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1. Introduction

This paper presents a certain generalization of an older geometric technique [1]
which employs exterior differential forms for the derivation of symmetries of
partial differential equations (PDEs). Specifically, the range of applicability of the
technique is extended to comprise vector-structured (and, in particular, matrix-
structured) PDEs that would otherwise have to be treated by resolution to
components. The latter practice often proves to be inconvenient, as the total
number of equations constituting the system increases, and so does the number of
dependent variables. It is thus desirable in such cases to retain the original
(vector) form of the PDEs, which is also a simpler and, typically, more elegant
form.

Geometric techniques for symmetry analysis of PDEs were originally proposed
by one of the authors (B.K.H.) and F. B. Estabrook [1] in 1971, and later further
developed by Edelen [2]. These techniques provide an alternative to other
established algebraic formulations (see, for example, the excellent recent book by
Olver [3] and the extensive references therein). Both approaches have been
successful in treating PDEs for scalar-valued fields. It is our opinion, however,
that more can be said about PDEs in which the dependent variables have values
in some arbitrary vector space (technically we would say that the equations define
sections of some arbitrary vector bundle over the manifold of the independent
variables). It turns out that, in such a case, the system of PDEs is geometrically
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equivalent to a set (actually, a differential ideal) of vector-valued differential
forms defined on a manifold with inhomogeneous ‘coordinates’ (a mixture of
scalars and vectors).

There are two technicalities in this more general problem that never emerge in
problems for scalar fields. First, when imposing invariance (closure) of the ideal
of forms that represent the system, under the action by the Lie derivative, it must
be kept in mind that the Lie derivative preserves the degree and the specific
vector-valuedness of any form on which it operates, and that any form in the
ideal must exhibit the same vector-valuedness as the forms that generate the
ideal. As it turns out, this forces us to seek automorphisms of the underlying
vector space before any actual calculations may begin. Second, if by x* and y*
we denote the independent and dependent variables, respectively, of the PDEs,
and if F(x', y*) is a function of these variables, then the vectorial nature of the y®
generally does not permit us to write the exterior derivative of the 0-form F in
the usual way as

dF=QI;:dx"+a—F;dy"‘ (1.1

ax ay

(the derivatives of F with respect to the y* are not defined, in general). We thus
replace the last term on the right-hand side of Equation (1.1) by a quantity which
we denote dF and formally define as the difference between the (total) exterior
derivative dF and the well-defined quantity dx’ 8F/dx’. The operator d can be
thought of as an exterior derivative in the fiber space; thus it may appropriately
be given the name internal exterior derivative. It should be clear that the
expression dF may involve the 1-forms dy®, but not the 1-forms dx'.

Rather than overwhelm the reader with generalities, we have chosen to
illustrate the use of the method through two well-known examples: the two-
dimensional Dirac equation (Section 3) which involves multispinor-valued
differential forms, and the full classical Yang-Mills free-field equations in Min-
kowski spacetime (Section 4) which involve Lie algebra-valued forms. Although
the calculations in these examples may seem lengthy and involved to the reader,
we believe that by no other technique could one derive the symmetries faster and
in a less complicated way (see our concluding remarks in Section 5). As noted in
Section 5, another example, with new results, is treated in [4].

Two final remarks. First, our attention is focused on the derivation of isovec-
tors of invariance groups, i.e., on symmetry transformations alone; no attempt is
made in this article to apply or extend the solution-generating techniques
described in [1]. Second, our domain of interest in the present work is restricted
to point (and, in particular, projectable) transformations. (The question, whether
the isogroup of projectable symmetries is exhaustive, is not addressed in this
paper.) The search for ‘generalized’ symmetries by employing geometric tech-
niques is a much more difficult problem, on which research is in progress.
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2. Exterior Differential Systems

We are given the following problem: Given a partial differential equation (PDE)
or a set of PDEs. Is there an equivalent set of differential forms in involution with
respect to the independent variables, i.e., a set whose integral manifolds are
solutions of the PDEs?

Cartan [5] has set up criteria for the equivalence of a given set of PDEs (in
n—p dependent variables and p independent variables) with a closed set of
differential forms on a differentiable n-manifold M. The above set of forms is the
basis of a differential ideal of the algebra of forms on M. If an integral manifold
N of dimension p exists, we can choose p freely varying variables as coordinates
of N and we can functionally specify, in terms of these coordinates, the remaining
(n—p) variables. Such an integral manifold then represents geometrically a
solution of the original set of PDEs.

Let I' be a differential ideal of forms defined on M. An integral manifold of T is
a pair (N, ¢), where N is a submanifold of M and ¢: N— M is a differentiable
map such that the image under the dual map ¢*, of any form vy in T, vanishes
identically: ¢*y=0. This implies that the forms vy in T are annihilated by the
tangent vectors of N (actually, by the image of these vectors under the differen-
tial map d¢ = ¢x). The integral manifold (N, ¢) defines a solution of the system
of exterior equations {y; = 0}, or the system of PDEs {¢* v, = 0}, where the forms
Y« are a basis of I'. The forms vy, need not be of the same degree.

Suppose now we are given a set of first-order PDEs in n — p dependent and p
independent variables, and let {y. = 0} be the corresponding exterior system. We
assume for the moment that the dependent variables in the PDEs are scalars (this
includes the possibility that they are components of objects defined on a tensor
bundle over the manifold of the independent variables). Let V(x) denote any
vector field on the n-dimensional manifold M on which the forms v, are defined.
Such a field defines a one-parameter group of diffeomorphisms of M [6]). We are
interested in a special class of diffeomorphisms, namely those that map integral
manifolds of the exterior system into integral manifolds of the same system. This
amounts to requiring that the ideal ' of the forms v, be invariant under Lie
transport along the integral curves of V(x). This can be arranged by writing

Lv=bfw (2.1)
v

where the left-hand side is the Lie derivative of y, with respect to V, and where
the b¥=b¥(x) are fields of forms on M. The vector fields V(x) that satisfy
Equation (2.1) are called isovectors [1, 7] and they are operator realizations of the
Lie algebra of the isogroup of the ideal I' (see Appendix for definition of group
operators). In classical terms, the isogroup is the group of transformations that
leave the original set of PDEs invariant (they preserve their forms and they map
solutions into other solutions).
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Assume now that the n — p dependent variables can be labelled as {y.}, where
a may denote collectively any set of indices (&, a,. . .) which are distinct from the
single index i, where i=1,..., m for some integer m. Assume further that we
can find an m-dimensional vector space L with basis {¢;} (i=1, ..., m), such that
(a) the basis vectors ¢; are not functions of the coordinates of M and they
commute with the elements of any tensor bundle over M, and (b) we can rewrite
the original PDEs in terms of a new (and with fewer elements) set of dependent
variables defined by

Yo = Yabi- 2.2)
Clearly, the y, are elements of the space L. Now, when the original PDEs are
satisfied, the yi are functions of the coordinates {x*} (k=1,...,p) of the

submanifold N. Thus the PDEs define sections of a vector bundle over N, the
fibers of which are isomorphic to L. On the other hand, if we relax the
requirement that the PDEs be satisfied (i.e. if we relax vy, = 0) then we can define
differential forms on M in n (independent) variables. With the introduction of the
new variables y, satisfying conditions (a) and (b), the original set of forms {7} in
n variables can be substituted by a set (with fewer elements) of forms {8;} in n’'
variables (n" < n). These new forms are vector-valued with values in L:

Bi = Bje:. (2.3)
Clearly, {8/} = {%}. Note also that, by condition (a),

If L has the additional structure of a Lie algebra, then we define

(B:, Bj] = ﬁf A B?[ek, en)

= CiBi rBfem (2.5)
and one can show that
d[B:, B;]1=[dB:, B+ (-1)[B:i,dB;] (2.6)

where g is the degree of B;. We note that the space L is in some sense a
‘bookkeeping’ device which enables us to work with a smaller number n’ of
variables instead of the original number n. It is not to be confused with the space
dual to the space of basis 1-forms underlying the differential forms used here.
Contraction of forms with vectors in this dual space, such as Equation (2.10),
gives us values in L, hence the term ‘vector-valued’.

Introduction of the new variables requires modification of Equation (2.1) to
take into account the vector-valuedness of the forms B.. The generalization of
Equation (2.1) will depend on the nature of the problem at hand (see subsequent
sections for examples). The general rule is that the action of the Lie derivative on
the B should not alter their individual tensorial characters. In particular, the
right-hand side of the generalization of Equation (2.1) must now accommodate
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automorphisms of the space F%(M)® L, where F?(M) is the space of all forms
on M, of degree p; equal to the degree of the form B; on which the Lie derivative
operates on the left-hand side. Furthermore, the vector field V is now defined on
an n’-dimensional manifold with ‘mixed’ scalar and L-valued coordinates. Thus
we expect that V will have both scalar and L-valued components [8].

As an example, consider the case where all forms vy, are of the same degree
and where the dependent variables in the given PDEs can be expressed as fields
with values in gI(N, C) (a problem of this type is the self-dual Yang-Mills
equations [4]). Then the B; will be gl(N, C)-valued, and Equation (2.1) is
generalized to

LB =bBx+ AFBy + BiBF 2.7

where the b¥ are scalars (0-forms) while the A¥ and B¥ are in gI(N, C) (0-form
matrices). (Note that we have separated the coefficients that commute with the g;
from those that do not commute with the B;.) The vector V will have both scalar
and gi(N, C)-valued components.

In general, the vector V will have a formal representation

.0 d
V= U'—+ Wa - .

ax' 9Ya (2.8)
where the U’ are scalars and the W, = WXe, are L-valued. The literal use of
9/dy. as a differential operator is limited, due to the L-valuedness of y,. Quite
generally, we define d/dy, by the requirement

%(Aﬁyp)=A°‘ when [y., AF]=0 (all B). 2.9)

This definition, although not complete, is sufficient for all applications of interest.
In the original variables y% the vector V is written as, by convention,
.0 d d
V=U —+ Wk —=V*— 2.10
ox' ayk dz* (2.10)
where by z* (p=1,..., n) we denote the members of the set of all n variables x'
and y%. The components V* will depend on a set of r, say, parameters
a',...,a". It is possible (at least locally) to arrange a canonical parametrization
of V*, so that

a
V=akV:(Z)aZ—#E a"Pk. (211)

The quantities P, = V 8/3z* are the infinitesimal operators of the isogroup.
They are realizations of the Lie algebra of a group of transformations on the
n-dimensional manifold M with coordinates {z*}. Infinitesimal transformations
on M are of the form
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z* = z#* - 8a* V¥(2) (2.12)

(see Appendix; put V§ =—U¥ to recover the formulas therein; the sign in front
of 8a* is required by group representation theory.) We remark that the relation
between Equations (2.11) and (2.12) remains the same in the n’ variables {x’, y,}.

3. Dirac Equation

Quite generally, the Dirac equation for a fermion field ¢(x) in the presence of a
vector field A, (x) may be written [9]

[y*(0,.— Au) — 1] =0, (3.1)

where 9, =9/9x*; p=0,1,2,3. The x* are coordinates in flat spacetime M*
with the usual signature —2; the A, are n X n complex matrices and the y* are
4 x 4 matrices. The latter satisfy the anticommutation relations

{y*, y=-2g"""1,4 (3.2)
where g"” =diag(1l,—1,—1,—1). Finally, ¢ is a 4n-component object. It can be
written as an n-dimensional column vector with entries ¢, . .., ., where each

entry is a four-dimensional complex vector. Thus, at each point x of M*, (x) has
values in a space L which is isomorphic to the tensor product C" ® C*.

To simplify the subsequent algebra, we make the assumption that we live in a
two-dimensional submanifold of M*, say M?, with coordinates x°= ¢, x' = x, and
with signature g = diag(l, —1). We put A*=(A°% A")=(d, A), so that A, =
(d,—A). The Dirac equation then becomes (using a standard notation for
derivatives)

Y+ Y — Y PU+ Y AP — ¢ =0. (3.3)
Multiplying by the 2-form d¢dx we obtain the exterior equation

n=9"dydx+y' dtdy— (Y°OyY— y' Ag+ ) dtdx
=0 for solution. 3.4)

The condition n=0 on M? is equivalent to the Dirac equation (3.3). We relax
this requirement, however, and regard 7 as a 2-form in five independent variables
t,x, P, P, A. (In order to define a differential ideal we must also consider the
3-form d. Since no other 3-forms exist in the system, however, we can disregard
dn for the purpose of finding the isovectors.) Clearly, the form n has values in
the space L in which s takes its values.

To find the isogroup of the ideal, we write

Fn=by (3.5)
\'4

where b is assumed to be a tensor product of an n X n matrix with a 4 X 4 matrix
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[10] (so that the Lie derivative produces an automorphism of the space of 7, as
desired). Let V be of the form

i d a
V= +E—+B—+F—+ - 3.6
D py" Py p G (3.6)

The D and E are scalar functions which we assume to depend only on # and x; B
is a 4n-dimensional column vector, and F and G are n X n matrices [8].

We now substitute Equation (3.6) and the expression for 7 into Equation (3.5),
using the familiar relations

Fyk=Vk, Pdyk=dVvk=Vkdy"
\'4 \%

where V = V* 9/ay*. There is a problem with £ diy = d B, since the derivative B,
is not defined, in general. We can overcome this difficulty by defining an internal
exterior derivative (i.e. an exterior derivative that acts only on the fields and not
on the spacetime variables) as follows:

df(x*, ¢y =df —a,f dx* (3.7)

where f is any function of the spacetime variables x* and the fields ¢'. It is
expected that df will include terms in d¢'. Note that, by definition,

df(x*)=0;  df(y’)=df(s). (3.8)
We can now proceed with Equation (3.5) by putting

%dy=dB = B,dt+ B, dx +dB,

\'4

vyhere dB may include terms in d¢, d®, d A, but not in dt, dx. We thus arrive at
an equation involving 2-forms. Equating terms in dtdx we get

v'B,+vy'B, — y’Fy — y*®B+ y'Gy+ y' AB— B—
—(Di+ E)(y'®y — v Ay + )
=—b(y’Qy — vy Ay + ). (3.9)

The remaining terms can be separated into those that contain dt and those that
contain dx:

(—E~4"+ DyY)dtdy + y' dtdB = by' dtdy, (3.10)
(Exy°— D;y")dydx + y*dB dx = by’ difr dx. (3.11)

From the above equations it is clear that B = B(t, x, ¢) and that B must depend
linearly on . Thus we put

B(t, x, ¥) = e(t, x)¢¥ + h(t, x), (3.12)

where e is a matrix and h is a column vector. Then dB = e d¢, and Equations
(3.10)—(3.11) give
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—Ey°1,+ Dy'1,+y'e= by, (3.13)
E.y°1,— Dy'1,+ y% = by°, (3.14)

while Equation (3.9) becomes an equation of the form Py + Q = Ry, which is

true for all ¢ iff Q =0, P = R. Explicitly,
Y°h,+ y'h, — ¥Y°'®h+ y'Ah—h =0 (3.15)

(which says that h is a solution of the Dirac equation (3.3)) and
Yo+ yle, — Y°F— y'Pe+ y' G+ y' Ae —e —

—(Di+ E)(y'®—y'A+1)
=—b(y°D—y'A+1). (3.16)
Using Equation (3.2) we solve Equation (3.14) for b and substitute the result into

Equations (3.13) and (3.16). This gives a pair of partial differential equations,
which after pre-multiplication by y° are written

E1+Dy°y'1, = E’y'l.+ Dil+[e, v°y'], (3.17)
—e+7y'ex + LLF+9°y' G+[e, Y1+
+D(1:@+ 7’y A-+°1,)
=D,(Y’y'®+1,A- ¥'1,) +[e, P]+[e, ¥’y' Al (3.18)
The matrix e is a tensor product of an n X n matrix with a 4 X 4 matrix. Thus e
can be expanded in a basis of 16 linearly independent 4 X4 matrices, the

coeflicients of expansion being n X n matrices. We choose as a basis the 16 Dirac
matrices I'* defined as follows:

I'=1,,
o=y, v v =",
F6—11 — 0_01’ 0_02’ 0_03, 0.12, 0_13, O_ZSE o,u.v’
12715 = oS = —yhoS,
16 = y0yly2a3 = 45
where

o =3[y, ¥ 1= vy + g - Lu.
We thus make the expansion
e(t, x) =al,+ By’ + By + B2y*+ B3y* +
+8'0% + 8202 + 8303 + 8%012+ 85013 + 8% +
+€0,YS,YO+ 517571+627572_"6375')'3-*—{75, (319)

where the a, B*, 8%, €*, { are n X n matrices which depend on ¢ and x (tensor
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products between the two types of matrices are assumed in Equation (3.19)).
Substituting Equation (3.19) into Equations (3.17) and (3.18), and comparing
similar terms in the basis I'*, we obtain the following set of equations:

ﬁ0=BI=BZ=33=09 82=83=84=65=0’

=¢€'=0, =0,

D,=E =0, D,1,=E1,=-28",

4~ (D, ql=q. +[A, q]=0, =8¢, ¢,

—a,+ F=D,A+[a, ®], a,+G=D,®+[a, Al

Remembering that the variables ®, A are independent of the variables ¢, x, we
integrate the partial differential equations to give

D(x)=wx+1, E()=wt+xo, 51=~—;31n,

g=constant- 1,=q-1,, q=38% €, ¢,
F(t7 x’ ®? A) = wA+[a’ ¢]-*- at’
G(t’ X, ¢’ A) = w¢)+[a, A]_ Qy,

where the w, 7o, xo, 8%, €2, € are constants, while a(t, x) is a matrix function.
The above solutions, together with Equations (3.12), (3.15) and (3.19), give the
solution for the vector V of Equations (3.5)-(3.6):

d i)

= (@x + To) —+ (@f + xo) — +

V=(wx To)at+(mt XO)ax
+[a(t,x)¢—%0'°1¢l+86023([1+

d
+EV Yy + eV Y Y+ h(, x)] ;/1+

+HwA+[a, @]+ ;) % +

D +[a, Al- ) aiA. (3.20)

Using Equation (2.11), we can write the infinitesimal operators P, correspond-
ing to the constants o, 7o, xo, Which represent standard Lorentz transformations,
time translations, and space translations, respectively. The constants 8°, €* and €
represent accidental symmetries of the two-dimensional model, while the
presence of the arbitrary solution h(t, x) as an additive factor reflects the linearity
of the Dirac equation. Finally, the matrix a(t, x) defines the following infinitesi-
mal transformations:
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8y =—al(t, x)1p, A, =—{a, Ay~ e, (u=0,1). (3.21)
The corresponding finite transformations are
¥=Uy, A,=UAU'-UsU"! (3.22)

where U(x*) = exp{—a(x*)}. These are a general type of gauge transformations.
Note that when « is a constant multiple of the identity matrix, then Equation
{(3.22) is simply a scale change of .

For useful related work on the symmetries of the Dirac equation the reader is
referred to [11] and [12]. The latter of these has a very nice treatment of
separation of variables for the Dirac equation.

4. Yang-Mills Free-Field Equations

We now study a case where the space L has the structure of a Lie algebra, so that
the exterior equations are defined by Lie algebra-valued differential forms.
Consider again the Minkowski space M* with metric g,, of signature —2. The
Yang-Mills (YM) free-field equations in this space may be written

8. F* —[A,, F*]=0, (4.1)
F* = §*A” — 9" A* —[ A*, A”], 4.2)

where the spacetime functions A*(x), F*'(x) (x=x*, ©=0,1,2,3, in this
section) have values in some arbitrary Lie algebra L with basis {L,}:

Au(x)=Ag(x)Le,  Fu(x)=F5(x)L, (4.3)
[Li, Lj]= C§Lk. (4.4)
The antisymmetric tensor F*” has six independent spacetime components. We
put
(F°, F, F%, F'?, F, F?*) = (F', F°, F?, F*, F°, F°).
Multiplying Equations (4.1) and (4.2) by the 4-form
% €rpp dx* dx* dx” dx? =dtdx dydz,

we obtain a set of ten exterior equations which are equivalent to the YM system.
Stated differently, we define a set of ten 4-forms (in 14 variables) whose
restriction to M* is required to vanish identically in order that the YM equations
be satisfied:

v, =dtdF'dydz +dtdx dF*dz +dedx dy dF* +
+([A!, F'1+[ A2, F2]+[ A%, F*])dtdx dydz,
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yv2=dF'dxdydz-dtdxdF*dz—-dtdxdydF’—

- ([A% F'1+[A? F*]+[A% F°])dtdx dydz,
v3=dF*dxdydz+dtdF*dydz —dtdxdydF°®+

+(-[A°, FY]+[A!, F*]-[A® F)dtdxdydz,
vs=dF’dxdydz+dtdF°dydz +drdx dF®dz +

+(-[A°, F]+[A!, F*1+[A?% F*])dtdxdydz,
ys=dAl'dxdydz +dtdA%dydz —(F'+[A°% A'])drdxdydz,
ve=dA?dxdydz+dtdx dA®dz — (F?+[A° A?))dtdxdydz,
v =dA*dxdydz+dtdxdydA®—(F?+[A° A’] drdxdydz,
ve=—dtdA’dydz+dtdxdA'dz —(F*+[A', A*])dtdxdydz,
vo=—dtdA3dydz+dtdxdydA' = (F°+[A', A*])drdxdydz,
yio=—dtdx dA*dz +dtdxdy dA?— (F°+[A?% A’ dtdx dydz.

It can be shown that the forms dv, are in the ideal of the vy, (note, for example,
that dys = de(y, +[A°, vs]) + dx[ys, A']). Thus this ideal is closed.

The action of the Lie derivative on the y must preserve the Lie algebra-
valuedness of these forms. We are thus seeking automorphisms of L. For this
purpose we write

g‘yi = afy;( +Ad(bf)')‘k
\'4

=afy +[bf, vl (4.5)

where the a* are scalar functions, the b¥ are L-valued functions, and where
Ad(b) denotes an operator associated with the adjoint representation of L for
some element b of L. We seek symmetries for which the a¥ and the b¥ may
depend on the x*, but not on the A* and F* (this means that the parameters of
the symmetry group are, at most, functions of x).

We write V as

— 0 v k 9
V—D”(X)W“I'B“(X,A , F )m‘i’

9

+ i v k -
G(x,A,F)aF,,

(4.6)

where the D* are scalars, while the B* and G‘ are L-valued. Substituting
Equation (4.6) into Equation (4.5), and using Equation (3.7) to write
dB* = B4 dx*+dB*, dG*=GXdx*+dG*,

we obtain a set of 10 equations involving 4-forms. We proceed by equating the
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coefficients of dsdx dy dz on both sides of each equation. This again gives a set
of 10 equations which we write below. For brevity we do not display the
right-hand sides explicitly, but we introduce the symbol I'x to denote the

coefficient of dtdx dydz in
Gi+Gi+ Gi+D4([A, F'1+[A%, F?]+[ A3, F*)+
+[B', F'1+[A', G'1+[B? F?]+[ A%, G*]+[B’, F’]+[A%, G
= a{‘f‘k + [bf, Fk],
G- Gy~ G;— D&([A°, F']+[A%, FY1+[A%, F]) -
—((B% F'1+[A° G'1+[B? F']+[A% G*]+([B’, F’]+[A%, G7))
= a5l +[b%,T%],
Gi+Gi— G+ D4 (-[A% FP1+[A', F*]-[A°, F°]) -
-[B° F?]-[A%, G*]+[B', FY]+[A', G*]-[B, F°]-[A®, G°]
= a§rk + [b:’;, lwk]a
G+ G5+ G+ D= (-[A° F?] + [Al, F5]+[A? F®) —
—[B°, F*1-1 A% G*1+[B', FF1+[A', G’]1+[B? F°]+[A?% G°]

=afTy +[b], ],
B!+ BY— DX (F'+[A% A')—(G'+[B°, A']+[A° B')
=a&ly +[b%, ],
B?+ BY— DA(F*+[A°, A%]) —(G*+[B°, A*]+[A° B?)
=akT+[bE, Tk,
B3+ BY- D&(F*+[A% A’]) - (G*+[B°, A’]+[A° B’)
=alTy +[b5,I],
—B2+ Bl - D%(F*+[A', A’) - (G*+[B', A’]+[A', B?)
=afT +[b§,T],
—-B3+Bl-D%(F°+[A', A’) - (G’ +[B', A’]+[A', B)
= agrk + [bg s Fk]a
—B3+ B2— DX (F°+[A?%, A*]) - (G®+[B?, A’]+[A? B?)
=atole +[bto, Tkl 4.7)
We now put
B* = a*'(x)A” + B**(x) F* + B*(x, A”, F*),
G’ = 8*(x)A* + e*(x)F* + G'(x, A*, F"), 4.8)

where the «, B, 8, € are scalars (note the summationsj. Then
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dB* = a** dA” + B** dF* +dB*,
dGi = 6" dA* + e dF* +d G,

After these expansions are made, the remaining terms in the 10 equations
obtained by expanding Equation (4.5) can be divided into (a) those that are scalar
multiples of the various basis 4-forms (i.e., multiples in which the coefficients
commute with the basis 4-forms), and (b) those (terms) that are not of the type
(a).

