-axis, with ρ=0, to ensure the finiteness 
of our solutions in that region.) We assume that the current I(t) is of “infinite” extent 
and hence the magnitude of the e/m field is practically z-independent.  
      The e/m field outside the capacitor is usually described mathematically by the 
equations [4,5,8]  
 

        0 ( )
ˆ0 ,

2

I t
E B u



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 

                       (15) 

 
As the case is with the standard solutions in the interior of the capacitor, the solutions 
(15) fail to satisfy the Faraday-Henry law (4c) (although they do satisfy the remaining 

three Maxwell equations), since 0E 
 

 while  
 

        0 ( )
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2

I tB
u

t 








 .       

 
As before, an exception occurs if the current I is constant in time, i.e., if the capacitor 
is being charged at a constant rate, so that I΄(t)=0.  
      To find more general solutions that satisfy the entire set of the Maxwell equations, 
we work as in the previous section. Taking into account Lemma 2 in Appendix II, we 
assume the following general form of the e/m field everywhere outside the capacitor:  
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where f and g are functions to be determined consistently with the given current 
function I(t). The solutions (16) automatically satisfy the first two Maxwell equations 
(4a) and (4b). By Eqs. (4c) and (4d) we get the following system of PDEs:  
 

        

0

0 0

( )

2

( ) ( )

I tf g

t

g f

t


 
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 
 

 
 


 

                          (17) 

 
Again, the usual solution with f (ρ,t)0 and g(ρ,t)0 is possible only if I΄(t)=0, i.e., if 
the capacitor is being charged at a constant rate. Note also that, since now ρ0, the 
boundary condition (7) for g no longer applies.  
      As we did in the previous section, we seek a series solution of the system (17) in 
powers of t. We thus expand f, g and I as in Eqs. (9), substitute the expansions into the 
system (17), and compare terms with equal powers of t. The result is a new recursive 
system of PDEs:  
 

        

 

0
1 1

0 0 1

( ) ( 1) ( )
2

( ) ( 1) ( )

n n n

n n

f n g I

g n f

 


     

 



     
 

  

                     (18) 

 
for n=0,1,2,... Again, an obvious solution is the trivial solution fn(ρ)0 and gn(ρ)0 for 
all n=0,1,2,..., corresponding to f(ρ,t)0 and g(ρ,t)0. This requires that In+1=0 for all 
n=0,1,2,..., so that I(t)=I0=constant (independent of t).  
      As in Sec. 2, we seek time-independent solutions for f and g, so that f=f0(ρ) and 
g=g0(ρ) while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (18) for n=0 gives  
 

         0 1
0 0( ) and ( ) 0

2

I
f g


  


       

 
with solutions  
 

        0 1
0 ( ) ln( )

2

I
f


 


    and   0 ( )

2
g




  ,     

 
respectively (remember that ρ>0), where κ is a positive constant quantity having 
dimensions of inverse length, and where a factor of 2π has been put in g0(ρ) for future 
convenience. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution of the system (17) 
is  
 

        0 1( , ) ln( ) , ( , )
2 2

I
f t g t

   
 

                      (19) 

 
      By the first of Eqs. (18) it follows that In=0 for n>1. Therefore I(t) is linear in t, of 
the form I(t)=I0+I1t. By assuming the initial condition I(0)=0, we have that I0=0 and  
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        I(t) = I1 t                           (20) 
 
In view of the above results, the e/m field (16) in the exterior of the capacitor is  
 

        

0 1

0 1

ˆln( ) ,
2

ˆ
2

z

I
E u

I t
B u





 










                       (21) 

 
For this solution to be valid, the current I(t) must vary linearly with time.  
      By comparing Eqs. (14) and (21) we observe that the value of the electric field 
inside the capacitor does not match the value of this field outside for ρ=a, where a is 
the radius of the capacitor. This discontinuity of the electric field at the boundary of 
the space occupied by the capacitor is a typical characteristic of capacitor problems, in 
general. On the other hand, in order that the magnetic field in the strip 0 < z < d be 

continuous for ρ=a, the expression for B


 in (21) must match the corresponding 
expression in (14) upon substituting ρ=a and by taking into account that A=πa2. This 
requires that we set λ=0 in (21), so that this equation finally becomes  
 

        

0 1

0 1

ˆln( ) ,
2

ˆ
2

z

I
E u

I t
B u














                       (22) 

 
 
 

4.   Discussion 
 
As we have seen, expressions for the e/m field inside and outside a charging capacitor 
may be sought in the general form given by Eqs. (5) and (16), respectively. These 
expressions contain two unknown functions f(ρ,t) and g(ρ,t) which, in view of 
Maxwell’s equations, satisfy the systems of PDEs (8) and (17). These PDEs, in turn, 
admit series solutions in powers of t, of the form (9), where it is assumed that the 
current I(t) itself may be expanded in this fashion.  
      The coefficients of expansion of f and g may be determined, in principle, by 
means of the recursion relations (10) and (18), both of which are of the general form  
 

        
 

 
1 1

0 0 1

( ) ( 1) ( ) ( )

( ) ( 1) ( )

n n n

n n

f n g h I

g n f

  

     

 



   

  
                     (23) 

 
This is not an easy system to integrate, so we are compelled to make certain ad hoc 
assumptions. Suppose, e.g., that we seek a solution such that fn(ρ)=0 and gn(ρ)=0 for 
n>k (k0). It then follows from the first of Eqs. (23) that In+1=0 for n>k or, 
equivalently, In=0 for n>k+1. Thus, if k=0, I(t) must be linear in t; if k=1, I(t) must be 
quadratic in t; etc.  
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      For a current varying sufficiently slowly with time, we may approximately assume 
that In=0 for n>0, so that I(t)=I0=const. This allows for the possibility that f and g 
vanish identically, as is effectively assumed (though not always stated explicitly) in 
the literature. On the other hand, any smoothly varying I(t) may be assumed to vary 
linearly with time for a very short time period. Then, a solution of the form (14) and 
(22) is admissible.  
      There are several aspects of the solutions described by Eqs. (14) and (22) that may 
look unphysical: (a) the electric field in (22) apparently diverges for ρ; (b) the 
magnetic field in both (14) and (22) diverges for t; (c) although, by assumption, 
there are no charges at the interface between the interior and the exterior of the 
capacitor (i.e., on the cylindrical surface defined by 0< z < d and ρ=a) the electric field 
is non-continuous on that surface, contrary to the general boundary conditions 
required by Maxwell’s equations; (d) the constant κ in (22) appears to be arbitrary. 
We may thus use the above solutions only as approximate ones for values of ρ not 
much larger than the radius a of the plates, as well as for short time intervals. (Note 
that ρ has to be much smaller than the length of the wire that charges the capacitor if 
this wire is to be considered of “infinite” length, hence if the external e/m field is to 
be regarded as z-independent.) We may smoothen the discontinuity problem of the 
electric field for ρ=a by assuming that this field is continuous at t=0, i.e., at the 
moment when the charging of the capacitor begins. By setting ρ=a in (14) and (22) 
and by equating the corresponding expressions for E


 we may then determine the 

value of the constant κ in (22). The result is:  κ=e1/2/a.  
      For an enlightening discussion of the subtleties concerning the e/m field produced 
by an infinitely long straight current, the reader is referred to Example 7.9 of [3].  
 

 
 
 
 

Appendix I. Vector operators in cylindrical coordinates 
 
 

 

Let A


 be a vector field, expressed in cylindrical coordinates (ρ, φ, z) as  
 

        ˆ ˆ ˆ( , , ) ( , , ) ( , , )z zA A z u A z u A z u          


 . 

 
The div and the rot of this field in this system of coordinates are written, respectively, 
as follows:  
 

        
1 1

( ) z
A A

A A
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


   
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  


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A u u A u

z z
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         
                     


 . 
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In particular, if the vector field is of the form  
 

        ˆ ˆ( ) ( )z zA A u A u   


 ,    

 

then  0A 


.   
 
 
 
 

Appendix II. General form of the electric field 
 

 
To justify the general expression for the electric field implied in the Ansatz (5) used to 
find solutions of Maxwell’s equations inside the capacitor, we need to prove the 
following:  
 
      Lemma 1. If the magnetic field inside the capacitor is azimuthal, of the form  
 

        ˆ( , )B B t u


                        (A.1) 

 
then the electric field (also assumed dependent on ρ and t) is of the form  
 
        ˆ( , ) zE E t u


                        (A.2) 

 
      Proof. Let  
 

        ˆ ˆ ˆ( , ) ( , ) ( , )z zE E t u E t u E t u       


                  (A.3)    

 
Then (cf. Appendix I) from Gauss’ law (4a) it follows that  
 

        
( )

( ) 0
t

E E 


 


  


                      (A.4) 

 
In order for the electric field to be finite at the center of the capacitor (i.e., for ρ=0) 
we must set α(t)0, so that Eρ(ρ,t)=0. On the other hand, the z-component of 
Faraday’s law (4c) yields  
 

        
( )

( ) 0
t

E E 


 


  


                     (A.5) 

 
Again, finiteness of the electric field for ρ=0 dictates that β(t)0, so that Eφ(ρ,t)=0. 
Eventually, only the z-component of the electric field is non-vanishing, in accordance 
with (A.2).  
 
      The solutions outside the capacitor are subject to the restriction ρ>0. The 
expression for the electric field implied in the Ansatz (16) is based on the following 
observation:  
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      Lemma 2. If the magnetic field outside the capacitor is azimuthal, of the form 
(A.1), then the electric field (also assumed dependent on ρ and t) is again of the form 
(A.2).  
 
      Proof. Let the electric field be of the form (A.3). Then from Gauss’ law (4a) and 
from the z-component of Faraday’s law (4c) we get (A.4) and (A.5), respectively. On 
the other hand, from the ρ- and φ-components of the fourth Maxwell equation (4d) we 
find that Eρ/t=0 and Eφ/t=0, which means that α and β are actually constants. 
Thus the general form of the electric field outside the capacitor should be  
 

        ˆ ˆ ˆ( , ) zE u u f t u 
  
 

  


 .     

 
Obviously, the function f (ρ,t) is related to the time-change of the magnetic field and is 
expected to vanish if the current I that charges the capacitor is constant. If the electric 
field itself is to vanish when I=constant, both constants α and β must be zero. 
Eventually, the electric field outside the capacitor must be of the general form (A.2).  
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Abstract. Bäcklund transformations (BTs) are traditionally regarded as a tool for 
integrating nonlinear partial differential equations (PDEs). Their use has been recently 
extended, however, to problems such as the construction of recursion operators for 
symmetries of PDEs, as well as the solution of linear systems of PDEs. In this article, the 
concept and some applications of BTs are reviewed. As an example of an integrable linear 
system of PDEs, the Maxwell equations of electromagnetism are shown to constitute a BT 
connecting the wave equations for the electric and the magnetic field; plane-wave 
solutions of the Maxwell system are constructed in detail. The connection between BTs 
and recursion operators is also discussed.  

Keywords: Bäcklund transformations, integrable systems, Maxwell equations, 
electromagnetic waves  

PACS: 02.30.Ik, 02.30.Jr, 41.20.Jb  
 

1.  INTRODUCTION 

Bäcklund transformations (BTs) were originally devised as a tool for obtaining solutions of 
nonlinear partial differential equations (PDEs) (see, e.g., [1] and the references therein). They 
were later also proven useful as recursion operators for constructing infinite sequences of 
nonlocal symmetries and conservation laws of certain PDEs [2–6].  

In simple terms, a BT is a system of PDEs connecting two fields that are required to 
independently satisfy two respective PDEs [say, (a) and (b)] in order for the system to be 
integrable for either field. If a solution of PDE (a) is known, then a solution of PDE (b) is 
obtained simply by integrating the BT, without having to actually solve the latter PDE (which, 
presumably, would be a much harder task). In the case where the PDEs (a) and (b) are 
identical, the auto-BT produces new solutions of PDE (a) from old ones.  

 As described above, a BT is an auxiliary tool for finding solutions of a given (usually 
nonlinear) PDE, using known solutions of the same or another PDE. But, what if the BT itself is 
the differential system whose solutions we are looking for? As it turns out, to solve the problem 
we need to have parameter-dependent solutions of both PDEs (a) and (b) at hand. By properly 
matching the parameters (provided this is possible) a solution of the given system is obtained.  
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 The above method is particularly effective in linear problems, given that parametric solutions 
of linear PDEs are generally not hard to find. An important paradigm of a BT associated with a 
linear problem is offered by the Maxwell system of equations of electromagnetism [7,8]. As is 
well known, the consistency of this system demands that both the electric and the magnetic field 
independently satisfy a respective wave equation. These equations have known, parameter-
dependent solutions; namely, monochromatic plane waves with arbitrary amplitudes, 
frequencies and wave vectors (the “parameters” of the problem). By inserting these solutions 
into the Maxwell system, one may find the appropriate expressions for the “parameters” in order 
for the plane waves to also be solutions of Maxwell’s equations; that is, in order to represent an 
actual electromagnetic field.  

 This article, written for educational purposes, is an introduction to the concept of a BT and its 
application to the solution of PDEs or systems of PDEs. Both “classical” and novel views of a 
BT are discussed, the former view predominantly concerning integration of nonlinear PDEs 
while the latter one being applicable mostly to linear systems of PDEs. The article is organized 
as follows:  

 In Section 2 we review the classical concept of a BT. The solution-generating process by 
using a BT is demonstrated in a number of examples.  

 In Sec. 3 a different perception of a BT is presented, according to which it is the BT itself 
whose solutions are sought. The concept of conjugate solutions is introduced.  

 As an example, in Secs. 4 and 5 the Maxwell equations in empty space and in a linear 
conducting medium, respectively, are shown to constitute a BT connecting the wave equations 
for the electric and the magnetic field. Following [7], the process of constructing plane-wave 
solutions of this BT is presented in detail. This process is, of course, a familiar problem of 
electrodynamics but is seen here under a new perspective by employing the concept of a BT.  

 Finally, in Sec. 6 we briefly review the connection between BTs and recursion operators for 
generating infinite sequences of nonlocal symmetries of PDEs.  

2.  BÄCKLUND TRANSFORMATIONS: CLASSICAL VIEWPOINT 

Consider two PDEs P[u]=0 and Q[v]=0 for the unknown functions u and v, respectively. The 
expressions P[u] and Q[v] may contain the corresponding variables u and v, as well as partial 
derivatives of u and v with respect to the independent variables. For simplicity, we assume that 
u and v are functions of only two variables x, t. Partial derivatives with respect to these variables 
will be denoted by using subscripts: ux , ut , uxx , utt , uxt , etc.  

Independently, for the moment, also consider a pair of coupled PDEs for u and v:  
 

    1 2[ , ] 0 ( ) [ , ] 0 ( )B u v a B u v b= =                                          (1) 

 
where the expressions Bi [u,v] (i=1,2) may contain u, v as well as partial derivatives of u and v 
with respect to x and t. We note that u appears in both equations (a) and (b). The question then 
is: if we find an expression for u by integrating (a) for a given v, will it match the corresponding 
expression for u found by integrating (b) for the same v? The answer is that, in order that (a) 
and (b) be consistent with each other for solution for u, the function v must be properly chosen 
so as to satisfy a certain consistency condition (or integrability condition or compatibility 
condition).  

By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for solution for v, 
for some given u, the function u must now itself satisfy a corresponding integrability condition.  

If it happens that the two consistency conditions for integrability of the system (1) are 
precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a Bäcklund 
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transformation (BT) connecting solutions of P[u]=0 with solutions of Q[v]=0. In the special case 

where PºQ, i.e., when u and v satisfy the same PDE, the system (1) is called an auto-Bäcklund 

transformation (auto-BT) for this PDE.  
Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able to find a 

BT connecting solutions u of this equation with solutions v of the PDE Q[v]=0 (if PºQ , the auto-
BT connects solutions u and v of the same PDE) and let v=v0(x,t) be some known solution of 
Q[v]=0. The BT is then a system of PDEs for the unknown u,  

 

0[ , ] 0 , 1,2iB u v i= =                                                (2) 

 
The system (2) is integrable for u, given that the function v0 satisfies a priori the required 

integrability condition Q[v]=0. The solution u then of the system satisfies the PDE P[u]=0. Thus 
a solution u(x,t) of the latter PDE is found without actually solving the equation itself, simply by 
integrating the BT (2) with respect to u. Of course, this method will be useful provided that 
integrating the system (2) for u is simpler than integrating the PDE P[u]=0 itself. If the 
transformation (2) is an auto-BT for the PDE P[u]=0, then, starting with a known solution v0(x,t) 
of this equation and integrating the system (2), we find another solution u(x,t) of the same 
equation.  

Let us see some examples of the use of a BT to generate solutions of a PDE:  
 
1. The Cauchy-Riemann relations of Complex Analysis,  
 

        ( ) ( )x y y xu v a u v b= = -                                         (3) 

 
(here, the variable t has been renamed y) constitute an auto-BT for the Laplace equation,  
 

        [ ] 0xx yyP w w wº + =                                                 (4) 

 
Let us explain this: Suppose we want to solve the system (3) for u, for a given choice of the 

function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we must compare them 
in some way. We thus differentiate (a) with respect to y and (b) with respect to x, and equate the 
mixed derivatives of u. That is, we apply the integrability condition (ux)y= (uy)x . In this way we 
eliminate the variable u and find the condition that must be obeyed by v(x,y):  

 

[ ] 0xx yyP v v vº + =  . 

 
Similarly, by using the integrability condition (vx)y= (vy)x to eliminate v from the system (3), we 

find the necessary condition in order that this system be integrable for v, for a given function 
u(x,y):  

[ ] 0xx yyP u u uº + =  . 

 
In conclusion, the integrability of system (3) with respect to either variable requires that the 

other variable must satisfy the Laplace equation (4).  
Let now v0(x,y) be a known solution of the Laplace equation (4). Substituting v=v0 in the 

system (3), we can integrate this system with respect to u. It is not hard to show (by eliminating 
v0 from the system) that the solution u will also satisfy the Laplace equation (4). As an example, 
by choosing the solution v0(x,y)=xy , we find a new solution  u(x,y)= (x

2 
–y2)/2 +C .  

2. The Liouville equation is written  
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[ ] 0u u
xt xtP u u e u eº - = Û =                                       (5) 

 
Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus sought by 

means of a BT. We consider an auxiliary function v(x,t) and an associated PDE,  
 

        [ ] 0xtQ v vº =                                                       (6) 

 
We also consider the system of first-order PDEs,  
 

        
( )/2 ( )/22 ( ) 2 ( )u v u v

x x t tu v e a u v e b- ++ = - =                       (7) 

 
Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and eliminating 

(ut -vt) and (ux+vx) in the ensuing equations with the aid of (a) and (b), we find that u and v 
satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is a BT connecting solutions of 
(5) and (6). Starting with the trivial solution v=0 of (6), and integrating the system  

 
/2 /22 , 2 ,x t

u uu e u e= =  

 
we find a nontrivial solution of (5):  

( , ) 2ln
2

x t
u x t C

+æ ö
=- -ç ÷

è ø
 . 