There are 40 different terms of type (a) (we do not include terms in dtdx dy dz
that were taken care of earlier). Comparison of coefficients of similar terms thus
yields a set of 400 equations (certain of which are trivial identities). Using these
equations we can eliminate the a¥ from our problem by expressing them in terms
of other quantities. By this process we also obtain a number of algebraic and
differential equations for unknown quantities.- (We regret that we cannot display
all of our results explicitly, but this would be practically impossible for a paper of
average length. We invite the interested reader to undertake the filling-in of
missing steps as an instructive exercise.) From the 400 equations mentioned
above we also obtain information about the coefficients «, 8, §, € in Equation
(4.8):

B =0, all u,k;

§12= 521 = —§*0= 5! 513 =531 =—§0= g2,
823 — _332 — _860.E 83, 643 — _852 — 661 = 84;
all other 8* are zero;

a = kD%, w#w,

where k =+1 or —1 according as the product uv =0 or # 0 (the a* with u=»
will be specified later);

€0=efl= e == M=),
612=€56=D;’ P =—¢e%=Dp!,
€= _¢36 = D(;’ 15= 26 = _pO
€= 5 =p2. 3 =e¥5=p2,

€ =¢e5=D0, 3l=—¢%=p3,
632=€54=D§’ €l=—€3=—_p2,
€2 =P =pl, =2 =_p?

(the €™ with i = k will be specified later).
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For the coefficients a* we have:

ai=D{+D}+D3+e*=D{+D;+D}+e?*=D}+ D3+ D3+
aa=D}+D,+Di+e*=DV{+D;+Di+e*=D.+D3+D}+¢"
a3=DV+D;+Dj}+e*=D}+D}+D}+€* =D, +D}+D}+e?,

ai=D?+D,+D}+e*=D?+D3+D}+€e’=D;+D}+D; + €%,

DY+ Di+D3+a"=D}+ D3+ D}+a"
D?+ D+ Dj+a” =D+ Dj+ D} +a*

5
as
6
ae
7
a; =

DY+ D;+D3+a=D}+ D2+ D3+a%,

ai=D?+Di+D}+a''=D{+D}+Dj}+a%,
a3=D}+Di+D3+a''= DY+ Di+ Di+a*,

aig=D?+D}+ D3+ a**=D?+D}+ D} +a>,

—ai=a3=a;=D}, ~ai=-ai=ajo=D),
at=a3=a%=-D?, -—aj=aé=a3=D},
a3=—-a¢=-alo=D,, a3=-aj=aly=D],
—a}=-a%=a’=D}, aj=-a$=-ai’=D3,
ai=—a5=-a3=D3, ai=a3=as’=-D;7,
@i=-al=al®=D3, ai=-al=-al=D3,
—a¥=a8=-a3=6", -al=al=-ai=8?
—ay’=aj=-a5=8%  al’®=-ai=al=8%

the remaining af¥ are zero.

We now turn to the terms of type (b) in the expansion of Equation (4.5). These
terms can be divided into four kinds, according to their dependence on the basis
3-forms dtdxdy, dtdxdz, dtedydz or dxdydz. The L-valued coefficients of
each of these basis 3-forms must be equated in each of the 10 exterior equations,
the process thus yielding a set of 40 equations for 1-forms. These equations are of
two general types:

[Cc,dY*]=0 4.9)
and
dH =[ek,dY"], (4.10)

where the C, and e} are elements of the set {+b/} (note however that the
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indexing of the e/ is totally irrelevant to that of the b), where the Y* denote the
A* and F*, collectively, and where the H' denote the B* and G*, collectively.
Given the independence of the 1-forms d Y¥, and the fact that the C, and Y* do
not commute, Equation (4.9) implies C; = 0, all k. Also, given that, by definition,
dY*=dY*, dei(x) =0, Equation (4.10) can be integrated immediately:
H'=[ek, Y1+ hi(x),
where h'(x) is an arbitrary function. We now state our results explicitly:
bi=b}=b3=0bi=0b", b3 = bS = b7 = b§ = b3 = b} = b?,
B =-b=h0=>, b =~bl=bi=Db",
bi®=—-b}=b5=b>, b3 =—b]=b§=0"
all other b¥ are zero;
B* =[b%, A*]+ A*(x), G* =[b', F¥]+ g*(x) + J*,
where the A*(x) and g*(x) are arbitrary functions, and where
J'=-[b* A% -[b*, A%, JP=[b, A']-[D°, A7),
P=[b*, A'T+[b°, A%, TP =[b%, A%+ (D%, A%,
P =[b*, A% -[b°, A%, e =[b% A"T+[b%, A'].

Making the appropriate substitutions into Equation (4.8), we obtain expressions
for B* and G' which we substitute back into the 10 equations (4.7). The
coefficients a* appearing in these equations can be eliminated in favor of other
quantities, as we have seen already, while certain substitutions can also be made
with regard to the b¥. The result is a set of equalities between expressions that
can be loosely described as a generalized type of ‘polynomials’ in the variables A*
and F*, with x-dependent coefficients. The ‘constant’ term in such a ‘polynomial’
is a matrix function f(x), while the other terms are of the following kinds:
gA*, qF*, qlA*, A"), q[A*,F¥], [Q,A*], [Q,F, [Q,[A* A",
[Q,[A¥, F*]], where q(x) is a scalar function while Q(x) is an L-valued function.
Coefficients of similar terms are then equated in each of the 10 polynomiai
equations, this process yielding an enormous set of algebraic and partial differen-
tial equations which, however, are not hard to solve. Indeed, by a straightforward
procedure, we find:

sl=52=83=5*=0;

bl=b2=b(x), b =b'=b"=b=0;
gi(x)=0, k=1,...,6;

A¥(x) =d"b(x) = g**b,,.
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We also obtain the following set of partial differential equations:
D?=D;=D};=D}=0"
D{=Di=w', D%=D?=w?  D?=D}=d’
Dy=-Di=w*, Dl!=-Di=o0°, Di=-D3=0o"

where the o' are functions of x. Finally, we have the relations

a®=gll=qg2 =¥ =—¢°

= 2= 33 M= S5 (6= ) 0

The general solutions of the partial differential equations can be found by a
power series expansion of the D*. The solutions are
D%=co+at+ ayxt+aaytazzt
+Bo(F + x*+ y* 4 2%) = 2(Bitx + Baty + Batz),
D'=c,+ax+at+ ayy+ asz—
—Bu(# + x? = y* = 2%) + 2(Botx — Boxy — B3x2),
D’=¢,+ ay+ oyt — asx + gz —
=B~ x*+ y* = 2%) + 2(Boty — Bixy — B3y2),
D3=c¢itaz+ azl— asx — oy —
—Bs( — x*— y*+ 25+ 2(Botz — B1xz — B2yz),

where the c,, a, o, B, are real constants. Having the D* at our disposal, we
can now evaluate the quantities w* (k=0,1,...,6) and use them, in turn, to
evaluate the o and €* of Equation (4.8) (recall that the 8** and 8% are zero).
Then, given that we have already obtained expressions for the B* and G', we
can write the solutions for B* and G'. We leave this straightforward construction
to the reader, and we urge her or him to check that the result includes the correct
transformations of the tensors A* and F", corresponding to the infinitesimal
coordinate changes [13]

x* = x* — D*(x; 8¢, , 8a, Bay, 8B,)

where the parameters 8c., etc., are infinitesimal versions of the previously
defined parameters. We remark that the general forms of the solutions for B*
and G'= G* (u < v) found in this way are

B* = Q“(Av; a, Oy, BA) +[b(x)9A“'] + a“b(x)’
GP’V = R“V(FAP; o, O, BA) +[b(x)1 F‘“’]’
where the Q* and R*” are linear functions of the A” and F**, respectively, and

where Q" = R* =0 for a = a4, = B, =0. The case Q* = R*"" =0 corresponds to
the gauge transformation (cf. Equations (3.21) and (3.22))
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A,=UAU'-Us,U", F,,=UEU" @.11)

where U(x) =exp{—b(x)} and b(x)=—0"(x)L,, the 6* being real, x-dependent
parameters, and the L, being the basis of the Lie algebra L.

We now find expressions for the infinitesimal group operators. The vector V of
Equations. (4.5) and (4.6) is parametrized by the 15 real parameters c,, a,
a=a,, (0<v), B., and by the real parameters 6*(x). The 15-parameter
subgroup corresponds to coordinate transformations, so it is sufficient to express
the corresponding 15 operators in the basis {9/dx*}. From the solutions for D*
and from Equation (2.11), we find, in the notation of Equation (A4) of the
Appendix:

d
PC‘L:;.,;,ZEBM, Po = x*9,,
P, =x.0,—x0, (p<v), Pg, =2x,x79, — x,x70,,.

These are readily identified as the infinitesimal operators of the conformal group.
Conformal invariance is a familiar property of the Yang-Mills equations.

Let V, be the part of the vector V that corresponds to the internal (gauge)
transformations of Equation (4.11). We write, in the spirit of Equations (2.8) and
(2.10),

0 d
Ve=(b, A+ 0.b) —+[b, F..] ——
e =[5, AL+ 0,0) T2 b, Fuul -
— —(ChO'AL+0k) 2~ ChoFi, —2
i I M aAt y }“’aFﬁv’

where we have used Equations (4.3) and (4.4). From the above expression we can
read off the operators corresponding to the parameters 6' and 6%, :

.3 . d
P=- f( i + ]v——)
Cil Ak gax * Flo gpr )

3
P¥=——.
ko 9Ak

With the aid of the Jacobi identity, the reader may show that the P; satisfy
isomorphic commutation relations with the L; (Equation (4.4)). We thus conclude
that the P; constitute a realization of the Lie algebra L. A comparison with
Equation (A6') shows that these operators are associated with the action of a Lie
group, via its adjoint representation, on a manifold with coordinates A* and FX, .

S. Concluding Remarks

As a conclusion to this paper we would like to make a few comments on the
usefulness of the method described in the previous sections. The advantages of
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this method (as we perceive them) are manifest on both the conceptual and the
practical or computational levels. At the conceptual level, new insights are
gained on the transformation character of certain geometrical objects with
complex tensorial structures. At the computational level, the technique provides
a faster and more compact way to derive symmetries.

The reader may question the validity of the last statement above, in view, for
example, of the length of the previous section on the Yang-Mills equations. Let
us thus briefly compare our present approach to the aforementioned problem
with other approaches at our disposal.

First, let us sketch one possible treatment based on the original technique as
proposed in [1]. To begin with, Equations (4.1) and (4.2) must be written in
component form by using Equations (4.3) and (4.4):

3§+ Ci ALF® =0, (5.1)
FX, =d,A%-0,AX - CkAL AL, (5.2)

where the i, j, k run from 1 to n, the latter denoting the dimension of the Lie
algebra L. Thus, we have a total of 10n equations, which may be represented by
a set of 10n 4-forms wy in the (4+ 10n) variables x*, A} and F{". We then
demand that

L =arw, (5.3)
v

where the a¥ are scalar quantities and where

= D* i I _2_ i _6__
V=D ax“+B"aAf+GkaFi 54
(here we have re-labelled the F}* as F ;'c).

Substituting Equation (5.4) into Equation (5.3) we obtain a system of 10n
exterior equations, which involve a total of 1+40n different basis 4-forms.
Equating coefficients of similar terms we finally obtain a system of 10n +400n?
differential and algebraic equations (some of which will be trivial identities).
Using these relations we can then eliminate the coefficients a¥ and solve for the
components of the vector V.

Given that for the lowest-order non-Abelian gauge group, SU(2), it is n =3,
we see that such an approach would require the solution of a minimum of 3630
equations! (In fact, there are now computer programs that do just this.) We now
see the advantage of using the generalized method: we were able to calculate the
symmetries of the YM system for any gauge group, no matter how large its
order. (‘Accidental’ or ‘hidden’ symmetries, associated with a particular gauge
group, can be found only by allowing generalized vector fields, in the sense of
(31)

As a second alternative, the reader may try using the algebraic techniques
described in Chapter 2 of [3] (remember that we are concerned with point
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transformations only). In this approach we again write the YM equations in their
component form (5.1)~(5.2), but now represent this system as a set of algebraic
relations

AZ(A:“, 6,\A$“, a/\apAsl') = 0

in the variables indicated, where »=0,1,2,3 and k=1, ..., n, and where the
quantities A can be easily inferred from Equations (5.1)-(5.2). We then define
the vector field

a ]

= P-__+ *
VeD B“aA;;’

construct its second prolongation pr'® V (which is by no means an easy task), and
demand that

pr?V(A})=0 when A} =0.

It turns out then that the coefficients of a large number of monomials in A# and
its derivatives must vanish, which eventually gives an enormous set of partial
differential equations for the coefficients of V. Again, the higher the order of the
gauge group, the more cumbersome the problem becomes.

One final word. It seems to us that there are problems in which it is absolutely
important to retain the vector or matrix structure of the given PDEs. An example
is the self-dual Yang-Mills equation in the J formulation, discussed in [4]. (The
reader is invited to try this problem in component form, using any method she or
he prefers.) It is remarkable that, in this problem, the generalized isovector
approach gives, besides symmetry transformations, an explicit construction of a
linear system, as well as of infinitesimal Backlund transformations for the self-
dual system.

6. Appendix: Group Operators

Consider first an n-dimensional Lie group G of transformations on an m-
dimensional manifold M. Denote by {x', ..., x™} a local set of coordinates on M
and by {a',..., a"} a real, faithful parametrization of G near the identity (the
identity, by convention, corresponds to a* =0, all k.) For every g in G define the
operator T(g), acting on functions F on M, by

[T(g)Fl(x)= F(g"'x) (A1)

where x is a point on M, and where gx generally denotes the action of G on M.
Infinitesimally the group transformations can be expressed as

x# = x* + 8a* UL (x), (A2)

with w=1,...,m; k=1,..., n. Therefore
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[T(g)F1(x) = F(x* — 8a*U¥)
=[(1-8a*Ud,)F)(x)
=[(1+ V)F](x) (A3)

where 8, = d/0x*. The operator V =—8a*U%d, = 8a*P, is an infinitesimal iso-
vector in the geometric language.

Infinitesimal group operators P, (k=1, ..., n) are defined by
0
[PF](x E'aj:k[T(g)F](X)l al=---=a"=0
=[- Uk (x)8,.F](x). (A4)

The operators T(g) and P; constitute realizations of G and its Lie algebra,
respectively.

Consider now the case where G is a representation of a linear Lie group and
assume that, infinitesimally,

x = gx=(1+ 8a*L,)x, (AS5)
where the matrices L, (k=1,..., n) satisfy the usual commutation relations
[Li, Lj]= CkLy.
The operators P, of Equation (A4) are now written
P =—(Ly)bx"9, (A6)

and they satisfy [P;, P;]= C{Py.
In particular, if x is a vector transforming according to the adjoint represen-
tation of G: (L;)¥ = C%, then Equations (A5) and (A6) are written, respectively,

x'=xk+ Cksa'x/, (A5
P, =—Ckxlo,. (A6)
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A generalized isovector formalism is used to derive the isovectors and isogroup of the self-dual
Yang-Mills (SDYM) equation in the so-called J formulation. In particular, the infinitesimal
“hidden symmetry” transformation, a linear system, and a welil-known Bicklund
transformation of the SDYM equation are derived in the process. Thus symmetry and
integrability aspects of the SDYM system appear in natural relationship to each other within

the framework of the isovector approach.

I. INTRODUCTION

In a recent paper' the authors discussed the application
of isovector techniques®?® to systems of partial differential
equations corresponding to exterior equations for vector-
valued (and, in particular, matrix-valued) differential
forms. It was seen that the application of the Lie derivative
operator on vector-valued one-forms presents some techni-
cal difficulties, and for this reason an internal exterior deriva-
tive (i.e., an exterior derivative that acts on the fields but not
on the variables of the solution manifold) was introduced by
the formula

dF(x*/)=dF — 3, F dx",
where F'is any function of the scalar variables x* of the solu-
tion manifold and the vector-valued fields ¢. If the system of
partial differential equations (PDE’s) is of order 2 or higher,
the variables ¢/’ will comprise the dependent variables u“ of
the PDE’s and the derivatives, up to a certain degree, of the
u* with respect to the x*. Given that, in the absence of specif-
ic restrictions on the exterior differential forms that repre-
sent the system, the variables ¢’ are considered independent
of each other (and of the x*), we conclude that the problem
can be naturally formulated on a jet space with “mixed”
(i.e., both scalar- and vector-valued) coordinates.

In the present paper the formalism developed in Ref. 1is
applied to the self-dual Yang-Mills (SDYM) equation in
the so-called J formulation.* It is seen that the isovector
method provides a natural framework for the unification of
such distinct concepts as symmetry and integrability. The
independence of the coordinates of the underlying jetlike
space is important in this context, as the reader will realize.
In Sec. II we calculate the isovectors of the SDYM system.
These vector fields can be used to construct infinitesimal
symmetries (both geometrical and internal) of the system,
as discussed in Ref. 1. The above-mentioned independence
of coordinates is used in Sec. III to rewrite certain symme-
tries in a form equivalent to the parametric infinitesimal
transformation introduced in Ref. 5. (This transformation is
related to the so-called hidden symmetry of the SDYM
field.®) Remarkably, the process also yields a pair of linear
“inverse scattering” equations, the integrability of which is
equivalent to the SDYM equation, and the parameter of
which is identical to that of the infinitesimal transformation
mentioned above. Finally, the results of Secs. I-III are used

(1.1)
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in Sec. IV to derive Bicklund transformations for the
SDYM system. In particular, the process gives the parame-
tric Backlund transformation proposed in Ref. 7.

Il. ISOVECTORS OF THE SDYM SYSTEM

The SDYM equation in the J formulation is written

as4—7

I ~1aJ) +0;,(J "1 3,J)=0. (2.1)
The complex coordinates y, z, 3, and Z are related to the
coordinates x,, x,, x;, and x, of complexified Euclidean
space by

212 = x, +ix, 2'%z=xy—ix,,

2% = x, —ixy, 272 = x; + ix,. (22)
[ Note that the pairs (y,) and (z, Z) involve elements that
are complex-conjugately related in rea/ Euclidean space.]
For our purposes, J is assumed to be a nonsingular element
of the algebra gl(N,C) in its defining representation.

Equation (2.1) can be rewritten as a set of first-order
PDE’s:

B)+B2=0, B'=J"'J, B*=J"'J, (23)
where a standard notation for partial derivatives has been
used. We are thus led, in the spirit of Ref. 1, to define the
following set of four-forms in seven variables:

y,=dydzdB'dz +dydzdydB?,

y,=dJdzdydz — JB'dydz dy dz,
y,=dydJdydz —JB*dydzdy dz.

(2.4)

It is easily seen that the dy; are in the ideal of the y, ; thus
this ideal is closed.

We now proceed to find the isovectors of the system. For
this purpose we must expand the Lie derivative of each ¥,
into a “linear” combination of all three ¥, . The expansion
must be made consistently with the requirement that the Lie
derivative preserve the tensorial character of each y; sepa-
rately.

Now, from Egs. (2.4) it can be seen that the four-forms
¥ have values in gl(N,C), which is closed under both addi-
tion and multiplication. This observation suggests the fol-
lowing expansion:
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£y, =b e + Al + M, (2.5)

where the b ¥ are scalars, whereas the zero-forms A¥ and M ¥
have values in gl(¥,C).

The vector field V is defined on a jetlike space with “co-
ordinates” y,z,7,Z,J, B!, and B? Asargued in Ref. 1, Vwill
have a formal representation,

V=D’i+Dzi+D3i+D4~a—
dy dz ay Jz
3 d a
+GZ 44T 42
a7 ap T g

wherethe D ',...,D * are assumed to be scalar functions of y, z,
7,2z, while the G, 4 !, 4 ? are gl (N,C)-valued functions of the
above four variables and J, B !, and B2. Asin Ref. 1, we seek
vector fields V' for which the coefficients of expansion in Eq.
(2.5) depend only on y, z, y, and Z.

Substituting Egs. (2.4) and (2.6) into Eq. (2.5), and
using Eq. (1.1) to write

£dJ=dG =G, dy +dG,

£dB*=dA* =A% dy* +dAd* (k=12),
where the y* (1 = 1,...,4) denote the y,...,Z, we obtain a set of
three exterior equations for four-forms. By equating the co-
efficients of dy dz dy dz on both sides of each exterior equa-
tion, the following set of PDE’s is derived:
A;+A47= — (b1 +A}JB'— (b + A})JB?

—JB'M? —JB?M?3,

G,—GB'—~J4' —D*JB'

= — (b3 +A;)JB' — (b3 + A3)JB?

(2.6)

—~JB'M? —JB*M3, 2.7
G, —GB?>—JA*— D" JB?
= — (b2 +A2)JB'— (b} + A})JB?
—JB'M? —JB*M3,
where D#=D"',..,D*
We now put
A'=a* (B + B +A4'(*.BD), 2.8)

G =8*")B* + e()J + GU*B*J),
where the a’*, 8°, 5% and € are scalars. Then
dA'=a*dB* +B'dJ +dd’,
dG=6"dB* + edJ +dG.
We substitute these expressions into the expansion of
Eq. (2.5) and equate coefficients of terms that are scalar
multiples of similar gl(V,C)-valued basis four-forms. There
are 12 such basis four-forms; therefore we obtain a set of 36
equations (eight of which are trivial identities). These re-
sults can be summarized as follows:
Bl=52=6l=52=0; alZ___D;, 02120;;
D;=D;=0, D}=D}=0,
D}=D}=0, D}=D!=0;
by =D, +Dl+Dj+a”*=D,+D?+D?+a',
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b}=D2+D;+Di+e b3=D,+D+Di+e
b3=—D:, bi= D) bi=bi=bl=b}=0.
We notice, in particular, that the D ' and D *> depend only on y
and z, while the D * and D * depend only on 7 and Z.

The remaining terms in the expansion of Eq. (2.5) are
those that cannot be expressed as scalar multiples of basis
four-forms [in the sense that the coefficients in these terms
do not commute with the gl(,C)-valued basis four-forms].
Terms of this type can be divided into four kinds according
to their dependence on the basis three-forms dy dzdy,
dydz dz, dy dy dz, or dz dy dz. The gl(N,C)-valued coeffi-
cients of each of these basis three-forms must be equated in
each of the three exterior equations; this process yields a set
of 12 equations which can be divided into two general types:

ARAY + AYI)MF =0, i#k, (2.9)
and

dH = Ak dY + (dY)M ¥, (2.10)
where Y=B"', B2, Jand H=A "', A%, G. The variable Y, by
assumption, does not commute with A* and M % Thus Eq.
(2.9) is satisfied only if A* = M ¥ = 0, i #k. Also, given that,
by definition of the internal exterior deri_vati\_/e and by as-
sumption about the A¥ and M %, dY =dY, dAX(*) =0,
dM % (*) = 0, Eq. (2.10) can be integrated immediately:

H=AY+ YM§ +h(p),

where 4 ()*) is an arbitrary function. Our results are explicit-
ly stated as follows:

Al=A'0M), Mi=M'("),

A =A=A0, MI=M3=M>(p),
Af=M¥*=0, fori#k;
A'=A'B'+B'M'+h'(p),
ZZZAIBZ-}—BZMI—{—}IZ(_})“),
G=AJ+IM*+g0"),

where the ', A2, and g are arbitrary gl(&,C)-valued func-
tions.

Appropriate substitutions into Egs. (2.8) will now give
expressions for 4 ' and G, which can be substituted back into
Eqs. (2.7). By using previous results, the coefficients b ¥ can
be eliminated in favor of other quantities, while certain re-
placements can also be made with regard to the A¥ and M .
The result is a set of equalities between some kind of general-
ized “polynomial” expressions in the variables B ', B %, and J,
with y*-dependent coefficients. The “constant” term in such
a “polynomial” is a matrix function F()**), while the other
terms are of the following kinds: ¢B*, ¢J, ¢JB*, QB*, B*Q,
QJ, JQ, QJB*, JQB*, and JB*Q, where ¢(3*) is a scalar
function and Q(*) is a gl(&V,C)-valued function. Equating
coefficients of similar terms we obtain a set of partial differ-
ential and algebraic equations, which are not hard to solve.
In particular, we find

-—A] =M' =MZEM(,V’Z)’ AZEA(J-}';Z),
h'(pz)=M,, h*(p2)=M, g(»*)=0.
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Equations (2.11) give the complete solution for the compo-
nents of the isovector field V-

D'=c,y+kz+a, D*=ky+cz+a,
D3=(c,— ) —kz+ as,
D= — Kk, 7+ (c;—C)Z+ay,
A'= —¢B'—k,B*— [M(yz),B'] + M,,
A*= —kB'—c,B>— [M(y2),B?] + M,,
G=e(Fz)J+ AG2)J +IM(yz2),
wherec,, ¢,, ky, ks, ¢, @y,..., @4 are nine complex parameters,
€(y,Z) is a scalar function, and M(y,z) and A(y,z) are
gl(N,C)-valued functions. From Egs. (2.11) we can read off
the infinitesimal operators P, corresponding to the nine

complex parameters (cf. Ref. 1) and we can show that they
form the basis of a Lie algebra. In particular, the operators

(2.11)

-9
ay, 6y"
and
Pc.+Pc,=yua_Bka
’ N dB*

represent translations and dilatations, respectively.

Following the discussion in Ref. 1, from Eq. (2.11) we
can construct the following infinitesimal internal symmetry
transformations:

B l'zBl =+ [M(y,Z),B l] _My’
B¥~B?+ [M(y.z),B*’] — M,,
J' =J—e(,z2)] — A(y,z)] —IM(y,z),

where the €, M, and A are infinitesimal. The corresponding
finite transformations are

B"=UB'U~'+ U3, U,

(2.12)

B2'=UBZU"'+U8,U", (2.13)
J'=BUJU,
where

U(y,z) =exp{ — M(y,2)},

U(2) =exp{ — AGD},
and

B(Z) =exp{ — e(3.D)}.

These are, of course, familiar symmetries of the SDYM
system.

lll. PARAMETRIC INFINITESIMAL TRANSFORMATION
AND LINEAR SYSTEM

If we define a new function
EWzyz)=M(y.z) + €(¥.2) 1y, (3.1)

where 1, denotes the N-dimensional unit matrix, then the
infinitesimal transformations of Eq. (2.12) with A(y,Z) =0
can be rewritten as

8B'=[£0#),B'] —&,,
8B = [£(p),B*] —€&,, 6= —JEO),
where 8B*~B* — B* and 8/~J' — J. We wish to rewrite

(3.2)
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these symmetries without the restriction (3.1). It turns out
that this is possible due to the independence of the coordi-
nates of the underlying jetlike space. Of course, there is a
price to be paid for such an adjustment. But this *“price” is a
most welcome one: Restriction (3.1) is replaced by a set of
linear PDE’s which, in the case of actual SDYM fields, lead
to a linear system for the SDYM equation.
From Eq. (3.1) it is seen that £()*) satisfies the PDE,

[&.B'] + [6:B%] — 65 — 62 =0.
Given the independence of the y* and the B k (this is the case
as long as no restriction on the solution manifold is im-
posed), the above equation may be written as

ay([grBl]—’é‘y)+ai([§’Bz]_§z):0 (33)

This is satisfied if there exists a “potential” ¥ (3*,B ky such
that

[EB'] —&, =AY:, [£B?]1—&. = —AY;,  (3.4)
where A is an arbitrary complex parameter. We thus replace
the system of Egs. (3.1) and (3.2) by the following alternate
one:

SB' = Ay., 8B = —Aih,, 8J= —JEGM), (3.5)

where 1 and £ satisfy the linear system (3.4). Note that Eqgs.
(3.4) and (3.5) become independent of Egs. (3.1) and (3.2)
upon restriction to the solution manifold, i.e., for actual
SDYM fields.

Let us explore further the significance of Egs. (3.4) for
actual SDYM fields (in which case the B* are dependent
upon the y*). In particular, let us examine the ansatz
Y =507, all

£B'] — ¢, =4, [EB*]1—§, = —4§.  (3.6)
The integrability criterion & — &5 = 0 yields Eq. (3.3),
which, in combination with Eq. (3.6), gives

[£B2—B!+[B'.B*] +A(B; +B)] =0.

We seek conditions for B! and B? in order that the above

equality holds for all A and independently of §. The following

pair of PDE’s must therefore be satisfied:
3,B*—3,B'+ [B'.B*] =0,
d;,B'+3;B*=0.

(3.7)
(3.8)

Equation (3.7) is a condition for zero curvature and implies
that the B ' and B ? are pure gauges:

B'=J"'3,J, B*=J7'4,J, (3.9)
where J is a nonsingular gl(N,C) matrix. Then Eq. (3.8)
becomes identical to the SDYM equation (2.1), of which
Eq. (3.6) is seen to be a linear system.

We remark that our results are in agreement with those
of Ref. 5 (although they are given in a slightly different
form). The thing to notice is that these results were actually
derived here, in a rather straightforward manner, by using
the isovector technique.

IV. CONNECTION WITH BACKLUND
TRANSFORMATIONS

By using the original definitions of B land B?asgivenin
Egs. (2.3), the infinitesimal transformations of these quanti-
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ties may be written, according to Egs. (3.5) as
J' TN —J Y, = A, (4.1a)
J' T =TT, = — Ay (4.1b)

Clearly, as J ' approaches J, the ¢; and ¢, must approach
zero. One way to achieve this is to put

v=£=1-J""J" (4.2)
Now, if the left-hand sides of Eqgs. (4.1a) and (4.1b) are
considered as finite, rather than infinitesimal differences,
then Egs. (4.1) and (4.2) constitute one possible form of the
Bicklund transformation (BT) proposed in Ref. 7. Alterna-
tively, the infinitesimal parametric transformation (4.1)
and (4.2) is also an infinitesimal BT. This was observed in
Ref. 5, but we include it in the present discussion due to its
direct (and quite interesting) relevance to the isovector
method.

Incidentally, the transformation (3.1) and (3.2) is also
an infinitesimal BT, with Eq. (3.1) being a sort of algebraic
constraint. Indeed, putting £ = 1 —J ~'J' and introducing
an arbitrary complex parameter y, we write

T =T, =p{[J T 7Y, ] =8, 7YY

. (4.3a)

J =T =p{[J "I ,]-3.( TN},
(4.3b)
J U ' =M©yz) + G 1y, (4.3¢c)

where M (y,z) is gl(N,C) valued and €(¥,2) is a scalar. Tak-
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ing d;(4.3a) + d;(4.3b) and using (4.3c), we find
{6,(J"= ) +3:(J' "N}

—{V ) +3:( )}

=pu[J V8 ) +3: ()],

according to which J ' satisfies the SDYM equation (2.1) if J
does. Note that the BT was constructed so as to yield the
trivial solution J' = J as a particular solution [this corre-
sponds to M =0 and €=1 in the algebraic constraint
(4.3¢)].
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The observation is made that generalized evolutionary isovectors of the self-dual Yang-Mills
equation, obtained by “verticalization” of the geometrical isovectors derived in a previous
paper [J. Math. Phys. 28, 1261 (1987)], generate Bécklund transformations for the self-dual
system. In particular, new Bécklund transformations are obtained by “verticalizing” the
generators of point transformations on the solution manifold. A geometric ansatz for the
derivation of such (generally nonlocal) symmetries is proposed.

1. INTRODUCTION

In previous papers' the authors have discussed isovec-
tor® techniques for partial differential equations (PDE’s)
associated with vector-valued differential forms. It was men-
tioned? that such a PDE (or system of PDE’s) defines,
through its solutions, sections of a vector bundle over the
solution manifold. This manifold serves as a base space,
while the fibers are isomorphic to some vector space (or Lie
algebra).

InRef. 1 the isovector approach was employed to derive
point symmetries for the seif-dual Yang-Mills (SDYM)
equation in its so-called J formulation® (this is mathemat-
ically different from the usual formulation in which the self-
duality condition is directly written in covariant form). The
system was represented by three gl(N,C)-valued four-forms
in seven variables. Since these forms generated a differential
ideal by themselves, we did not include the integrability con-
dition of the system in the ideal (indeed, such an inclusion
can be seen to be superfluous for the purpose of deriving
point transformations).

Calculation of the isovectors gave a nine parameter
group of transformations on the base space, together with a
set of infinitesimal internal transformations in the fiber space
in which the SDYM fields have values. It was then observed
that the internal symmetries were related to parametric
Bicklund transformations (BT’s) for the SDYM equation.
In particular, a well-known®® BT was recovered.

With the observation that internal symmetries are gen-
erated by evolutionary’ (i.e., “vertical”’) vector fields
(EVF’s), it is natural to inquire for other EVF’s that may
generate BT’s for the SDYM system. Such fields cannot be
sought, of course, among the “geometrical” symmetries
found in Ref, 1. The most accessible nongeometrical (i.e.,
nonlocal) symmetries at our disposal are those generated by
the evolutionary representatives’ of the nine generators of co-
ordinate transformations mentioned previously. In Sec. III
we establish the generalized isovector property of these
EVF’s by examining the effect of the corresponding Lie de-
rivatives on the original ideal of the three four-forms. It is
found that these Lie derivatives map this ideal into a larger
ideal comprising the original system, its integrability condi-
tions, and certain prolongations8 of all of the above. The
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emergence of a prolonged ideal was to be expected since we
are now dealing with Lie-Bicklund-type symmetries. On
the other hand, the appearance of the integrability condi-
tions as an inseparable part of the system is quite interesting,
considering the passive role these conditions played in the
derivation of point symmetries.

In Sec. IV we construct the infinitesimal parametric
nonlocal transformations generated by the aforementioned
nine EVF’s. It is seen that, by letting the transformation
parameters be considered finite, rather than infinitesimal,
the transformations of the prolongation® variables become
BT’s for the SDYM equation. This observation constitutes a
further indication of the intimate connection between sym-
metry and integrability aspects® of nonlinear systems, and, in
particular, of the SDYM system.-!°

To make the paper as self-contained as possible, we re-
view in the next section some of the results of Ref. 1 that will
be needed for the present treatment.

H. GEOMETRICAL SYMMETRIES OF THE SDYM
SYSTEM

As in Ref. 1, we write the SDYM equation (a second-
order nonlinear PDE) as a set of first-order PDE’s:

B! +B2=0, (2.12)
B'=J"Y,, (2.1b)
B*=J"Y,, (2.1c)

where the subscripts denote partial differentiation (partial
derivatives will occasionally be used). The y, z, 3, Z, collec-
tively denoted by x* (u = 1,2,3,4), are four complex coordi-
nates,"** while J is assumed to have values in gl(N,C).
Loosely speaking, the B' and B? are “prolongation vari-
ables” for the system. The integrability condition J,, = J,,
yields

B? — B!+ [B'.B?*]=0. (2.2)

The system (2.1) can be represented by a set of three
gl(N,C)-valued four-forms:

y,=dydzdB'dz + dyvdzdy dB?,

v,=dJdzdydz —JB'dydz dy dz, (2.3)
y,=dydJdy dz —JB*dy dz dy dz.
© 1987 American Institute of Physics 238
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These forms generate a differential ideal. Indeed,

dy, =0, dy,=v,dyB'+Jdyy,

dy;=v,dzB* +JdZy,

The geometrical (local) symmetries of the system are
generated by vector fields of the form'
9 9
ax* B’
where the usual summation convention is assumed over re-
peated indices. The & (u = 1,...,4) are scalars, whereas the
Gand A4’ (i = 1,2) aregl(N,C) valued. Thed /dJ and 3 /9B
are formal operators only—i.e., no differentiations are actu-
ally performed. The symmetry property is expressed by the

requirement that the Lie derivative with respect to V' leave
the ideal of the y, invariant. Formally,

V=Er(x") +G(x’J)%+A‘(x”,B") (24

£r.= bYy, + Afvy + iM¥ (2.5)

(i = 1,2,3), where the b ¥ are scalars, whereas the A¥and M ¥
are gl(N,C)-valued zero-forms. The calculation of V' from
Eq. (2.5) becomes possible if we make the ansatz that the
coefficients of expansion in this equation depend only on the
x*. As we will see shortly, this condition is violated in the
case of nongeometrical symmetries.

As was seen in Ref. 1, the vector ¥ is parametrized by
nine (complex) parameters, and depends on three arbitrary
functions. The nine parameters correspond to transforma-
tions on the base space. These transformations are generated
by the following independent vector fields, which are written
here in unprolonged form (i.e., without the termsind /3B" ):

4 _8
V.= -2, u=1234, V.= —pZ_32,
# o s y@ ‘%
_d 3 _a
=—-22 59, y=_2,452, 2.6
V5 Zaz ya)_, 7 z +y32 ( )
d -0 _d _4d
== e P o— -_ V=— —— e T
8 y&+z@ ? 'y ‘a:

Internal symmetries are generated by EVF’s with com-
ponents

G=e(y2)J+AG2) +IM(yz),

A'= - [M(y2),B'] +M,,

A= — [M(y2),B*] + M,,
where € is a scalar function, while A and M are gl(N,C)-
valued functions. The symmetries in € and M combine to
give BT’s for SDYM.! The symmetry in A yields a BT that is
less interesting, since it merely consists of 6(J ~'J,) =0,
8(JV,)=0(e,J ", =J""J,etc.).

Ili. EVOLUTIONARY ISOVECTORS FOR FIRST-ORDER
GENERALIZED SYMMETRIES

A. Nongeometrical vectors and prolongation forms

We now relax the geometrical requirement and seek
generalized’ symmetries of SDYM. We confine our atten-
tion to first-order symmetries generated by evolutionary vec-
tor fields (i.e., vector fields with vanishing projection on the
base space) of the form
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a a
—— 4+ R? =,
dB! + dB*
where Q may depend onx*, J, and J, =4, J. With the defini-
tions

a
V=Q—+R! 3.1
Qa.l 6D

J,=JB’', J,=JB? (3.2a)

J;=E', J,=E? (3.2b)
we have that

Q=0Q0x*J.B . B> E'E?). (3.3)

[ The reader may be concerned with the appearance of sever-
al noncommuting variables in the functional dependence of
Q. However, as Q is calculated (see below), no ambiguity in
the order of these variables arises. ]

Itis easily seen [see Eqs. (3.11) and (3.12) ] thatthe R !
and R? depend, collectively, on the additional variables
B,=d,B'and B}, =3d,B* ThevariablesB? and B canbe
eliminated from the problem by using the field equation
(2.1a) and the integrability condition (2.2), respectively:

Bl= —Bj, (3.4)
B;=B}+[B'B?. (3.5)
Thus we are left with the variables
B,=C! B;=C? B}=C3
(3.6)

Bl=C*% B!=C? Bl=C-

Equations (3.2) and (3.6) each admit six integrability
conditions, thus a total of 12 such conditions can be written
[including the one given by Eq. (2.2)].

Let us consider the basic system (2.1), together with its
integrability condition (2.2). We prolong Eqs. (2.1a) and
(2.2) in the usual way by taking the derivatives with respect
to the x*. By convention, only those prolongations defined
within the variables at our disposal are considered. Specifical-
ly, we can construct the y, z, and y prolongations of Eq.
(2.1a), and the y and J prolongations of Eq. (2.2):

Cl+Ct=0, (3.7a)
C2+Ci=0, (3.7b)
Ci4+CE=0; (3.7¢)
Ct—Cl+[C,B*+[B',C* =0, (3.8a)
C—C+[C%B?] + [B',C®] =0. (3.8b)

[Note that, in a sense, the prolongations of Egs. (2.1b) and
(2.1c) are contained in Eq. (3.6).]

We now express our equations in terms of differential
forms. Thus we define 28 four-forms corresponding, succes-
sively, to Egs. (2.1), (2.2), (3.7), (3.8), (3.6) and its inte-
grability conditions, and Eq. (3.2b), and the five remaining
integrability conditions of (3.2) (we put @=dy dz dy dz):

y,=dydzdB'dz+dydzdydB?,

Vo =dIdzdy di — JB '3,

vy =dydJ dy dz — JB B,

ve=dB?dzdydi —dydB'dy dz + [B',B*)5,
ys=dydzdC'dz +dydzdy dC*,

ve=dy dC* dy dz + dy dz dy dC*,
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v,=dydzdC*dz +dydzdydC®,
¥s=dC*dzdydz —dydC' dy dz

+ ([C',B*] + [B',C*])®,
Yo =dC®dzdy dz — dy dC* dj dz

+ (IC%B?] + [B',C*])a,
Yio=dB'dzdjdi — C'5,
Yu=4dydzdB'dz — C%
¥Yip=dydzdydB' — C*5,
Y1s=dB2dzdy d — C*,
Ve =dydB*dydi — C°3,
Yis=dydzdB*dz — C%
Vi =dC?dz dj di — dy dz dC &,
w=dC3dzdydz —dydzdy dC,
i =dydzdC? dz — dy dz dy dC?,
Vo =dC dz dj d5 — dy dC* dy @,
Y20 =dC%dzdy dz — dy dzdC* dz,
¥ =dydC®dydz —dydzdC* dz,
Yn=dydzdJdz — E'®,
¥ =dydzdydJ — E’5,
Vas = dy dzdE? dz — dy dz dy dE',
Vas=dE'dzdy di — dy dzd(JBY) d&,
V6 =dE*dzdydz —dydzdyd(JB'),
¥y, =dydE'dy dz — dydzd(JB?) dz,
Vi=dydE>dydz —dydzdyd(JB?) .

(3.9)

B. Generalized isovectors

The postulate (2.5), used to derive symmetries of the
system, can now be generalized' by requiring that the Lie
derivative with respect to a generalized EVF of the form
(3.1) map the original ideal {y,,7,,7,} into the prolonged
ideal {7,,...,723}. [We can see that such a generalization is
necessary because the Lie derivative of the ¥, (i = 1,2,3) will
yield variables which appear only in the prolonged forms
¥«-] Formally,

f’,yi =b:'17’a +A?7’a +7’aM?’ (310)
wherei = 1,2,3, as before, but now the index & runs from 1 to
28. The coefficients Ay and M § are no longer required to be
independent of the internal variables J, B!, and B>

One would like, of course, to solve Eq. (3.10) for the
components O, R ', and R 2 of ¥ and thus obtain independent
first-order generalized symmetries of SDYM. The computa-
tions, however, are now of great complexity due to the pres-
ence of a very large set of variables and forms. Rather than
solving Eq. (3.10) directly, we will instead construct certain
solutions by utilizing the coordinate (point) symmetries of
SDYM, as these are expressed by the vector fields of Eq.
(2.6).

First of all, it is seen from Egs. (3.9) and (3.10) that
some of the forms of the prolonged ideal will not occur in the
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expansion of the Lie derivative in Eq. (3.10). Indeed, by
comparing similar terms and taking into account Eq. (3.3),
it can be shown that the forms 4, 7,6, 717, 719, and ,, make
no contribution and thus can be eliminated. This leaves us
with a somewhat smaller ideal of 23 forms.

Second, since the B ' and B ? are prolongation variables,
the R ' and R? of Eq. (3.1) are expressible in terms of Q.
Again, this can be done by comparing similar terms in Eq.
(3.10), using the “internal exterior derivative” (introduced
in Refs. 1 and 2) whenever necessary.

There is, however, an easier way to do this: Let us recall
that the vector field ¥, in the form (3.1), defines an infinite-
simal “motion” in the space of J, B, and B 2. Thus, if 8t is an
infinitesimal parameter, 87 = Q6¢. Furthermore, if we re-
gard 7 as a variable parametrizing an integral curve of ¥, then
Q =46J /8t and

1
R‘=%= —J"%J—‘DyJ+J"g;(DyJ)
— —JIQB' +J'D,Q (3.11)
and similarly
R2=38"_ _;-9p>17-1p g (3.12)
5t = '

where the D, and D, are total derivatives.”? [In general,
total derivatives must be defined consistently with Eqgs.
(3.2) and (3.4)-(3.6). Thus, on functions of the form (3.3),

d d J d
D, =—+JB' c!—+cC*

dy + 8J+ 8B‘+ dB*

+ (E'B! -f—JC) T+ (E

J d 07
D,=—+JB*—+ (C*+[B',B? +C*

% EY; +(C*+[B'.B ])3‘9l PR

+(E‘BZ+JC6)5—E—,+(E232-—

» like d,,, is a derivation, i.e., it satisfies the

Note that D,
Leibniz rule. ]

Finally, we need to define the evolutionary representa-
tive’ (or verticalization) of a “horizontal” vector field. The
following definition is pertinent to the SDYM case but can
be easily generalized: Given a vector field of the (unpro-
longed) form

d
= £ (X")—, 3.13)
3 e (
one can construct an EVF (in prolonged form)
d d
V,= R!'—— 4 R? 3.14
Q TR TR (3.14)
such that
Q= —£"D,J, (3.15)

where D,J=JB', D,J =JB? DyJ=E", D;,J=E? and
where the components R ' and R ? are related to Q as in Eqgs.
(3.11) and (3.12). The nongeometrical vector field V, is
called the evolutionary representative of the geometrical
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field ¥, .'? The reason for this particular definition is that, if
V,, is a symmetry, it can be shown’ that ¥, is also a symme-
try.

We are now in a position to construct the (prolonged)
evolutionary representatives of the nine vector fields given in
Eq. (2.6). The symbol ¥, will denote the representative of
Vk .

- 3 3 3
—J'2 ! c* ,
Vi=J 6J+ aB‘+ B?
7, = JBZ"+(C4+[B',B N2 _t1cs 9,
a7 aB‘ 3B
- 3 3 3
v,=E'< 4022142,
? 3J+ 3B‘+ dB?
- 3 3 3
v,=£22 4?2 _c2 2,
4 EYAIFTY EVE

- | 3y O
Vs= (yJB'+zE2)a—J+ (B'+yC' “Cs)ﬁ

+ (C*—-2CH)—

BZ’

- (zJBz-i-?El)gj-F (zC* +2z[B,B?] +7C?)

a -
X—git (B2+zC° +7 (3.16)
—p2y 0
= (zJB' —JE*)—+ (2C' —yC?)—
( Y )aJ+(z -y )aB'

- J
B'4+:z2C* +3CH—,
+ (B +z2C"+y )(m2

= (yJB2 ZE )—

aJ

+ (B*+yC*+y[B'B?] —Z

= a
C3—-zC%—,
+ (v z )332
Vo= (JE' 4+ ZE? )—+(yC2+zC )—l
dB
C®—zC?
+ ¢ z )6B2

The consistency of these expressions with the geometri-
cal derivation of symmetries, as this is expressed in the pre-
scription (3.10), may now be seen. Direct substitution into
Eq. (3.10) shows that the above EVF’s are generalized iso-
vectors for the SDYM system (details are deferred to Ap-
pendix A). Our search for other generalized symmetries, of
the same order or higher, has not been successful so far. In
particular, one can see that the (generalized) Lie brackets’
of the known symmetries do not produce new symmetries,
contrary to what one might have hoped (this point is more
easily verified by using true jet-space variables x*, J, J,,and
Juv ).
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IV. INFINITESIMAL NONLOCAL SYMMETRIES AND
BACKLUND TRANSFORMATIONS

By using the EVF’s (3.16) and the definitions (3.2), the
following infinitesimal parametric nonlocal transformations
of the J function are constructed’ (4 is an infinitesimal pa-
rameter):

8,0 =Ad,J=AJ,, p=12,34, 8J=A(J, +7J;),
Bl = A2, +5);), 60 =A(2], —FJ,), (4.1)
8 =AW, —3);), 8J =A(T, +31,).

We can also construct the corresponding transformations
for the variables B' =J ~'J, and B? =J ~'J,. We will ini-
tially regard these transformations as general nonlocal sym-
metries generated by the EVF’s (3.16) and independent of
the SDYM equation. This means that one is allowed to make
replacements in the components of the EVF’s according to
the definitions (3.2) and (3.6) and the integrability condi-
tion (3.5), but one may not use the equation of motion (3.4)
(thus the apparent asymmetry of the equations below). The
transformation equations are

5,(J7,)y=43,(J7 ),

5, =48,J7 ),

5,(J~)=43,(J7,),

8, =438,(J~1,),

5V =43,(J,),

8,(J V) =4Ad;(J~V,),

5, (J" ) =48 Y,),

8,(J 7)) = —A3d;(J V),

6;(J" ) =A[J "V, +y3,(J",)+23;(J )],
8(J V) =A[¥d,J" ) —-23;(J )], (4.2)
86 ", =4 [23,(0 "V, +73;,(J7,)],

8(J ) =AY, +28,(J"V,)+¥3(T V)],
5,(J V) =4[z, V) —53;(J~'J,)],
8" =A[J Y, +23,(J ) +53,(J )],
8(J V) =A[J Y, +y3,(J7V,)—Z23,(J"V,)],
8s(J TV =A[y3,(J ') =2, "V,
8TV, =A[¥6(,) +28;:(JY,)],

8(J ) =A[pd(J V) —Z23;(J )]

We now observe that the above nonlocal transforma-
tions of the prolongation variables bear an interesting prop-
erty: Suppose that we let the parameters A become finite in
each case (4 stands for nine different independent param-

eters). In this case the left-hand sides of Eq. (4.2) become
finite differences:

S~ U)=J"", T,
S (J ) =J""T T,
We thus obtain nine pairs of independent parametric equa-
tions. Cross-differentiation of each pair with respect to ¥ and

Z, and use of the various integrability conditions, will then
reveal that all nine pairs are parametric Biacklund transfor-

(4.3)
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mations for the SDYM equation, which J is now required to
satisfy. Specifically, if J is a solution of

,(J~V,) +8,(JY,) =0, (4.4)

thensoisJ’, whichis related toJ by Egs. (4.2) and (4.3). A
more detailed proof of this is given in Appendix B.

We remark that one could obtain a more symmetric set
of equations than Eq. (4.2) by allowing the components of
the EVF’s (3.16) to be evaluated on solutions of the SDYM
equation, i.e., by using Eq. (3.4) to reintroduce B ? into the
problem. The reader is invited to construct this alternate set
of BT’s.

In order for the BT’s described in Eqs. (4.2) and (4.3)
to be valid, one must also require the integrability condition
(J;). = (J}),. If L represents any one of the differential

operators in Eq. (2.6) [which operators appear on the right-
hand side of Eq. (4.2) ], this condition can be shown to re-
quire [H,,H, ] = 0,where H = (LJ)J ~'. Thusthisisa con-
dition on the original solution J. Many solutions satisfy this
condition, so that it is not excessively restrictive. This condi-
tion will be explored in future publications.

V. CONCLUSIONS AND SUMMARY

Let us summarize our main conclusions.

(1) The study of first-order Lie~-Béacklund type symme-
tries of the SDYM system requires the construction of a pro-
longed ideal of four-forms, which is many times larger than
the ideal used for the derivation of point transformations. A
noteworthy feature of the expanded ideal is the presence of
the integrability conditions of the system.

(2) Starting with the (point) symmetries of SDYM on
the base manifold, one can construct nine evolutionary vec-
tor fields that are generalized isovectors of the system. Nine
nonlocal symmetries of SDYM are thus obtained. No
further generalized symmetries can be generated by simply
taking the Lie brackets of the nine EVF’s.

(3) Itis our conclusion that all evolutionary representa-
tives of the corresponding point symmetries of SDYM yield
Bicklund transformations for the system. These BT’s are
“weak,” in the sense that they relate two functions, of which
the second is a solution of SDYM provided that the first one
is. The physical implications of these transformations are
not yet totally clear to us.