 
 3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., in the study 

of crystalline solids, in the transmission of elastic waves, in magnetism, in elementary-particle 
models, etc. The equation (whose name is a pun on the related linear Klein-Gordon equation) is 
written  

 

        [ ] sin 0 sinxt xtP u u u u uº - = Û =                                    (8) 

 
The following system of equations is an auto-BT for the nonlinear PDE (8):  
 

        
1 1 1
( ) sin , ( ) sin
2 2 2 2

x t

u v u v
u v a u v

a

- +æ ö æ ö+ = - =ç ÷ ç ÷
è ø è ø

                    (9) 

 
where a (≠0) is an arbitrary real constant. [Because of the presence of a, the system (9) is called 
a parametric BT.] When u is a solution of (8) the BT (9) is integrable for v, which, in turn, also is 
a solution of (8): P[v]=0; and vice versa. Starting with the trivial solution  v=0  of  vxt= sin v , and 
integrating the system  

2
2 sin , sin ,

2 2
x t

u u
u a u

a
= =  

 
we obtain a new solution of (8):  
 

( , ) 4arctan exp
t

u x t C ax
a

ì üæ ö= +í ýç ÷
è øî þ

 . 
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3.  CONJUGATE SOLUTIONS AND ANOTHER VIEW OF A BT 

As presented in the previous section, a BT is an auxiliary device for constructing solutions of 
a (usually nonlinear) PDE from known solutions of the same or another PDE. The converse 
problem, where solutions of the differential system representing the BT itself are sought, is also 
of interest, however, and has been recently suggested [7,8] in connection with the Maxwell 
equations (see subsequent sections).  

To be specific, assume that we need to integrate a given system of PDEs connecting two 
functions u and v:  

        [ , ] 0 , 1,2iB u v i= =                                                (10) 

 
Suppose that the integrability of the system for both functions requires that u and v 

separately satisfy the respective PDEs  
 

        [ ] 0 ( ) [ ] 0 ( )P u a Q v b= =                                        (11) 

 
That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, that 

these PDEs possess known (or, in any case, easy to find) parameter-dependent solutions of the 
form  

        ( , ; , , ) , ( , ; , , )u f x y v g x ya b k l= =, ) , ( , ; , , ); , ,; , ,g y, ) , ( ,, ( ,)                                (12) 

 
where α, β, κ, λ, etc., are (real or complex) parameters. If values of these parameters can be 

determined for which u and v jointly satisfy the system (10), we say that the solutions u and v of 
the PDEs (11a) and (11b), respectively, are conjugate through the BT (10) (or BT-conjugate, for 
short). By finding a pair of BT-conjugate solutions one thus automatically obtains a solution of 
the system (10).  

      Note that solutions of both integrability conditions P[u]=0 and Q[v]=0 must now be known 
in advance! From the practical point of view the method is thus most applicable in linear 
problems, since it is much easier to find parameter-dependent solutions of the PDEs (11) in this 
case.  

      Let us see an example: Going back to the Cauchy-Riemann relations (3), we try the 
following parametric solutions of the Laplace equation (4):  

 
2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

a b g
k l m

= - + +

= + +
 

 
Substituting these into the BT (3), we find that κ=2α, μ=β and λ= –γ. Therefore, the solutions  
 

2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

a b g
a g b

= - + +

= - +
 

 
of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination:  
 

( , ) , ( , ) .u x y xy v x y xya b= =  
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Inserting these into the system (3) and taking into account the independence of x and y, we 
find that the only possible values of the parameters α and β are α=β=0, so that u(x,y)= v(x,y)=0. 
Thus, no non-trivial BT-conjugate solutions exist in this case.  

4.  EXAMPLE: THE MAXWELL EQUATIONS IN EMPTY SPACE 

An example of an integrable linear system whose solutions are of physical interest is 
furnished by the Maxwell equations of electrodynamics. Interestingly, as noted recently [7], the 
Maxwell system has the property of a BT whose integrability conditions are the electromagnetic 
(e/m) wave equations that are separately valid for the electric and the magnetic field. These 
equations possess parameter-dependent solutions that, by a proper choice of the parameters, 
can be made BT-conjugate through the Maxwell system. In this and the following section we 
discuss the BT property of the Maxwell equations in vacuum and in a conducting medium, 
respectively.  

      In empty space, where no charges or currents (whether free or bound) exist, the Maxwell 
equations are written (in S.I. units) [9]  

 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
e m

¶
Ñ× = Ñ´ = -

¶

¶
Ñ× = Ñ´ =

¶

0 ( )
B

E0 ( )
¶

= -E0 ( )
B

EE
B d B0 ( )0 ( ) e m

¶
=B0 ( )0 ( )0

E
                           (13) 

 

where EE  and BB  are the electric and the magnetic field, respectively. Here we have a system 
of four PDEs for two fields. The question is: what are the necessary conditions that each of 
these fields must satisfy in order for the system (13) to be self-consistent? In other words, what 
are the consistency conditions (or integrability conditions) for this system?  

      Guided by our experience from Sec. 2, to find these conditions we perform various 
differentiations of the equations of system (13) and require that certain differential identities be 
satisfied. Our aim is, of course, to eliminate one field (electric or magnetic) in favor of the other 
and find some higher-order PDE that the latter field must obey.  

      As can be checked, two differential identities are satisfied automatically in the system 
(13):  

( ) 0 , ( ) 0 ,E BÑ× Ñ´ = Ñ× Ñ´ =( ) 0 ( ) 0) 0 ( )Ñ×( )( ) 0 ( )(  

 

( ) , ( ) .t t t tE E B BÑ× =Ñ× Ñ× =Ñ×) ( )) ( ))) ( )) )(  

 
Two others read  

        
2( ) ( )E E EÑ´ Ñ´ =Ñ Ñ× -Ñ 2( ) ( ) E2) ( )) ( )Ñ´(( ) ( )) ( )) (                                         (14) 

 

        
2( ) ( )B B BÑ´ Ñ´ =Ñ Ñ× -Ñ 2( ) ( ) B2) ( )) (Ñ´(( ) ( )) )                                         (15) 

 
Taking the rot of (13c) and using (14), (13a) and (13d), we find  
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2

2

0 0 2
0

E
E

t
e m

¶
Ñ - =

¶
E

E
¶

-E e m
¶

                                            (16) 

Similarly, taking the rot of (13d) and using (15), (13b) and (13c), we get  
 

        
2

2

0 0 2
0

B
B

t
e m

¶
Ñ - =

¶
B

B
¶

-B e m
¶

                                             (17) 

 
No new information is furnished by the remaining two integrability conditions,  
 

( ) , ( ) .t t t tE E B BÑ´ =Ñ´ Ñ´ =Ñ´) ( )) ( )) ( )) ( )) ( )) ( )  

 
      Note that we have uncoupled the equations for the two fields in the system (13), deriving 

separate second-order PDEs for each field. Putting  
                           

        0 0 2

0 0

1 1
c

c
e m

e m
º Û =                                          (18) 

 
(where c is the speed of light in vacuum) we rewrite (16) and (17) in wave-equation form:  
 

        
2

2

2 2

1
0

E
E

c t

¶
Ñ - =

¶
E21 E

E
¶

-
1 E

E
¶

                                                (19) 

 

        

2
2

2 2

1
0

B
B

c t

¶
Ñ - =

¶
B21 B

B
¶

-
1 B

B
¶

                                                 (20) 

 
      We conclude that the Maxwell system (13) is a BT relating solutions of the e/m wave 

equations (19) and (20), these equations representing the integrability conditions of the BT. It 
should be noted that this BT is not an auto-BT! Indeed, although the PDEs (19) and (20) are of 
similar form, they concern different fields with different physical dimensions and physical 
properties.  

      The e/m wave equations admit plane-wave solutions of the form ( )F k r tw× -F ( )) , with  

 

        where | |c k k
k

w
= = |                                            (21) 

 
The simplest such solutions are monochromatic plane waves of angular frequency ω, 

propagating in the direction of the wave vector kk :  

 

        
0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

w

w

= × -

= × -

E (( } ( )} (()})}) exp{ () exp{ (exp{ (exp{ ( )}))})}(E ((

B ((

E ( , ) exp{ (, ) exp{ (0 exp{ (exp{ ()) exp{ (exp{ ( } ( )

} ( )

} ((

, ) exp{ ( )} () { ( )} (0 exp{ (exp{ (exp{ (

)} (()})})

)})

)})0, ) exp{ (0, ) exp{ (, ) exp{ (0

) exp{ (expexp{ (exp{ (exp{ (

, ) exp{ (, ) exp{ (0
                                   (22) 
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where 0EE  and 0BB  are constant complex amplitudes. The constants appearing in the above 

equations (amplitudes, frequency and wave vector) can be chosen arbitrarily; thus they can be 
regarded as parameters on which the plane waves (22) depend.  

      We must note carefully that, although every pair of fields ( , )E B)))  satisfying the Maxwell 

equations (13) also satisfies the wave equations (19) and (20), the converse is not true. Thus, 
the plane-wave solutions (22) are not a priori solutions of the Maxwell system (i.e., do not 
represent actual e/m fields). This problem can be taken care of, however, by a proper choice of 
the parameters in (22). To this end, we substitute the general solutions (22) into the BT (13) to 
find the extra conditions the latter system demands. By fixing the wave parameters, the two 
wave solutions in (22) will become BT-conjugate through the Maxwell system (13).  

      Substituting (22a) and (22b) into (13a) and (13b), respectively, and taking into account 

that 
i k r i k re i k e× ×Ñ = i k rk e i k ri k ri k ri k ri k ri k ri k r i ki k rÑee i k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k ri k r

, we have  

 
( )

0 0

( )

0 0

( ) 0 ( ) 0 ,

( ) 0 ( ) 0 ,

i t i k r i k r t

i t i k r i k r t

E e e k E e

B e e k B e

w w

w w

- × × -

- × × -

×Ñ = Þ × =

×Ñ = Þ × =

,0i t i k r i)i t i k r ii t i)))))) ( )( )( )0 ( ) ( )( )( )( )( )0 (0 (00 (k r ik r i 0( )( )( )( )( )( )( )( )( )0 ((00 ( ( ) 0( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )k r ik r i0 (0 (0 (0 ( ( ))) ( )( )( ))))) ( )( ))) ( )( )))k r i ( )( )k r i ( )( )) ( )( )) ( )( )) ( )( )))))0 00 00 0

0i t i k r i

)0 00 00 0

)i t i k r ii t i))))))))

0 00 00 00 (0 (00 00 00 00 0

( )( )( )0 ( )0 ( )0 ( ( )( )( )( )( )0 (0 (00 (0 (0

00 00 00 0

k r ik r i 0( )( )( )( )( )( )( )( )( )0 (00 ( ( ) 0( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )k r ik r i0 ((0 ((0 ( ( ))) ( )( )( )))))

)0 0)0 0))0 00 00 0)0 0

( )( ))) ( )( )))k r i ( )( )k r i ( )( ))) ( )( )) ( )( ))) ( )( )))
 

 
so that  

        0 00 , 0k E k B× = × =k EE 0E 0 0E k B0EE 0 .                                            (23) 

 
Relations (23) reflect the fact that that the monochromatic plane e/m wave is a transverse 

wave.  
      Next, substituting (22a) and (22b) into (13c) and (13d), we find  
 

( )

0 0

( ) ( )

0 0

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e E i B e

k E e B e

w w

w w

w

w

- × × -

× - × -

Ñ ´ = Þ

´ =

Þi t i k r ii t i k r i Þ( )( )( )E i B e)w w( )( )k r i ( )( )( )E i B eE)k r ik r ik r i))k r ik r ik r ik r i Þ( )( )( )k r i ( )( )( )k r ik r ik r i)k r i ( )( )( )k r ik r i)) ( )k r i ( )( )k r i ( )( )( )))k r ik r i)) ( )( )( )k r i ( )( )( )k r ik r i))k r i ( )( )( )k r ik r i))e (

( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ()) ( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (

0 0)´ = Þ0 0) B e0 00 0E iE i0 00 0) 0 00 00 00 00 0)

( ) (( ) (( ) (( ) (( ) (( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ( ))( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (

(

i k r( ) (( ) (

(

)) ( ) (( ) ()) ( ) (( ) (( ) (( ) (( ) (( ) (( ) (
 

 
( )

0 0 0 0

( ) ( )

0 02

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e B i E e

k B e E e
c

w w

w w

w e m

w

- × × -

× - × -

Ñ ´ = - Þ

´ = -

i t i k r ii t i k r i Þ( )( )( )B i E eB i)w w( )( )k r i ( )( )( )B i E eB)k r ik r ik r i))k r ik r ik r ik r i Þ( )( )( )k r i ( )( )( )k r ik r i))k r i ( )( )( )k r ik r i)) ( )k r i ( )( )k r i ( )( )( ))k r i)) ( )( )( )k r i ( )( )( )k r ik r i))k r i ( )( )( )k r ik r i))

( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ()) ( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ( )( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) ( ))( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (w( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (i k r( ) (( ) ()) ( ) (( ) () ( ) (( ) (( ) (( ) (( ) (( ) (( ) (
 

 
so that  

        0 0 0 02
,k E B k B E

c

w
w´ = ´ = -k EE EE B k BE B k B E

w
E B k B                                   (24) 

 

We note that the fields EE  and BB  are normal to each other, as well as normal to the direction 
of propagation of the wave. We also remark that the two vector equations in (24) are not 

independent of each other, since, by cross-multiplying the first relation by kk , we get the second 

relation.  

      Introducing a unit vector t̂  in the direction of the wave vector kk ,  

 

ˆ / ( | | / )k k k k ct w= = =/ ( | | / )k / ( | | // ( | | /k / ( | |/ ( | ||k / ( | |/ ( | |( | |  , 

 
we rewrite the first of equations (24) as  
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0 0 0

1
ˆ ˆ( ) ( )

k
B E E

c
t t

w
= ´ = ´

1
ˆ ˆ

1
( ) ( )ˆ ˆ̂

1k
B ( ) (( ) (ˆ ˆ̂ˆ

1k
( ) (( )( ) (( ) (( )( ) (( )  . 

 
The BT-conjugate solutions in (22) are now written  
 

        
0

0

( , ) exp{ ( )} ,

1 1
ˆ ˆ( , ) ( )exp{ ( )}

E r t E i k r t

B r t E i k r t E
c c

w

t w t

= × -

= ´ × - = ´

E (( )} ,, ) exp{ (, ) exp{ (0 exp{ (exp{ (exp{ ( )}) exp{ () { (exp{ (exp{ (exp{ ( )} ,0( , ) p{ (0

B ((

)} ,

E, ), ) (( )exp{ ( )}( )exp{ ( )}( )exp{ ( )( )exp{ (0

1 1
ˆ

1
Eˆ

1
) ( )exp{ ( )}) ( )exp{ (
11
ˆ̂( )exp{ ( )}( )exp{ ((( )exp{ ( )}( )exp{ ( )}( )exp{ ( )( )exp{ ( )})})})})})})

                           (25) 

 
      As constructed, the complex vector fields in (25) satisfy the Maxwell system (13). Since 

this system is homogeneous linear with real coefficients, the real parts of the fields (25) also 
satisfy it. To find the expressions for the real solutions (which, after all, carry the physics of the 
situation) we take the simplest case of linear polarization and write  

 

        0 0,

i

RE E e a= iE E e a
                                                   (26) 

 

where the vector 0,REE  as well as the number α are real. The real versions of the fields (25), 

then, read  

        
0,

0,

cos ( ) ,

1 1
ˆ ˆ( )cos ( )

R

R

E E k r t

B E k r t E
c c

w a

t w a t

= × - +

= ´ × - + = ´

E E cos (cosEE cos ((

1
ˆ

1
Eˆ

1
))))

0,

1

R

B
1
( )cos (( ˆ̂( )cos (( )cos (( )cos ()cos ()cos (

                          (27) 

 

We note, in particular, that the fields EE  and BB  “oscillate” in phase.  
      Our results for the Maxwell equations in vacuum can be extended to the case of a linear 

non-conducting medium upon replacement of ε0 and μ0 with ε and μ, respectively. The speed of 
propagation of the e/m wave is, in this case,  

 

1

k

w
u

em
= =   . 

 
In the next section we study the more complex case of a linear medium having a finite 

conductivity.  

5.  EXAMPLE: THE MAXWELL SYSTEM FOR A LINEAR 
CONDUCTING MEDIUM 

Consider a linear conducting medium of conductivity σ. In such a medium, Ohm’s law is 

satisfied: fJ Es=J EEE , where fJJ  is the free current density. The Maxwell equations take on the 

form [9]  
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( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
ms e m

¶
Ñ× = Ñ´ = -

¶

¶
Ñ× = Ñ´ = +

¶

0 ( )
B

E0 ( )
¶

= -EE0 ( )0 ( )0
B

E
B d B E0 ( )0 ( ) e m

¶
+B EB0 ( )0 ( )0 EE

E
                       (28) 

 
By requiring satisfaction of the integrability conditions  
 

2

2

( ) ( ) ,

( ) ( ) ,

E E E

B B B

Ñ´ Ñ´ =Ñ Ñ× -Ñ

Ñ´ Ñ´ =Ñ Ñ× -Ñ

2( ) ( ) 2) ( ) 2Ñ´ (( ) ( )) ( )) ( )

2

( ) ( ) ,

( ) ( ) 2) ( ) 2

Ñ´ ( ) ( )( ) ( )) ( )) ( )) ( )

Ñ´ (( ) ( )

Ñ´ (( ) ( )) ( )) ( )
 

 
we obtain the modified wave equations  

        

2
2

2

2
2

2

0

0

E E
E

t t

B B
B

t t

e m ms

e m ms

¶ ¶
Ñ - - =

¶ ¶

¶ ¶
Ñ - - =

¶ ¶

E¶E2
E

¶ 2
-E e m

¶
t

B

¶

¶B2
B

¶ 2
-B e m

¶
                                      (29) 

 
which must be separately satisfied by each field. As in Sec. 4, no further information is 

furnished by the remaining integrability conditions.  
      The linear differential system (28) is a BT relating solutions of the wave equations (29). 