APPENDIX A: PROOF OF ISOVECTOR PROPERTY

We display the expansions of the Lie derivatives of the
forms ¥, ¥,, ¥3> With respect to the prolonged EVF’s ¥V
(s = 1,...,9) of Eq. (3.16). We will use the notation

T§S)E;£ yi (1= 1,293)-
VS

Analytically,
7’ =vs
Vi =1,B' + Iy
YV = y,B — Iy, + 13
Y2 =vs+ ¥ + [71B%] + [B'715] — Va0,
vs? =v:B* +Jv15
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75Y =¥3B% + W1
W =vn
757 =JV 1+ ¥2B' + Vas,
Y =I5+ ¥2B% + v,
7’54) =718
V) =T+ vnB' + 72
7P =Ir —JI7u+ B> + Ve
YO =y¥s + ¥ + e
V5 =729B  + 310+ 212 + V2ZB ' + Z12,
v =20y, + v3 B — ply, — 2y,

+ V13 + V2528 24+ Z¥2s
VO =9 +2v6 + 777+ 2Vs — Y1

+ [711,2B%] + [zBy5] ~ 2120,
Vs = 722B> + 3y, + 2713+ ¥ IB + s,
Vs® =VszB* + 20Y 1 + V15 + V22 DB + Py,
yg” =2ZVs+ V12 — P18
vs? =yZB' + 2y — PIV1; — V23 B — $¥ae
¥ = 3y + vszB' — 20y + 3,

+2J¥13 — ¥29B* — F¥2s,
V® =y¥s — Zys + Vs + V1B 2]

+ B L¥1s] + ¥is — Va0
V5¥ = 12¥B> — 2y + Pyis — V2B ' — Zas,
V$® = ¥39B? + pJy1a — ZJy1s — V2iZB? — Fyn,

(9

N =I:+ZVs

Y =Wy +2n + ¥ B’
+ ¥23ZB ' + V725 + 216

Vs’ =2Jy, — 2y, + W15 + ¥ JB?
+ ¥23ZB% + P27 + Z¥2s.

APPENDIX B: PROOF OF BACKLUND
TRANSFORMATIONS

Consider the nine pairs of parametric equations defined
by Eqgs. (4.2) and (4.3) (each pair share a common sub-
script k in §; ). We show that each of these pairs is a (finite)
BT for SDYM. For this purpose we cross-differentiate with
respect to y and Z, and then add by terms, assuming that all
integrability conditions are satisfied. We will use the nota-
tion

FlJ1=0,(J ) +8;(J ),
so that F[J] = Oimplies the SDYM equation. From the nine
pairs of equations we thus obtain, respectively,

F[J']—-F[J]=44,FlJ],

FlJ'1—-F[J]1=A440,F[J],

F[J']-F[J]=Ad,F[J],

FlJ']-F[J] =0,

FlJ']-F[J]l=A4d,FlJ],
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FIJ'1=F[J)=A(1+428, +53,)F[J),
FlJ'] -F[J]1=4z9,F[J],
FJ'N1-F[J1=A(yd,—zd;)FJ],
FJ'1=FJ1=433,FJ].

Thus F[J] = O implies F[J'] = 0 in each case, which estab-
lishes the Bicklund transformation property.
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A process is described for deriving infinite sets of local conservation laws for self-dual Yang-Mills fields with arbitrary gauge
group. This process utilizes a set of recently constructed Backlund transformations which leave the self-duality equation invariant.

1. Introduction

A set of nine parametric Bicklund transforma-
tions (BTs) for the self-dual Yang—Mills (SDYM)
equation were recently constructed [1] by using the
coordinate symmetries of this equation [2]. The lat-
ter symmetries were expressed in the form of non-
local transformations of the dependent variable,
rather than point transformations in the coordinate
space. It was subsequently observed [3] that this
particular construction of BTs is possible due to the
fact that the SDYM equation can be placed in the
form of a conservation law.

An important discovery of a BT for SDYM was
made shortly before the turn of the decade [4], but
significant properties of this transformation, such as
permutability and existence of a superposition for-
mula, were only recently established [5]. In spite of
these and other nice properties, this BT does not lend
itself to the construction of an infinite number of lo-
cal conservation laws (infinite sets of nonlocal con-
servation laws have been obtained by other means
[6-8]).

In thic ] attar wa n
A1l LIELOD R v LIV YYD y

special form the BTs of ref. [1] lead to the deriva-
tion of infinite sequences of local conservation laws
for SDYM.

The Letter is organized as follows:

In section 2, the BTs introduced in ref. [1] are
presented and subsequently rewritten in compact
matrix form. The permutability property then fol-

haw that dveta thasre
193 L L, UIUL LU Liivil

lows immediately. This property does not necessi-
tate the existence of a nonlinear superposition
formula, in contrast with the BT of refs. [4,5].

In section 3 the construction of many-parameter
BTs is described. These BTs are used in section 4 to
derive infinite collections of local conservation laws
for SDYM.

2. Béackiund transformations

We adopt the following form of the SDYM equa-
tion [9,10,4,6-8]:

(I~ +8:(J~"J.) =0 (2.1)

(where J,=0,J=03J/0y, etc.). The variables y, z, 7,
z, collectively denoted x* (u=1, 2, 3, 4, respec-
tively) are constructed from the coordinates of an
underlying complexified euclidean space in such a
way that y and Z become the complex conjugates of
y and z, respectively, when the above space is real.
Considering an arbitrary underlying gauge group, we

acgnime that T 1o canorally a camnlay nanginonlar
assuine uiai o 15 giliiliany a CUMNpPICA, 1iULSiligulal,

NX N matrix. (For SU(N) gauge theory the addi-
tional constraints JT=J and detJ=1 must be satis-.
fied in real space (the dagger denotes hermitian con-
jugation).)

We now write a set of nine parametric BTs [1,3]
which, upon integration, produce “new” solutions J'
of eq. (2.1) from “old” ones, J. We index each BT

0375-9601/88/% 03.50 © Elsevier Science Publishers B.V. 167
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by k=1, ..., 9 and use the notation 4'=J~'J,, 4°=
JVL,  AA'=T N ,—-T7 Y, A AP=d -
J~1'J.. We denote by A the complex parameter of each
of these BTs:

4,4'=19,4", 4,4*=23,4* (u=1,2,3,4);
AsA' =A[(1+yd,+20,)A'],

AsA? =A[(yd,+20,)A%] ;

d6A' =A[(20,+y3;)A'T,

AsA* =2A[(1+29,+73,)A*] ;

A4
4;4% =A[A" + (23, —p3:)A?] ;
Ay A =A[(yd,—23,)A' +A4?],
AgA* =A[(yd, —205)A%] ;

Ao A =A[(yO,+20,)A'] ,

Ao A? =A[(§3,+29:)A%] .

(The BT property of each pair of equations can be
verified by cross-differentiation with respect to y and
Z, followed by addition in order to satisfy eq. (2.1).)

In order that the above BTs produce new SDYM
solutions J', the consistency condition (J;).=
(J.), must be satisfied (this will ensure that the pure
gauges A' and A2 transform into pure gauges
AV =J~'J, and 4> =J' ~'J;). It can be checked
that the above condition is always satisfied to the first
order in A (i.e., for A infinitesimal). However, for a
general, finite A the integrability condition yields
[4:AY, 4,4%] =0. This is an additional algebraic con-
straint on J that must be satisfied in order that the
BTs be integrable for J'. As the purpose of this paper
is the derivation of conservation laws (for any given
known solution J), rather than the construction of
new solutions J’, we will not concentrate on this
matter any further. Indeed, it will be seen that the

1 1H coanditinne have na offort tha valid
lntegrablhty Conaiions nave no eiiect on ine vaia-

ity of the conservation laws derived later. In what
follows we will assume that the BTs are integrable,
at least in principle. Thus we will continue to write
quantities like A'" and 4°' in pure-gauge form keep-
ing in mind that these are formal expressions, in
general.

Evidently, all nine BTs are of the general form
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B (J-'J,) =T "/,
=J = T, A AL (I ) + Ly (T )],
B(J ') =J "\,
=TT AL (T T) + La(T )] (2.2)

where the L,, ..., L, are local linear operators. Thus
we have nine families of parametric equations of the
form (2.2), the members of each family having the
same set of operators L, ..., L, but different values
of A. We note that eq. (2.2) can be written in matrix
form as follows:

J J=
[JI—]JI:}:]=M1|:J_|J}J] > (2‘3)

where M* is the operator-valued matrix

[l+/1Ll AL, ]
AL, 1+AL, |

By using the matrix form (2.3) of the BT B*, the
permutability property B2?B* = B*B* is readily
verified. Note that the satisfaction of this property
does not require additional algebraic constraints.
Thus no nonlinear superposition formula for the
above BT seems to exist (at ieast as a consequence
of a permutability requirement).

3. Many-parameter transformations

We let ¥(J) denote the two-dimensional column
vector with components J~'J, and J~'J,. Double
application of the BT B* on J, with different param-
eters A, and A,, will the produce a new function K
such that

P(K)=M2M* P () =MAM2P(J) , (3.1)
where
M/Iz lel — M/lu +A2

Li+L,L,

L L, +L2L4]
L,L,+L,L,

“‘22[ L,L,+L2

From eq. (3.1) and the BT nature of B* and
B* it follows that the SDYM property of J implies
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the same property for K. Thus the commutative
“product” B#2B* is also a BT for SDYM, with ma-
trix representation M*2M?*'. Note that this new, two-
parameter BT is not of the family B* for finite values
of 4, and A..

More generally, multiple application of B* on J,
with different parameters A,, ..., 4,, will produce a
function K such that

Y(K)=M*..M*¥(J), (3.2)

where the matrix product on the right is commuta-
tive. Clearly, the “product” B*..B* is an n-pa-
rameter BT for SDYM. The commutativity property
indicates that only one such BT can be constructed
from any given set of parameters.

It is worth noting that eq. (3.2) allows one to ex-
press K ~'K,and K~ 'K, directly in terms of a known
function J, and then, by a single integration, to find
the new SDYM field K. In principle, this iterative
process yields an infinity of SDYM solutions from
any given one (provided, of course, that the appro-
priate integrability conditions are always satisfied).

4. Local conservation laws

Let us notice that eq. (2.1) has the form of a local
continuity equation which is satisfied for all SDYM
fields. An infinite number of such equations can be
produced as follows.

We put A, =...=4,=4 in eq. (3.2) and write it as

Y(K)y=(MH"¥(J) .
It follows from this that the quantities K~'K, and
K-'K. are expansions in powers of A

K-'K,= Y AP, K'K.= Y 10, . (4.1)
r=0 r=o

Now, since K is an SDYM field, it satisfies the con-
tinuity equation d,(K~'K,)+d-(K~'K.)=0. Sub-

(4 1) and equatine ¢

ctituting from ea nafficiente of
SUWUUNE iTo &4G. (5.1 7, allG Sguatung CoCiCicnis o1

powers of A to zero, we obtain the (n+1) local con-
tinuity equations

9,P,+3.0,=0 (r=0,1,..,n). (4.2)

By letting n—o0, we obtain an infinite set of local
conservation laws from each family of BTs B*.
The local property of these conservation laws fol-
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lows from the observation that, for any value of r,
the “densities” P, and Q, are obtained directly from
eq. (4.1) and thus their derivation does not require
knowledge of lower-order “charges”.

In compact form, the conservation laws for fixed
n are the (n+1) coefficients (equated to zero) of
powers of A in the matrix relation

(9, aaowy| 7% ] =o0. (43)

As an example, let us examine the case n=2. Us-
ing eq. (3.1) with A, =4,=A, we find that

Po=J""J,, Qo=J"'J,;
Pi=L(J-'J)+L,(J7'J.),

O =L;(J7'J,)+Ly(J7'J.)
Py=(Li+L,L3)(J~'J,)+ (L, Ly+L,L)(J '),
Qr=(Ls;L, +L,L3)(J~'J,) + (L Ly +L3)(J ' T).

As is easy to verify, this set of conservation laws is
a proper subset of those obtained for n>3.

Returning to the nine BTs of section 2, we see that
construction of local conservation laws is now sim-
ply a matter of reading off the local operators L, ...,
L, in each case. Thus, for example, the BT No. 7 with
Li=L,=20,—y0;:, L,=0, Ly=1, yields the follow-
ing densities:

Po=J-'J,, Qo=J"'J,;

Py =(20,—y3:)(J~'J,),

Q=T J,+ (28, — o) (J ') ;

Py =(20,—yd:)*(J~'J,),

0, =2(28, —y9:)(J~'J,) + (20, —yd)*(J~'J.) ,

etc. The proof that these densities indeed satisfy eq.
(4.2) whenever J satisfies eq. (2.1), is left to the
reader.

Itheleaueelcicuphsluip N e nlcoN
the Laplace/wave equation ¢,; +¢.-=0, where ¢=
In J. So by the method described above one gets con-
served local densities for the wave equation which
are linear in ¢.

We note that, as mentioned earlier, the validity of
the conservation laws (4.2) is independent of the in-
tegrability of the BTs, i.e., of whether the pair of

7 1Y haramecg
Z. 1 j UCCOHICS
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equations (4.1) can actually be solved for K. Indeed,
as can be seen from the matrix form (4.3) of the
conservation law, what is required is that J satisfy
the SDYM equation; it i1s not necessary that this so-
lution conform to the integrability condition stated
earlier needed to obtain J'. Thus it can be said that,
for the purpose of constructing local conservation
laws, the BTs themselves are more fundamental than
their solutions.

5. Conclusion

The starting point of this paper was the set of nine
one-parameter families of BTs for SDYM, derived
inref. [ 1]. We have shown that, from any one of these
families, one may create an infinity of many-param-
eter families of BTs. This construction has the
underlying structure of an infinite-dimensional com-
mutative semigroup, where the group elements are
families of BTs.

Thus, associated with the SDYM equation, there

is an infinite-dimensional abelian ‘“hidden” sym-

metry and an infinite collection of local conservation
laws. Presumably these properties are further man-
ifestations of the “complete integrability” of SDYM
[11,12]. A rigorous proof of this statement, how-
ever, requires further investigation.
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Abstract. By using a simple Bicklund-like transformation which linearizes the GL(N, C) self-dual
Yang—Mills equation, an infinite number of local conservation laws for this equation are constructed. In
- the SL(N, C) case, the currents become trivial, which explains why these currents are not found in SU(N)

gauge theory.
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As is well known, the self-dual Yang—Mills (SDYM) equation, when properly
formulated, displays many of the typical characteristics of an ‘integrable’ system,
such as parametric Bicklund transformations [1-4], infinite number of nonlocal
conservation laws [5, 6], linear system [7, 8, 6], Painlevé property [9, 10], etc. An
infinite number of local conservation laws were recently constructed by these
authors [11] by applying infinitesimal Bicklund transformations [4] on SDYM
(which is itself in the form of a local conservation law). However, the problem of
finding a/l conservation laws for SDYM is far from being solved.

Indeed, the search for local currents for SDYM has been long and frustrating. It
seems that the best we can do is write densities which are local in the Yang—Bri-
haye—Pohlmeyer function J [12, 13, 6]. But the latter is nonlocal in the potentials 4,
and it is these potentials that are regarded as fundamental in the theory. Even in the
J formulation there has been little progress in constructing local conservation laws.

Perhaps one of the reasons is that the search has been mostly confined to SU(N)
[or, more generally, SL(¥V, C)] gauge theory, which requires unit determinant. This
restriction ceases to exist in GL(N, C) theory. There the determinant itself becomes
a field and, as we show in this Letter, can be used to produce new local conservation
laws for the SDYM equation. In the limiting case of SL(&, C), the densities become
zero and the conservation laws trivial, which explains why these objects are not
found in SU(N) gauge theory.

The construction of the GL(N, C) conservation laws is based on a simple, known
Bicklund-like transformation that ‘linearizes’ the SDYM equation to the Laplace

* Permanent address: 13 Pafou St., Athens 10446, Greece.
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equation. The latter has an infinite number of variational ‘Lie-Béicklund’ sym-
metries and associated conservation laws [14, 15]. The transformation then allows
one to associate a local conservation law for SDYM with every conservation law of
the Laplace equation.

Following Yang [12], Brihaye et al. [13], and Pohlmeyer [6], we write the SDYM
equation as

8T ~\T,) +0:(J ') =0, (1)

(where J, =0,J =0J/0y, etc.). The variables y, z, 7, Z, collectively denoted x*
(u =1, 2, 3, 4, respectively) are constructed from the coordinates of an underlying
complexified Euclidean space in such a way that y and z become the complex
conjugates of y and z, respectively, when the above space is real. The matrix
function J = J(x*) will be assumed to have values in GL(N, C). For SU(N) gauge
theory, J is required to be a positive Hermitian SL(N, C) matrix in real space. Here,
J is also assumed to be a positive Hermitian matrix, but with a determinant which

may vary with x#. (The simplest theory to which these latter conventions apply is
U(1) electromagnetism.)

Taking the trace of Equation (1), and noting that
tr(J ~'J,) = tr(log J), = 9,[tr(log J)],

etc., we find the linear equation

¢y)7 + ¢ZE =0, (2)

where
¢ = tr(log J) = log(det J). (3)

Clearly, ¢ becomes zero for SL(X, C)-valued J. Also, the hermiticity of J implies
that ¢ is real in real space.

We note that Equation (3) is a sort of Biacklund transformation that takes every
solution J of the SDYM equation (1) into a solution of the linear equation (2). The
latter equation is the four-dimensional Laplace equation when written in real
coordinates. In our coordinates x#, Equation (2) is the Euler—Lagrange equation for
the Lagrangian density

L =3(¢,05 + ¢.02). (4)

As is well known, every variational symmetry of the problem (but not necessarily
every symmetry of the equation of motion) gives rise to a local conservation law. By
‘variational symmetry’ we mean an infinitesimal transformation

S = AF(x*, ¢, 0,4,0,0,¢,...)=AiF[P] (5

(where A is an infinitesimal parameter) which shifts the Lagrangian by a diver-

gence: L = 109,Q*. For every such symmetry, there exist local densities P*[¢]
(u=1,...,4) such that

Fl¢ 5 + ¢:2) = 0,PH[]. (6)
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Clearly, Equation (6) becomes a local continuity equation for solutions ¢ of
Equation (2).

The Lagrangian (4) has an infinite number of variational symmetries of the form
(5) and an equal number of associated local conservation laws [14, 15]. Using
transformation (3), we rewrite Equation (6) as

F[‘b(")] tr{(J—. l']y))'/ + (JM l‘]z):'} = aﬂP#[¢)(J)]’ (7)

for every conservation law of the Laplace equation (2). We thus obtain an infinite
number of local currents for SDYM (local, of course, in J). It should be noted that
these currents are different from those of [11] (in particular, the latter are matrix-
valued and are not associated with the symmetries of a variational problem).

One may now ask the question: Can we associate the conservation laws (7) with
symmetries of the SDYM equation? To this end we recall [16] that if J is a
"GL(N, C) solution of the SDYM equation, then

J = (det J)~YNJ
is an SL(%V, C) solution of this equation. [This is shown by using Equations (2) and
(3), and by noticing that det J’ = 1.] We now see that every GL(V, C) solution can
be reached from a corresponding SL(%, C) solution by means of a scalar transfor-

mation. Given an SL(, C) solution J’, the set of all GL(N, C) solutions J that can
be reached from J’ in this manner is given by

J = etV (8)

where ¢,; + ¢, = 0. [Then det J = e® and log(det J) satisfies the Laplace equation,
as required.]

Given a pair (¢, J'), we can construct an infinity of GL(N, C) solutions J, simply
by employing the symmetries of the Laplace equation to find new solutions from the
old solution ¢. Thus, these symmetries are also symmetries of the GL(¥, C)
self-duality equation through Equation (8). We conclude that the infinite number of
conservation laws (7) are associated with an infinite-dimensional symmetry of the
SDYM equation.

As examples, let us write two of the conservation laws explicitly. [The reader may
easily verify them by using the result that, since tr(J ~'J,) = ¢, (all u), one has the
identity: tr(J ~'J), = tr(J ~'J,),.]

1. The variational symmetry

S5p = M, + @) (i.e., F[$] = ¢, + ¢;), corresponding, in real space, to translation
of one of the Euclidean coordinates, yields the local conservation law
O, —tr(J ) te(J ™) + [tr(J T )] %) +
+ 0. {tr(J =\, +J ) (U )} +
+ 0 {[tr(J )P —tr(J ) tr(J )+
+ 0 {tr(J ", +J ) tr(J ' T) = 0.
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2.

The variational symmetry

0¢p = Me,,, + ¢;;;) (with no geometrical analogue) yields the conservation law

oy{tr(J '), tr(J ~'J); — [tr(J ~ 1 J;p);]%) —
— 0 {te(J '), tr(J ) + tr(J T W), tr(J ) +
+ 0, { —[tr(J ') 12 + tr(J ~ )5 ()5} —
—0;{tr(J '), tr(J 7)), + tr(J '), tr(J 1)} = 0.

(One similarly constructs local conservation laws for all variational symmetries of

the form, chosen to keep 6¢ real,

0p =A@)* 1+ (@)% P, 6 =20 + (9% 9))

Note that, in general, the conservation laws are trivially satisfied in the SL(N, C)

case.
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New nonlocal conservation laws for the self-dual Yang-Mills equation are found by an inductive process. It appears that this
process yields an infinite number of nonlocal currents, the densities of which depend on an increasing number of nonlocal charges.

As is well known, the self-dual Yang-Mills
(SDYM) equation, when properly formulated, dis-
plays many of the typical characteristics of an “in-
tegrable” system, such as parametric Backlund trans-
formations [1-4], infinite number of nonlocal
conservation laws [5,6], linear system [6-8], Pain-
levé property [9,10], etc. An infinite number of lo-
cal conservation laws were recently constructed [11]
by applying infinitesimal Bédcklund transformations
[4] on SDYM (which is itself in the form of a local
conservation law). However, the problem of finding
all conservation laws for SDYM is far from being
solved.

This Letter reports the existence of additional
nonlocal conserved currents for the SDYM equa-
tion. These currents are obtained by an inductive
process which involves various integrability condi-
tions and successive introduction of nonlocal
“charges”. To be more specific, one starts with the
SDYM equation and finds a simple non-auto-Béack-
lund transformation that relates SDYM with a non-
local conservation law depending on a nonlocal
charge. Then another Bicklund transformation is in-
troduced which relates the aforementioned conser-
vation law with a new one depending on an addi-
tional charge, and so forth. Although it appears that
the above-described process can be continued in-
definitely, no recursion relation seems to exist that
allows construction of current densities in terms of

! Maling address: 13 Pafou Str., Athens 10446, Greece.

lower-order charges. This makes higher-order den-
sities very difficult to obtain.

Following Yang [12], Brihaye et al. [13], and
Pohlmeyer [6], we write the SDYM equation as

F(N)=d,(J~'J,)+3,(J'],)=0 (1)

(where J,=0,J=03J/3y, etc.). The variables y, z, 7,
Z are constructed from the coordinates of an under-
lying complexified Euclidean space in such a way that
¥ and Z become the complex conjugates of y and z,
respectively, when the above space is real. The ma-
trix function J is generally assumed to have values
in GL(, C). For SU(N) gauge theory, J is required
to be a Hermitian SL(¥, C) matrix in real space.

The SDYM equation F(J)=0 is in the form of a
local conservation law for J. A new conservation law
can be found by employing the simple Bécklund
transformation

I, =X, J-\,=-X, (2)

The integrability condition (X;),=(X;); of the
system (2) yields the SDYM equation (1). The in-
tegrability condition (J,),= (J.),, or equivalently,

9,(J7) =08 . (J~ )+ I, T ]1=0,

yields a nonlinear equation for X:

X+ X — [ X, X:]=0. (3)
With the observation that

[Xy, X:] =4 (3,[X, X:] -0 X, X;1),

0375-9601/89/% 03.50 © Elsevier Science Publishers B.V. 493
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eq. (3) is written in the form of a continuity
equation:

0p(X, =3[ X X:])+0AX. +3[X, X;])=0.  (4)

Substituting for X, and X from egs. (2), we finally
get

(X, +5 [T, X1) +9A X, + 5[, X]) =0.
(5)

By expanding the left-hand side of eq. (5), and us-
ing eqgs. (2), we rewrite eq. (5) as

1LF(J)), X]=0.

We thus conclude that eq. (5) is a nontrivial [14],
nonlocal (due to X) conservation law which is sat-
isfied on all SDYM solutions J. The densities of the
conserved current depend explicitly on the nonlocal
“charge” X.

Let us compare eq. (5) with the corresponding
nonlocal conservation law of Prasad et al. [5] and
Pohlmeyer [6]:

(X, +J 7T, X)+0 (X, +J ', X)=0. (6)
Subtracting this from eq. (5), we get
,{J"J,, X}+d{J "'/, X} =0, (7)

where the curly brackets denote anticommutators.
As can be easily verified, eq. (7) is a nontrivial con-
servation law for SDYM. Thus we conclude that the
conservation law (5) is not trivially related (i.e.,
equivalent [14]) to the familiar conservation law
(6).