As in the vacuum case, this BT is not an auto-BT. We now seek BT-conjugate solutions. As can 
be verified by direct substitution into equations (29), these PDEs admit parameter-dependent 
solutions of the form  

 

        

0

0

0

0

ˆ( , ) exp{ ( )}

exp exp( ) ,

ˆ( , ) exp{ ( )}

exp exp( )

E r t E s r i k r t

s
E i k r i t

k

B r t B s r i k r t

s
B i k r i t

k

t w

w

t w

w

= - × + × -

ì üæ ö= - × -í ýç ÷
è øî þ

= - × + × -

ì üæ ö= - × -í ýç ÷
è øî þ

E ( )}, ) exp{ (, ) exp{ (exp{ (exp{ (exp{0 ( )}ˆ) { ˆexp{{{

E exp
ì

E expí
ìì

exp(p(exp(exp(exp(
ü
exp(ý

üü

þ

B ((

îè k

)}, ), ) ((

øk

exp{ (exp{ (exp{0 ((( )}

þ

ˆ) {) ˆ

îè k

exp{{{

B exp
ì

B expí
ìì

exp(p(exp(exp(exp(
ü
exp(ý

üü

                          (30) 

 

where t̂  is the unit vector in the direction of the wave vector kk :  

 

ˆ / ( | | / )k k k kt w u= = =/ ( | | / )k / ( | | / )k / ( |/ ( | ||k / ( |/ ( |( |  

 
(υ is the speed of propagation of the wave inside the conducting medium) and where, for 

given physical characteristics ε, μ, σ of the medium, the parameters s, k and ω satisfy the 
algebraic system  

        
2 2 2 0 , 2 0s k skemw msw- + = - =                                (31) 

 



PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2016, Hellenic Naval Academy 

C-13 

      We note that, for arbitrary choices of the amplitudes 0EE  and 0BB , the vector fields (30) are 

not a priori solutions of the Maxwell system (28), thus are not BT-conjugate solutions. To obtain 
such solutions we substitute expressions (30) into the system (28). With the aid of the relation  

 
s s

i k r i k r
k ks

e i k e
k

æ ö æ ö- × - ×ç ÷ ç ÷
è ø è øæ öÑ = -ç ÷

è ø

k rr ir ir ir ir ir ir ir ir ir ir ir i k r
s ss s

r ir i
s s

r i
s s

r i
s ss ss ss s

r ir ir ir i
s ss s

r ir i k rr ir i
è øk kk kk ek kk k
ç ÷ç ÷r ir ir ir i

k kk kk kk kk k
k rk rk rr ir ir ir ir i k r

æ ös ss ss ss s
k rk rr ir ir ir ir ir i

s ss ss ss ss s
r ir i

æ ös ss s
i k
s ss ss s

ç ÷i k r ii k
æ öæ ö
i ki ki ki k
s ss ss ss ss s

i k r ii ki ki k
k kk k

ç ÷ç ÷i k r ii ki ki k
k kk kk kk kk kk kk kk kÑe k kk k

s ss ss s
i k r ii k r i
s ss s

i k r ii k r ir ir i
s ss s

r ir i
s s

r i

 

 
one can show that (28a) and (28b) impose the conditions  

        0 00 , 0k E k B× = × =k EEE 0E 0 0E k B0EE 0                                              (32) 

 
As in the vacuum case, the e/m wave in a conducting medium is a transverse wave.  
      By substituting (30) into (28c) and (28d), two more conditions are found:  
 

        0 0
ˆ( )k is E Bt w+ ´ =E BBBEEE                                               (33) 

 

        0 0
ˆ( ) ( )k is B i Et emw ms+ ´ = - + E( )( ))((                                      (34) 

 
Note, however, that (34) is not an independent equation since it can be reproduced by cross-

multiplying (33) by t̂ , taking into account the algebraic relations (31).  

      The BT-conjugate solutions of the wave equations (29) are now written  
 

        

ˆ ( )
0

ˆ ( )
0

( , ) ,

ˆ( , ) ( )

s r i k r t

s r i k r t

E r t E e e

k is
B r t E e e

t w

t wt
w

- × × -

- × × -

=

+
= ´

( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )ˆ
( ) ( )s rˆE( )( ) ( )( )( )s rs r ( )( )s r i k( )( )s r i k( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( ), ), ) 0))) 0

ˆ ( )

( , ) ,0

ˆ( ) ( )ˆ
s rˆ ( )( )is

B e e( ( )ˆ
s rt w( )( )i k( )( )( )s rs res rs rs rs rs rs rs r( ( )i k( )( )i k( )( )( )s r i k( )( )s r i k( )( )( )s r ( )( )( )( )( )( )( )( )( ), ), ))

k
)

                                  (35) 

 
To find the corresponding real solutions, we assume linear polarization of the wave, as 

before, and set  
 

0 0,

i

RE E e a= iE E e a
. 

 
We also put  

2 2| | ; tan /i ik i s k i s e k s e s kj j j+ = + = + = . 

 
Taking the real parts of equations (35), we finally have:  
 

ˆ

0,

2 2
ˆ

0,

( , ) cos( ) ,

ˆ( , ) ( ) cos( ) .

s r
R

s r
R

E r t E e k r t

k s
B r t E e k r t

t

t

w a

t w a j
w

- ×

- ×

= × - +

+
= ´ × - + +

E(( ) ,, ), ) ))cos(cos(cos(0, os((os(
ˆs r)) ts rs r cos r coco

B(( ) ., ), ) ))(( ) cos(( ) cos(( ) cos(( ) cos(0,

2 2
ˆ

ˆ
s rk s2 2

) ( )) ( ˆ ts rs r
2 22 2

( )(( cos(cos() cos() cos() cos(s r cos(cos(cos(cos(

 

 
      As an exercise, the student may show that these results reduce to those for a linear non-

conducting medium (cf. Sec. 4) in the limit σ®0.  
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6.  BTS AS RECURSION OPERATORS 

 
The concept of symmetries of PDEs was discussed in [1]. Let us review the main facts:  
      Consider a PDE F[u]=0, where, for simplicity, u=u(x,t). A transformation  
 

u (x,t)  ®  u΄ (x,t) 
 
from the function u to a new function u΄ represents a symmetry of the given PDE if the 

following condition is satisfied: u΄(x,t) is a solution of F[u]=0 if u(x,t) is a solution. That is,  
 

    [ ] 0 [ ] 0F u when F u¢ = =                                         (36) 

 
      An infinitesimal symmetry transformation is written  
 

    [ ]u u u u Q ud a¢ = + = +                                             (37) 

 

where α is an infinitesimal parameter. The function Q[u]ºQ(x, t, u, ux , ut ,...) is called the 
symmetry characteristic of the transformation (37).  

      In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it must 
satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We write, symbolically,  

 

   ( ; ) 0 [ ] 0S Q u when F u= =                                        (38) 

 
where the expression S depends linearly on Q and its partial derivatives. Thus, (38) is a 

linear PDE for Q, in which equation the variable u enters as a sort of parametric function that is 
required to satisfy the PDE F[u]=0.  

      A recursion operator R̂  [10] is a linear operator which, acting on a symmetry 

characteristic Q, produces a new symmetry characteristic ˆQ RQ¢ = . That is,  

 

  ˆ( ; ) 0 ( ; ) 0S RQ u when S Q u= =                                    (39) 

 
It is not too difficult to show that any power of a recursion operator also is a recursion 

operator. This means that, starting with any symmetry characteristic Q, one may in principle 
obtain an infinite set of characteristics (thus, an infinite number of symmetries) by repeated 
application of the recursion operator.  

      A new approach to recursion operators was suggested in the early 1990s [2,3] (see also 
[4-6]). According to this view, a recursion operator is an auto-BT for the linear PDE (38) 
expressing the symmetry condition of the problem; that is, a BT producing new solutions Q΄ of 
(38) from old ones, Q. Typically, this type of BT produces nonlocal symmetries, i.e., symmetry 
characteristics depending on integrals (rather than derivatives) of u.  

      As an example, consider the chiral field equation  
 

   
1 1[ ] ( ) ( ) 0x x t tF g g g g g- -º + =                                        (40) 

 
(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued function of x 

and t (i.e., an invertible complex n´n matrix, differentiable for all x, t).  
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      Let Q[g] be a symmetry characteristic of the PDE (40). It is convenient to put  
 

Q [g] = g Φ[g] 
 
and write the corresponding infinitesimal symmetry transformation in the form  
 

    [ ]g g g g g gd a¢ = + = + F                                          (41) 

 
The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in Φ also. As can 

be shown [4], this PDE is  
 

  
1 1( ; ) [ , ] [ , ] 0xx tt x x t tS g g g g g- -F º F + F + F + F =                      (42) 

 

which must be valid when F[g]=0  (where, in general,  [A, B] º AB–BA  denotes the 
commutator of two matrices A and B).  

      For a given g satisfying F[g]=0, consider now the following system of PDEs for the matrix 
functions Φ and Φ΄:  

 

     

1

1

[ , ]

[ , ]

x t t

t x x

g g

g g

-

-

¢F = F + F

¢-F = F + F
                                              (43) 

 

The integrability condition ( ) ( )x t t x
¢ ¢F = F , together with the equation F[g]=0, require that Φ be 

a solution of (42):  S (Φ ; g) = 0.  Similarly, by the integrability condition ( ) ( )t x x tF = F  one finds, 

after a lengthy calculation:  S (Φ΄; g) = 0.  
      In conclusion, for any g satisfying the PDE (40), the system (43) is a BT relating solutions 

Φ and Φ΄ of the symmetry condition (42) of this PDE; that is, relating different symmetries of the 
chiral field equation (40). Thus, if a symmetry characteristic Q=gΦ of (40) is known, a new 
characteristic Q΄=gΦ΄ may be found by integrating the BT (43); the converse is also true. Since 
the BT (43) produces new symmetries from old ones, it may be regarded as a recursion 
operator for the PDE (40).  

      As an example, for any constant matrix M the choice Φ=M clearly satisfies the symmetry 
condition (42). This corresponds to the symmetry characteristic Q=gM. By integrating the BT 
(43) for Φ΄, we get Φ΄=[X, M] and Q΄=g[X, M], where X is the “potential” of the PDE (40), defined 
by the system of PDEs  

 
1 1,x t t xX g g X g g- -= - =                                           (44) 

 
Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of the 

potential X. Indeed, as seen from (44), in order to find X one has to integrate the chiral field g 
with respect to the independent variables x and t. The above process can be continued 
indefinitely by repeated application of the recursion operator (43), leading to an infinite 
sequence of increasingly nonlocal symmetries.  
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7.  SUMMARY  

Classically, Bäcklund transformations (BTs) have been developed as a useful tool for finding 
solutions of nonlinear PDEs, given that these equations are usually hard to solve by direct 
methods. By means of examples we saw that, starting with even the most trivial solution of a 
PDE, one may produce a highly nontrivial solution of this (or another) PDE by integrating the BT, 
without solving the original, nonlinear PDE directly (which, in most cases, is a much harder task).  

 A different use of BTs, that was recently proposed [7,8], concerns predominantly the solution 
of linear systems of PDEs. This method relies on the existence of parameter-dependent 
solutions of the linear PDEs expressing the integrability conditions of the BT. This time it is the 
BT itself (rather than its associated integrability conditions) whose solutions are sought.  

An appropriate example for demonstrating this approach to the concept of a BT is furnished 
by the Maxwell equations of electromagnetism. We showed that this system of PDEs can be 
treated as a BT whose integrability conditions are the wave equations for the electric and the 
magnetic field. These wave equations have known, parameter-dependent solutions – 
monochromatic plane waves – with arbitrary amplitudes, frequencies and wave vectors playing 
the roles of the “parameters”. By substituting these solutions into the BT, one may determine the 
required relations among the parameters in order that these plane waves also represent 
electromagnetic fields (i.e., in order that they be solutions of the Maxwell system). The results 
arrived at by this method are, of course, well known in advanced electrodynamics. The process 
of deriving them, however, is seen here in a new light by employing the concept of a BT.  

BTs have also proven useful as recursion operators for deriving infinite sets of nonlocal 
symmetries and conservation laws of PDEs [2-6] (see also [11] and the references therein). 
Specifically, the BT produces an increasingly nonlocal sequence of symmetry characteristics, 
i.e., solutions of the linear equation expressing the symmetry condition (or “linearization”) of a 
given PDE.  

An interesting conclusion is that the concept of a BT, which has been proven useful for 
integrating nonlinear PDEs, may also have important applications in linear problems. Research 
on these matters is in progress.  
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Abstract 

Bäcklund transformations (BTs) are a useful tool for inte-
grating nonlinear partial differential equations (PDEs). 
However, the significance of BTs in linear problems should 
not be ignored. In fact, an important linear system of PDEs 
in Physics, namely, the Maxwell equations of 
electromagnetism, may be viewed as a BT relating the wave 
equations for the electric and the magnetic field, these 
equations representing integrability conditions for solution 
of the Maxwell system. We examine the BT property of this 
system in detail, both for the vacuum case and for the case 
of a linear conducting medium.  
 

1.   Introduction 
 
Bäcklund transformations (BTs) are an effective tool for 
integrating partial differential equations (PDEs). They are 
particularly useful for obtaining solutions of nonlinear 
PDEs, given that these equations are often notoriously hard 
to solve by direct methods (see [1] and the references 
therein).  
      Generally speaking, given two PDEs – say (a) and (b) – 
for the unknown functions u and v, respectively, a BT relat-
ing these PDEs is a system of auxiliary PDEs containing 
both u and v, such that the consistency (integrability) of this 
system requires that the original PDEs (a) and (b) be sepa-
rately satisfied. Then, if a solution of PDE (a) is known, a 
solution of PDE (b) is found simply by integrating the BT, 
without having to integrate the PDE (b) directly (which, 
presumably, is a much harder task).  
      In addition to being a solution-generating mechanism, 
BTs may also serve as recursion operators for obtaining 
infinite hierarchies of (generally nonlocal) symmetries and 
conservation laws of a PDE [1–7]. It is by this method that 
the full symmetry Lie algebra of the self-dual Yang-Mills 
equation was found [3,6].  
      In this article, the nature of which is mostly pedagogical, 
we adopt a somewhat different (in a sense, inverse) view of 
a BT, suitable for the treatment of linear problems. Suppose 
we are given a system of PDEs for the unknown functions u 
and v. Suppose, further, that the consistency of this system 
requires that two PDEs, one for u and one for v, be sepa-
rately satisfied (thus, the given system is a BT connecting 
these PDEs). The PDEs are assumed to possess known 
solutions for u and v, each solution depending on a number 
of parameters. If, by a proper choice of the parameters, 
these functions are made to satisfy the original differential 

system, then a solution to this system has been found. In 
other words, we are seeking solutions of the given system 
by using known, parameter-dependent solutions of the indi-
vidual PDEs expressing the integrability conditions of this 
system. Pairs of functions (u,v) satisfying the system will be 
said to represent BT-conjugate solutions.  
      This modified view of the concept of a BT has an 
important application in electromagnetism that serves as a 
paradigm for the significance of BTs in linear problems. As 
discussed in this paper, the Maxwell equations for a linear 
medium exactly fit this BT scheme. Indeed, as is well 
known, the consistency of the Maxwell system requires that 
the electric and the magnetic field satisfy separate wave 
equations. These equations have known, parameter-
dependent solutions, namely, monochromatic plane waves 
with arbitrary amplitudes, wave vectors, frequencies, etc. 
(the “parameters” of the problem). By inserting these solu-
tions into the Maxwell system, one may find the necessary 
conditions on the parameters in order that the plane waves 
for the two fields represent BT-conjugate solutions of 
Maxwell’s equations.  
      The paper is organized as follows:  
      Section 2 reviews the classical concept of a BT. The 
solution-generating process by using a BT is demonstrated 
in a number of examples.  
      In Sec. 3 the concept of parametric, BT-conjugate solu-
tions is introduced. A simple example illustrates the idea.  
      In Sec. 4 the Maxwell equations in empty space are 
shown to constitute a BT in the sense described in Sec. 3. 
For completeness of presentation (and for the benefit of the 
student) the process of constructing BT-conjugate plane-
wave solutions is presented in detail.  
      Finally, in Sec. 5 the Maxwell system for a linear con-
ducting medium is similarly examined.  
      The results of Secs. 4 and 5 are, of course, well known 
from classical electromagnetic theory. It is mathematically 
interesting, however, to revisit the problem of constructing 
solutions of Maxwell’s equations from a novel point of view 
by using the concept of a BT and by treating the electric and 
the magnetic component of a plane e/m wave as BT-
conjugate solutions.  
 

2.   Bäcklund transformations: definition and  
examples 

 
The general idea of a Bäcklund transformation (BT) was 
explained in [1] (see also the references therein). Let us 
review the main points:  
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      We consider two PDEs P[u]=0 and Q[v]=0, where the 
expressions P[u] and Q[v] may contain the unknown func-
tions u and v, respectively, as well as some of their partial 
derivatives with respect to the independent variables. For 
simplicity, we assume that u and v are functions of only two 
variables x, t. Partial derivatives with respect to these vari-
ables will be denoted by using subscripts, e.g., ux , ut , uxx ,  
utt , uxt , etc.  
      We also consider a system of coupled PDEs for u and v,  
 

        [ , ] 0 , 1, 2iB u v i= =           (1) 

             
where the expressions Bi [u,v] may contain u, v and certain 
of their partial derivatives with respect to x and t. The sys-
tem (1) is assumed to be integrable for v (the two equations 
are compatible with each other for solution for v) when u 
satisfies the PDE P[u]=0. The solution v, then, satisfies the 
PDE Q[v]=0. Conversely, the system (1) is integrable for u 
if v satisfies the PDE Q[v]=0, the solution u then satisfying 
P[u]=0.  
      If the above assumptions are valid, we say that the sys-
tem (1) constitutes a BT connecting solutions of P[u]=0 
with solutions of Q[v]=0. In the special case where P≡Q, 
i.e., when u and v satisfy the same PDE, the system (1) is 
called an auto-Bäcklund transformation (auto-BT).  
      Suppose now that we seek solutions of the PDE P[u]=0. 
Also, assume that we possess a BT connecting solutions u 
of this equation with solutions v of the PDE Q[v]=0 (if P≡Q 
the auto-BT connects solutions u and v of the same PDE). 
Let v=v0(x,t) be a known solution of Q[v]=0. The BT is then 
a system of equations for the unknown u:  
 

        
0

[ , ] 0 , 1, 2iB u v i= =           (2) 

 
Given that Q[v0]=0, the system (2) is integrable for u and its 
solution satisfies the PDE P[u]=0. We may thus find a solu-
tion u(x,t) of P[u]=0 without solving the equation itself, 
simply by integrating the BT (2) with respect to u. Of 
course, the use of this method is meaningful provided that 
we know a solution v0(x,t) of Q[v]=0 beforehand, as well as 
that integrating the system (2) for u is simpler than integrat-
ing the PDE P[u]=0 directly. If the transformation (2) is an 
auto-BT, then, starting with a known solution v0(x,t) of 
P[u]=0 and integrating the system (2), we find another solu-
tion u(x,t) of the same equation.  
      Let us see some examples of using a BT to generate 
solutions of a PDE:  
      1. The Cauchy-Riemann relations of complex analysis,  
 

        ( ) ( )x y y xu v a u v b= = −            (3) 

 
(here, the variable t has been renamed y) constitute an auto-
BT for the (linear) Laplace equation,  
 

        [ ] 0xx yyP w w w≡ + =                (4) 

 

Indeed, differentiating (3a) with respect to y and (3b) with 
respect to x, and demanding that the integrability condition 
(ux)y=(uy)x  be satisfied, we eliminate the variable u to find 
the consistency condition that must be obeyed by v(x,y) in 
order that the system (3) be integrable for u:  
 

        [ ] 0xx yyP v v v≡ + =  .     

     
Conversely, eliminating v from the system (3) by using the 
integrability condition (vx)y=(vy)x , we find the necessary 
condition for u in order for the system to be integrable for v:  
 

        [ ] 0xx yyP u u u≡ + =  .     