Let us return to the continuity equation (4). We
seek a Bicklund transformation, one of the integra-
bility conditions of which is eq. (4) while another
integrability condition yields a higher-order conti-
nuity equation. The obvious choice is

X, —4X X)=D,, X, +i[X X;]==D;.  (8)

The consistency condition (X,),= (X;), yields, after
some calculation,

D+ Do+ 1 ([P, Xp] = [Py, X:])

+4[X, [ X5, X:1]1=0. 9)
With the observation that
[, X,] - [ Dy, X1 =0.[D, X,1-8,( D, X2,
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[X, [X5, X:]]
=3(0,[X, [X, X:1)-0:1X, [X, X;11),
eq. (9) takes the form of a continuity equation:
I(P, =3[P, X1+ 151X, [X, X:11)
+0A P+ [P, K] -5 [X, X;11)=0. (10)
Substituting for X, and X, from egs. (2), we finally
have
I(Py+ 3 [J71,, 1+ 13X, [X, T71,11)
+0( P, +3 [T, @1+ [X, [X, /71,11 =0.
(11)

By expanding eq. (11), and usingegs. (2) and (8),
one finds

FF(D), @1+ 11X [X, F())11=0,

which confirms that eq. (11) is a nonlocal conser-
vation law for SDYM.

To find the next conservation law, we return to the
continuity equation (10) and notice that this
expression is a consistency condition for the Bick-
lund transformation

D, — 3D, X1+ 51X, [X, X.]]=P,
P, +1[P, X1 - X [X, X;11=—P;. (12)

We then apply the other integrability condition,
(D,).=(D.),, and use eqgs. (8) to eliminate X, and
X,. After a very lengthy calculation, the result is re-
written in the form of a continuity equation which,
with the aid of egs. (2), takes the final form

I5(Py+3[J7Y,, P1+ 5[, [X, T, ]]
+3lX [, 7711+ 5 (X [X, (X, T71,11]
—HXT T+ X, X = EXT T, X2)
+0:(P.+ 3 [J7V, Pl4 5[, [X, T U]
X [, 77 L1+ 5 X, [X, (X, 77T
—BXCT A XL X - XTI, X?) =0
(13)

By expanding eq. (13), and using egs. (2), (8), and
(12), the reader may verify that eq. (13) is a non-
local conservation law for SDYM.

We have thus established a process for generating
nonlocal conservation laws for SDYM. Presumably,
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an infinite number of currents can be obtained in this
fashion, although a rigorous proof of this statement
requires further investigation. Unfortunately, the
construction of higher-order conservation laws is an
increasingly hard task since it becomes excessively
difficult to express the ensuing relations in the form
of continuity equations. On the other hand, there
seems to exist no recursion relation that allows
expression of current densities in terms of lower-or-
der charges. In spite of these difficulties, the exis-
tence of these conservation laws is a welcome ad-
dition to the long list of “integrability” characteristics
of the SDYM equation, and it may suggest that there
are additional “hidden” symmetries of SDYM be-
sides those already known [15].

Finally, it is of interest to compare our nonlocal
conservation laws with those of Prasad et al. [5]. Let
us first summarize the results of ref. [5].

The SDYM equation (1) is in the form of a con-
tinuity equation,

4,4 +4,B"=0, (14)

where AV =J"'J,, BM=J"1J, Eq. (14) guaran-
tees that there exists a complex matrix function X!’
such that

A([)zan(l)’ B(l)=_a}7X(1)‘ (15)

Let us assume we have constructed the nth conti-
nuity equation

3,4 +9,BM=0. (16)
This implies
AW =9, X" BMW=_g§,xm", (17)

for some matrix function X, The (n+1)th con-
tinuity equation is then defined as

954D 48 B+ =0, (18a)
AP = (3, +J1T,) XM, (18b)
BU D= (3, +J ) X™, (18¢c)

Thus, for example, the first nonlocal conservation
law (corresponding to n=1) is

(XD +J-1T, X))
+ (XD +T LXMDY =0. (19)

By comparing egs. (2) and (15) we observe that
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XM =X, i.e., our first nonlocal charge X coincides
with X1, (Note also that eqs. (6) and (19) are
identical.)

By expressing A¢* and B in terms of X"~ 1),
egs. (17) become a system of equations which play
a role analogous to that of our Bicklund transfor-
mations. The only difference is that now these trans-
formations are essentially the same for all steps of
the recursive process (that is, for all values of the in-
dex n). Thus the Prasad et al. conservation laws can
be evaluated via a recursion relation for all values of
n, which is not the case with our currents. Note also
that the latter are much more complicated than the
former since their densities depend on an increasing
number of charges rather than on one charge at a
time.

We would like to emphasize that relations like eq.
(15) or, more generally, eq. (17), do not imply that
conservation laws such as (14) or (16) are trivial.
Indeed, the existence of a charge X ), satisfying eq.
(17), is automatically guaranteed by the conserva-
tion law (16).

As long as X" is nonlocally related to J, this con-
servation law is nontrivial. (Of course, if X‘* were
locally dependent on J and its partial derivatives,
then the densities 4 ¢ and B would be perfect de-
rivatives of a local function and the charge X
would become trivial over the entire Euclidean
space.) Therefore, the various Bicklund transfor-
mations that we have introduced do not have the ef-
fect of trivializing the corresponding nonlocal con-
servation laws.

The kind help of A. Papadopoulos is gratefully ac-
knowledged. I also thank A. Kalliterakis for encour-
agement and valuable suggestions.

References

[1]M.K. Prasad, A. Sinha and L.-L. Chau Wang, Phys. Rev.
Lett. 43 (1979) 750.

[2]L.-L. Chau and F.J. Chinea, Lett. Math. Phys. 12 (1986)
189.

[3]1C.J. Papachristou and B.K. Harrison, J. Math. Phys. 28
(1987) 1261.

[4] C.J. Papachristou and B.K. Harrison, J. Math. Phys. 29
(1988) 238.

495



Volume 138, number 9

[5]M.X. Prasad, A. Sinha and L.-L. Chau Wang, Phys. Lett. B
87 (1979) 237.

[6] K. Pohlmeyer, Commun. Math. Phys. 72 (1980) 37.

[7]A.A. Belavin and V.E. Zakharov, Phys. Lett. B 73 (1978)
53.

[8]L.-L. Chau, M.K. Prasad and A. Sinha, Phys. Rev. D 24
(1981) 1574.

[9]1 M. Jimbo, M.D. Kruskal and T. Miwa, Phys. Lett. A 92
(1982) 59.

496

PHYSICS LETTERS A

17 July 1989

[10] R.S. Ward, Phys. Lett. A 102 (1984) 279.

[11]C.J. Papachristou and B.K. Harrison, Phys. Lett. A 127
(1988) 167.

[12] C.N. Yang, Phys. Rev. Lett. 38 (1977) 1377.

[13]Y. Brihaye, D.B. Fairlie, J. Nuyts and R.G. Yates, J. Math.
Phys. 19 (1978) 2528.

[14]P.J. Olver, Applications of Lie groups to differential
equations (Springer, Berlin, 1986) ch. 4.

[15] L. Dolan, Phys. Rep. 109 (1984) 1.



Volume 145, number 5

PHYSICS LETTERS A

16 April 1990

POTENTIAL SYMMETRIES FOR SELF-DUAL GAUGE FIELDS

C.J. PAPACHRISTOU !

Department of Physics, The Naval Academy of Greece, Piraeus 185 03, Greece

Received 8 November 1989; revised manuscript received 24 January 1990; accepted for publication 8 February 1990

Communicated by A.R. Bishop

New symmetries of the self-dual Yang-Mills equation (SDYM) are reported. They are associated with the infinite set of sym-
metries of a closely related equation which we call the potential SDYM equation. These symmetries lead, in a remarkably simple
way, to the construction of infinite collections of conserved Noether-like currents for the SDYM.

1. Introduction

The concept of potential symmetries is a relatively
new one in the theory of partial differential equa-
tions (PDEs) (see, for example, ref. [1] and the ex-
tensive references therein ). These symmetries are re-
alized as nonlocal transformations of the dependent
variable of a PDE which depend explicitly on the po-
tential of a conservation law associated with this
PDE. Often, the PDE itself is in conservation-law
~ form.

This paper describes a method for obtaining po-
tential symmetries for the self-dual Yang-Mills
equation (SDYM). Previous studies of the SDYM
have revealed a finite-dimensional group of point
symmetries [2]; certain of which can be written in
the form of infinitesimal Lie-Bicklund transfor-
mations [3], together with an infinite-dimensional
“hidden” symmetry of nonlocal transformations [4-
6]. The latter transformations are excellent exam-
ples of potential symmetries. However, as we show
in this paper, this set is far from being exhaustive. In
fact, there is a whole collection of infinite sets of po-
tential symmetries of the SDYM, each set associated
with a symmetry of what we call the potential SDYM
equation (PSDYM).

In addition to giving new symmetries, our method
naturally leads to the construction of infinite sets of
(generally nonlocal ) conserved currents for SDYM.

! Mailing address: 13 Pafou Street, Athens 104 46, Greece.

These currents are complementary to those found
previously by this author and others [6-11]. The fact
that the currents are associated with symmetries sug-
gests the existence of an underlying Noether-like
structure for this problem.

The paper is organized as follows.

In section 2, the PSDYM equation is derived and
its symmetry characteristics are shown to satisfy a
certain PDE. A fundamental theorem is then proven
which states that, from every symmetry of the
PSDYM, one may construct (in a certain way) a
symmetry of the SDYM, and vice versa.

In section 3, a Bicklund transformation (BT) is
presented which generates infinite sets of symme-
tries for the PSDYM, and thus also for the SDYM.

In section 4, the BT is used to construct infinite
collections of conserved currents for the SDYM.

Finally, section 5 contains examples of the use of
the BT to produce new symmetries, as well as ex-
amples of conservation laws associated with certain
of these symmetries.

2. Potential SDYM equation (PSDYM)

Following Yang [12], Brihaye et al. [13], and
Pohlmeyer [8], we write the SDYM equation as
F(N)=d,(J"'J,)+03,(J""'],)=0, (2.1)

(where J,=0,J=0J/dy, etc.). The variables y, z, 7,
Z are constructed from the coordinates of an under-

250 v 0375-9601/90/$ 03.50 © Elsevier Science Publishers B.V. (North-Holland )
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lying complexified Euclidean space in such a way that
¥ and z become the complex conjugates of y and z,
respectively, when the above space is real. The ma-
trix function J is generally assumed to have values
in GL(N, C). For SU(N) gauge theory, J is required
to be a Hermitian SL(N, C) matrix in real space.
We note that the SDYM equation is a consistency
condition for the non-auto-Bicklund transformation

J-U,=X,, J,=—X,, (2.2)

where X is a matrix function. The other consistency
condition is found by application of the identity

au(J_lJv)_au(J‘lJu)
+[J-Y,, J7',1=0, (2.3)

with u=y, v=z. This yields the following nonlinear
PDE for X,

G(X)=X;+X,:—[X;, X;]1=0, (2.4)

which we call the potential SDYM equation
(PSDYM). (The reason for this name is that, ac-
cording to egs. (2.2), X is a potential to the conser-
vation law (2.1), which law is precisely the SDYM
equation. )

Let

X =X+ad or dX=a®, (2.5)

be an infinitesimal transformation which preserves
the PSDYM (here « is an infinitesimal parameter
and @ is a matrix function). The condition that
G(X')=0 when G(X)=0 implies that, for a given
solution X of G(X) =0, ® must satisfy the following
PDE,

H(P)=Dy+ D+ [ Xz, B5] - [ Xy, §:]1=0, (2.6)
or, using egs. (2.2),
H(®)=Dy+ D+ [J 1, Dy)

+ [/, @:1=0. (2.7)
The following theorem relates the symmetries of the

PSDYM with those of the SDYM.

Theorem 2.1. Let 8X=a®d be a symmetry of
G(X)=0. Then, 8J= fJ® is a symmetry of F(J)=0.
Conversely, if /= fQ is a symmetry of F(J) =0, then
8X=aJ~'Q is a symmetry of G(X)=0.
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Proof. (a) Let X =a® be a symmetry of G(X) =0.
Consider the transformation 8= J®. Then

§(J=)=p(D,+ [/, D),
(/7)) =P+ [/, D)),

and, differentiating with respect to y and Z and
adding,

SF())=BLF(]), P]+BH(P) ,

which Vanishes_ in view of egs. (2.1) and (2.7).
(b) Let 8= pQ be a symmetry of F(J)=0. We
put: 0=J(J~'Q)=J®. Then

AF(J)=BF(J), D]+ BH (D) =0.

Given that F(J)=0, it follows that H(®)=0, ac-
cordingto which, 6 X=a®=aJ~'Q is a symmetry of
G(X)=0.

Corollary 2.1. There is a one-to-one correspond-
ence between the infinitesimal symmetries of the
SDYM and those of the PSDYM.

It should be noted that [1,14] al/l symmetries of
a PDE can be expressed as infinitesimal transfor-
mations of the dependent variable alone. In more
technical terms, every symmetry of a PDE is equiv-
alent to a “‘vertical” or “evolutionary” symmetry.
Thus there is no loss of generality if all infinitesimal
symmetries are expressed in the form (2.5).

3. Biicklund transformation for symmetries

To find symmetries of the PSDYM (and thus also
of the SDYM, according to theorem 2.1) one must
integrate the second-order PDEs (2.6) or (2.7) for
P, keeping in mind that the functions X and J, ap-
pearing in the above PDEs, represent the original,
untransformed solutions of the PSDYM and the
SDYM, respectively. We now present a parametric
Bécklund transformation which generates solutions
of (2.6) or (2.7) for given functions X or J.

Theorem 3.1. The pair of first-order PDEs
AP.=D, +[X;, D], AD;=—-D,+[X;, P] (3.1)

(where A is an arbitrary (finite) complex parame-
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ter) is a strong auto-Bécklund transformation (BT)
for the PDE: H(®) =0, for any given PSDYM so-
lution X.

Proof. (a) The integrability condition @%;=®};
yields H(®) =0.

(b) The integrability condition @,,=®,, yields
AH(Q')+[D,G(X)]=0,

which implies H(®')=0.

By using egs. (2.2), the BT (3.1) is rewritten as
AP, =D, +[J 1, D],
— A=, +[J 7\, D] . (3.2)

Corollary 3.1. Let @ and @’ be a pair of functions
which satisfy the BT (3.2) for a given SDYM so-
lution J. Then the infinitesimal transformations
8J=aJ® and 8J=aJP' independently preserve the
SDYM equation.

According to the above corollary, the expressions
J' =J+aJD and J' =J+aJD' both are SDYM so-
lutions. Thus, by expressing @ and @’ in terms of J,
J' and J, J", respectively, theorem 3.1 can be re-
stated as follows.

Theorem 3.2. Consider the pair of PDEs
AT =)+ [, T,
AN )= () AL I, (3.3)

where J is an SDYM solution, and where the matrix
functions J' and J” differ infinitesimally from J.
Then, both J' and J” are solutions of SDYM.

Note, in particular, that the infinitesimal BT (3.3)
is a strong BT, in the sense that the SDYM properties
are safisfied independently for J' and J”, for any
given SDYM solution J. Thus the old question,
whether the SDYM possesses a strong BT, has been
answered in the affirmative.

4, Conservation laws
Given any symmetry of the PSDYM, an infinite
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number of symmetries can be constructed by re-
peated application of the BT (3.1) or, equivalently,
the BT (3.2). Thus, let @© be a solution of
H(®)=0. An infinite sequence of solutions @
(n=0, I, 2, ...) can be formed recursively by using
the BTs,

MD;_;H—I) =@)()n) + [J—ltl)u (p(n)] ,
—ADHD =@ + [J1,, @] (4.1)

for any given SDYM solution J.

As an example, consider the obvious symmetry
SX=aT©, where T is a constant matrix and «
is an infinitesimal parameter. Putting @' =7,
A=1, and integrating the BTs (4.1) recursively, we
obtain an infinite sequence of matrix functions 7" .
Application of theorem 2.1 then yields an infinite
number of symmetries of the SDYM, of the form
8" J=BJT ™ (where f is an infinitesimal parame-
ter). Putting BT = — A where A is an infin-
itesimal matrix function, we finally obtain

M J=JA™ | n=0,1,2,... (4.2)

We have thus recovered the “hidden” (Kac~Moody)
symmetry of the SDYM [4-6] as a special case of
our symmetry-generating process.

Returning to the general BT (4.1), we note that its
integrability with respect to @ **) for all n=0, 1,

2, .., is equivalent to an infinite set of continuity
equations:
(D + [, dM])

+IA DM+ [T, @])=0. (4.3)

Thus we obtain an infinite sequence of conservation
Jlaws for the SDYM, corresponding to the infinite se-
quence of symmetries 8 X=a® ) of the PSDYM.
We comment that the result (4.3) is valid for all
symmetry characteristics @ of the PSDYM, not just
those obtained from each other via the BT (4.1).

In characteristic form [14], the conservation laws
(4.3) are written

[F(J),®]1=0 (4.4)

(this is verified by expanding the left-hand side of
eq. (4.3) and using eq. (2.7)). We note that ¢ "
is a sort of characteristic function for the conserva-
tion law (4.3), which function is also proportional
to a characteristic of a symmetry of the SDYM. It
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may thus be conjectured that, associated with the
currents (4.3), there is an underlying Noether-like
structure. This last statement will be further ex-
plored in future articles.

5. Examples of potential symmetries

In this section we illustrate the use of the BTs (3.1)
or (3.2), in combination with theorem 2.1, to gen-
erate new symmetries for the SDYM. Our method is
outlined as follows. We start with a known symmetry
0J=p0Q of the SDYM. Then, 6X=a®d, with
@=J"'Q, is a symmetry of the PSDYM. Applica-
tion of the BT yields a new function @', which in
turn implies a new symmetry 8J=8J®' for the
SDYM. This symmetry is a genuine potential sym-
metry if @' depends explicitly on nonlocal variables
such as X, X, X, etc.

(1) Consider the symmetry 8J= 7 which repre-
sents a global phase change of J. Clearly, @=1, where
1 is the unit matrix. Application of the BT (3.1)
yields @' =M(y, z), where the matrix function M is
arbitrary. The corresponding SDYM symmetry is a
familiar one [2]: 8J=BJM(y, z).

Following the prescription (4.1), we integrate the
BT (3.1) once more to find a new function @ and
a new symmetry 8/= fJ@". Explicitly,

8J= gJ{z'My——ﬁMz'i- (X, M(y,2)]+N(y, 2)},

where the matrix function N is arbitrary. The above
symmetry is a genuine potential symmetry for the
SDYM.

(2) Let 8J=pJ,, which corresponds to a transla-
tion of the y coordinate [3]. Then, ®=J"'J,=X.
Application of the BT (3.1) yields (ignoring an ar-
bitrary function of y and z) A®' =X, and therefore

8J= f JX,=aJX, .

The corresponding conservation law is
(X, + [TV, X,1)+0 (X, + [TV, X,])=0.

(3) Let 8J=f(yJ,+z2J,), which corresponds to a
scale change of y and z [3]. Then

D=y, +z] ", =yX;~zX; .
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Application of the BT (3.1) yields (ignoring, again,
an arbitrary function of y and z)

AP =X+yX,+zX,,

and therefore, putting a= /A,

d=aJ(X+yX, +zX,) .

The corresponding conservation law is of the form
Ay+ B;=0, where the densities 4 and B are given by

A=2X, +yX,, +2X,, + [J-\J,, X+yX,+2X,] ,
B=2X,+yX,, +zX,,+[J '), X+pX,+zX,].

(4) Let 8J= B(yJ;+2J;), which corresponds to a
scale change of y and 7 [3]. Then

¢=}7J—1J}7+Z—J—1Jz-.

With the aid of identity (2.3) and egs. (2.2), the BT
(3.2) is integrated to give

—AQ =X+yJ T, —-Z] 7,
and therefore, pﬁtting oa=—B/2,
S=a(JX+y],—2],) .

The corresponding conservation law is 4,+B,;=0,
where

A=X,+[J"',, X1+ (y8.—23,)J~'J,,
B=X,+[J~'J,, X1+ (y9,-23,)J /..

(For the construction of these densities, the identity
(2.3) has been used.)

6. Conclusion

The results of this paper indicate that the sym-
metry group of the SDYM can be enhanced by in-
cluding the so-called potential symmetries [1]. We
have defined the latter symmetries to be infinitesi-
mal transformations of the SDYM function J which
depend explicitly on the nonlocal potential of an as-
sociated conservation law.

To find such symmetries, we have employed a non-
auto-Backlund transformation to transform the
SDYM into the PSDYM (a PDE for the potential X
of the SDYM itself ) and then shown that every sym-
metry of the PSDYM corresponds to a symmetry of
the SDYM, and vice versa. By using an appropriate
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Bicklund transformation, we have constructed (in
principle) an infinite number of symmetries for the
PSDYM which, in general, are potential symmetries
of the SDYM. (The familiar Kac-Moody symmetry
of the SDYM was seen to be a particular subsym-
metry of this larger invariance set.) Finally, our
method yielded an infinite number of Noether-like
conserved matrix currents for the SDYM.

The reader may wonder whether these potential
symmetries could have been predicted by using sys-
tematic techniques for finding symmetries of PDEs.
It has been argued [15] that the best way to deal with
symmetries of matrix-structured PDEs is to express
the PDEs as matrix~-valued differential forms. Much
work on the geometrical derivation of potential sym-
metries for scalar PDEs was previously done by Ker-
sten [16]. One thus needs to extend Kersten’s meth-
ods to PDESs associated with matrix-valued exterior
differential forms. This interesting geometrical prob-
lem and its application to the SDYM will be studied
in future papers.

It is remarkable that the presence of an infinite
number of symmetries is associated with the exis-
tence of a strong Bicklund transformation, eq. (3.3).
This is a situation frequently encountered in con-
nection with integrable nonlinear systems. There is,
however, a peculiarity in the present case, namely,
the Bicklund transformation is an infinitesimal one,
producing solutions infinitesimally close to a given
solution. In this respect, the BT (3.3) may be re-
garded as a sort of “recursion operator” [1,14] which
generates infinite collections of symmetries for the
SDYM.

In conclusion, the appearance of a larger set of
symmetries and corresponding conservation laws
significantly enhances the (already long) list of in-
tegrability characteristics of the SDYM, and prom-
ises new directions in the search for exact solutions.
Two questions have been left open and require fur-
ther ir{vestigation; namely, (a) how many indepen-
dent infinite-parameter sets of symmetries there are,
and (b) what is the underlying Lie algebraic struc-
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ture associated with these symmetries. A prerequi-
site for answering these questions is a careful ex-
amination of the generalized (Lie-Béicklund)
symmetry group of the PSDYM and an identifica-
tion of those symmetries which are not related to each
other via a Bicklund transformation. The detailed
calculations providing these results will appear
elsewhere.
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The Lie algebraic structure of the recently reported potential symmetries for the self-dual Yang-Mills equation (SDYM) is
explored. This structure contains both Kac-Moody and Virasoro algebras, formed by application of a recursion operator to the
group of point transformations of the potential SDYM equation.

In a recent paper [ 1] we reported that the self-dual
Yang-Mills equation (SDYM) possesses an infinite
number of potential symmetries [2]. These sym-
metries are expressed as nonlocal transformations
which depend on the potential of the SDYM equa-
tion. This potential satifies an equation of its own
which we called the potential SDYM equation
(PSDYM). We showed that there is a one-to-one
correspondence between the symmeiries of the
SDYM and those of the PSDYM. In particular, the
potential symmetries of the SDYM correspond to
those symmetries of the PSDYM which depend non-
locally on the SDYM solution. We conjectured that
these symmetries are of variational nature since each
of them is associated with a Noether-like current.

Two important questions were raised in the con-
clusion of ref. [1]: (a) what is the complete set of
potential symmetries of the SDYM; and (b) what is
the Lie algebraic structure of these symmetries. Both
questions are being answered in the present paper.
In particular, the invariance group of the PSDYM is
shown to have a rich Lie algebraic structure con-
taining infinite-dimensional subalgebras of Kac-
Moody and Virasoro types (both of which are ex-
amples of so-called current algebras [3]). These al-
gebraic structures are known to be of considerable
importance in quantum physics and string field the-

! Mailing address: 13 Pafou Street, Athens 104 46, Greece.

ories, as well as in the theory of exactly solvable non-
linear equations [3-5].

A fundamental element in our analysis is a linear
operator which, applied recursively, produces an in-
finite hierarchy of symmetries from any given one.
This object is called a recursion operator [2]. The
existence of such an operator for the PSDYM was
noted in ref. [1], but a formal definition and a list
of basis properties are given here for the first time.
The nonlocal character of this operator is responsi-
ble for the increasingly nonlocal nature of the po-
tential symmetries and the corresponding conser-
vation laws [1]. '

Our main results are based on two theorems stat-
ing the conditions under which a point symmetry of
the PSDYM generates a current algebra of Kac—
Moody or Virasoro type. The proofs of these theo-
rems are long and cannot be accommodated in full
in a short communication. These proofs will be
merely outlined here and will be presented in detail
in a future, more extensive article.

We write the SDYM equation in the form [6-8]

D,(J-'J,)+D(J~1J,)=0. (1)

The variables y, z, 7, Z, collectively denoted x#(u=1,
2, 3, 4, respectively), are constructed from the co-
ordinates of an underlying complexified Euclidean
space in such a way that y and Z become the complex
conjugates of y and z, respectively, when the above
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space is real. Total derivative operators (in the jet-
space sense) with respect to these variables are de-
noted by D,, etc. We also adopt the standard nota-
tion: D F=F,, etc., for any function ¥ on the jet
space. The variable J is, in general, an N-dimen-
sional complex, nonsingular matrix. For real SU (N)
gauge theory, J is required to be a Hermitian SL(N,
C) matrix in real space.