 
Now, let v0(x,y) be a known solution of the Laplace equa-
tion (4). Substituting v=v0 in the system (3), we can inte-
grate the latter with respect to u to find another solution of 
the Laplace equation. For example, by choosing v0(x,y)=xy 
we find the solution  u(x,y)=  (x

2 –y2)/2 +C .  
      2. The Liouville equation is written  
 

        [ ] 0u u

xt xtP u u e u e≡ − = ⇔ =             (5) 

 
Solving the PDE (5) directly is a difficult task in view of 
this equation’s nonlinearity. A solution can be found, how-
ever, by using a BT. We thus consider an auxiliary function 
v(x,t) and an associated linear PDE,  
 

        [ ] 0xtQ v v≡ =          (6) 

 
We also consider the system of first-order PDEs,  
 

        

( ) / 2

( ) / 2

2

2

u v

x x

u v

t t

u v e

u v e

−

+

+ =

− =
        (7) 

 
It can be shown that the self-consistency of the system (7) 
requires that u and v independently satisfy the PDEs (5) and 
(6), respectively. Thus, this system constitutes a BT con-
necting solutions of (5) and (6). Starting with the trivial 
solution v=0 of (6) and integrating the system  
 

        / 2 / 22 , 2 ,
x t

u uu e u e= =      

 
we find a solution of (5):  
 

        ( , ) 2 ln
2

x t
u x t C

+
= − −

 
 
 

 .    

 
      3. The “sine-Gordon” equation has applications in vari-
ous areas of Physics, such as in the study of crystalline 
solids, in the transmission of elastic waves, in magnetism, in 
elementary-particle models, etc. The equation (whose name 
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is a pun on the related linear Klein-Gordon equation) is 
written  
 

        sinxtu u=           (8) 

 
As can be proven, the differential system  
 

        

1
( ) sin

2 2

1 1
( ) sin

2 2

x

t

u v
u v a

u v
u v

a

−
+ =

+
− =

 
 
 

 
 
 

         (9) 

 
[where a (≠0) is an arbitrary real constant] is a parametric 
auto-BT for the PDE (8). Starting with the trivial solution  
v=0  of  vxt=  sin v , and integrating the system  
 

        
2

2 sin , sin ,
2 2

x t

u u
u a u

a
= =     

 
we obtain a new solution of (8):  
 

        { }( , ) 4arctan exp
t

u x t C ax
a

= + 
 
 

 .    

 
3.   BT-conjugate solutions 

 
Consider a system of coupled PDEs for the functions u and 
v of two independent variables x, y:  
 

        [ , ] 0 , 1, 2iB u v i= =             (10) 

 
Assume that the integrability of this system for both u and v 
requires that the following PDEs be independently satisfied:  
 
        [ ] 0 ( ) [ ] 0 ( )P u a Q v b= =         (11) 

 
That is, the system (10) represents a BT connecting the 
PDEs (11). Assume, further, that the PDEs (11) possess 
parameter-dependent solutions of the form  
 

        
( , ; , , , ) ,

( , ; , , , )

u f x y

v g x y

α β γ

κ λ µ

=

=

…

…

          (12) 

 
where α, β, κ, λ, etc., are (real or complex) parameters. If 
values of these parameters can be determined for which u 
and v satisfy the system (10), we say that the solutions u and 
v of the PDEs (11a) and (11b), respectively, are conjugate 
through the BT (10) (or BT-conjugate, for short).  
      Let us see an example: Going back to the Cauchy-
Riemann relations (3), we try the following parametric 
solutions of the Laplace equation (4):  
 

        
2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

α β γ

κ λ µ

= − + +

= + +
     

 
Substituting these into the BT (3), we find that κ=2α, µ=β 
and λ= –γ. Therefore, the solutions  
 

        
2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

α β γ

α γ β

= − + +

= − +
     

 
of the Laplace equation are BT-conjugate through the 
Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination:  
 
        ( , ) , ( , ) .u x y xy v x y xyα β= =      

 
Inserting these into the system (3) and taking into account 
the independence of x and y, we find that the only possible 
values of the parameters α and β are α=β=0, so that u(x,y)= 
v(x,y)=0. Thus, no non-trivial BT-conjugate solutions exist 
in this case.  
 

4.   Application to the Maxwell equations in  
empty space 

 
As is well known, according to the Maxwell theory all elec-
tromagnetic (e/m) disturbances propagate in space as waves 
running at the speed of light. It is interesting from the 
mathematical point of view that the vacuum wave equations 
for the electric and the magnetic field are connected to each 
other through the Maxwell system of equations in much the 
same way two PDEs are connected via a Bäcklund trans-
formation. In fact, certain parameter-dependent solutions of 
the two wave equations are BT-conjugate through the 
Maxwell system.  
      In empty space, where no charges or currents (whether 
free or bound) exist, the Maxwell equations are written in 
S.I. units [8]:  
 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�

� � � �

�

� � � �

       (13) 

 

where E
�

 and B
�

 are the electric and the magnetic field, 
respectively. In order that this system of PDEs be self-
consistent (thus integrable for the two fields), certain consis-
tency conditions (or integrability conditions) must be satis-
fied. Four are satisfied automatically:  
 

        ( ) 0 , ( ) 0 ,E B∇ ⋅ ∇× = ∇ ⋅ ∇× =
� � � � � �

     

 

        ( ) , ( ) .t t t tE E B B∇ ⋅ = ∇ ⋅ ∇ ⋅ = ∇ ⋅
� � � � � � � �
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Two others read:  
 

        2( ) ( )E E E∇× ∇× = ∇ ∇ ⋅ − ∇
� � � � � � �

            (14) 

 

        2( ) ( )B B B∇× ∇× = ∇ ∇ ⋅ − ∇
� � � � � � �

            (15) 

 
Taking the rot of (13c) and using (14), (13a) and (13d), we 
find:  
 

        
2

2

0 0 2
0

E
E

t
ε µ

∂
∇ − =

∂

�

�

        (16) 

 
Similarly, taking the rot of (13d) and using (15), (13b) and 
(13c), we get:  
 

        
2

2

0 0 2
0

B
B

t
ε µ

∂
∇ − =

∂

�

�

          (17) 

 
No new information is furnished by the remaining two inte-
grability conditions,  
 

        ( ) , ( ) .t t t tE E B B∇× = ∇× ∇× = ∇×
� � � � � � � �

      

 
      Putting  
                           

        
0 0 2

0 0

1 1
c

c
ε µ

ε µ
≡ ⇔ =            (18) 

 
we rewrite Eqs. (16) and (17) in wave-equation form:  
 

        
2

2

2 2

1
0

E
E

c t

∂
∇ − =

∂

�

�

           (19) 

 

        
2

2

2 2

1
0

B
B

c t

∂
∇ − =

∂

�

�

           (20) 

 
The PDEs (19) and (20) are consistency conditions that 

must be separately satisfied by E
�

 and B
�

 in order that the 
differential system (13) be integrable for either field, given 
the value of the other field. In other words, the system (13) 
is a BT relating solutions of the wave equations (19) and 
(20).  
      It should be noted carefully that the BT (13) is not an 
auto-BT! Indeed, although the PDEs (19) and (20) look 
similar, they concern different fields with different physical 
dimensions and physical properties. A true auto-BT should 
connect similar objects (such as, e.g., different mathematical 
expressions for the electric field).  
      The above wave equations admit plane-wave solutions 

of the form ( )F k r tω⋅ −
��

�

, with  

 

        where | |c k k
k

ω
= =

�

            (21) 

 
The simplest such solutions are monochromatic plane waves 
of angular frequency ω, propagating in the direction of the 

wave vector k
�

:  
 

        
0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

ω

ω

= ⋅ −

= ⋅ −

�� �

� �

�� �

� �

         (22) 

 

where the 
0

E
�

 and 
0

B
�

 represent constant complex ampli-

tudes. Since all constants appearing in equations (22) (that 
is, amplitudes, frequency and wave vector) can be arbitrar-
ily chosen, they can be regarded as parameters on which the 
solutions (22) of the wave equations depend.  

      Clearly, although every pair of fields ( , )E B
� �

 that satis-

fies the Maxwell equations (13) also satisfies the respective 
wave equations (19) and (20), the converse is not true. This 
means that the solutions (22) of the wave equation are not a 
priori  solutions of the Maxwell system of equations (i.e., do 
not represent e/m fields). This problem can be remedied, 
however, by appropriate choice of the parameters. To this 
end, we substitute the general solutions (22) into the system 
(13) in order to find the extra conditions this system re-
quires; that is, in order to make the two functions in (22) 
BT-conjugate solutions of the respective wave equations 
(19) and (20).  
      Substituting (22a) and (22b) into (13a) and (13b), re-

spectively, and taking into account that i k r i k re i k e⋅ ⋅∇ =
� �

� ���

, 

we have:  
 

        

( )

0 0

( )

0 0

( ) 0 ( ) 0 ,

( ) 0 ( ) 0 ,

i t i k r i k r t

i t i k r i k r t

E e e k E e

B e e k B e

ω ω

ω ω

− ⋅ ⋅ −

− ⋅ ⋅ −

⋅ ∇ = ⇒ ⋅ =

⋅∇ = ⇒ ⋅ =

� �

� �

� �

� �

�� � �

�� � �
      

 
so that  
 

        
0 0

0 , 0k E k B⋅ = ⋅ =
� �� �

.                 (23) 

 
Physically, this means that the monochromatic plane e/m 
wave is a transverse wave.  
      Next, substituting (22a) and (22b) into (13c) and (13d), 
we find:  
 

        

( )

0 0

( ) ( )

0 0

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e E i B e

k E e B e

ω ω

ω ω

ω

ω

− ⋅ ⋅ −

⋅ − ⋅ −

∇ × = ⇒

× =

� �

� �

� �

� �

� � �

� � �
        

 

        

( )

0 0 0 0

( ) ( )

0 02

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e B i E e

k B e E e
c

ω ω

ω ω

ω ε µ

ω

− ⋅ ⋅ −

⋅ − ⋅ −

∇ × = − ⇒

× = −

� �

� �

� �

� �

� � �

� � �
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so that  
 

        
0 0 0 02

,k E B k B E
c

ω
ω× = × = −

� �� � � �

         (24) 

 

This means that the fields E
�

 and B
�

 are normal to each 
other as well as being normal to the direction of 
propagation. It can be seen that the two vector equations in 
(24) are not independent of each other; indeed, cross-

multiplying the first relation by k
�

 we get the second one.  
      Introducing a unit vector τ̂  in the direction of the wave 

vector k
�

,  
 

        ˆ / ( | | / )k k k k cτ ω= = =
� �

 ,          

 
we rewrite the first of Eqs. (24) as  
 

        0 0 0

1
ˆ ˆ( ) ( )

k
B E E

c
τ τ

ω
= × = ×

� � �

 .     

 
The BT-conjugate solutions in (22) are now written:  
 

        

0

0

( , ) exp{ ( )} ,

1
ˆ( , ) ( ) exp{ ( )}

1
ˆ

E r t E i k r t

B r t E i k r t
c

E
c

ω

τ ω

τ

= ⋅ −

= × ⋅ −

= ×

�� �

� �

�� �

� �

�

     (25) 

 
      As constructed, the complex vector fields in (25) satisfy 
the Maxwell system (13), which is a homogeneous linear 
system with real coefficients. Evidently, the real parts of 
these fields also satisfy this system. To find the expressions 
for the real solutions (which, after all, carry the physics of 
the situation) we take the simplest case of a linearly polar-
ized e/m wave and write:  
 

        
0 0,

i

R
E E e α=
� �

          (26) 

 

where the vector 
0,R

E
�

 and the number α are real. The real 

versions of the fields (25), then, read:  
 

        

0,

0,

cos ( ) ,

1
ˆ( ) cos ( )

1
ˆ

R

R

E E k r t

B E k r t
c

E
c

ω α

τ ω α

τ

= ⋅ − +

= × ⋅ − +

= ×

�� �

�

�� �

�

�

      (27) 

 

We note, in particular, that the fields E
�

 and B
�

 “oscillate” 
in phase.  
      Our results for the Maxwell equations in vacuum can be 
extended to the case of a linear non-conducting medium 

upon replacement of ε0 and µ0 with ε and µ, respectively. 
The speed of propagation of the e/m wave is, in this case,  
 

        
1

k

ω
υ

εµ
= =   .     

 
5.   The Maxwell system for a linear conducting 

medium 
 
In a linear conducting medium of conductivity σ, in which 

Ohm’s law is satisfied, fJ Eσ=
� �

 (where fJ
�

 is the free 

current density), the Maxwell equations read [8]:  
 

   

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
µσ ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

    (28) 

 
By the integrability conditions  
 

        

2

2

( ) ( ) ,

( ) ( ) ,

E E E

B B B

∇× ∇× = ∇ ∇ ⋅ −∇

∇× ∇× = ∇ ∇ ⋅ −∇

� � � � � � �

� � � � � � �
           

 
we get the modified wave equations  
 

        

2

2

2

2

2

2

0

0

E E
E

t t

B B
B

t t

ε µ µσ

ε µ µσ

∂ ∂
∇ − − =

∂ ∂

∂ ∂
∇ − − =

∂ ∂

� �

�

� �

�

          (29) 

 
No new information is furnished by the remaining inte-
grability conditions (cf. Sec. 4).  
      We observe that the linear differential system (28) is a 
BT relating solutions of the wave equations (29) (as ex-
plained in the previous section, this BT is not an auto-BT). 
As in the vacuum case, we seek BT-conjugate such solu-
tions. As can be verified by direct substitution into Eqs. 
(29), these PDEs admit parametric plane-wave solutions of 
the form  
 

    
{ }

{ }

0

0

0

0

ˆ( , ) exp{ ( )}

exp exp ( ) ,

ˆ( , ) exp{ ( )}

exp exp ( )

E r t E s r i k r t

s
E i k r i t

k

B r t B s r i k r t

s
B i k r i t

k

τ ω

ω

τ ω

ω

= − ⋅ + ⋅ −

= − ⋅ −

= − ⋅ + ⋅ −

= − ⋅ −

 
 
 

 
 
 

�� �

� � �

��

�

�� �

� � �

��

�

     (30) 
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where τ̂  is the unit vector in the direction of the wave vec-

tor k
�

,  
 

        ˆ / ( | | / )k k k kτ ω υ= = =
� �

     

 
(υ is the speed of propagation of the wave inside the con-
ducting medium) and where, for given physical characteris-
tics ε, µ, σ of the medium, the parameters s, k and ω satisfy 
the algebraic system  
 

        
2 2 2 0 ,

2 0

s k

sk

ε µω

µσω

− + =

− =
            (31) 

 

      Up to this point the complex amplitudes 0E
�

 and 0B
�

 in 

relations (30) are arbitrary and the vector fields (30) are not 
a priori solutions of the Maxwell equations (28), thus are 
not yet BT-conjugate solutions of the respective wave equa-
tions in (29). To find the restrictions these amplitudes must 
satisfy, we insert Eqs. (30) into the system (28). With the 
aid of the relation  
 

        
( ) ( )s s
i k r i k r

k k
s

e i k e
k

− ⋅ − ⋅

∇ = − 
 
 

� �

� �

��

 ,       

 
it is not hard to show that (28a) and (28b) impose the condi-
tions  
 

        
0 0

0 , 0k E k B⋅ = ⋅ =
� �� �

           (32) 

 
Again, this means that the e/m wave is a transverse wave.  
      Substituting (30) into (28c) and (28d), we find two more 
conditions:  
 

        0 0
ˆ( )k is E Bτ ω+ × =
� �

            (33) 

 

        0 0
ˆ( ) ( )k is B i Eτ εµω µσ+ × = − +
� �

         (34) 

 
However, (34) is not an independent equation since it can be 
reproduced by cross-multiplication of (33) by τ̂  and use of 
relations (31).  
      The BT-conjugate solutions of the wave equations (29) 
are now written:  
 

        

ˆ ( )

0

ˆ ( )

0

( , ) ,

ˆ( , ) ( )

s r i k r t

s r i k r t

E r t E e e

k is
B r t E e e

τ ω

τ ωτ
ω

− ⋅ ⋅ −

− ⋅ ⋅ −

=

+
= ×

�

� �

�

� �

� �

�

� �

�

       (35) 

 
To find the corresponding real solutions, we assume linear 
polarization of the e/m wave and set, as before,  
 

        
0 0,

i

R
E E e α=
� �

 .     

We also set  
 

        
2 2| | ;

tan / .

i ik i s k i s e k s e

s k

ϕ ϕ

ϕ

+ = + = +

=
       

 
Taking the real parts of Eqs. (35), we finally have:  
        

ˆ

0,

2 2
ˆ

0,

( , ) cos ( ) ,

ˆ( , ) ( ) cos ( ) .

s r

R

s r

R

E r t E e k r t

k s
B r t E e k r t

τ

τ

ω α

τ ω α ϕ
ω

− ⋅

− ⋅

= ⋅ − +

+
= × ⋅ − + +

�

�

�� �

� �

�� �

� �

 
6.   Summary and concluding remarks 

 
Bäcklund transformations (BTs) were originally devised as 
a tool for finding solutions of nonlinear partial differential 
equations (PDEs). They were later also proven useful as 
nonlocal recursion operators for constructing infinite se-
quences of symmetries and conservation laws of certain 
PDEs [2–7].  
      Generally speaking, a BT is a system of PDEs connect-
ing two fields that are required to independently satisfy two 
respective PDEs in order for the system to be integrable for 
either field. If a solution of either PDE is known, then a 
solution of the other PDE is obtained by integrating the BT, 
without having to actually solve the latter PDE explicitly 
(which, presumably, would be a much harder task). In the 
case where the two PDEs are identical, an auto-BT produces 
new solutions of a PDE from old ones.  
      As described above, a BT is an auxiliary tool for finding 
solutions of a given (usually nonlinear) PDE, using known 
solutions of the same or another PDE. In this article, how-
ever, we approached the BT concept differently by actually 
inverting the problem. According to this scheme, it is the 
solutions of the BT itself that we are after, having parame-
ter-dependent solutions of the PDEs that express the inte-
grability conditions at hand. By a proper choice of the pa-
rameters, a pair of solutions of these PDEs may possibly be 
found that satisfies the given BT. These solutions are then 
said to be conjugate with respect to the BT.  
      A pedagogical paradigm for demonstrating this particu-
lar approach to the concept of a BT is offered by the Max-
well system of equations of electromagnetism. We showed 
that this system can be thought of as a BT whose integrabil-
ity conditions are the wave equations for the electric and the 
magnetic field. These wave equations have known, parame-
ter-dependent solutions (monochromatic plane waves) with 
arbitrary amplitudes, frequencies, wave vectors, etc. By 
substituting these solutions into the BT, one may determine 
the required relations among the parameters in order that the 
plane waves also represent electromagnetic fields, i.e., are 
BT-conjugate solutions of the Maxwell system. The results 
arrived at by this method are, of course, well known in 
advanced electrodynamics. The process of deriving them, 
however, is seen here in a new light by employing the con-
cept of a BT.  
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      We remark that the physical situation was examined 
from the point of view of a fixed inertial observer. Thus, 
since no spacetime transformations were involved, we used 

the classical form of the Maxwell equations (with E
�

 and B
�

 
retaining their individual characters) rather than the mani-
festly covariant form of these equations.  
      An interesting conclusion is that the concept of a 
Bäcklund transformation, which has been proven extremely 
useful for finding solutions of nonlinear PDEs, can in certain 
cases also prove useful for integrating linear systems of 
PDEs. Such systems appear often in Physics and Electrical 
Engineering (see, e.g., [9]) and it would certainly be of in-
terest to explore the possibility of using BT methods for 
their integration.  
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Abstract 

 
In electrodynamics courses and textbooks, the properties of plane electromag-
netic waves in both conducting and non-conducting media are typically studied 
from the point of view of the prototype case of a monochromatic plane wave. In 
this note an approach is suggested that starts from more general considerations 
and better exploits the independence of the Maxwell equations.  