Eq. (1) may be rewritten in potential form with
the aid of the non-auto-Bicklund transformation

Jv—l‘]y:Xfa JﬁlJzz_X)T- (2)

Integrability with respect to X implies eq. (1), while

the consistency condition for J yields the nonlinear
equation

GlX]1=X,,+X.:~ [X;, X:1=0. (3)

Since X is a potential for eq. (1), we call eq. (3) the
potential SDYM equation (PSDYM ). From egs. (2)
it follows that the condition det J=1 is satisfied if X
is chosen to be traceless. Hence, SL(N, C) SDYM
solutions correspond to sl(N, C) PSDYM solutions.

Let {V,} be a set of vector fields generating sym-
metries of the sl(N, C) PSDYM. It is possible [2]
to express all symmetries by “vertical” vector fields,
1.e., vectors with vanishing projections to the space
of independent variables x#. The V, may be viewed
as linear operators acting on functionals F[ X] (which
may be local or nonlocal in X). The Lie derivative
of a functional F[X], with respect to a vector V,, is
defined by

AVF[X]=V,{F[X]}. (4)

In particular, the Lie derivative of X yields the com-
ponent of V, in the “direction” of X (other direc-
tions correspond to prolongation terms?). Let

ADX=V{X}=¢"[X] (5)

(where the functional ¢ (" may be local or nonlocal
in X). Eq. (5) determines an infinitesimal change of
X:

X =X+ap [ X] (6)

(where a is an infinitesimal parameter). Clearly, ¢ "
must be traceless to preserve the sl(N, C)-valuedness
of X. The symmetry condition in order that X’ be a
PSDYM solution, whenever X is a solution, is
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ANG[X]=0, (7)

where G[X] is defined in eq. (3).

Eq. (7) may be written explicitly by using eq. (5)
and the facts that (a) the Lie derivative is a deri-
vation (i.e., satisfies the Leibniz rule), and (b) the
Lie derivative with respect to a vertical vector field
commutes with all products and powers of total de-
rivatives. We thus obtain

o5 o2 +[ Xz, 957 — [X;, 087]=0. (8)

As we showed in ref. [1], the symmetry problems
for the SDYM and PSDYM are intimately related.

- Specifically, any symmetry transformation for the

PSDYM of the form (6) corresponds to a symmetry
transformation for the SDYM of the form

J=J+alp " [X] . (9)

Eq. (9) represents a genuine potential symmetry of
the SDYM if ¢ contains terms (such as X, X,, X,
etc.) which are nonlocal in J. Conversely, any SDYM
symmetry of the form J' =J+aQ corresponds to a
PSDYM symmetry X' =X+aJ~'Q. We may thus
state the general relation (in an obvious notation)

AOJ=JADX . (10)

The symmetry condition (8) is a linear equation in
¢, for any PSDYM solution X. Consequently, for
any given X, the sl (N, C)-valued solutions ¢ " of eq.
(8) form a linear space which we call Sy. A recursion
operator R for the PSDYM is a linear (integro-dif-
ferential ) operator which maps the space Sy into it-
self. A symmetry operator L for the PSDYM is a lin-
ear operator which maps the set of all sl(N, C)
PSDYM solutions into Sy. We note that any power
R” of a recursion operator is also a recursion oper-
ator, while the product RL of a recursion operator
and a symmetry operator is a symmetry operator.
Thus, R"LX is a member of Sy.
We introduce the covariant derivative operators

Ay=Dy+[X;, 1, A.=D.—[X;, ].

With the aid of the Jacobi identity and the PSDYM
equation, the zero-curvature condition [/iy, A.1=0
is shown to be satisfied. The linear operators 4, and
A, are derivations on the algebra of SI(N, C)-valued
functions. (We note that the Leibniz rule is written
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A,[F, G1=[A,F,G]+[F,A,G]

(and similarly for 4,), where F and G are arbitrary
matrix functions.) According to the symmetry con-
dition (8), the space Sy is the subspace of the above-
mentioned algebra on which the following local op-
erator equation is satisfied,

A,D;+A4.D,=D;4,+D,A4,=0. (11)
Integrating eq. (11) with respect to y and Z we ob-
tain an equivalent nonlocal operator equation,
D;'d,+D;'4,=0, (12)
n Sy.

We consider the linear nonlocal operator
R=D;:'4,. (13)

Clearly, R maps the algebra of s1(N, C)-valued func-
tions into itself (it is not, however, a derivation on
this algebra). We now show that R also maps the
subspace Sy into itself, i.e., is a recursion operator for
the PSDYM. Indeed, we simply note that, on S,

(4,D;+A4.D;)R=1[4.,4,]1=0,

where we have used eq. (12). Hence, according to
eq. (11), the space RSy is a subspace of Sy.
The Lie derivative and the recursion operator sat-
. isfy the commutation relation

[A, R]=D5!'[D;A"X, ], (14)

which is easily verified by using the previously men-
tioned properties of A, More generally, the follow-
ing relation is valid,

[A, R"F
= Y R 'D7!'[D.AMX, R"*F] , (15)
k=1
where n=1, 2, 3, ..., and F is an arbitrary matrix
function.

Although R is not a derivation, it satisfies a sort
of generalized “Leibniz rule” which follows directly
from the derivation property of 4,:

R[F,G]=[RF, G]+[F, RG)
—D;'([RF, G;]+[F;, RG)) . (16)

From this, one may deduce the more general relation
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[R‘n—kF, ﬁk—lG]

_ él [R"™*F, RG] . (17)

Finally, we state the following general property.
Let L be a linear operator satisfying the commu-
tation relation

[L, R]=D:'[D.LX, 1-AR, (18)

where A is a constant. Then, for any matrix function
F,

[L,R"]F= Y R*'D:7'[D.LX, R*"*F]—n\R"F.
k=1

(19)

The (somewhat lengthy ) formalism developed above
serves a main purpose: to enable one to formulate
and prove the two theorems that follow. The proofs
of the theorems are long and cannot be given here in
full. Their reproduction, however, is relatively
straightforward, the only essential difficulty being the
large number of necessary series manipulations.

Theorem 1. Consider the infinite set of

transformations
AYD X=R"L, X
(n=0,1,2, .. k=1,2,..p), (20)

where R is the recursion operator (13) and the L,
are symmetry operators obeying the commutation
relations

[I:i’LAj]z_Cf_(fEki (21)
[A, L,]=0 (alli, k), (22)
[Li, R1=D;'[D.L, X, ] (onSy) (23)

(where the last relation is generally valid only on Sy).

The the set of transformations (20) is a Kac-
Moody algebra associated with the p-dimensional Lie
algebra (21) generated by L

[Af™, Af1X=CEAL™m X . (24)
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Theorem 2. Consider the infinite set of
transformations

AWX=R"LX (n=0,1,2,..), (25)

where L is a symmetry operator obeying the com-
mutation relations

[A™, L]=0, (26)
[L,R]=D;'[D;LX, 1-R (onSy) (27)
(where the last relation is generally valid only on Sy).

Then, to within a sign, the set of transformations
(25) is a Virasoro algebra:

[A AN X=(n—m)Am+mX (28)
To prove theorem 1, we write

AL A X= A REX
=R"A™ L X+ [A(™, R L;X

and, using eq. (22),

AL X=LA X=L,R"L, X
=R"[,LX+[L,,R"|L,X .

The two commutators that appear in the above re-
lations are calculated with the aid of egs. (15) and
(19). In the latter equation we put A=0, as follows
by comparing egs. (18) and (23). We thus find ¢
relation of the form

A AN X=R™"LLX+K(m, iyn,j) .

Application of the generalized Leibniz rule (17) (in
combination with necessary partial integrations)
yields the result that the expression K (which is ac-
tually a sum of series) is symmetric under simulta-
neous exchanges of m and i with n and j, respec-
tively. Thus we finally have

[A{™, AP | X=Rm (L, L1X.

The result (24) follows directly by using egs. (21)
and (20).

The proof of theorem 2 is similar. The main dif-
ference is that we must now use eq. (19) with A=1,
as follows by comparing eqgs. (18) and (27).

Having the two fundamental theorems at our dis-
posal, we are now in a position to draw important
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conclusions regarding the symmetry group of the
PSDYM, thus also of the SDYM. To begin with, we
need to find a set of symmetry operators for the
PSDYM. These are obtained by verticalizing the
point symmetries of this equation. We have derived
the isogroup of point transformations of the PSDYM
(details to appear elsewhere) by using the general-
ized isovector methods developed by this author and
B.K. Harrison [9-11]. By verticalizing these sym-
metries we obtain a set of first-order Lie~BaAcklund
transformations, certain of which are local in J
(hence are not potential symmetries in the strict
sense) while the remaining ones form a group of
transformations which are nonlocal in J. These latter
transformations are expressible in the form

AX=L X,

where L, are the corresponding symmetry operators.
Application of the recursion operator then yields an
infinite group of nonlocal symmetries,

AW X=R"[,X (n=0,1,2,..). (29)

Here is now a description of the set {L,}.
(A) Internal symmetries. Let {T,} be a basis for
sl(W, C):

[T, T;}]1=C§T,.
Define the linear operators L, by
LM=[M,T.],

where M is any sl(¥, C) matrix. These operators are
symmetry operators for the PSDYM which satisfy
the conditions of theorem 1, i.e., egs. (21)-(23).
Therefore, the infinite set of transformations of the
form (29),

AP X=R"[, X=R"[X, T\], (30)

is a Kac-Moody algebra associated with sl(», C).
This is precisely the familiar “hidden” symmetry of
the SDYM [5,12] which is now recognized to be a
potential symmetry.

(B) Symmetries in the base space. We now turn to
symmetry operators which correspond to point
transformations in the space of the independent
variables x*. Potential symmetries nonlocal in J are

expressed by the following operators,

I:l =Dya -E2=Dz> I:B =ZDy _nya
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L,=yD,-zD,, Ls=yD,—zD,—yD,+zD;,
Lg=1+yD,+zD,, L[,=1-3D,—zD;,
Ly=yLs+z(yD;—zDy),

Ly=zL +7(zD;-yD;) .

The L,, L, represent translations of y and z, respec-
tively, while the L,, L, represent “rotational” sym-
metries. The Ls, L, L, express scale transforma-
tions. In particular, L, is a scale change that involves
only the x*, whereas L and L, contain scale changes
of X as well. Finally, L3 and L, represent nonlinear
transformations of the x* Presumably, these last two
operators reflect the special conformal invariance of
the covariant SDYM equations [11]. Note that all
nine operators produce sl(N, C) symmetries.

The first five operators {L,, ..., Ls} form a Lie al-
gebra which we call g. Moreover, these operators sat-
isfy the conditions of theorem 1. Therefore, the in-
finite set of transformations of the form (29)

AP X=R"L,X (k=1,..,5) (31)

is a Kac-Moody algebra associated with g. (We make
the technical observation that g is the semidirect sum
of the Abelian ideal {L,, I',} and the subalgebra {Ls,
L, L5}. In particular, the algebra g is not
semisimple. ) -

On the other hand, the operators L and L, sep-
arately satisfy the requirements of theorem 2. Thus
we have a double infinity of symmetries of the form

AMX=R"[LX, L=Lsork,, (32)

where each sequence is a Virasoro algebra.

The presence of the symmetry operators Lg and L
adds more structure to the problem. Indeed, these
operators do not conform to the conditions of either
theorem 1 or 2. The understanding of this additional
structure requires further investigation, the results of
which will be reported in future articles.

As we noted above, all of our symmetries preserve
the sl(N, C)-valuedness of PSDYM solutions, or,
equivalently, the SL (N, C)-valuedness of SDYM so-
lutions. Physical SDYM solutions, however, are also
Hermitian and this Hermiticity must be preserved
by symmetry transformations. This is accomplished
by replacing eq. (10) with the following one,

ANJ=JAPDX+ (AP X)T (33)
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(where the dagger denotes Hermitian conjugation ).
Eq. (33) represents an SDYM symmetry whenever
the condition J' =J is satisfied in real space. Clearly,
then, the transformation (33) preserves the Her-
miticity of J. Moreover, this transformation also
preserves the condition det J=1, as follows from the
observation that

tr(J-'AMT)=0 whentr APX=0.

Hence, our symmetry transformations are suitable
for producing real SU(N) solutions.

In conclusion, the introduction of potential sym-
metries has significantly enhanced the symmetry
group of the SDYM. In this paper the complete set
of potential symmetries was presented and their Lie
algebraic structure was studied. The potential sym-
metries associated with point transformations in the
fiber space (internal symmetries) constitute the fa-
miliar Kac-Moody “hidden” symmetry of the
SDYM, a fact that was first pointed out in ref. [1].
The present article shows that the symmetries in the
base space (coordinate symmetries) are also asso-
ciated with infinite-dimensional Lie algebraic struc-
tures of familiar types. We have uncovered a Kac-
Moody algebra related to a five-parameter Lie al-
gebra of coordinate transformations, as well as the
double presence of a Virasoro algebra. All transfor-
mations conform to the usual physical conditions
imposed on SDYM solutions.

The presence of current algebras in SDYM theory
is presumably another manifestation of the total in-
tegrability of the SDYM. In particular, this nonlin-
ear system is now seen to possess infinite sets of
commuting symmetries, each set being the subalge-
bra of the Kac-Moody algebra (31) that corre-
sponds to a fixed value of the index k. This situation
1s typical with most integrable systems. In addition
to their mathematical importance, we expect that
these symmetry structures will provide useful new
information regarding the physics of SDYM fields,
in general. One thing that needs to be checked in this
connection is the persistence or not of these struc-
tures in the quantized version of the theory. Another
interesting question is whether these symmetries are
indeed of variational nature, as conjectured previ-
ously [1]. A closer examination of these and other
related matters will be the subject of future papers.
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The reader may wonder whether the infinite set of
potential symmetries reported here is exhaustive, in
view of the fact that our algebra was generated by
using only first-order Lie-Bédcklund transformations
(point symmetries) as a basis. As argued previously
[10] it appears that the SDYM and, likewise, the
PSDYM do not possess higher-order local (Lie-
Bicklund) symmetries (there is no rigorous proof of
this statement, however). This is presumably related
to the apparent nonexistence of a Jocal recursion op-
erator for these equations. Finally, we remark that
our infinite set of symmetries can actually be dou-
bled by inverting the recursion operator. (The in-
veriibility, in principle, of this operator follows from
the results of ref. [1].) The Lie algebraic structure

of this enlarged symmetry set is currently under
~ investigation.

I thank Evi S. Papachristou and G. Nikitas
Skepetaris for encouragement and useful discus-
sions. I also appreciate the valuable comments made
by the referee of this paper.

Appendix

Let us briefly outline the isovector method [9-11]
used to derive the point symmetry group of the
PSDYM (detailed calculations will appear else-
where). This systematic technique guarantees a
complete solution to the aforementioned symmetry
problem.

Consider the system of first-order partial differ-
ential equations

Wy‘"¢z+ [¢> l//] =0 >
oy +y:=0.

The substitutions ¢=X,, w=-—X;, reduce egs.
(A.la) and (A.1b) to the PSDYM equation (3).

Eags. (A.1a) and (A.1b) may be represented by a pair
of differential four-forms in a space of six variables:

(A.la)
(A.1b)

yy=dydzdydz—dydedydz+[¢, y] dydzdydz,
yo=dydzdgpdz+dydzdydy,
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The conditions y,=0, y,=0, are equivalent to egs.
(A.la) and (A.1b). It may be verified that y, and p,
generate a differential ideal of four-forms.

The point symmetries of system (A.1) may be ex-
pressed as isovector fields in the variables {x*, ¢, ¥/},
which satisfy the following requirement: the Lie de-
rivative with respect to an isovector maps the ideal
of y, and y, into itself. If ¥ is such a vector, the fol-
lowing condition is satisfied,

APy =y + My +yN¥ (A.2)

(i=1, 2), where the & are scalar functions while
M?* and N ¥ are matrix-valued. Egs. (A.2) are solved
for the components of the isovectors V. Given that
¢ and y are dependent upon X, these vectors can be
re-expressed in terms of the variables {x*, X}. Fur-
thermore, the isovectors may be rewritten in vertical
form, as follows,

Vi = (L X)Dx+ prolongation terms .

The set {ﬁk} contains the linear symmetry operators
mentioned earlier, plus three more: E:Dy, L=D,
and f,=sz-- yD;. These latter operators are dis-
carded, however, since they yield symmetries which
are local in J (cf. egs. (2)).
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Abstract. A Lax pair which linearizes the self-dual Yang-Mills (spyM) equation is found
and shown to be intimately related to the general symmetry probiem for SpYM. The lincar
system is used to derive an invertible recursion operator that produces new infinite sequences
of non-local symmetries and associated conservation laws for sDYMm.

The integrability properties of the setf-dual Yang-Mills (spym) equation have been a
subject of extensive study over the past fifteen years. As is well known, this nonlinear
equation, when properly formulated, displays many of the typical characteristics of
an ‘integrable’ system, such as parametric Bicklund transformations [1-4], infinite
sequences of conservation laws, both non-local [5-7] and local [8], linear system (Lax
pair) [9, 10, 6], Painlevé property [11, 12], etc. In particular, the Lax pair was shown
to be related both to the presence of a Kac-Moody *hidden’ symmetry [13-15] and to
the existence of an infiite number of non-local conserved currents [10].

This letter makes the observation that the spym equation can be linearized in more
than one way. We propose a new Lax pair for spym which allows the relationship
between the symmetry and integrability aspects of this equation to become most

tromomnrant Thic | av mair ic nead tn ranctmiat an invartihla racrircinn onarataor whirh
fansparenv. 11is nak pair is Ws&4 10 Consirudl an Mmvenioi€ reCursion oporaidr wilicn

produces new infinite sequences of non-local symmetries and associated conservation
laws for spym. The previously mentioned Kac-Moody symmetry appears naturally as
a subsymmetry generated by purely internal transformations.

We write the sDyM in gauge-invariant form [16, 17, 6]

F(J)=Dy(J'1)+D;(J7'),)=0 (1)

(where we use the notation J, = D,J =3J/ay, ete, for partial derivatives). The variables
¥, z, 7, £ are constructed from the coordinates of an underlying complexified Euclidean
space in such a way that ¥ and Z become the complex conjugates of y and z, respectively,
when the above space is real. The variable J is, in general, an N-dimensional compiex,
non-singular matrix. For real SU(N) gauge theory, J is required to be a Hermitian

QI { A ) emateiv i: ranl crara
DALY, L) HIALLLIA 11T IVal SpavL.

Let J'=J+aQ(J)} be an infinitesimal symmetry transformation, i.e. one which
leaves equation (1) invariant, Here Q(J) is a functional which may be local or non-local

t Mailing address: 13 Pafou Street, Athens 10446, Greece,
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in J, while @ is an infinitesimal parameter. The symmetry condition in order that
F(J')=0, whenever F(J)=0, is

Dy QUM+ DAIT QU LT} =0, (2)

One often says that the functional Q(J) is a spmmetry characteristic for (1).

Equation (2) has been solved for the particularly simple case of point symmetries
by using isovector techniques {2, 3]. Moreover, the internal symmetry: Q(J)=JM,
where M is a constant matrix, serves as a basis for constructing the Kac-Moody
‘hidden’ symmetry of spym [13-15]. We will ‘presently extend the invariance group
by adding infinite sequences of symmetries associated with coordinate transformations.
To begin with, we propose the following linearization of spym.

Proposition 1. Consider the pair of linear equations for :
JU W)= A7), S T, =—Myd ") J (3)

where A is a complex parameter and J is a matrix function. This system is integrable
for ¢ if J is a solution of (1): F(J)=0. Moreover, if +(J; A) is a solution of the linear
system (3}, for some spym field J, then ¢ is a symmetry characteristic, i.e. satisfies (2).

Proof. The integrability condition (J™'¢) ;= (J7'¢);; yields

D[ (W), I1+ DA (g 7Y, T ]1=0. (4)
The integrability condition ¢,. = ¢, yields (after a lengthy calculation, and by using
(4)):

[ 'y, F(I)1=0.

For this to be satisfied independently of 4, one must have F(J}=0. A comparison of
(4) and (2) then implies that (J; A} is a symmetry characteristic of {1).

Thus, equations (3) constitute a Lax pair for spym, the solution ¢ of which pair
is a symmetry generator. It is natural to seck an explicit construction of ¢ for given J
and A. To this end, we try a Laurent expansion in powers of the parameter A:

VU= 3 AQ™). (5)

n=-o

n+1

Substituting this into equations (3}, and equating the coefficients of A""", we obtain

the pair of equations:
J[Jy—]Q(n+l)]E=[Q(ﬂ)]*!]yj J[leQ(n+l)];=_[Q(n)‘]f[]z"‘ (6)

The consistency of these relations requires that both Q' and Q""" satisfy (2).
Technically speaking, equations (6) are a strong Bicklund transformation for the
symmetry condition (2) of spym, for a given solution J of (1). Equations {6) may be
rewritten in the form of an invertible non-local recursion operator:

Q("+”=JDE_1{}_]{Q(")J_l}y-’"} O(n—l) — ___Dz,—l{J{J-lQ(nJJfJ"'}j. (7)

Starting with a known symmetry Q'”(J) of spym (say, a local symmetry), one may
construct an infinite sequence of symmetries Q'"(J) (where n=%1,£2, x3,..., £c0)
simply by employing the recursion relations (7). At the same time, the solution (5) of
the Lax pair is formally represented as an infinite sum of symmetry characteristics of
SDYM.
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If the original (untransformed) solution J satisfies det J = 1 and J* = J in real space,
the conditions in order that a symmetry Q(J) preserve these properties of J, are
tr(J7'Q) =0 and Q" = Q in real space (where the dagger denotes Hermitian conjuga-
tion). Let Q™ be a characteristic with these properties. In general, neither Q""" nor
Q'"™", as given by equations (7), will be Hermitian. To take care of this problem, we
use the fact that the symmetry condition (2) is linear in Q{J), hence the difference of
two solutions is again a solution (for the same J). Thus we consider the following
recursion relation in place of those of equations (7):

Q(n+|) - JD;'{J_I{Q(")J_I]JJ}‘F D:I{J[J—lo(n)]ﬁjfl}l (8)

It is readily verified that this operator preserves the required properties of Q" for
Hermitian SL{N, C) spym solutions.

The recursion operator does more than produce new symmetries. Returning to the
symmetry condition (2) we observe that it has the form of a continuity equation which
is satisfied for all symmetry characteristics Q'™ (J):

DI Q™I T+ DAI QM. J} =0 (9)

We thus obtain an infinite sequence of non-local conservation laws for spyM, corre-
sponding to the infinite sequence of non-loca! characteristics Q' (J). We note that
the conserved ‘charges’ are linearly dependent upon symmetry characteristics. This
feature is new, not present in older conservation laws for spywm [5, 7], and may suggest
that these currents are associated with some underlying Noether structure.

We now study the relationship of our Lax pair (3) to the one known previously
[6, 9, 10] for sDYMm:

X;=A(X,+J ' 1X) X;=—A(X,+J LX), (10)

We have found a simple algebraic relation which allows one to construct solutions ¢
of (3) from solutions X of (10) (but not vice versa) for the same J:

Proposition 2. Let X(J; A) be a solution of equations (10), for a given spym solution
J. Consider the function ¢(J; A) defined by

¢ =JXTX™! (11)
where
T=f(y+AZ z—AF, 1) (12)

is an arbitrary function of the indicated variables. Then, ¢ is a solution of equations (3),

Propf. We first note that, according to (12), T satisfies the relations T;=AT, and
T; = —AT,. Putting ¢=XTX ™', and using equations (10), we find that ¢ satisfies the
pair of equations

b=, +[J U, $]) bs=—A(¢h,+[J ', B1).

By substituting ¢ = J ™'y, we recover the linear system (3) for y.

Thus, (11) and (12) constitute a weak, non-auto-Bicklund transformation which
produces solutions of the Lax pair (3) from solutions of the Lax pair {10) (this does
not imply, however, that all solutions of (3) may be obtained in this way). This
transformation is of practical value when seeking solutions of (3), considering the fact
that several solutions of (10) are known (see, for example, [9] and [10] for results
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related to the multi-instanton solution). Special solutions ¢ of the Lax pair (3) are
important since, as we have seen, they yield new hidden symmetries and conservation
laws for sDyM.

In concluding this letter, we give examples of new symmetries by constructing a
few of them explicitly. The conditions det J = 1 and J' = J will be assumed throughout.

(1) First, we remark that the known symmetries can be recovered by using our
symmetry-generating process. Let us start with the internal symmetry Q'”(J)=
JM+M'] where M is a constant, traceless matrix, Application of the recursion
operator (8) yields, after a straightforward calculation

QW) =J[P,M]+[M", PJ

where P and P are potentials for the sDYM equation, defined by J~'J, = P;, J'J, = - P,
and J;J 7' = P., J.J™' = —P, (note that, by the conditions imposed on J, the P and P
are traceless and Hermitian-conjugately related in real space).

Repeated application of the recursion operator, and expansion of the matrix M in
the basis of sl(N, C), yield an infinite set of infinitesimal transformations which
constitute the familiar Kac-Moody symmetry of spym [13-15]. In the literature [13]
this symmetry was found by exploiting the infinitesimal transformation 8J = —JXMX ™',
where X is a solution of system (10) and M is an infinitesimal constant matrix. (The
connection of the aforementioned transformation with (11) is evident.}

(2) Let us start with the translational symmetry [3] Q'(J)=J,+J; (note that
tr(J"'J,) =0, etc). Application of the recursion operator (8) yields

QN =J(P,+ P)+(P,+ P;)J

and so forth. We thus obtain an infinite sequence of new non-local symmetries and
conservation laws; the latter are found by direct substitution of the Q" into (9).