 
1.  Introduction 

 
Plane electromagnetic (e/m) waves constitute a significant type of solution of the 
time-dependent Maxwell equations. A standard educational approach in courses and 
textbooks (at both the intermediate [1-4] and the advanced [5,6] level; see also [7,8]) 
is to examine the prototype case of a monochromatic plane wave in both a conducting 
and a non-conducting medium.  
      In this note a more general approach to the problem is described that makes 
minimal initial assumptions regarding the specific functional forms of the plane 
waves representing the electric and the magnetic field. The only assumption one does 
need to make from the outset is that both fields (electric and magnetic) are expressible 
in integral form as linear superpositions of monochromatic waves. In particular, it is 
not even necessary to a priori require that the plane waves representing the two fields 
travel in the same direction.  
      In Section 2 we review the case of a monochromatic plane e/m wave in empty 
space. A more general (non-monochromatic) treatment of the plane-wave propagation 
problem in empty space is then described in Sec. 3. In Sec. 4 this general approach is 
extended to plane-wave solutions in the case of a conducting medium; an interesting 
difference from the monochromatic case is noted.  
 

2.  The monochromatic-wave description for empty space 
 
In empty space, where no charges or currents (whether free or bound) exist, the Max-
well equations are written (in S.I. units)   

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
ε µ

∂
∇ ⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× =

∂

�

� � � �

�

� � � �

                           (1) 

where E
�

 and B
�

 are the electric and the magnetic field, respectively. By applying the 
identities  
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2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

 , 

2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

, 
 
we obtain separate wave equations for E

�

 and B
�

:  
 

        
2

2
2 2

1
0

E
E

c t

∂
∇ − =

∂

�

�

                                                (2) 

        
2

2
2 2

1
0

B
B

c t

∂
∇ − =

∂

�

�

                                                (3) 

where  

            
0 0

1
c

ε µ
=                                                       (4) 

 
      We try monochromatic plane-wave solutions of (2) and (3), of angular frequency 

ω, propagating in the direction of the wave vector k
�

:  
 

        0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b

ω

ω

= ⋅ −

= ⋅ −

�� �

� �

�� �

� �

                                   (5) 

 

where 0E
�

 and 0B
�

 are constant complex amplitudes, and where  

        ( | | )c k k
k

ω
= =

�

                                               (6) 

 
      The general solutions (5) do not a priori represent an e/m field. To find the extra 
constraints required, we must substitute Eqs. (5) into the Maxwell system (1). By tak-

ing into account that i k r i k re i k e⋅ ⋅∇ =
� �

� �
��

, the div equations (1a) and (1b) yield  
 

        0 ( ) 0 ( )k E a k B b⋅ = ⋅ =
� �� �

                                       (7) 
 
while the rot equations (1c) and (1d) give  
 

        
2

( ) ( )k E B a k B E b
c

ω
ω× = × = −

� �� � � �

                                (8) 

 
      Now, we notice that the four equations (7)–(8) do not form an independent set 
since (7b) and (8b) can be reproduced by using (7a) and (8a). Indeed, taking the dot 

product of (8a) with k
�

 we get (7b), while taking the cross product of (8a) with k
�

, 
and using (7a) and (6), we find (8b).  
      So, from 4 independent Maxwell equations we obtained only 2 independent 
pieces of information. This happened because we “fed” our trial solutions (5) with 
more information than necessary, in anticipation of results that follow a posteriori 
from Maxwell’s equations. Thus, we assumed from the outset that the two waves 
(electric and magnetic) have similar simple functional forms and propagate in the 



PLANE-WAVE SOLUTIONS OF MAXWELL EQUATIONS 
 

 3  

same direction. By relaxing these initial assumptions, our analysis acquires a richer 
and much more interesting structure.  
 

3.  A more general approach for empty space 
 
Let us assume, more generally, that the fields E

�

 and B
�

 represent plane waves propa-
gating in empty space in the directions of the unit vectors ̂τ  and σ̂ , respectively:  
 

ˆ ˆ( , ) ( ) , ( , ) ( )E r t F r ct B r t G r ctτ σ= ⋅ − = ⋅ −
�� � �

� � � �

                              (9) 
 

Furthermore, assume that the functions F
�

 and G
�

 can be expressed as linear combi-
nations of monochromatic plane waves of the form (5), for continuously varying val-
ues of k and ω, where ω=ck, according to (6). Then E

�

 and B
�

 can be written in Fou-
rier-integral form, as follows:  
 

      

ˆ( )
0

ˆ( )
0

( )

( )

ik r ct

ik r ct

E E k e dk

B B k e dk

τ

σ

⋅ −

⋅ −

=

=

∫
∫

�

�

� �

� �
                                              (10) 

 
In general, the integration variable k is assumed to run from 0 to +∞. For notational 
economy, the limits of integration with respect to k will not be displayed explicitly.  
      By setting  
 

     ˆ ˆ,u r ct v r ctτ σ= ⋅ − = ⋅ −
� �

                                         (11) 
 
we write  

     
0

0

( ) ( )

( ) ( )

iku

ikv

E u E k e dk

B v B k e dk

=

=

∫
∫

� �

� �
                                              (12) 

We note that  
 

ˆ ˆ,iku iku ikv ikve ik e e i k eτ σ∇ = ∇ =
� �

                                     (13) 
 
      By using (12) and (13) we find that  
 

0ˆ ( ) ikuE ik E k e dkτ∇⋅ = ⋅∫
� � �

,    0ˆ ( ) ikvB ik B k e dkσ∇⋅ = ⋅∫
� � �

, 

0ˆ ( ) ikuE i k E k e dkτ∇× = ×∫
� � �

,    0ˆ ( ) ikvB i k B k e dkσ∇× = ×∫
� � �

. 

 
Moreover, we have that  
 

0( ) ikuE
i E k e dk

t
ω

∂
= −

∂ ∫
�

�

,    0( ) ikvB
i B k e dk

t
ω

∂
= −

∂ ∫
�

�

 

 
where, as always, ω=ck.  
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      The two Gauss’ laws (1a) and (1b) yield  
 

0ˆ ( ) 0ikuk E k e dkτ ⋅ =∫
�

   and   0ˆ ( ) 0ikvk B k e dkσ ⋅ =∫
�

, 

 
respectively. In order that these relations be valid identically for all u and all v, re-
spectively, we must have  
 

     0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kσ ⋅ =
�

,  for all k                              (14) 

 
From Faraday’s law (1c) and the Ampère-Maxwell law (1d) we obtain two more in-
tegral equations:  
 

    0 0ˆ ( ) ( )iku ikvk E k e dk B k e dkτ ω× =∫ ∫
� �

                                  (15) 

   0 02
ˆ ( ) ( )ikv ikuk B k e dk E k e dk

c

ω
σ × = −∫ ∫
� �

                                 (16) 

 
where we have taken into account Eq. (4).  
      Taking the cross product of (15) with σ̂  and using (16), we find the integral rela-
tion  

0 0 0ˆ ˆ ˆ ˆ[( ) ( ) ] iku ikuk E E e dk k E e dkσ τ σ τ⋅ − ⋅ = −∫ ∫
� � �

. 

 
This is true for all u if  
 

0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( 1) ( )E E E E Eσ τ σ τ σ τ σ τ⋅ − ⋅ = − ⇒ ⋅ − = ⋅
� � � � �

. 

 

Given that, by (14), 0E
�

 and τ̂  are mutually perpendicular, the above relation can only 

be valid if ˆ ˆ 1σ τ⋅ =  and 0ˆ 0Eσ ⋅ =
�

. This, in turn, can only be satisfied if ˆ ˆσ τ= . The 

same conclusion is reached by taking the cross product of (16) with τ̂  and by using 

(15) as well as the fact that 0B
�

 is normal to ̂σ . From (11) we then have that  

ˆu v r ctτ= = ⋅ −
�

 

so that relations (12) become  
 

    

ˆ( )
0 0

ˆ( )
0 0

( , ) ( ) ( )

( , ) ( ) ( )

iku ik r ct

iku ik r ct

E r t E k e dk E k e dk

B r t B k e dk B k e dk

τ

τ

⋅ −

⋅ −

= =

= =

∫ ∫
∫ ∫

�

�

� � �

�

� � �

�

                           (17) 

 
      Equations (14) are now rewritten as  
 

      0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kτ ⋅ =
�

,  for all k                                  (18) 

 
Furthermore, in order that (15) and (16) (with u and τ̂  in place of v and σ̂ , respec-
tively) be identically valid for all u, we must have  
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  0 0 0 0ˆ ˆ( ) ( ) ( ) ( )k E k B k E k cB kτ ω τ× = ⇔ × =
� � � �

                               (19) 

and  

   0 0 0 02

1
ˆ ˆ( ) ( ) ( ) ( )k B k E k B k E k

cc

ω
τ τ× = − ⇔ × = −
� � � �

                           (20) 

 
for all k, where k=ω/c. Notice, however, that (19) and (20) are not independent equa-
tions, since (20) is essentially the cross product of (19) with τ̂ .  
      In summary, the general plane-wave solutions to the Maxwell system (1) are 
given by relations (17) with the additional constraints (18) and (19). This is, of 
course, a well-known result, derived here by starting with more general assumptions 
and by best exploiting the independence [9] of the Maxwell equations.  
      Let us summarize our main findings:  
      1. The fields E

�

 and B
�

 are plane waves traveling in the same direction, defined 
by the unit vector ̂τ ; these fields satisfy the Maxwell equations in empty space.  

      2. The e/m wave ( , )E B
� �

 is a transverse wave. Indeed, from equations (17) and the 
orthogonality relations (18) it follows that  
 

    ˆ ˆ0 and 0E Bτ τ⋅ = ⋅ =
� �

                                             (21) 
 

      3. The fields E
�

 and B
�

 are mutually perpendicular. Moreover, the ˆ( , , )E B τ
� �

 define 
a right-handed rectangular system. Indeed, by cross-multiplying (17) with τ̂  and by 
using (19) and (20), we find:  
 

     
1

ˆ ˆ,E cB B E
c

τ τ× = × = −
� � � �

                                          (22) 

 
      4. Taking real values of (21) and (22), we have:  
 

ˆ ˆRe 0 , Re 0E Bτ τ⋅ = ⋅ =
� �

    and    ̂ Re ReE c Bτ × =
� �

                        (23) 
 
The magnitude of the last vector equation in (23) gives a relation between the instan-
taneous values of the electric and the magnetic field:  
 

      | Re | | Re |E c B=
� �

                                                 (24) 
 
      The above results for empty space can be extended in a straightforward way to the 
case of a linear, non-conducting, non-dispersive medium upon replacement of ε0 and 
µ0 with ε and µ, respectively [3]. The (frequency-independent) speed of propagation 
of the plane e/m wave in this case is  υ=1/(εµ)1/2.  
 

4.  The case of a conducting medium 
 
The Maxwell equations for a conducting medium of conductivity σ may be written as 
follows [1,3]:  
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( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B E

t
µσ ε µ

∂
∇⋅ = ∇× = −

∂

∂
∇ ⋅ = ∇× = +

∂

�

� � � �

�

� � � � �

                       (25) 

 
By using the vector identities  
 

2( ) ( )E E E∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

 , 

2( ) ( )B B B∇× ∇× = ∇ ∇⋅ −∇
� � � � � � �

, 
 
the relations (25) lead to the modified wave equations  
 

       
2

2
2

0
E E

E
t t

ε µ µσ
∂ ∂

∇ − − =
∂ ∂

� �

�

                                       (26) 

       
2

2
2

0
B B

B
t t

ε µ µσ
∂ ∂

∇ − − =
∂ ∂

� �

�

                                       (27) 

 
      Guided by our monochromatic-wave approach to the problem in [7,8], we now try 
a more general, integral form of solution of the above wave equations:  
 

   
{ }

{ }

ˆ ˆ( )
0 0

ˆ ˆ( )
0 0

ˆ( , ) ( ) ( )exp ( )

ˆ( , ) ( ) ( )exp ( )

s r i k r t

s r i k r t

E r t E k e e dk E k ik s r i t dk

B r t B k e e dk B k ik s r i t dk

τ τ ω

τ τ ω

τ ω

τ ω

− ⋅ ⋅ −

− ⋅ ⋅ −

= = − ⋅ −

= = − ⋅ −

∫ ∫
∫ ∫

� �

� �

� � �

� �

� � �

� �

          (28) 

 
where s is a real parameter related to the conductivity of the medium. As in the vac-
uum case, the unit vector τ̂  indicates the direction of propagation of the wave. Notice 
that we have assumed from the outset that both waves – electric and magnetic – 
propagate in the same direction, in view of the fact that our results must agree with 
those for a non-conducting medium (in particular, for the vacuum) upon setting s=0.  
      It is convenient to set  
 

          { }ˆexp ( ) ( , )i k s r i t A r tτ ω− ⋅ − ≡
� �

                                    (29) 

 
Then, Eq. (28) takes on the form  
 

      
0

0

( , ) ( ) ( , )

( , ) ( ) ( , )

E r t E k A r t dk

B r t B k A r t dk

=

=

∫
∫

� �

� �

� �

� �

                                         (30) 

 
The following relations can be easily proven:  
 

    ˆ( , ) ( ) ( , )A r t i k s A r tτ∇ = −
�

� �

                                          (31) 
 

         2 2 2( , ) ( 2 ) ( , )A r t s k isk A r t∇ = − −
� �

                                  (32) 
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Moreover,  

( , ) ( , )A r t i A r t
t

ω
∂

= −
∂

� �

    and    
2

2
2

( , ) ( , )A r t A r t
t

ω
∂

= −
∂

� �

. 

 
      From (26) we get  
 

2 2 2
0[( ) ( 2 )] ( ) ( , ) 0s k i sk E k A r t dkε µω µσω− + + − =∫
�

�

 

 
[a similar integral relation is found from (27)]. This will be identically satisfied for all 
r
�

 and t if  
 

        2 2 2 0 and 2 0s k skε µω µσω− + = − =                            (33) 
 
By using relations (33), ω and s can be expressed as functions of k, as required in or-
der that the integral relations (28) make sense. Notice, in particular, that, by the sec-
ond relation (33), s=0 if σ=0 (non-conducting medium). Then, by the first relation, 
ω/k=1/(εµ)1/2, which is the familiar expression for the speed of propagation of an e/m 
wave in a non-conducting medium [3].  
      From the two Gauss’ laws (25a) and (25b) we get the corresponding integral rela-
tions  
 

0

0

ˆ( ) ( ) ( , ) 0 ,

ˆ( ) ( ) ( , ) 0 .

ik s E k A r t dk

ik s B k A r t dk

τ

τ

− ⋅ =

− ⋅ =

∫
∫

�

�

�

�

 

 
These will be identically satisfied for all r

�

 and t if  
 

      0ˆ ( ) 0E kτ ⋅ =
�

  and  0ˆ ( ) 0B kτ ⋅ =
�

,  for all k                                (34) 

 
From (25c) and (25d) we find  
 

0 0ˆ( ) ( ) ( , ) ( ) ( , )ik s E k A r t dk i B k A r t dkτ ω− × =∫ ∫
� �

� �

 

and  

0 0ˆ( ) ( ) ( , ) ( ) ( ) ( , )ik s B k A r t dk i E k A r t dkτ µσ εµω− × = −∫ ∫
� �

� �

, 

 
respectively. To satisfy these for all r

�

 and t, we require that  
 

      0 0ˆ( ) ( ) ( )k is E k B kτ ω+ × =
� �

                                        (35) 

and  

       0 0ˆ( ) ( ) ( ) ( )k is B k i E kτ εµω µσ+ × = − +
� �

                               (36) 

 
Note, however, that (36) is not an independent equation since it can be reproduced by 
cross-multiplying (35) with ̂τ  and by taking into account Eqs. (33) and (34).  
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      We note the following:  
      1. From (30) and (34) we have that  
 

                   ̂ ˆ0 and 0E Bτ τ⋅ = ⋅ =
� �

                                            (37) 
 

or, in real form, ̂ ˆRe 0 and Re 0E Bτ τ⋅ = ⋅ =
� �

. This means that both ReE
�

 and ReB
�

 
are normal to the direction of propagation of the wave.  
      2. From (30) and (35) we get  
 

       0ˆ ( ) ( , )E B k A r t dk
k is

ω
τ × =

+∫
� �

�

                                       (38) 

The integral on the right-hand side of (38) is, generally, not a vector parallel to B
�

. 
Now, in the limit of negligible conductivity (σ=0) the relations (33) give s=0 and 
ω/k=1/(εµ)1/2. The ratio ω/k represents the speed of propagation υ in the non-
conducting medium, for the frequency ω. If the medium is non-dispersive, the speed 
υ=ω/k  is constant, independent of frequency. Then Eq. (38) (with s=0) becomes  
 

0ˆ ( ) ( , )E B k A r t dk Bτ υ υ× = =∫
� � �

�

 

 

and, in real form, it reads ̂ Re ReE Bτ υ× =
� �

. Geometrically, this means that the 

ˆ(Re , Re , )E B τ
� �

 define a right-handed rectangular system.  

      3. As shown in [7,8], the E
�

 and B
�

 are always mutually perpendicular in a mono-
chromatic e/m wave of definite frequency ω, traveling in a conducting medium. Such 
a wave is represented in real form by the equations  
 

ˆ
0

2 2
ˆ

0

ˆ( , ) cos( ) ,

ˆ ˆ( , ) ( ) cos( )

s r

s r

E r t E e k r t

k s
B r t E e k r t

τ

τ

τ ω α

τ τ ω β
ω

− ⋅

− ⋅

= ⋅ − +

+
= × ⋅ − +

�

�

� �

� �

� �

� �

 

where 0E
�

 is a real vector and where  tan(β–α)=s/k. This perpendicularity between E
�

 

and B
�

 ceases to exist, however, in a non-monochromatic wave of the form (28).  
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Abstract. It is now widely accepted that the Maxwell equations of Electrodynamics 
constitute a self-consistent set of four independent partial differential equations.  
According to a certain school of thought, however, half of these equations – namely, 
those expressing the two Gauss’ laws for the electric and the magnetic field – are  
redundant since they can be “derived” from the remaining two laws and the principle 
of conservation of charge. The status of the latter principle is thus elevated to a law of 
Nature more fundamental than, say, Coulomb’s law. In this note we examine this line 
of reasoning and we propose an approach according to which the Maxwell equations 
may be viewed as a Bäcklund transformation relating fields and sources. The 
conservation of charge and the electromagnetic wave equations then simply express 
the integrability conditions of this transformation.  