(3) The dilational symmetry Q' = yJ, + zJ, + 7J;+ ZJ; yields
¥ ¥
QW =J(yP,+zP.+ jP;+ iP;) + (yP,+ 2P, + pP,+ 3P,)J
and so forth.

We work similarly for the remaining coordinate symmetries [2, 3]; i.e., the transla-
tional symmetry Q' = J,+ J;, and the ‘rotational’ symmetry Q' =zJ, — pJ, + 2J; — 3J;.

In summary, we have proposed a linearization of spym which makes the connection
between symmetry and integrability most transparent. The Lax pair was used to
construct an invertible recursion operator which, in turn, produced new hidden non-
local symmetries and conservation laws. We have discussed possible representations
for solutions of the Lax pair, either as infinite sums of symmetry characteristics, or as
images, under a weak Biacklund map, or solutions of the Belavin-Zakharov-Pohlmeyer-
Chau linear system. The aforementioned map, being non-surjective, does not yield the
general sofution of the Lax pair; this probably explains why the older linear system
fails to produce the complete symmetry group of sbym, in contrast to the new one.
The solution-generating aspects of the latter system will be explored in future publica-
tions. :
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Abstract

The matrix Ernst equation (a reduced form of the self-dual Yang-Mills equation) is written as the compatibility condition for
solution of a linear “inverse scattering” system. This system is used to construct infinite sequences of nonlocal conserved charges,
as well as an infinitesimal hidden symmetry transformation, for the Ernst equation.

The vacuum Einstein equations for stationary, ax-
ially symmetric gravitational fields, when formu-
lated according to Ernst [ 1], exhibit a close relation-
ship to the self-dual Yang-Mills (SDYM) equation
in the Yang formulation [2-4]. Indeed, it has been
shown [5-7] that the Ernst equation (as well as the
Einstein—Maxwell equations) may be derived from
SDYM by reduction, by imposing certain symmetry
and real-valuedness conditions. Although solution-
generating techniques for the Ernst equation have
been known [8,9], our understanding of this equa-
tion is enhanced and new insights are gained by ex-
ploiting its relationship to SDYM.

Recently [10] a formulation of SDYM was pro-
posed which unifies the symmetry and integrability
properties of this equation. In principle, the method
is based on the observation that the SDYM equation
may be “linearized” in more than one way by differ-
ent choices of a Lax pair. A particularly useful choice
is one which incorporates both the equation of mo-
tion and its symmetry condition. By taking advan-
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tage of the conservation-law form of the latter con-
dition, the Lax pair yields an infinite sequence of
conserved currents for SDYM. Moreover, the solu-
tion of the Lax pair is a symmetry characteristic for
SDYM.

Since the Ernst equation is derivable from SDYM,
it is natural to expect that an analogous scheme,
unifying symmetry and integrability properties, ex-
ists for this equation too. The purpose of this short
communication is to present the main aspects of such
a formulation of the Ernst equation. Our method
consists in finding a Lax pair which lends itself, in a
most straightforward way, to the construction of new
hidden symmetries and infinite collections of nonlo-
cal conserved charges. For brevity, proofs of various
statements will only be outlined, leaving a fuller
treatment to a future, more extensive article.

The Ernst equation, (Re E)V2E=(VE)?, may be
conveniently placed in matrix form [5-7,11]:

F(g)=(pg~'g),+ (pg~'g.):=0, (1)

where subscripts indicate partial derivatives with re-
spect to the variables p, z, collectively denoted x*
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{(u=1, 2, respectively). The 2-dimensional matrix g
is required to be real-valued, symmetric, and of unit
determinant. In terms of the Ernst potential E=f+iw,
the matrix g may be parametrized as follows,

&=t ""hu,
hi=1, hp=h, =o, hyp=f?+w?.

In the sequel we will temporarily relax the restric-
tions on g mentioned before and return to them later,
when conditions for new physical solutions of Eq. (1)
are sought.

Eq. (1) can be re-stated in a very elegant as well as
convenient, for our purposes, operator form. We in-
troduce the linear operators

A,=p3,+1g g, 1),
A=p@.+(g7 ', 1)

(where 6,=09/dp, etc.). It is easily checked that the /f,,
and A, are derivations on the Lie algebra of gl (2,C)-
valued functions (the Leibniz rule is expressed in
terms of commutators of such functions). Further-
more, the following operator identity is satisfied:

~

[4,, A.1=A4, (2)

Proposition 1. The Ernst equation F(g)=0 is
equivalent to the operator equation

(4, 8,1+ [4.,8.]+8,=0 (3)

to be identically satisfied on any gl(2, C)-valued
function. That is, the above operator relation reduces
to an identity on solutions g of Eq. (1).

Proof. If we let the left-hand side of Eq. (3) operate
on an arbitrary gl(2, C)-valued function w(x*), we
get

[F(g),yv]=0,
which is satisfied independently of v if F(g) =0.

We seek infinitesimal symmetry transformations
dg=aQ (where « is an infinitesimal parameter and
Q is a matrix function) which leave Eq. (1), thus also
its operator counterpart (3), invariant in form. If we
set 0= gg, then the general symmetry condition is ex-
pressed as follows,

(apfi,,+azfiz)¢=o, whenever F(g)=0. (4)

Note that this has the form of a continuity equation
with densities 4,6 and 4,¢.

We now consider gl(2, C)-valued functions y(x*,
A) depending on the (real) coordinates x#=p, z and
on an auxiliary complex variable (parameter) 1. We
require that y be single-valued and analytic (as a
function of 1) in a deleted neighborhood D of the or-
igin of the A-plane (i.e., the origin itself excluded).

Proposition 2. Consider the linear system for
w(x# A):

This system is integrable for y if g satisfies F(g)=0.

Proof. The integrability condition [A4,, 4,lw=A4,w,
together with the obvious fact that [A4,, 3,1 =0, yield,
after a lengthy calculation the following,

([Ap, ap] + [fi\z: az] +ap)‘//=0 5

which is valid independently of w if the operator
equation (3) is identically satisfied, i.e., if F(g)=0.

One notes immediately the presence of derivatives
with respect to the parameter A in the Lax pair (5).
This feature also appears in the Lax pair found pre-
viously by Belinski and Zakharov [121], although their
equations are otherwise very different from ours. We
note that no derivatives of this kind appear in the Lax
pairs found for SDYM [10,13-15].

The linear system (5) has no nontrivial solution
for A=0. Hence, we may assume that y is singular at
the origin of the A-plane, but otherwise regular in D.
We may thus expand ¥ into a Laurent series in D, for
a given solution g of Eq. (1):

vt d)= 5 2m@(xky (6)
where

n u _L dA’ M
6 (o) = Z”ii““ (et 2) M)

(here, C is a positively oriented simple closed con-
tour around A=0, lying entirely in D). Clearly, the
¢ depend on the choice of g, since y does.
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Proposition 3. The ¢ are conserved charges for
Eq. (1).

Proof. Substituting Eq. (6) into the Lax pair (5),
and equating coefficients of 1%, we obtain the system
of equations

(/i,,——Zn)¢(”)=¢§"+1), A‘z¢(")=_¢/§n+l) (8)

(n=0, £1, 2, ...). We may regard system (8) asa
Bicklund transformation (BT) relating ¢ and
¢**1) and depending parametrically on g. The inte-
grability condition [d, 8,]¢ "*!) =0, yields the con-
tinuity equation

[ (4, —2n)p " ]1+8.(4.9)=0, (9

while the integrability condition [4,, 4,]¢ " =46,
in combination with the equation of motion (1), yield
arelation of the same form as Eq. (9) but with (n+1)
in place of n. Hence, Eq. (9) summarizes an infinite
sequence of conservation laws for Eq. (1), valid for
all n=0, +1, +2, ... According to Eq. (8), the ¢
are potentials or conserved charges for these laws.
These charges may be constructed recursively by re-
peated integration of the strong BT (8) in both *“di-
rections” (i.e., for both increasing and decreasing 1),
provided that ¢ °) is known.

Proposition 4. The charge ¢ © satisfies the sym-
metry condition (4) whenever v is a solution to the
Lax pair (5).

Proof. We simply note that Eq. (9) reduces to Eq.
(4) for n=0. Alternatively, from Eq. (7) we have

1 [dA
(O) (MY o e } u
pO )= 50 | Lyen 1) (10)
C
Substituting the above expression into Eq. (4), and

using the Lax pair to eliminate 4,y and A.y, we get

. o 1
(0,4, + 8409 = 23, [ v, ai=0,
C

in view of the fact that the primitive y of y; is, by
assumption, a single-valued function of A in D.

A recapitulation is helpful at this point. Given a
solution g of Eq. (1) and a symmetry characteristic
O (in the sense that dg=aQ is a symmetry), the BT

(8) allows one to construct the charges ¢ > and hence
to obtain a formal series representation (6) for the
solution of the Lax pair (5). The recursive construc-
tion of the ¢ ™ starts with ¢(® =g ~!Q, which satis-
fies condition (4). Conversely, if i is found by direct
integration of the Lax pair for a given g, the ¢ are
obtained from Eq. (7). In particular, ¢ (9 satisfies Eq.
(4) so that Q=g¢® is a symmetry characteristic. We
remark that, in contrast to the SDYM case [10,16],
¢ " is not proportional to a symmetry characteristic
for n#0. Thus, the BT (8) is not a recursion opera-
tor for symmetries.

The infinitesimal transformation dg=age‘®, al-
though a symmetry of the general mairix equation
(1), does not by itself produce physical new solu-
tions of the Ernst equation. Indeed, an admissible
transformation dg= aQ must preserve the three con-
straints: g*=g, g" =g, and detg=1 (an asterisk de-
notes complex conjugation, while T denotes matrix
transposition ), whenever these are assumed for the
original solution g. The symmetry characteristic Q
must in turn satisfy the following requirements:
0*=Q, QT=Q, and tr(g~'Q) =0. These are gener-
ally not obeyed by Q=g¢ .

To circumvent this problem, we take advantage of
the following properties: (1) If g satisfies Eq. (1),
then so does g'. Consequently, if gT=g, and if
dg=aQ is a symmetry, then so is Jg=a Q" as well as
dg=a(0+0T). (2) The Lax pair (5) is compatible
with the constraints triy=0 and w(x# A*)=
w*(x*, A). Hence, we seek traceless solutions of (§)
which take on real values when 4 is restricted to the
real axis.

The above observations suggest that we consider
the following infinitesimal symmetry transformation,

s5= e [ S tawGen D+t gl (D)
C

where g satisfies g*=g, gT=g, and detg=1. It is
readily verified that the corresponding symmetry
characteristic Q conforms to the above-mentioned
necessary physical conditions. (To verify Q*=Q, we
make the change of variable A*=¢ in Q*, replacing
the contour C by its negative, and then change the
contour back to C while factoring out a minus sign. )

Transformation (11), written concisely as
dg=aQ[g], leads to one-parameter families of solu-
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tions g(x*; €) of Eq. (1), starting from seed solutions
g(x*; 0), by integration of the orbit equations for the
(formal) vector field V'=Q[g]3/9g. We have ob-
tained a solution to these latter equations in the form
of a power series in ¢, the terms of which are con-
structed recursively. (Details will be given in the
Appendix.)

To conclude this Letter, we give an example of us-
ing the BT (8) to obtain conserved charges for Eq.
(1), for a given symmetry characteristic Q of this
equation. We relax the physical constraints on Q since
they are not essential to the validity of the conserva-
tion laws (the physical conditions on g, however, are
still assumed to hold).

The symmetry dg=oagM, where M is a constant
matrix, corresponds to OQ=gM and ¢ P =g~ 'Q0=M.
Integrating the BT (8) for n=0, we find ¢V =[X,
M1, where X is the potential of Eq. (1), defined by
pg~'g,=X., pg~'g,=—X, and satisfying the
equation

p(X,+ X)X, +[X,, X,]=0. (12)
Integrating the BT (8) for n=1, we find
pP=[Q M]+5[X, [X,M]],

where £ is the potential of Eq. (12), satisfying

PX,—2X+E[ X, X]=£,,
pPX.—3[X,, X]1=-2,.

Conserved charges ¢ (" with n<0 are also obtained
from ¢ ©) by integration of the BT (8) in the reverse
direction (i.e., for n=—1, —2, ...). Further charges
are similarly constructed for Q=g, (z-translation)
and Q=pg,+ zg, (scale-change of the x*).

In summary, we have proposed a formulation of
the Ernst equation which treats symmetry and inte-
grability in a unified manner; a suitable Lax pair was
found by means of which new hidden symmetries and
infinite sequences of nonlocal conserved currents
were discovered. Although our method is similar, in
spirit, to the one used previously for the 4-dimen-
sional SDYM equation [ 10], our results reveal some
significant differences between the aforementioned
equation and the Ernst equation. Specifically: (a) The
Lax pair (5) contains derivatives with respect to the
spectral parameter, which is not the case with the Lax
pairs for SDYM. (b) The BT (8) depends explicitly

on the index » and is not a recursion operator for
symmetries, in contrast to the corresponding BT for
SDYM. We attribute these differences mostly to the
less symmetric form of the Ernst equation, compared
to SDYM, due to the explicit presence of an indepen-
dent variable in this equation.

We express our gratitude to Evi S. Papachristou for
her valuable assistance in the course of this collabo-
ration. We also thank the referees of this paper for
several useful suggestions. One of us (C.J.P.) wishes
to acknowledge the kind help of Paraskevi Foundali.

Appendix. We now briefly describe the recursive pro-
cess for obtaining one-parameter families of solu-
tions g(e) of Eq. (1), starting from seed solutions
g(0) =g

Consider the initial-value problem:

2 5(0=018(0)1, g(0)=12. (A1)
where, in general, Q[g] is given by

1 (di ; Tyon
Q=2—n—iC7 [gw(x*, A)+wt(xH A)g]. (A.2)

We seek solutions in the form

gle)= ) eg™, g®=g, (A.3)

n=0
Given that the solution y of the Lax pair (5) depends
implicitly on g, we may also write

w(e)= Zof"w‘"), y =y, (A.4)

n=

where y and w(e) are solutions of Eq. (5) corre-
sponding to g and g(€), respectively. Finally, let us
set

g7 (e)= f €e"hm (A.5)

n=

It is readily verified that 2" is fully determined by
the g, g™, .., g For example,

hO=g1,
hD= _g=lgg—1
h(2)=g—1g(l)g~1g(l)g—1_g—lg(z)g..l ,
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etc.

Substituting Eqs. (A.3)-(A.5) into the linear system
(5), and equating coefficients of €”, we find a system
of equations by which y (" is obtained by integration
once the g@, .., g™ and @, ..., "= have been
determined:

n {
p(rie & 5, mmggomyrem)

—22y{" — (1/ A" =0,

p(W;")"’ i i [h(m)g§l~m)7v/(n——[)])

=0 m=0
+(1/A)pim =0. (A.6)

Now, the expansion of Egs. (A.1), (A.2) in € yields
a recursion relation by which g** is constructed
once the g@, .., g™ and y @, ..., w are known:

1
(n+1y __ >
& =y )m

z (A
% ZJT (g My = 4 [y M) Tgimm)y
"=t

(A7)

Thus, starting with a seed solution g, we may con-
struct the g of Eq. (A.3) recursively by using Egs.
(A.6) and (A.7). This constitutes a formal solution
to the problem (A.1), (A.2).

Approximate or perturbative solutions may be ob-
tained for small values of the parameter €. The pos-
sible physical significance of such solutions will be
explored in future works.
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Abstract: A systematic construction of a Lax pair and an infinite set of conservation laws for
the Ernst equation is described. The matrix form of this equation is rewritten as a differential
ideal of ¢l(2,R)-valued differential forms, and its symmetry condition is expressed as an exterior
equation which is linear in the symmetry characteristic and has the form of a conservation law.
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1. Introduction

The search for the connections between symmetry and integrability has always been a
central problem in the study of nonlinear partial differential equations (PDEs). For
those PDEs having an underlying variational structure, the work of E. Noether and its
extensions (see, e.g., [1,2]) provide an important link between variational symmetries
and conservation laws. Non-variational connections between symmetry and integrability,
however, also exist. They are often related to the possibility of “linearizing” a nonlinear
PDE by use of a Lax pair, i.e., a pair of coupled PDEs linear in an auxiliary function ¢) and
integrable for 1 on the condition that the original (nonlinear) PDE is satisfied. Linearity
is an important issue here,since the symmetry condition (characteristic equation) of a
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PDE is itself a linear PDE for the symmetry characteristic [1,2].

A given nonlinear PDE may often be linearized in more than one way by different
choices of a Lax pair. A particularly useful choice is the one in which the Lax pair plays
the role of a Backlund transformation connecting the PDE with its symmetry condition
3], so that the solution v of the pair is a symmetry characteristic for the PDE (or, more
generally, is linearly dependent on a symmetry characteristic). Hence, in a sense, the
symmetry condition is “built” into the Lax pair. In this way, one obtains a symmetry of
the PDE by integrating the associated linear system.

A well-known example where these ideas find wide applications is the self-dual Yang-
Mills equation [4,5]. Interestingly, this has been shown to be a sort of prototype equation
from which several other known PDEs are derived by reduction [6,7]. One such PDE is
the Ernst equation of General Relativity describing stationary, axially symmetric grav-
itational fields. In a previous paper [8] the authors proposed a new Lax pair for this
equation (an older one was found by Belinski and Zakharov [9]) and showed that the
solution 1 of this pair is indeed linearly related to a symmetry characteristic. In addition
to giving new “hidden” symmetries, the Lax pair also leads to the construction of infinite
collections of conservation laws for the Ernst equation.

Admittedly, finding a Lax pair with specific properties almost always requires a certain
amount of guessing, as well as a lot of patience in a long trial-and-error process. We now
ask the question: Can a linear system such as that of [8] be derived in a systematic way?
This article answers this question in the affirmative. As we show, the symmetry condition
alone leads one straightforwardly to the discovery of infinite sets of conservation laws,
as well as a Lax pair having the desired properties. Our formalism is expressed in the
language of exterior differential forms which is both elegant and economical. Hence, for
example, differential equations expressing conservation laws, as well as systems of PDEs
constituting differential recursion relations or Lax pairs, will now be represented by single
exterior equations. In this regard, it would be more appropriate to speak of an exterior
linearization equation, rather than of a Lax pair in the ordinary sense of this term.

In short, the process is as follows: First, we rewrite the Ernst equation as a differ-
ential ideal of matrix-valued differential forms and express its symmetry condition as an
exterior equation which is linear in the symmetry characteristic. This latter equation is
in conservation-law form, and this fact allows us to introduce a first “conserved charge”
or “potential”. A second conservation law is then found, with a new potential, and
the process continues indefinitely, yielding a double infinity of conserved charges. These
charges are related to each other via a certain recursion relation and are used as Laurent
coefficients in a series whose terms involve powers (both positive and negative) of a com-
plex “spectral” parameter. This series (assuming it converges) represents some complex
function W, which is shown to satisfy an exterior linearization equation equivalent to a
Lax pair.
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2. Mathematical Preliminaries

The variables z# = p, z (u=1,2, respectively) will be regarded as local orthogonal coor-
dinates in a 2-dimensional Euclidean space with metric ¢,,. Geometrical objects defined
in this space (such as functions or differential forms) are assumed matrix-valued, with
values generally in ¢l(2,C') (with appropriate restrictions, such as real-valuedness, etc.,
in accordance with physical requirements).

The volume 2-form in our space is

=1/, g dxtde” = dpdz
(the usual summation convention is assumed). For any 1-form
o=o0,dx" = o1dp+ 09 dz,
the dual of o with respect to 7 is defined as the 1-form *o with components
(x0), = To! = e, Moy,

so that
x0 = (x0),dzt = —oodp+ 01 dz.

In particular, *dp=dz, *dz = —dp. Also,
x(x0) = —0 (1)
For 1-forms o7 and o5, we have that
k01 A %09 = 01 Ndy, 01 \*ag = — (x01) A 09 (2)
We note that the * operation is linear, so that
w(aoi+fos) = a xo1+ * 0y (3)

where o and 3 are 0-forms.
Given any differential forms ¢ and &, we define the commutator

[ & = ¢nE—End

In particular, if o is a 1-form and v is a O-form, then [o,1)|=01 — o and, by the
antiderivation property of the exterior derivative,

d[07 1/}] = [dO', w] - {07 dw} (4)
where, in general, curly brackets denote anticommutators:
{Ul,UQ}E o1 N0y + 09 A\ 0yq.

We note that, to simplify our notation, we will often omit the symbol A of the exterior
product. It should be kept in mind, however, that exterior multiplication of differential
forms will always be assumed. Thus, an expression like o105 should be understood as
0'1/\0'2.
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3. Ernst Equation: Geometrical Formulation and Symmetry

We adopt the following matrix form of the Ernst equation [6,7]:

(pg " 90)p + (pg~"'g2): =0 (5)

where subscripts denote partial derivatives with respect to the variables p, z, collectively
denoted z# (1u=1,2, respectively). The matrix function g is assumed to be SL(2,R)-valued
and symmetric. With the parametrization

1 |1 w

g =
e F2 402
and by setting F = f+w, we recover the Ernst equation in the usual form,
(ReE)V?E = (VE)>.

With the substitutions
A = g_lgp ) B = g_lgz 9
equation (5) becomes equivalent to the system of PDEs

A+p(A,+B.)=0 (6)

B,—A.+ [A,B]=0 (7)

The second equation is just the integrability condition in order that g may be recon-
structed from A and B.
We introduce the matrix-valued “connection” 1-form

vy=¢g 'dg= Adp+ Bdz (8)

The integrability condition d(dg)=0 in order that g may be recovered from 7, together
with the obvious requirement that g be nonsingular, yield the Mauer-Cartan equation
w=0, where w is the 2-form

w =dy+yANy=dBdz—dpdA+ [A, Bl dpdz (9)
We also construct the 2-form
d(px~)= Adpdz+ p(dAdz+ dpdB) (10)

where *v =-Bdp+Adz.
We now observe that Eqs.(6) and (7) correspond to the system of exterior equations

dp xv)=0, w =0 (11)
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Indeed, one may consider d(p*y) and w as 2-forms in a jet-like space of four variables:
the scalar variables 2#=p,z and the gl(2,R) variables A and B. Equations (6) and (7)
are recovered by projecting Eqgs.(11) onto the base space of the x*.

Let I{d(p*y), w} be the ideal of forms [10-12] generated by the 2-forms d(p*y) and
w. The first form is exact, thus its exterior derivative is trivially a member of the ideal,
while, as we can easily show, dw = w A~y — v A w, which also belongs to I. We thus
conclude that [ is a differential (closed) ideal.

The first of Eqgs.(11) implies the existence of a matrix potential X such that p*y=dX
(that is, pA=X,, pB=-X,).Then, *dX=- pv, and, by the Mauer-Cartan equation w=0,
we get

dp x dX — pd*x dX + dXdX =0 (12)

[where use has been made of the first of Eqgs.(2)]. In component form,

X, — p(Xpp+ Xo2) + [X,, X.] = 0 (13)
We introduce the covariant derivatives

Dy=0,+[A, ], D.=09.+[B, ] (14)

(where 0,=0/0p and 0,=0/0z) which are seen to be derivations on the Lie algebra of
gl(2,C)-valued functions. We also define an exterior covariant derivative D which acts
on ¢l(2,C) functions & as follows:

D® = dd+ [y, d] = (D,®)dp+ (D.®)dz (15)

We now look at the symmetry problem for system (11). We first note that all symmetries
of a system of PDEs can be expressed as infinitesimal transformations of the dependent
variables alone [1,2]. Thus, all symmetries may be represented by “vertical” vector fields,
i.e., vectors with vanishing projections on the base space of the z#. Let dg=aQ|g] be an
infinitesimal symmetry transformation of Eq.(5), where « is an infinitesimal parameter
and @ is a matrix-valued function which may depend locally or nonlocally on g. It is
convenient to set =¢®, where ® is another matrix O-form. The infinitesimal symmetry
of Eq.(5) is then written as

0g = ag® (16)

(with appropriate restrictions on ® in order that the transformation preserve the sym-
metric SL(2,R) character of g). This induces the symmetry transformations 6A = aD,®,
dB=aD,® of system (6)-(7). These are summarized by the formal vector field

0 0
o1 "% op

The symmetry condition on the ideal I of the 2-forms d(p*y) and w is that the Lie

V=D, (17)

derivative with respect to V' should leave this ideal invariant [10-12]:

Lyl cC I
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This is satisfied by requiring that
Lyd(pxvy)= Lyw =0 mod I{d(p*x~y), w} (18)

By using Eq.(9) for w, taking into account that the Lie derivative commutes with the
exterior derivative and satisfies the Leibniz rule, and by noting that

Lyy= Ly(Adp+ Bdz) = (D,®)dp+ (D,®)dz = D® = d®+ [y, ®] ,

we find that
Lyw =wd—-0w = [w, ¢,

which is automatically a member of the ideal I, hence satisfies the condition for w in
Eq.(18). On the other hand, by noting that

Lyx~vy= Ly(—=Bdp+ Adz)= % D,

we find that the condition for d(p*y) is expressed as an exterior equation which is linear
in ®:
d(pxD®)= 0 on solutions (19)

(where “on solutions” means: when Eqs.(11) are satisfied). In component form,
(pD,®), + (pD.P), = 0 on solutions (20)

The reader is invited to derive the symmetry condition (20) directly from the Ernst
equation (5) by assuming a symmetry characteristic @Q=¢® and by applying the abstract
formalism described in [3]. (Note, however, that our present notation is different from
that of [3]. Specifically, the symbols D, and D,, which here denote covariant derivatives,
have the meaning of total derivatives in [3].)