 
Keywords: Classical electrodynamics, Maxwell’s equations, Bäcklund transformations  
 
 

1.  Is Gauss’ law of Electrodynamics redundant? 
 
As we know, the Maxwell equations describe the behavior (that is, the laws of change 
in space and time) of the electromagnetic (e/m) field. This field is represented by the 

pair ( , )E B
 

, where E


 and B


 are the electric and the magnetic field, respectively. The 
Maxwell equations additionally impose certain boundary conditions at the interface of 
two different media, while certain other physical demands are obvious (for example, 
the e/m field must vanish away from its localized “sources”, unless these sources emit 
e/m radiation).  
      The Maxwell equations are a system of four partial differential equations (PDEs) 
that is self-consistent, in the sense that these equations are compatible with one 
another. The self-consistency of the system also implies the satisfaction of two 
important conditions that are physically meaningful:  
 

 the equation of continuity, related to conservation of charge; and  

 the e/m wave equation in its various forms.  
 
We stress that these conditions are necessary but not sufficient for the validity of the 

Maxwell system. Thus, although every solution ( , )E B
 

 of this system obeys a wave 
equation separately for the electric and the magnetic field, an arbitrary pair of fields 
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( , )E B
 

, each field satisfying the corresponding wave equation, does not necessarily 
satisfy the Maxwell system itself. Also, the principle of conservation of charge cannot 
replace any one of Maxwell’s equations. These remarks are justified by the fact that 
the aforementioned two necessary conditions are derived by differentiating the 
Maxwell system and, in this process, part of the information carried by this system is 
lost. [Recall, similarly, that cross-differentiation of the Cauchy-Riemann relations of 
complex analysis yields the Laplace equation (see Sec. 2) by which, however, we 
cannot recover the Cauchy-Riemann relations.]  
      The differential form of the Maxwell equations is  
 

        0

0 0 0

( ) ( )

( ) 0 ( )

B
a E c E

t

E
b B d B J

t




  


     




     



   

    
            (1) 

 

where , J


 are the charge and current densities, respectively (the “sources” of the 
e/m field). Both the fields and the sources are functions of the spacetime variables 
(x,y,z,t). Equations (1a) and (1b), which describe the div of the e/m field at any 
moment, constitute Gauss’ law for the electric and the magnetic field, respectively. In 
terms of physical content, (1a) expresses the Coulomb law of electricity, while (1b) 
rules out the possibility of existence of magnetic poles analogous to electric charges. 
Equation (1c) expresses the Faraday-Henry law (law of e/m induction) and Eq. (1d) 
expresses the Ampère-Maxwell law. Equations (1a) and (1d), which contain the 
sources of the e/m field, constitute the non-homogeneous Maxwell equations, while 
Eqs. (1b) and (1c) are the homogeneous equations of the system.  
      By taking the div of (1d) and by using (1a), we obtain the equation of continuity, 
which physically expresses the principle of conservation of charge (see, e.g., [1], Sec. 
9.6):  
 

        0J
t


   



 
                    (2) 

 
Although the charge and current densities on the right-hand sides of (1a) and (1d) are 
chosen freely and are considered known from the outset, relation (2) places a severe 
restriction on the associated functions. A different kind of differentiation of the 
Maxwell system (1), by taking the rot of (c) and (d), leads to separate wave equations 
(or modified wave equations, depending on the medium) for the electric and the 
magnetic field (see, e.g., [1], Sec. 10.4).  
      In most textbooks on electromagnetism (e.g., [2–6] and many more) the Maxwell 
equations (1) are treated as a consistent set of four independent PDEs. A number of 
authors, however, have doubted the independence of this system. Specifically, they 
argue that (1a) and (1b) – the equations for the div of the e/m field, expressing Gauss’ 
law for the corresponding fields – are redundant since they “may be derived” from 
(1c) and (1d) in combination with the equation of continuity (2). If this is true, 
Coulomb’s law – the most important experimental law of electricity – loses its status 
as an independent law and is reduced to a derivative theorem. The same can be said 
with regard to the non-existence of magnetic poles in Nature.  
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      As far as we know, the first who doubted the independent status of the two Gauss’ 
laws in electrodynamics was Julius Adams Stratton in his 1941 famous (and, 
admittedly, very attractive) book [7]. His reasoning may be described as follows:  
      By taking the div of (1c), the left-hand side vanishes identically while on the right-
hand side we may change the order of differentiation with respect to space and time 
variables. The result is:  
 

          0B
t


  



 
                 (3) 

 
On the other hand, by taking the div of (1d) and by using the equation of continuity 
(2), we find that  
 

        
0

0E
t




 
      

 
                        (4) 

 
And the line of argument continues as follows: According to (3) and (4), the 

quantities B
 

 and ( 0/E    
 

) are constant in time at every point (x,y,z) of the 

region Ω of space that concerns us. If we now assume that there has been a period of 
time during which no e/m field existed in the region Ω, then, in that period,  
 

        0B 
 

    and    0/ 0E     
 

                (5) 

 
identically. Later on, although an e/m field did appear in Ω, the left-hand sides in (5) 
continued to vanish everywhere within this region since, as we said above, those 
quantities are time constant at every point of Ω. Thus, by the equations for the rot of 
the e/m field and by the principle of conservation of charge – the status of which was 
elevated from derivative theorem to fundamental law of the theory – we derived Eqs. 
(5), which are precisely the first two Maxwell equations (1a) and (1b)!  
      According to this reasoning, the electromagnetic theory is not based on four 
independent Maxwell equations but rather on three independent equations only; 
namely, the Faraday-Henry law (1c), the Ampère–Maxwell law (1d), and the principle 
of conservation of charge (2).  
      What makes this view questionable is the assumption that, for every region Ω of 
space there exists some period of time during which the e/m field in Ω vanishes. This 
hypothesis is arbitrary and is not dictated by the theory itself. (It is likely that no such 
region exists in the Universe!) Therefore, the argument that led from relations (3) and 
(4) to relations (5) is not convincing since it was based on an arbitrary and, in a sense, 
artificial initial condition: that the e/m field is zero at some time t=0 and before.  
      Let us assume for the sake of argument, however, that there exists a region Ω 
within which the e/m field is zero for t < t0 and nonzero for t > t0 . The critical issue is 
what happens at t=t0 ; specifically, whether the functions expressing the e/m field are 
continuous at that moment. If they indeed are, the field starts from zero and gradually 
increases to nonzero values; thus, the line of reasoning that led from (3) and (4) to (5) 
is acceptable. There are physical situations, however, in which the appearance of an 
e/m field is so abrupt that it may be considered instantaneous. (For instance, the 
moment we connect the ends of a metal wire to a battery, an electric field suddenly 
appears in the interior of the wire and a magnetic field appears in the exterior. An 
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even more “dramatic” example is pair production in which a charged particle and the 
corresponding antiparticle are created simultaneously, thus an e/m field appears at that 
moment in the region.) In such cases the e/m field is non-continuous at t=t0 and its 
time derivative is not defined at this instant. Therefore, the line of reasoning that leads 
from (3) and (4) to (5) again collapses.  
      Note, finally, a circular reasoning in Stratton’s approach. It is assumed that, in a 
region Ω where no e/m field exists, the second of relations (5) is valid identically. 
This means that the vanishing of the electric field in Ω automatically implies the 
absence of electric charge in that region. This fact, however, follows from Gauss’ law 
(1a); thus it may not be used a priori as a tool for proving the law itself!  
      Regarding charge conservation, we mentioned earlier that Eq. (2) is derived from 
the two non-homogeneous Maxwell equations, namely, Gauss’ law (1a) for the 
electric field, and the Ampère–Maxwell law (1d). This means that the principle of 
conservation of charge is a necessary condition in order for the Maxwell system to be 
self-consistent. This condition is not sufficient, however, in the sense that it cannot 
replace any one of the system equations. Indeed, by the Ampère–Maxwell law and the 
conservation of charge there follows the time derivative of Gauss’ law for the electric 
field [Eq. (4)]; this, however, does not imply that Gauss’ law itself is valid. Of course, 
the reverse is true: because Gauss’ law is valid, the same is true for its time derivative.  
      Our view, therefore, is that the Maxwell equations form a system of four 
independent PDEs that express respective laws of Nature. Moreover, the self-
consistency of this system imposes two necessary (but not sufficient) conditions that 
concern the conservation of charge and the wave behavior of the time-dependent e/m 
field. In the next section the problem is re-examined from the point of view of 
Bäcklund transformations.  
 
 

2.  A Bäcklund-transformation view of Maxwell’s equations 
 
In previous articles [8,9] we suggested that, mathematically speaking, the Maxwell 
equations in empty space may be viewed as a Bäcklund transformation (BT) relating 
the electric and the magnetic field to each other. Let us briefly summarize a few key 
points regarding this idea. To begin with, let us see the simplest, perhaps, example of 
a BT.  
      The Cauchy-Riemann relations of complex analysis,  
 
        ux = vy    (a)        uy = – vx    (b)               (6) 

 
(where subscripts denote partial derivatives with respect to the indicated variables) 
constitute a BT for the Laplace equation,  
 
        wxx + wyy = 0                (7) 

 
Let us explain this: Suppose we want to solve the system (6) for u, for a given choice 
of the function v(x,y). To see if the PDEs (6a) and (6b) match for solution for u, we 
must compare them in some way. We thus differentiate (6a) with respect to y and 
(6b) with respect to x, and equate the mixed derivatives of u. That is, we apply the 
integrability condition (or consistency condition) (ux)y= (uy)x . In this way we 
eliminate the variable u and we find a condition that must be obeyed by v(x,y):  
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                        vxx + vyy = 0.       
 
Similarly, by using the integrability condition (vx)y= (vy)x to eliminate v from the 
system (6), we find the necessary condition in order that this system be integrable for 
v, for a given function u(x,y):  
 
                       uxx + uyy = 0.      
 
In conclusion, the integrability of system (6) with respect to either variable requires 
that the other variable satisfy the Laplace equation (7).  
      Let now v0(x,y) be a known solution of the Laplace equation (7). Substituting 
v=v0 in the system (6), we can integrate this system with respect to u. It is not hard to 
show (by eliminating v0 from the system) that the solution u will also satisfy the 
Laplace equation. As an example, by choosing the solution v0(x,y)=xy of (7), we find 
a new solution  u(x,y)= (x

2 –y2)/2 +C .  
      Generally speaking, a BT is a system of PDEs connecting two functions (say, u 
and v) in such a way that the consistency of the system requires that u and v 
independently satisfy the respective, higher-order PDEs F[u]=0 and G[v]=0. 
Analytically, in order that the system be integrable for u, the function v must be a 
solution of G[v]=0; conversely, in order that the system be integrable for v, the 
function u must be a solution of F[u]=0. If F and G happen to be functionally 
identical, as in the example given above, the BT is said to be an auto-Bäcklund 
transformation (auto-BT).  
      Classically, BTs are useful tools for finding solutions of nonlinear PDEs. In [8,9], 
however, we suggested that BTs may also be useful for solving linear systems of 
PDEs. The prototype example that we used was the Maxwell equations in empty 
space:  
 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


     




    



   

   
             (8) 

 
Here we have a system of four PDEs for two vector fields that are functions of the 
spacetime coordinates (x,y,z,t). We would like to find the integrability conditions 
necessary for self-consistency of the system (8). To this end, we try to uncouple the 

system to find separate second-order PDEs for E


 and B


, the PDE for each field 
being a necessary condition in order that the system (8) be integrable for the other 
field. This uncoupling, which eliminates either field (electric or magnetic) in favor of 
the other, is achieved by properly differentiating the system equations and by using 
suitable vector identities, in a manner similar in spirit to that which took us from the 
first-order Cauchy-Riemann system (6) to the separate second-order Laplace 
equations (7) for u and v.  
      As discussed in [8,9], the only nontrivial integrability conditions for the system 
(8) are those obtained by using the vector identities  
 

        2( ) ( )E E E      
      

                                            (9) 
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        2( ) ( )B B B     
      

                                                      (10) 
 
By these we obtain separate wave equations for the electric and the magnetic field:  
 

        
2

2
0 0 2

0
E

E
t

  
  




                                                          (11) 

 

        
2

2
0 0 2

0
B

B
t

  
  




                                                           (12) 

 
We conclude that the Maxwell system (8) in empty space is a BT relating the e/m 
wave equations for the electric and the magnetic field, in the sense that the wave 
equation for each field is an integrability condition for solution of the system in terms 
of the other field.  
      The case of the full Maxwell equations (1) is more complex due to the presence of 

the source terms , J


 in the non-homogeneous equations (1a) and (1d). As it turns 
out, the self-consistency of the BT imposes restrictions on the terms of non-
homogeneity as well as on the fields themselves. Before we get to this, however, let 
us see a simpler “toy” example that generalizes that of the Cauchy-Riemann relations.  
      Consider the following non-homogeneous linear system of PDEs for the functions 
u and v of the variables x, y, z, t :  
 
          ux = vy       (a)        uz = vz + p (x, y, z, t)     (c)     
                     (13) 
        uy = – vx    (b)         ut = vt + q (x, y, z, t)     (d)       
 
where p and q are assumed to be given functions. The necessary consistency 
conditions for this system are found by cross-differentiation of the system equations 
with respect to the variables x, y, z, t . In particular, by cross-differentiating (a) and (b) 
with respect to x and y we find that uxx+uyy=0 and vxx+vyy=0; hence both u and v must 
satisfy the Laplace equation (7). On the other hand, cross-differentiation of (c) and (d) 
with respect to z and t eliminates the fundamental variables u and v, yielding a 
necessary condition for the terms of non-homogeneity, p and q; that is,  pt – qz = 0. This 
means that the functions p and q cannot be chosen arbitrarily from the outset but must 
conform to this latter condition in order for the system (13) to have a solution.  
      As an application, let us take v=xy+zt (which satisfies the Laplace equation 
vxx+vyy=0) and let us choose p=2t and q=2z (so that pt – qz = 0). It is not hard to show 
that the solution of the system (13) for u is then given by  
 
          u (x, y, z, t) = (x2 – y2 ) / 2 + 3zt + C .   
 
Notice that  uxx+uyy=0, as expected.  
      Let us now return to the full Maxwell equations (1), which we now view as a BT 
relating the electric and the magnetic field and containing additional terms in which 
only the sources appear. As can be checked, there are now three nontrivial 
integrability conditions, namely, those found by applying the vector identities (9) and 
(10), as well as the identity  
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          0B  
  

                                 (14) 

 

(the corresponding one for E


 is trivially satisfied in view of the Maxwell system). By 
(9) and (10) we get the non-homogeneous wave equations  
 

        
2

2
0 0 02

0

1E J
E

t t
   


 

    
 

  
                                          (15) 

 

        
2

2
0 0 02

B
B J

t
  

    


  
                                               (16) 

 
Additionally, the integrability condition (14) yields the equation of continuity (2),  
 

        0J
t


   



 
                                   (17) 

 
expressing conservation of charge. Notice that, unlike (15) and (16), the condition 
(17) places a priori restrictions on the sources rather than on the fields themselves!  
      In any case, the three relations (15) – (17) are necessary conditions imposed by 
the requirement of self-consistency of the BT (1). As explained in Sec. 1, however, 
these conditions are not sufficient, in the sense that none of them may replace any 
equation in the system (1). In particular, the equation of continuity (17) may not be 
regarded as more fundamental than the Gauss law (1a) for the electric field.  
 
 

3.  Conclusions 
 
Let us summarize our main conclusions:  
      1. The Maxwell equations (1) express four separate laws of Nature. These 
equations are mathematically consistent with one another but constitute a set of 
independent vector relations, in the sense that no single equation may be deduced by 
the remaining three. In particular, the physical arguments that attempt to render the 
two Gauss' laws “redundant” are seen to be artificial and unrealistic.  
      2. We consider the Maxwell equations as physically acceptable simply because 
the system (1) and all conclusions mathematically drawn from it represent 
experimentally verifiable situations in Nature. Among these conclusions are the 
conservation of charge and the conservation of energy (Poynting’s theorem). It should 
be kept in mind, however, that conservation laws appear as consequences of the 
fundamental equations of a theory, and not vice versa. In particular, conservation of 
charge, in the form of the continuity equation (17), is a physically verifiable 
mathematical conclusion drawn from the Maxwell system (1) but it may not be 
regarded as more fundamental than any equation in the system. The same can be said 
with regard to the existence of e/m waves, expressed mathematically by Eqs. (11) and 
(12).  
      3. From a mathematical perspective, the Maxwell system (1) may be viewed as a 
Bäcklund transformation (BT) the integrability conditions of which (i.e., the 
necessary conditions for self-consistency of the system) yield separate (generally non-
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homogeneous) wave equations (15) and (16) for the electric and the magnetic field, 
respectively, as well as the equation of continuity (17). These integrability conditions 
are derived by differentiating the BT in different ways; hence they carry less 
information than the BT itself. Consequently, none of the integrability conditions may 
replace any equation in the Maxwell system.  
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1.  Introduction 
 

The problem of symmetries of a system of partial differential equations (PDEs) has been 

traditionally treated as a geometrical problem in the jet space of the independent and the 

dependent variables (including a sufficient number of partial derivatives of the latter variables 

with respect to the former ones). Two more or less equivalent approaches have been followed: 

(a) invariance of the system of PDEs itself, under infinitesimal transformations generated by 

corresponding vector fields in the jet space [1]; (b) invariance of a differential ideal of 

differential forms representing the system of PDEs, under the Lie derivative with respect to the 

vector fields representing the symmetry transformations [2-6].  

      Although effective with regard to calculating symmetries, these geometrical approaches 

suffer from a certain drawback of conceptual nature when it comes to matrix-valued PDEs. The 

problem is related to the inevitably mixed nature of the coordinates in the jet space (scalar 

independent variables versus matrix-valued dependent ones) and the need for a differential-

operator representation of the symmetry vector fields. How does one define differentiation with 

respect to matrix-valued variables? Moreover, how does one calculate the Lie bracket of two 

differential operators in which some (or all) of the variables, as well as the coefficients of partial 

derivatives with respect to these variables, are matrices?  

      Although these difficulties were handled in some way in [4-6], it was eventually realized that 

an alternative, purely algebraic approach to the symmetry problem would be more appropriate in 

the case of matrix-valued PDEs. Elements of this approach were presented in [7] and later 

mailto:papachristou@snd.edu.gr
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applied in particular problems [8-10]; no formal theoretical framework was fully developed, 

however.  

      An attempt to develop such a framework is made in this article. In Sections 2 and 3 we 

introduce the concept of the characteristic derivative – an abstract operator generalization of the 

Lie derivative used in scalar-valued problems – and we demonstrate the Lie-algebraic nature of 

the set of these derivatives.  

      The general symmetry problem for matrix-valued PDEs is presented in Sec. 4, and the Lie-

algebraic property of symmetries of a PDE is proven in Sec. 5. In Sec. 6 we discuss the concept 

of a recursion operator [1,8-14] by which an infinite set of symmetries may in principle be 

produced from any known symmetry.  

      Finally, an application of these ideas is made in Sec. 7 by using the chiral field equation as an 

example.  

      To simplify our formalism, we restrict our analysis to the case of a single matrix-valued PDE 

in one dependent variable. Generalization to systems of PDEs is straightforward and is left to the 

reader (see, e.g., [1] for scalar-valued problems).  

 

 

2.  Total and characteristic derivative operators 
 

A PDE for the unknown function u=u(x
1
, x

2
, ... )  u(x

k
) [where by (x

k
) we collectively denote 

the independent variables x
1
, x

2
, ...] is an expression of the form F[u]=0, where F[u]  F(x

k
, u, uk , 

ukl , ...) is a function in the jet space [1] of the independent variables (x
k
), the dependent variable 

u, and the partial derivatives of various orders of u with respect to the x
k
, which derivatives will 

be denoted by using subscripts: uk , ukl , uklm , etc.  A solution of the PDE is any function u=φ(x
k
) 

for which the relation F[u]=0 is satisfied at each point (x
k
) in the domain of φ.  

      We assume that u, as well as all functions F[u] in the jet space, are square-matrix-valued of 

fixed matrix dimensions. In particular, we require that, in its most general form, a function F[u] 

in the jet space is expressible as a finite or an infinite sum of products of alternating x-dependent 

and u-dependent terms, of the form  

 

  [ ] ( ) [ ] ( ) [ ] ( )k k kF u a x u b x u c x                              (2.1) 

 

where the a(x
k
), b(x

k
), c(x

k
), etc., are matrix-valued, and where the matrices Π[u], Π΄[u], etc., are 

products of variables u, uk , ukl , etc., of the “fiber” space (or, more generally, products of powers 

of these variables). The set of all functions (2.1) is thus a (generally) non-commutative algebra.  

      If u is a scalar quantity, a total derivative operator can be defined in the usual way [1] as  

 

           i i i j i jki
j jk

D u u u
u u ux

   
    

  
                         (2.2) 

 

where the summation convention over repeated up-and-down indices (such as j and k in this 

equation) has been adopted and will be used throughout. If, however, u is matrix-valued, the 

above expression is obviously not valid. A generalization of the definition of the total derivative 

is thus necessary for matrix-valued PDEs.  
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      Definition 2.1. The total derivative operator with respect to the variable x
i
 is a linear operator 

Di acting on functions F[u] of the form (2.1) in the jet space and having the following properties:  

1. On functions f (x
k
) in the base space,  Di  f (x

k
) = f / x

i
  i  f (x

k
) .  

2. For F[u]=u , ui , uij , etc., we have:  Di u = ui ,  Di uj = Dj ui = uij = uji ,  etc.  

3. The operator Di is a derivation on the algebra of all matrix-valued functions of the form (2.1) 

in the jet space; i.e., the Leibniz rule is satisfied:  

 

         [ ] [ ] [ ] [ ] [ ] [ ]i i iD F u G u D F u G u F u DG u                          (2.3) 

 

      Higher-order total derivatives Dij=DiDj may similarly be defined but they no longer possess 

the derivation property. Given that  ij=ji  and that uij=uji , it follows that DiDj = DjDi  Dij = 

Dji ; that is, total derivatives commute. We write: [Di , Dj]=0, where, in general, [A, B]  AB–BA 

will denote the commutator of two operators or two matrices, as the case may be.  

      If  u
–1

 is the inverse of u, such that  uu
–1

= u
–1

u = , then we can define  

 

             1 1 1
i iD u u D u u                                            (2.4) 

 

Moreover, for any functions A[u] and B[u] in the jet space, it can be shown that  

 

                [ , ] , ,i i iD A B D A B A D B                                       (2.5) 

 

      As an example, let (x
1
, x

2
)  (x, t) and let F[u]=xtux

2
, where u is matrix-valued. Writing 

F[u]=xtuxux , we have: Dt F[u]=xux
2 

+ xt (uxt ux + ux uxt ).  

      Let now Q[u]  Q (x
k
, u, uk , ukl , ...) be a function in the jet space. We will call this a 

characteristic function (or simply a characteristic) of a certain derivative, defined as follows:  

      Definition 2.2. The characteristic derivative with respect to Q[u] is a linear operator ΔQ 

acting on functions F[u] in the jet space and having the following properties:  

1. On functions f (x
k
) in the base space,   

 

( ) 0k
Q f x                                                    (2.6) 

 

(that is, ΔQ  acts only in the fiber space).  

2. For  F[u]=u ,  

             [ ]Qu Q u                                                     (2.7) 

 

3. ΔQ  commutes with total derivatives:  

 

             [ , ] 0 (all )Q i i Q Q iD D D i                                     (2.8) 
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4. The operator ΔQ is a derivation on the algebra of all matrix-valued functions of the form (2.1) 

in the jet space (the Leibniz rule is satisfied):  

 

         [ ] [ ] [ ] [ ] [ ] [ ]Q Q QF u G u F u G u F u G u                              (2.9) 

 

      Corollary: By (2.7) and (2.8) we have:  

 

    [ ]Q i Q i iu D u D Q u                                             (2.10) 

 

      We note that the operator ΔQ is a well-defined quantity, in the sense that the action of ΔQ on u 

uniquely determines the action of ΔQ on any function F[u] of the form (2.1) in the jet space. 

Moreover, since, by assumption, u and Q[u] are matrices of equal dimensions, it follows from 

(2.7) that ΔQ preserves the matrix character of u, as well as of any function F[u] on which this 

operator acts.  

      We also remark that we have imposed conditions (2.6) and (2.8) having a certain property of 

symmetries of PDEs in mind; namely, every symmetry of a PDE can be represented by a 

transformation of the dependent variable u alone, i.e., can be expressed as a transformation in the 

fiber space (see [1], Chap. 5).  

      The following formulas, analogous to (2.4) and (2.5), may be written:  

 

                 1 1 1
Q Qu u u u                                             (2.11) 

             [ , ] , ,Q Q QA B A B A B                                              (2.12) 

 

      As an example, let (x
1
, x

2
)  (x, t) and let F[u]=a(x,t)u

2
b(x,t)+[ux , ut] , where a, b and u are 

matrices of equal dimensions. Writing u
2
=uu and using properties (2.7), (2.9), (2.10) and (2.12), 

we find:  ΔQ F[u]=a(x,t)(Qu+uQ)b(x,t)+[Dx Q, ut]+[ux , Dt Q].  

      In the case where u is scalar-valued (thus so is Q[u]), the characteristic derivative ΔQ admits a 

differential-operator representation of the form  

 

       [ ] [ ] [ ]Q i i j

i i j

Q u D Q u D D Q u
u u u

  
    

  
                  (2.13) 

 

(See [1], Chap. 5, for an analytic proof of property (2.8) in this case.)  

 

 

3.  The Lie algebra of characteristic derivatives 
 

The characteristic derivatives ΔQ acting on functions F[u] of the form (2.1) in the jet space 

constitute a Lie algebra of derivations on the algebra of the F[u]. The proof of this statement is 

contained in the following three Propositions.  
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      Proposition 3.1. Let ΔQ be a characteristic derivative with respect to the characteristic Q[u]; 

i.e., ΔQ u=Q[u]  [cf. Eq. (2.7)]. Let λ be a constant (real or complex). We define the operator λΔQ 

by the relation  

 

(λΔQ) F[u]  λ (ΔQ F[u] ) . 

 

Then, λΔQ is a characteristic derivative with characteristic λQ[u]. That is,  

 

         Q Q                                                       (3.1) 

 

      Proof. (a) The operator λΔQ is linear, since so is ΔQ .  

(b)  For F[u]=u,  (λΔQ)u= λ(ΔQ u)=λQ[u] .  

(c)  λΔQ commutes with total derivatives Di , since so does ΔQ .  

(d)  Given that ΔQ satisfies the Leibniz rule (2.9), it is easily shown that so does λΔQ .  

 

      Comment: Condition (c) would not be satisfied if we allowed λ to be a function of the x
k
, 

instead of being a constant, since λ(x
k
) generally does not commute with the Di. Therefore, 

relation (3.1) is not valid for a non-constant λ.  

      Proposition 3.2. Let Δ1 and Δ2 be characteristic derivatives with respect to the characteristics 

Q1[u] and Q2[u], respectively; i.e., Δ1u=Q1[u], Δ2u=Q2[u]. We define the operator Δ1+Δ2 by  

 

(Δ1+Δ2) F[u]  Δ1 F[u] + Δ2 F[u] . 

 

Then, Δ1+Δ2 is a characteristic derivative with characteristic Q1[u]+Q2[u]. That is,  

 

       1 2 1 2with [ ] [ ] [ ]Q Q u Q u Q u                                    (3.2) 

 

      Proof. (a) The operator Δ1+Δ2 is linear, as a sum of linear operators.  

(b)  For F[u]=u,  (Δ1+Δ2)u = Δ1u +Δ2u = Q1[u]+Q2[u] .  

(c)  Δ1+Δ2 commutes with total derivatives Di , since so do Δ1 and Δ2 .  

(d)  Given that each of Δ1 and Δ2 satisfies the Leibniz rule (2.9), it is not hard to show that the 

same is true for Δ1+Δ2 .  

      Proposition 3.3. Let Δ1 and Δ2 be characteristic derivatives with respect to the characteristics 

Q1[u] and Q2[u], respectively; i.e., Δ1u=Q1[u], Δ2u=Q2[u]. We define the operator [Δ1 , Δ2] (Lie 

bracket of Δ1 and Δ2) by  

 

[Δ1 , Δ2] F[u]  Δ1 (Δ2 F[u]) – Δ2 (Δ1 F[u]) . 

 

Then, [Δ1 , Δ2] is a characteristic derivative with characteristic Δ1Q2[u]–Δ2Q1[u]. That is,  

 

    1 2 1 2 2 1 1,2[ , ] with [ ] [ ] [ ] [ ]Q Q u Q u Q u Q u                            (3.3) 
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      Proof. (a) The linearity of [Δ1 , Δ2] follows from the linearity of Δ1 and Δ2 .  

(b)  For F[u]=u,  [Δ1 , Δ2]u = Δ1 (Δ2u) – Δ2 (Δ1u) = Δ1Q2[u]–Δ2Q1[u]  Q1,2[u] .  

(c)  [Δ1 , Δ2] commutes with total derivatives Di , since so do Δ1 and Δ2 .  

(d)  Given that each of Δ1 and Δ2 satisfies the Leibniz rule (2.9), one can show (after some 

algebra and cancellation of terms) that the same is true for [Δ1 , Δ2].  

      In the case where u (thus the Q’s also) is scalar-valued, the Lie bracket admits a standard 

differential-operator representation [1]:  

 

         1 2 1,2 1,2 1,2[ , ] [ ] i i j

i i j

Q u D Q D D Q
u u u

  
     

  
               (3.4) 

 

where   Q1,2[u] = [Δ1 , Δ2] u = Δ1Q2[u] – Δ2Q1[u] .  

 

      The Lie bracket [Δ1 , Δ2] has the following properties:  

 

1. [Δ1 , aΔ2+bΔ3] = a [Δ1 , Δ2] + b [Δ1 , Δ3] ;  

[aΔ1+bΔ2 , Δ3] = a [Δ1 , Δ3] + b [Δ2 , Δ3]        (a, b = const.)  

2. [Δ1 , Δ2] = – [Δ2 , Δ1]      (antisymmetry)  

3. [Δ1 , [Δ2 , Δ3]] + [Δ2 , [Δ3 , Δ1]] + [Δ3 , [Δ1 , Δ2]] = 0 ;  

[[Δ1 , Δ2] , Δ3] + [[Δ2 , Δ3] , Δ1] + [[Δ3 , Δ1] , Δ2] = 0        (Jacobi identity)  

 

 

4.  The symmetry problem for PDEs 
 

Let F[u]=0 be a PDE in the independent variables x
k 
 x

1
, x

2
, ... , and the (generally) matrix-

valued dependent variable u. A transformation u(x
k
)u΄(x

k
) from the function u to a new 

function u΄ represents a symmetry of the PDE if the following condition is satisfied: u΄(x
k
) is a 

solution of F[u]=0 when u(x
k
) is a solution; that is, F[u΄]=0 when F[u]=0.  

      We will restrict our attention to continuous symmetries, which can be expressed as 

infinitesimal transformations. Although such symmetries may involve transformations of the 

independent variables (x
k
), they may equivalently be expressed as transformations of u alone (see 

[1], Chap. 5), i.e., as transformations in the fiber space.  

      An infinitesimal symmetry transformation is written symbolically as  

 

u  u΄= u+δu 

 

where δu is an infinitesimal quantity, in the sense that all powers (δu)
n
 with n>1 may be 

neglected. The symmetry condition is thus written  

 

            F[u+δu] = 0   when   F[u] = 0                                        (4.1) 
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      An infinitesimal change δu of u induces a change δF[u] of F[u], where  

 

δF[u] = F[u+δu] – F[u]      F[u+δu] = F[u] + δF[u]                     (4.2) 

 

Now, if δu is an infinitesimal symmetry and if u is a solution of F[u]=0, then u+δu also is a 

solution; that is, F[u+δu]=0. This means that δF[u]=0 when F[u]=0. The symmetry condition 

(4.1) is thus written as follows:  

 

δF[u] = 0   mod   F[u]                                              (4.3) 

 

      A symmetry transformation (we denote it M) of the PDE F[u]=0 produces a one-parameter 

family of solutions of the PDE from any given solution u(x
k
). We express this by writing  

 

    : ( ) ( ; ) with   ( ;0) ( )k k k kM u x u x u x u x                              (4.4) 

 

For infinitesimal values of the parameter α,  

 

    
0

( ; ) ( ) [ ] where [ ]k k du
u x u x Q u Q u

d 

 
 

                       (4.5) 

 

The function Q[u]  Q(x
k
, u, uk , ukl , ...) in the jet space is called the characteristic of the 

symmetry (or, the symmetry characteristic). Putting  

 

( ; ) ( )k ku u x u x                                               (4.6) 

 

we write, for infinitesimal α,  

 

        δu = α Q[u]                                                      (4.7) 

 

      We notice that the infinitesimal operator δ has the following properties:  

1. According to its definition (4.2), δ is a linear operator :  

 

δ(F[u]+G[u]) = (F[u+δu]+ G[u+δu]) – (F[u]+G[u]) = δF[u]+δG[u] . 

 

2. By assumption regarding the nature of our symmetry transformations, δ produces changes in 

the fiber space while it doesn’t affect functions f (x
k
) in the base space [this is implicitly stated in 

(4.6)].  

3. Since δ represents a difference, it commutes with all total derivatives Di :  

 

δ (Di A[u]) = Di (δA[u]) . 

In particular, for A[u]=u,  
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δui = δ (Di u) = Di (δu) = α Di Q[u] , 

 

where we have used (4.7).  

4. Since δ expresses an infinitesimal change, it may be approximated to a differential; in 

particular, it satisfies the Leibniz rule:  

 

δ (A[u]B[u]) = (δA[u]) B[u] + A[u] δB[u] . 

 

For example,  δ(u
2
) = δ(uu) = (δu)u+uδu = α (Qu+uQ) .  

      Now, consider the characteristic derivative ΔQ with respect to the symmetry characteristic 

Q[u]. According to (2.7),  

 

ΔQ u = Q[u]                                                       (4.8) 

 

We observe that the infinitesimal operator δ and the characteristic derivative ΔQ share common 

properties. From (4.7) and (4.8) it follows that the two linear operators are related by  

 

     δu = α ΔQ u                                                        (4.9) 

 

and, by extension,   

 

δui = α Di Q[u] = α ΔQ ui ,  etc. 

 

[see (2.10)]. Moreover, for scalar-valued u and by the infinitesimal character of the operator δ, 

we may write:  

 

[ ] [ ] [ ] [ ]i i i j

i i i j

F F F F F
F u u u Q u D Q u D D Q u

u u u u u
   

     
       

      

 

 

while, by (2.13),  

 

    [ ] [ ] [ ] [ ]Q i i j

i i j

F F F
F u Q u D Q u D D Q u

u u u

  
    

  
                (4.10) 

 

      The above observations lead us to the conclusion that, in general, the following relation is 

true:  

 

      δF[u] = α ΔQ F[u]                                             (4.11) 

 

The symmetry condition (4.3) is thus written:  

 

    ΔQ F[u] = 0   mod   F[u]                                          (4.12) 

 

In particular, if u is scalar-valued, the above condition is written  
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    [ ] [ ] [ ] 0 mod [ ]i i j

i i j

F F F
Q u D Q u D D Q u F u

u u u

  
   

  
              (4.13) 

 

which is a linear PDE for Q[u]. More generally, for matrix-valued u and for a function F[u] of 

the form (2.1), the symmetry condition for the PDE F[u]=0 is a linear PDE for the symmetry 

characteristic Q[u]. We write this PDE symbolically as  

 

        S (Q ; u)  ΔQ F[u] = 0   mod   F[u]                                   (4.14) 

 

where the function S (Q ; u) is linear in Q and all total derivatives of Q. (The linearity of S in Q 

follows from the Leibniz rule and the specific form (2.1) of F[u].)  

      Below is a list of formulas that may be useful in calculations:  

 

 ΔQ ui = Di Q[u] ,   ΔQ uij = Di Dj Q[u] ,   etc.  

 ΔQ u
2 

= ΔQ (uu) = Q[u]u+uQ[u]   (etc.)  

 ΔQ (u
–1

)
 
= – u

–1 
(ΔQ u) u

–1 
= – u

–1 
Q[u] u

–1 
  

 ΔQ [A[u] , B[u]] = [ΔQ A , B] + [A , ΔQ B]   

 

      Comment: According to (4.12), ΔQ F[u] vanishes if F[u] vanishes. Given that ΔQ is a linear 

operator, the reader may wonder whether this condition is identically satisfied (a linear operator 

acting on a zero function always produces a zero function!). Note, however, that the function 

F[u] is not identically zero; it becomes zero only for solutions of the given PDE. What we need 

to do, therefore, is to first evaluate ΔQ F[u] for arbitrary u and then demand that the result vanish 

when u is a solution of the PDE F[u]=0.  

      An alternative – and perhaps more transparent – version of the symmetry condition (4.12) is 

the requirement that the following relation be satisfied:  

 

     ˆ[ ] [ ]QF u LF u                                                (4.15) 

 

where L̂  is a linear operator acting on functions in the jet space (see, e.g., [1], Chap. 2 and 5, for 

a rigorous justification of this condition in the case of scalar-valued PDEs). For example, one 

may have  

 

,

[ ] ( ) [ ] ( ) [ ] ( ) [ ] [ ] ( )k k k k
Q i i i j i j

i i j

F u x D F u x D D F u A x F u F u B x        

where the βi and γij are scalar-valued, while A and B are matrix-valued. Let us see some 

examples, restricting for the moment our attention to scalar PDEs.  

      Example 4.1. The sine-Gordon (s-G) equation is written  

 

F [u]   uxt  sin u= 0 . 
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Here, (x
1
, x

2
)  (x, t). Since sinu can be expanded into an infinite series in powers of u, we see that 

F[u] has the required form (2.1). Moreover, since u is a scalar function, we can write the 

symmetry condition by using (4.13):  

 

S (Q ; u)  Qxt  –  (cosu) Q = 0   mod   F [u]  

 

where S(Q; u)= ΔQ F[u] and where by subscripts we denote total differentiations with respect to 

the indicated variables. Let us verify the solution Q[u] = ux . This characteristic corresponds to the 

symmetry transformation [cf. Eq. (4.4)]  

 

   : ( , ) ( , ; ) ( , )M u x t u x t u x t                                   (4.16) 

 

which implies that, if  u(x,t) is a solution of the s-G equation, then ( , ) ( , )u x t u x t    also is a 

solution. We have:  

 

Qxt  – (cosu) Q = (ux) xt  – (cosu) ux = (uxt  sin u) x = Dx F [u] = 0   mod   F [u] . 

 

Notice that ΔQF[u] is of the form (4.15), with ˆ
xL D . Similarly, the characteristic Q[u] = ut  

corresponds to the symmetry  

 

         : ( , ) ( , ; ) ( , )M u x t u x t u x t                                    (4.17) 

 

That is, if  u(x,t) is a solution of the s-G equation, then so is ( , ) ( , )u x t u x t   . The symmetries 

(4.16) and (4.17) reflect the fact that the s-G equation does not contain the variables x and t 

explicitly. (Of course, this equation has many more symmetries which are not displayed here; 

see, e.g., [1].)  

      Example 4.2. The heat equation is written  

 

F [u]   ut  uxx= 0 . 

 

The symmetry condition (4.13) reads  

 

S (Q ; u)  Qt  – Qxx = 0   mod   F [u]  

 

where S(Q; u)= ΔQ F[u]. As is easy to show, the symmetries (4.16) and (4.17) are valid here, too. 

Let us now try the solution Q[u] = u .  We have:  

 

Qt  Qxx =  ut  uxx =  F [u] =  0   mod   F [u] . 

 

This symmetry corresponds to the transformation  

 

      : ( , ) ( , ; ) ( , )M u x t u x t e u x t                                 (4.18) 

 

and is a consequence of the linearity of the heat equation.  
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      Example 4.3. One form of the Burgers equation is  

 

F [u]   ut  uxx ux
2 

= 0 . 

 

The symmetry condition (4.13) is written  

 

S (Q ; u)  Qt  Qxx – 2uxQx = 0   mod   F [u]  

 

where, as always, S(Q; u)=ΔQ F[u]. Putting Q= ux and Q= ut , we verify the symmetries (4.16) 

and (4.17):  

 

Qt  Qxx – 2uxQx = uxt – uxxx – 2uxuxx = Dx F [u] = 0   mod   F [u] 

Qt  Qxx – 2uxQx = utt – uxxt – 2uxuxt = Dt F [u] = 0   mod   F [u] 

 

Note again that ΔQF[u] is of the form (4.15), with ˆ
xL D  and ˆ tL D .  Another symmetry is Q 

[u]=1, which corresponds to the transformation  

 

       : ( , ) ( , ; ) ( , )M u x t u x t u x t                                  (4.19) 

 

and is a consequence of the fact that  u enters F [u] only through its derivatives.  

      Example 4.4. The wave equation is written  

 

F [u]   utt  c
2

 uxx = 0    ( c = const.) 

 

and its symmetry condition reads  

S (Q ; u)  Qtt   c
2 

Qxx = 0   mod   F [u] . 

 

The solution Q[u] = x ux+ t ut  corresponds to the symmetry transformation  

 

          : ( , ) ( , ; ) ( , )M u x t u x t u e x e t                                  (4.20) 

 

expressing the invariance of the wave equation under a scale change of  x and  t . [The reader may 

show that the transformations (4.16) – (4.19) also express symmetries of the wave equation.]  

      It is remarkable that each of the above PDEs admits an infinite set of symmetry 

transformations [1]. An effective method for finding such infinite sets is the use of a recursion 

operator, which produces a new symmetry characteristic every time it acts on a known 

characteristic. More will be said on recursion operators in Sec. 6.  

  

 

5.  The Lie algebra of symmetries 
 

As is well known [1], the set of symmetries of a PDE F[u]=0 has the structure of a Lie 

algebra. Let us demonstrate this property in the context of our abstract formalism.  
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      Proposition 5.1. Let  be the set of characteristic derivatives ΔQ with respect to the symmetry 

characteristics Q[u] of the PDE F[u]=0. The set  is a (finite- or infinite-dimensional) Lie 

subalgebra of the Lie algebra of characteristic derivatives acting on functions F[u] in the jet 

space (cf. Sec. 3).  

      Proof. (a) Let ΔQ  ΔQ F[u]=0 (mod F[u]). If λ is a constant (real or complex, depending 

on the nature of the problem) then (λΔQ)F[u]  λΔQ F[u]=0, which means that  λΔQ. Given that  

λΔQ = ΔλQ [see Eq. (3.1)] we conclude that, if Q[u] is a symmetry characteristic of F[u]=0, then 

so is λQ[u].  

(b) Let Δ1 and Δ2 be characteristic derivatives with respect to the symmetry characteristics 

Q1[u] and Q2[u], respectively. Then, Δ1F[u]=0, Δ2F[u]=0, and hence, (Δ1+Δ2)F[u]  

Δ1F[u]+Δ2F[u]=0; therefore, (Δ1+Δ2). It also follows from Eq. (3.2) that, if Q1[u] and Q2[u] 

are symmetry characteristics of F[u]=0, then so is their sum Q1[u]+Q2[u].  

(c) Let Δ1 and Δ2, as above. Then, by (4.15),  

1 1
ˆ[ ] [ ]F u L F u  ,   2 2

ˆ[ ] [ ]F u L F u  . 

Now, by the definition of the Lie bracket and the linearity of both Δi and ˆiL  (i=1,2) we have:  

1 2 1 2 2 1 1 2 2 1

1 2 2 1

ˆ ˆ[ , ] [ ] ( [ ]) ( [ ]) ( [ ]) ( [ ])

ˆ ˆ( ) [ ] 0 mod [ ]

F u F u F u L F u L F u

L L F u F u

         

   
 

We thus conclude that [Δ1 , Δ2]. Moreover, it follows from Eq. (3.3) that, if Q1[u] and Q2[u] 

are symmetry characteristics of F[u]=0, then so is the function  

 

Q1,2 [u] = Δ1 Q2[u] – Δ2 Q1[u] . 

 

      Assume now that the PDE F[u]=0 has an n-dimensional symmetry algebra  (which may be 

a finite subalgebra of an infinite-dimensional symmetry Lie algebra). Let {Δ1 , Δ2 , ... , Δn}{Δk}, 

with corresponding symmetry characteristics {Qk}, be a set of n linearly independent operators 

that constitute a basis of , and let Δi , Δj be any two elements of this basis. Given that [Δi , 

Δj], this Lie bracket must be expressible as a linear combination of the {Δk}, with constant 

coefficients. We write  

 

       
1

[ , ]
n

k
i j i j k

k

c


                                                  (5.1) 

 

where the coefficients of the Δk  in the sum are the antisymmetric structure constants of the Lie 

algebra  in the basis {Δk}.  
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      The operator relation (5.1) can be expressed in an equivalent, characteristic form by allowing 

the operators on both sides to act on u and by using the fact that Δku=Qk[u]:  

1 1

[ , ] ( )
n n

k k
i j i j k i j k

k k

u c u c u
 

 
       

 
   

 

1

[ ] [ ] [ ]
n

k
i j j i i j k

k

Q u Q u c Q u


                                       (5.2) 

 

      Example 5.1. One of the several forms of the Korteweg-de Vries (KdV) equation is  

 

F [u]   ut + uux + uxxx
 
= 0 . 

 

The symmetry condition (4.14) is written  

 

         S (Q ; u)  Qt + Q ux +  u Qx + Qxxx = 0   mod   F [u]                        (5.3) 

 

where S(Q; u)= ΔQ F[u]. The KdV equation admits a symmetry Lie algebra of infinite dimensions 

[1]. This algebra has a finite, 4-dimensional subalgebra  of point transformations. A symmetry 

operator (characteristic derivative) ΔQ is determined by its corresponding characteristic Q[u]=ΔQ 

u . Thus, a basis {Δ1 ,..., Δ4} of  corresponds to a set of four independent characteristics {Q1 ,..., 

Q4}. Such a basis of characteristics is the following:  

 

Q1[u]= ux ,   Q2[u]= ut ,   Q3[u]= tux – 1 ,   Q4[u]= xux +3tut + 2u 

 

The Q1 ,..., Q4  satisfy the PDE (5.3), since, as we can show,  

 

S (Q1 ; u) = Dx F [u] ,    S (Q2 ; u) = Dt F [u] ,    S (Q3 ; u) = t Dx F [u] , 

S (Q4 ; u) = (5 + x Dx + 3t Dt ) F [u] 

 

[Note once more that ΔQF[u] is of the form (4.15) in each case.] Let us now see two examples of 

calculating the structure constants of  by application of (5.2). We have:  

 

1 2 2 1 1 2 1 2 1 2

4

12
1

Δ Δ Δ Δ (Δ ) (Δ ) ( ) ( ) ( ) ( ) 0t x t x t x x t t x

k
k

k

Q Q u u u u Q Q u u

c Q


         

 
 

 

Since the Qk are linearly independent, we must necessarily have  12 0 , 1,2,3,4kc k  . Also,  

 

2 3 3 2 2 3 2 3 2 3

4

1 23
1

Δ Δ Δ ( 1) Δ (Δ ) (Δ ) ( ) ( )

( )

x t x t x t

k
t x x xt x k

k

Q Q tu u t u u t Q Q

tu u tu u Q c Q


       

        
 



NAUSIVIOS CHORA, VOL. 7, 2018  

 

http://nausivios.hna.gr/ 

C-44 

 

Therefore,  1 2 3 4
23 23 23 231 , 0c c c c    .  

 

 

6.  Recursion operators 
 

Let δu=αQ[u] be an infinitesimal symmetry of the PDE F[u]=0, where Q[u] is the symmetry 

characteristic. For any solution u(x
k
) of this PDE, the function Q[u] satisfies the linear PDE  

 

        S (Q ; u)  ΔQ F[u] = 0                                            (6.1) 

 

Because of the linearity of (6.1) in Q, the sum Q1[u]+Q2[u] of two solutions of this PDE, as well 

as the multiple λQ[u] of any solution by a constant, also are solutions of (6.1) for a given u. Thus, 

for any solution u of F[u]=0, the solutions {Q[u]} of the PDE (6.1) form a linear space, which we 

call Su .  

      A recursion operator R̂  is a linear operator that maps the space Su into itself. Thus, if Q[u] is 

a symmetry characteristic of F[u]=0 (i.e., a solution of (6.1) for a given u) then so is ˆ [ ]RQ u :  

 

          ˆ( ; ) 0 when ( ; ) 0S RQ u S Q u                                     (6.2) 

 

Obviously, any power of a recursion operator also is a recursion operator. Thus, starting with any 

symmetry characteristic Q[u], one may in principle obtain an infinite set of such characteristics 

by repeated application of the recursion operator.  

      A new approach to recursion operators was suggested in the early 1990s [11,15-17] (see also 

[8-10]) according to which a recursion operator may be viewed as an auto-Bäcklund 

transformation (BT) [18] for the symmetry condition (6.1) of the PDE F[u]=0. By integrating the 

BT, one obtains new solutions Q΄[u] of the linear PDE (6.1) from known ones, Q[u]. Typically, 

this type of recursion operator produces nonlocal symmetries in which the symmetry 

characteristic depends on integrals (rather than derivatives) of u. This approach proved to be 

particularly effective for matrix-valued PDEs such as the nonlinear self-dual Yang-Mills 

equation, of which new infinite-dimensional sets of “potential symmetries” were discovered 

[9,11,15].  

 

 

7.  An example: The chiral field equation 

 
Let us consider the chiral field equation  

 

   
1 1[ ] ( ) ( ) 0x x t tF g g g g g                                         (7.1) 

 

where, in general, subscripts x and t denote total derivatives Dx and Dt , respectively, and where g 

is a GL(n,C)-valued function of x and t, i.e., a complex, non-singular (nn) matrix function, 

differentiable for all x and t. Let δg=αQ[g] be an infinitesimal symmetry transformation for the 

PDE (7.1), with symmetry characteristic Q[g]=ΔQ g . It is convenient to put  
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Q[g] = g Φ[g]      Φ[g] = g
–1

Q[g] . 

 

The symmetry condition for (7.1) is  

 

ΔQ F[g] = 0   mod   F[g] . 

 

This condition will yield a linear PDE for Q or, equivalently, a linear PDE for Φ. By using the 

properties of the characteristic derivative, we find the latter PDE to be  

 

     1 1( ; ) [ , ] [ , ] 0 mod [ ]x x x t t tS g D g g D g g F g                    (7.2) 

 

where, as usual, square brackets denote commutators of matrices.  

      A useful identity that will be needed in the sequel is the following:  

 

  
1 1 1 1( ) ( ) [ , ] 0t x x t x tg g g g g g g g                                      (7.3) 

 

      Let us first consider symmetry transformations in the base space, i.e., coordinate 

transformations of x, t. An obvious symmetry is x-translation, x΄=x+α, given that the PDE (7.1) 

does not contain the independent variable x explicitly. For infinitesimal values of the parameter 

α, we write δx=α. The symmetry characteristic is Q[g]=gx , so that  Φ[g]=g
–1

gx . By substituting 

this expression for Φ into the symmetry condition (7.2) and by using the identity (7.3), we can 

verify that (7.2) is indeed satisfied:  

 

S (Φ ; g) = Dx F[g] = 0   mod   F[g] . 

 

Similarly, for t-translation, t΄=t+α (infinitesimally, δt=α) with Q[g]=gt , we find  

 

S (Φ ; g) = Dt F[g] = 0   mod   F[g] . 

 

Another obvious symmetry of (7.1) is a scale change of both x and t :  x΄=λx,  t΄=λt. Setting 

λ=1+α, where α is infinitesimal, we write δx=αx, δt=αt. The symmetry characteristic is 

Q[g]=xgx+tgt , so that Φ[g]=xg
–1

gx+tg
–1

gt . Substituting for Φ into the symmetry condition (7.2) 

and using the identity (7.3) where necessary, we find that  

 

S (Φ ; g) = (2 + x Dx + t Dt ) F[g] = 0   mod   F[g] . 

 

      Let us call Q1[g]=gx , Q2[g]=gt , Q3[g]=xgx+tgt , and let us consider the corresponding 

characteristic derivative operators Δi defined by Δi g=Qi  (i=1,2,3). It is then straightforward to 

verify the following commutation relations:  

 

[Δ1 , Δ2] g = Δ1 Q2  – Δ2 Q1 = 0      [Δ1 , Δ2] = 0 ; 

 

[Δ1 , Δ3] g = Δ1 Q3  – Δ3 Q1 = – gx = – Q1 = – Δ1 g      [Δ1 , Δ3] = – Δ1 ; 
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[Δ2 , Δ3] g = Δ2 Q3  – Δ3 Q2 = – gt = – Q2 = – Δ2 g      [Δ2 , Δ3] = – Δ2 . 

 

      Next, we consider the “internal” transformation (i.e., transformation in the fiber space)  

g΄=gΛ, where Λ is a non-singular constant matrix. Then,  

 

F[g΄ ] = Λ
–1 F[g] Λ = 0   mod   F[g] , 

 

which indicates that this transformation is a symmetry of (7.1). Setting Λ=1+αM, where α is an 

infinitesimal parameter while M is a constant matrix, we write, in infinitesimal form, δg=αgM. 

The symmetry characteristic is Q[g]=gM, so that Φ[g]=M. Substituting for Φ into the symmetry 

condition (7.2), we find:  

 

S (Φ ; g) = [F[g] , M ] = 0   mod   F[g] . 

 

      Given a matrix function g(x,t) satisfying the PDE (7.1), consider the following system of 

PDEs for two functions Φ[g] and Φ΄[g]:  

 

     

1

1

[ , ]

[ , ]

x t t

t x x

g g

g g





    

     
                                           (7.4) 

 

The integrability condition (or consistency condition) ( ) ( )x t t x
     of this system requires that 

Φ satisfy the symmetry condition (7.2); i.e., S (Φ ; g)=0. Conversely, by applying the integrability 

condition ( ) ( )t x x t    and by using the fact that g is a solution of F[g]=0, one finds that Φ΄ 

must also satisfy (7.2); i.e.,  S (Φ΄; g) = 0.  

      We conclude that, for any function g(x,t) satisfying the PDE (7.1), the system (7.4) is an 

auto-Bäcklund transformation (BT) [18] relating solutions Φ and Φ΄ of the symmetry condition 

(7.2) of this PDE; that is, relating different symmetries of the chiral field equation. Thus, if a 

symmetry characteristic Q=gΦ of the PDE (7.1) is known, a new characteristic Q΄=gΦ΄ may be 

found by integrating the BT (7.4); the converse is also true. Since the BT (7.4) produces new 

symmetries from old ones, it may be regarded as a recursion operator for the PDE (7.1) [8-

11,15-17].  

      As an example, consider the internal-symmetry characteristic Q[g]=gM (where M is a 

constant matrix) corresponding to Φ[g]=M. By integrating the BT (7.4) for Φ΄, we get  Φ΄=[X, M]  

and thus  Q΄=g[X, M], where X is the “potential” of the PDE (7.1), defined by the system of PDEs  

 
1 1,x t t xX g g X g g                                              (7.5) 

 

Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of the 

potential X. Indeed, as seen from (7.5), in order to find X one has to integrate the chiral field g 

with respect to the independent variables x and t. The above process can be continued 

indefinitely by repeated application of the recursion operator (7.4), leading to an infinite 

sequence of increasingly nonlocal symmetries.  

      Unfortunately, as the reader may check, no new information is furnished by the BT (7.4) in 

the case of coordinate symmetries (for example, by applying the BT for Q=gx we get the known 
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symmetry Q΄=gt ). A recursion operator of the form (7.4), however, does produce new nonlocal 

symmetries from coordinate symmetries in related problems with more than two independent 

variables, such as the self-dual Yang-Mills equation [8-11,15].  

 

 

8.  Concluding remarks 
 

The algebraic approach to the symmetry problem of PDEs, presented in this article, is, in a 

sense, an extension to matrix-valued problems of the ideas contained in [1], in much the same 

way as [4] and [5] constitute a generalization of the Harrison-Estabrook geometrical approach [2] 

to matrix-valued (as well as vector-valued and Lie-algebra-valued) PDEs. The main advantage of 

the algebraic approach is the bypassing of the difficulty associated with the differential-operator 

representation of the symmetry-generating vector fields that act on matrix-valued functions in the 

jet space.  

      It should be noted, however, that the standard methods [1,4,5] are still most effective for 

calculating symmetries of PDEs. In this regard, one needs to enrich the ideas presented in this 

article by describing a systematic process for evaluating (not just recognizing) symmetries, in the 

spirit of [4,5]. This will be the subject of a subsequent article.  
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