4. Conservation Laws and Exterior Linearization Equation

We now turn to integrability characteristics of the Ernst equation. As is well known,
the hallmark of integrability is the existence of a linear system or Lax pair. This system
may be compactified into a single exterior equation involving 1-forms, which will be
referred to as an exterior linearization equation. The purpose of this section is to describe
a systematic construction of such a linearization equation for the Ernst equation, or
equivalently, for the exterior system (11).

We begin with the symmetry condition (19):

d(pxD®) = 0 (21)

The corresponding infinitesimal symmetry transformation is ¢’ = g + ag®, according
to Eq.(16). This means that ¢’ is a solution of the general PDE (5) when ¢ is a solu-
tion. However, we will not require here that the new solution ¢’ conform to the extra
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physical restrictions imposed on the original solution g, namely, of being symmetric and
having unit determinant. Thus, all real solutions ® of the exterior equation (21) will be
admissible (e.g., ® = g~ 'g. = B).

As its component form (20) suggests, the exterior equation (21) expresses a conserva-
tion law valid for solutions of the Ernst equation. Equation (21) also implies the existence
of a “conserved charge” or “potential” ®’, such that

dd®' = px DP® = p(xd® + [x7, 9])

[where use has been made of the linearity property (3) of the star operation]. Starring
this equation, solving for d®, and requiring that d(d®)=0, we find another conservation
law:

dpx D —2d'dz)= 0
by which we introduce a new potential ®” such that
d®" = px DO —20'dz = p (xdP' + [xy, D']) — 29'dz

Starring this and applying d(d®’)=0, we obtain yet another conservation law:
d(pxDP" —4d"dz) = 0 | etc.
This process suggests that we consider the following exterior recursion relation:

APt = px DO — 2 dM gz
(22)
= p (xd®™ + [y, ®™]) —2n d Mz

with ®() =& representing a symmetry characteristic of the Ernst equation in its general
form (5) [i.e., a solution of Eq.(21)].

In order that the exterior equation (22) be integrable for @™+ for an already known
®™ | the integrability condition d(d®")=0 must be satisfied. This yields

d (px D™ —2n®Mdz) = 0 (23)

We will now show that Eq.(23) is a conservation law valid for solutions of the Ernst
equation. The left-hand side of (23) is written as

Lh.s. (23)= d(p *d®™ + [px~, @] —2ndMd2)
= dp *d®™ +pdx d®™ + d[p* v, ] —2ndP"Md> .
By using property (4) and the second property (2), we have:
dlp* 7y, @] = [d(px7), @M] = pxydd™ — pdd™ x5y

= [d(px7), @] + py xd®™ + p x dDMy
dPMdz = d®™ x dp= dp % dP™
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Therefore,
L.h.s. (23) = (1—2n)dp xd®™ +pd+dd™ + [d(px7), @™+ pyxdd™ + p +dd ™)y

Now, by rewriting the recursion relation (22) with (n—1) in place of n, we can express
d®™ | thus also *d®™, in terms of ®™~1). Substituting for *d®™ into the expression
for the Lh.s. of (23), and taking into account that dy + vy = w, we finally find:

l.h.s. (23) = [d (p * ’y)’ (I)(")] _ P2 [w’ (I)(nfl)]

We note that this expression vanishes when d(p*y)=0 and w=0, i.e., for solutions of the
Ernst equation. This proves the conservation-law property of Eq.(23).

As we have just shown, the conservation law (23) is the necessary condition for ®(
in order that the exterior equation (22) be integrable for ®*1. For n =0, Eq.(23) is
just the symmetry condition (21), which is indeed satisfied by ®(©) since the latter is, by
assumption, a symmetry characteristic. Now, we must show that the solution ®™+1) of
Eq.(22) also conforms to condition (23) with (n+1) in place of n. This will ensure that the
recursive process may continue indefinitely for all values of n, yielding an infinite number
of conservation laws from any given symmetry characteristic ®©. This time we need to
eliminate ®™ from Eq.(22) in favor of ®™+Y. By this process we will actually derive
the necessary condition for 1) in order that the exterior equation (22) be integrable
for @™ when ®™*Y is already known. This will allow us to use the recursion relation
(22) “backwards” to obtain potentials ®™ and corresponding conservation laws (23) for
negative values of n also. Thus, the validity of Eqs.(22) and (23) will be extended to all
integral values n =0, +1, +2, ...

Starring Eq.(22) and solving for d®™, we get:

1 2
dp™ — _ ; % 4P+ _ [, q)(n)] + %@(")dp (24)

We apply the integrability condition d(d®™)=0, and use Eq.(24) again to replace dd™
where it appears. Then, a lengthy but relatively straightforward calculation, performed
with the aid of properties (2) and (4), shows that

d(px DO —2(n+1) @™ dz) = [d(px7), "] — p?lw, ™

So, the left-hand side of the above equation vanishes for solutions of the Ernst equation,
as it should.

In conclusion, starting with any symmetry characteristic @, we can use the recursion
relation (22) to find a double infinity of conserved charges (potentials) ®™ for n = +1,
+2, ... These charges are increasingly nonlocal in g, since they involve integrals of
increasing order of expressions containing the function g.

With these charges in hand, we now introduce a complex variable A (to be identified
with a spectral parameter) and construct a function ¥(z#,\) having the following series
representation for A#£0:

(2", \) Z A" (25)

n=—oo



Electronic Journal of Theoretical Physics 6, No. 22 (2009) 29-40 37

We assume that the series (25) converges to the function W which is single-valued and
analytic (as a function of \) in some annular region centered at the origin of the A-plane.
Hence, Eq.(25) represents a Laurent expansion of ¥ in this region.

Multiplying the recursion relation (22) by A", summing over all integral values of n,
and using Eq.(25), we find an exterior equation linear in W:

1
px DU — 2 \U,dz = X dv (26)

or explicitly,

1
p xdV+ [pxy, U] — 2\U,\dz = qu] (27)

Relation (26) is an exterior linearization equation for the Ernst equation, equivalent to a
Lax pair. Specifically, the exterior equation (26), linear with respect to U, is integrable
for ¥ when the exterior equations (11) are satisfied.

The proof of this statement is outlined as follows: The integrability condition for
solution of Eq.(26) is d(dV)=0. So, the exterior derivative of the left-hand side of this
equation must vanish. By using algebraic manipulations which are by now familiar to
the reader (such as, for example, {*y,dV}=—{v,*dV}, dV,dz=dp*d¥,, etc.), the above
requirement leads to the following exterior equation:

dp *dV + pd «dV + [dpxv), V] + p{v, *xdVU} =2X\dp *d¥, = 0  (28)
By starring the linear system (27), we find an expression for *dW:
xdW = —X\p(dV + [y, ¥]) +2)\*W,dp (29)
Differentiating this with respect to A, we have:
¥d Uy = —p(dU+ [y, U]) —=Ap (dUx+ [y, Ua]) +4XT5dp + 207Uy dp

Substituting this equation and Eqs.(29) into the integrability condition (28), we finally
get:
[d(p*7y) = Apw, V] =0 ,

where w=dy + vy. The above relation is valid independently of ¥ and A if d(p*v)=0
and w=0, i.e., for solutions of the Ernst equation. This proves that the integrability of
the exterior equation (26) for ¥ is indeed dependent upon the satisfaction of the Ernst
equation.

In component form, Eq.(26) is written as a pair of linear first-order PDEs for U:

pD, U —2)T, = 1y,

; (30)

pD. ¥ = — Ly,

The reader is invited to show that the integrability of system (30) for ¥ requires that
equation (5) is satisfied (see also [8]). Thus, (30) represents a Lax pair for the Ernst equa-
tion. In fact, this pair is equivalent to that found by different means in [8]. What we have
shown is that this system may actually be constructed by a remarkably straightforward
process, by starting with the symmetry condition of the field equation.
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5. Connection to Other Linear Systems

It can be shown (see [8,3]) that, by solving the linear system (30) for ¥, for a given
solution g of the Ernst equation, one simultaneously obtains an infinitesimal “hidden”
symmetry of this equation, given by the expression

dg = % ; % (g¥(z*, X)) + ¥ (2", N) g) (31)
where « is an infinitesimal parameter, C'is a positively oriented, closed contour around the
origin of the A\-plane, and W7 denotes the transpose of the matrix ¥. (Here, g is assumed
to conform to the physical restrictions of being real, symmetric, and of unit determinant.
Moreover, ¥ is required to be traceless and to assume real values when \ is confined to
the real axis. Then, the new solution ¢’ = g 4+ dg obeys the same physical restrictions as
g.) Since solutions of the system (30) [or equivalently, the exterior linearization equation
(26)] are of importance in this regard, any mechanism for producing as many solutions as
possible would be useful. We now exhibit a simple transformation which maps solutions of
(a form of) the Belinski-Zakharov (B-Z) linear system [9] into solutions of our linearization
equation (26).

We recall the exterior linearization equation (27):

1
p (xdU + [x7v, ¥])— 2\V,dz = qu] (32)

where W conforms to the physical conditions mentioned in the previous paragraph;
namely, t7U=0 and W(z#* \*)=U*(2# ) (the asterisk here denotes complex conjuga-
tion). On the other hand, a variant form of the B-Z linear system, adapted to the
particular form of our equations, is the following:

1
p(xdd+ xyP)— 2X\D)\dz = deb (33)

Let ®(g;A) be a non-singular solution of the exterior equation (33) for some solution g of
the Ernst equation. We assume that ® becomes real for real values of X\. Consider now
the function W(g;\) given by

V=070 ! (34)

where T is an arbitrary traceless matrix function of the form

Ap? 1
T=F - — 4+ —
(z 5 Tt 2)\) (35)

subject to the condition that F' be real-valued for real values of A. It may then be
proven that WU(g;\) is a solution of the linearization equation (32).

Although only a subset of the entirety of solutions of Eq.(32) can be produced in
this fashion, the transformation (34)-(35) is an effective way of taking advantage of our
knowledge regarding the B-Z formulation for the purpose of finding hidden symmetries
of the Ernst equation.
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Our method for finding a linear system and an infinite number of nonlocal conserved
currents for the Ernst equation is closely related to that of Nakamura [13]. In the latter
case, the Lax pair does not contain derivative terms with respect to the spectral param-
eter. Moreover, the infinite set of conservation laws is accompanied by a corresponding
infinite set of nonlocal symmetries, which is not the case with our method for the Ernst
equation but which is the case with regard to another familiar nonlinear system, the self-
dual Yang-Mills (SDYM) equation. To achieve these extra characteristics, however, one
has to perform an analytic continuation of g(p,z) into complex space and introduce more
independent variables. In this way the Ernst equation transforms into a reduced form
of the SDYM equation, and the mathematical treatments of these two systems become
quite similar.

Summary

In this article we have pursued our study of the relation between symmetry and inte-
grability characteristics of the Ernst equation. Taking advantage of the conservation-law
form of the symmetry condition, we have inductively produced a double infinity of non-
local conserved charges by means of a recursion relation. These charges were then used
as Laurent coefficients in an infinite series whose terms involve powers (both positive
and negative) of a complex “spectral” parameter. Within its domain of convergence,
this series represents a function W which is seen to satisfy a certain linear system, the
integrability of which for ¥ is possible in view of the Ernst equation. Finally, we have
presented a simple transformation which maps all solutions of the Belinski-Zakharov Lax
pair [9] into solutions of our linear system, and we have compared our results to those of
Nakamura [13]. Our formalism was developed in the language of differential forms and
exterior calculus, which allowed us to present our equations in a more compact, as well
as a more elegant form.

It is remarkable that integrability properties of the Ernst equation, such as the ex-
istence of Lax pairs and an infinite number of conservation laws, can be derived in a
straightforward way by performing rather natural manipulations on the symmetry con-
dition. This characteristic, which is also observed in the case of the SDYM equation,
reveals a profound, non-Noetherian connection between symmetry and integrability. It
will be further explored in future publications.
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1. Introduction

In a recent paper [1] an analytical method was described for constructing a Lax pair for the
Ernst equation of General Relativity. The starting point was the symmetry condition (or
linearized form) of the field equation. The latter equation is in conservation-law form, and
thus so is its associated symmetry condition. A doubly infinite hierarchy of conservation
laws was then constructed by a recursive process, and the conserved “charges” were used
as Laurent coefficients in a series representation (in powers of the spectral parameter) of
a function ¥ which was seen to satisfy the sought-for Lax pair.

It is natural to inquire whether this technique can also be applied to other nonlinear
partial differential equations (PDEs) of Mathematical Physics. This article describes a
general, non-Noetherian framework for connecting integrability characteristics of a given
nonlinear PDE to the symmetry properties of this PDE. It is remarkable that, by starting

* papachristou@snd.edu.gr
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with the symmetry condition, one may discover a number of important things such as
the existence of a recursion operator [2,3] for symmetries, a doubly-infinite set of (typi-
cally nonlocal) conservation laws, and a Lax pair which “linearizes” the nonlinear field
equation.

To illustrate the use of the method, application is made to two familiar nonlinear PDEs:
the chiral field equation and the self-dual Yang-Mills equation. In these examples, the
corresponding Lax pairs and infinite sequences of conservation laws are constructed ex-
plicitly. Moreover, the recursion operators for symmetries are derived. In the case of
the real Ernst equation, treated previously in [1], although a recursion operator doesn’t
seem to exist for that particular form of the equation (due to the coordinate “pathology”
which results in the explicit appearance of an independent variable in the PDE), one still
gets an interesting “hidden” symmetry transformation which leads to new approximate
solutions for stationary gravitational fields with axial symmetry [4].

2. The General Idea

Let F' [u]=0 be a nonlinear PDE in the dependent variable « and the independent vari-
ables z, y, ... . The bracket notation [u] indicates that the function F' may depend
explicitly on the variables u, x, y, ... , as well as on partial derivatives, of various orders,
of u with respect to the independent variables, denoted ug, ty, Ugg, Uyy, Ugy, €tc. We adopt
the definition according to which the PDE is integrable if it has an associated Lax-pair
representation, i.e., if it can be expressed as an integrability condition for solution of a
linear system of PDEs for an auxiliary field U :

Li(V;u; \) =0 =12 (1)

where the differential expressions L; are linear in ¥, and where A is a (generally complex)
“spectral” parameter.

It has been observed that integrable PDEs often have an infinite number of symmetries
which may be produced, for example, with the aid of one or more recursion operators
(see, e.g., [2,3] and the references therein). This connection between symmetry and
integrability may be attributed to a variety of factors. For example, an integrable PDE
may have an underlying Hamiltonian structure in which the Lagrangian density possesses
an infinite number of variational symmetries. In this case, the Noether theorem provides
the connection between symmetry and integrability, the latter manifesting itself in the
presence of an infinite set of conservation laws. As is often the case, the existence of these
laws is associated with a Lax structure for the nonlinear problem.

Non-Noetherian connections between symmetry and integrability, however, may also ex-
ist. Let us recall that the nonlinear PDE F' [u|=0 is a consistency condition for solution
of the system (1). On the other hand, the (generally complex) function ¥ will satisfy
some PDE of its own, also derived from system (1). This PDE will be linear in ¥ and
will contain u as a “parametric” function:
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GU;u) =0 (2)

where the expression G is linear in ¥, and where u is a solution of F' [u]=0 . We may say
that the system (1) is a Bécklund transformation relating the nonlinear PDE F' [u]=0 to
the linear PDE (2). Now, we already know an equation of the form (2): it is the symmetry
condition (linearized form) of F [u]=0. Let v’ = u+a Q [u] be an infinitesimal symmetry
transformation for the latter PDE, where « is an infinitesimal parameter (we note that
any symmetry of a PDE can be expressed as a transformation of the dependent variable
alone [2,3], i.e., is equivalent to a “vertical” symmetry). The symmetry characteristic Q)
[u] then satisfies a linear PDE of the form

S(Q; u) = 0 mod F [u] (3)

2

where “mod F' [u]” signifies that the PDE on the left is satisfied when u is a solution of
the nonlinear PDE F [u]=0 . Now, if it happens that Egs.(2) and (3) become identical
when =@ (i.e., if the functions G and S are the same), then the solution ¥ of the Lax
pair (1) will also be a symmetry characteristic of F' [u]=0 :

S(¥; u) =0 modF [u] (4)

Of course, as the examples of the self-dual Yang-Mills equation [5] and the Ernst equation
[1,4] have taught us, it is possible that a given nonlinear PDE admit more than one Lax
representation. What we are seeking here is a Lax pair which functions as a Backlund
transformation connecting the nonlinear PDE F [u|=0 to its (linear) symmetry condi-
tion (3). The symmetry condition itself is thus “built” into the Lax pair, and a very
fundamental connection between symmetry and integrability is established.

With regard to the complex parameter A of the Lax pair (1), we remark the following:
Since the role of such a parameter is generally nontrivial, it will be required that A be
nonzero (as well as, of course, finite in magnitude). We then expect that the solution
U of system (1), for a given u satisfying F' [u|=0 , will be an analytic function of A for
A #0. This solution may thus be represented as a Laurent series expansion in powers of
A, with u-dependent coefficients:

+oo
Vs A= > AQM (5)
where the functions Q™ [u] may be local or nonlocal in u. Now, we recall that ¥ is
assumed to be a symmetry characteristic of F' [u]|=0 , and this must be true for all values
of A in the Lax pair. Substituting Eq.(5) into Eq.(4) (which is linear in V), and equating
coefficients of all A" to zero, we find a doubly infinite set of linear PDEs for Q™) of the
form

S(Q(");u) =0 modFlu] , n=0, £1, £2,--- (6)
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All Laurent coefficients Q™[u] are thus seen to be symmetry characteristics for the
nonlinear PDE F' [u]=0 , and the presence of this infinite set of symmetries is intimately
related to the Lax pair.

Substituting the expansion (5) into the Lax pair (1), and equating coefficients of all
powers of A to zero, we obtain a pair of linear PDEs containing Q™ and (say) Q™+1).
In essence, this is a Bécklund transformation for the symmetry condition (3). This
differential recursion relation constitutes a recursion operator [2,3] for the PDE F' [u]=0,
in the spirit of a new perception of this concept originally proposed by this author [5,6]
and, independently, by Marvan [7]. We thus have a method for the explicit construction
of such an operator. Starting with any symmetry Q®, we can, in principle, use this
operator to derive a double infinity of symmetries Q™ (although not all of them will
necessarily be nontrivial).

Finally, suppose that F' [u] is a divergence, so that the PDE F [u]=0 has the form of a
conservation law. Then, its symmetry condition (3) also is in such form. Given that an
infinite number of symmetry characteristics Q™ [u] are available, we immediately obtain
a doubly infinite collection of conservation laws for F' [u]=0 from Eq.(6) (where now the
function S is a divergence). Typically, the recursion operator connecting the Q™ to
each other is an integro-differential operator; thus, the conserved “currents” are generally
expected to be nonlocal in u .

3. Analytical Description of the Method

Our objective is the following: Given a nonlinear PDE F' [u|=0 in conservation-law form,
we seek a Lax pair whose solution is a symmetry characteristic for this PDE, and, in the
process, we expect to derive a recursion operator for symmetries as well as an infinite
set of (nonlocal) conservation laws. Although the solution u of the PDE may depend on
more than two independent variables, we restrict ourselves to the case where F' [u] is a
divergence in only two of them:

Flu = DyAu] + Dy,Bu] =0 (7)
where D, and D, denote total derivatives (see Appendix), which will also be indicated
by using subscripts: D, A = A, etc. We will assume, in general, that u is square-matrix-
valued, and so are the functions A, B, F.

Let du = a@ [u] be an infinitesimal symmetry of Eq.(7) (where « is an infinitesimal
parameter and () is the matrix-valued symmetry characteristic). We write, in finite
form,

Au = Qlu (8)
where, in general, A denotes the Fréchet derivative of any function f [u], with respect to
the characteristic @ (see Appendix). The symmetry condition for the PDE (7) is

AF[u] = 0 modF [u] 9)
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where

AF[ul = D,AA[u] + D, AB|u]

(since Fréchet derivatives and total derivatives commute). Putting

AAfu] = G(Q;u), AB[u = H(Q;u) (10)

(where the functions G and H are linear in ), we rewrite Eq.(9) in the form of a linear

PDE for @ :

S(Q;u) = D.G(Qs5u) + DyH(Q;u) = 0 mod Fu] (11)

We note that S(Q ; u) is a divergence, so that the symmetry condition (11) is a conser-
vation law for the corresponding nonlinear PDE (7).

Equation (11) suggests that we introduce a “potential” function K , such that G = K,
and H = — K, (subscripts denote total differentiations). We assume that K is linearly
dependent on some new function @', and we write:

GQ;u) = DyK(Q'5u) , H(Q5u) = —DK(Q'; u) (12)

Clearly, this system is integrable for @’ (mod F' [u]) if @ satisfies the symmetry condition
(11). The integrability requirement for @ , on the other hand, will yield some linear PDE
for @'. Tt is possible that, by an appropriate choice of the function K(Q';u), this PDE
will be just the symmetry condition (11) for @)’

S(Q"; u) = 0 mod F [u].

That is, Q" will also be a symmetry characteristic. The system (12) then constitutes a
Bécklund transformation (BT) for the symmetry condition (11). This BT may be viewed
as an invertible recursion operator for symmetries of the nonlinear PDE (7). Such an
operator will, in principle, produce a doubly infinite sequence of symmetry characteristics
Q™ (n= #1, £2, ...) from any given characteristic Q).

To better display the recursive character of the BT (12), we rewrite this system as follows:

6@ 1) = DK (@) "
H(QM:u) = — DK (QU); u)
(n= 0, £1, £2, ...), where G and H are linear in Q™, while K is linear in Q1.
Now, since all the Q™ satisfy the PDE (11), the BT (13) also yields a double infinity of
conservation laws for the field equation (7):

D,G (Q("); u) + DyH (Q("); u) = 0 mod F [u] (14)

Starting with a known symmetry characteristic ) , we can evaluate the conserved “charges”
Q™ (n=0, £1, +£2, ...) as follows: (a) We take the BT (13) with n=0 and set Q) =Q on
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the left-hand side. Then, QU is found by integration. To find Q® we similarly integrate
the BT (13) with n=1, etc. We thus obtain all positively-indexed charges Q™. (b) We
take the BT (13) with n= —1 and set Q® =Q on the right-hand side. We then solve for
QY . Working similarly for n= —2, —3, ... , we obtain all negatively-indexed charges
QM.

We now introduce a complex parameter A, which we require to be nonzero and of finite
magnitude. Multiplying both sides of Eq.(13) by A", summing over all integral values of
n, and taking into account that the functions G, H and K are linear in their respective
@’s, we find the following pair of PDEs:

G QM u) = 2D,K (30 A"QM; u)

. - (15)
H (X7 A" ) = = 3D K (X2 Qs u)
We set
+00
Ui )= ) NQW (16)

Equation (16) has the form of a Laurent expansion of a complex function ¥ in powers of
A, for a given solution u of the field equation (7). We note that ¥ is a linear combination
of symmetry characteristics of Eq.(7), hence W itself is a symmetry characteristic of that
PDE. Substituting Eq.(16) into Eq.(15), we rewrite the latter in the form of a system of
linear PDEs for :

DK(W:u) = AG(V:u), D,KW;u) = —AH(U; u) (17)

The consistency of this system requires that W satisfy the linear PDE (11),

S(W;u) = D,G(VY;u) + DyH(V;u) =0 (mod F [u]).

This verifies that ¥ is a symmetry characteristic. Moreover, the system (17) is linear in
U, and its solvability demands that u satisfy the nonlinear PDE (7) [this was required
from the start in order that the BT (13), by which the charges Q™ appearing in the
Laurent expansion (16) are defined, may be integrable for Q™ and QY] . We thus
conclude that the linear system (17) constitutes a Lax pair for the field equation (7),
and that, moreover, the solution ¥ of this system is a symmetry characteristic of that
equation.

A final comment before closing this section: The whole idea was based on the assumption
that an auto-Bécklund transformation of the form (12) exists for the symmetry condition
(11). It is possible, however, that no choice for the function K (Q’;u) in Eq.(12) exists such
that Q" be a symmetry characteristic when ) is such a characteristic. In this case, the
method described above may still furnish an infinite number of conservation laws as well
as a Lax pair, albeit not a recursion operator for producing infinite sets of symmetries.
Moreover, the solution ¥ of the Lax pair will no longer represent a symmetry of the
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field equation (although, of course, it will somehow be related to a symmetry, since the
symmetry condition was the starting point for constructing the Lax pair). The example
of the Ernst equation, examined in detail in [1], made this point clear. In this case,
the absence of an infinite set of symmetries is not a property of the gravitational field
equations themselves (which, when properly formulated, do exhibit such an infinite set
[8]) but is a consequence of the chosen real form of the Ernst equation, in which a spatial
coordinate makes an explicit appearance.

4. Chiral Field Equation

The chiral field equation (a two-dimensional reduction of the self-dual Yang-Mills equa-
tion, to be discussed later) is of the form

Flg) = (979 ¢+ (97 90)e = 0 (18)
where ¢ is a GL(N,C)-valued function of ¢ and z (as usual, subscripts denote total
differentiations with respect to these variables). Let dg = a @ [g] be an infinitesimal
symmetry of Eq.(18), with symmetry characteristic @ [g]. We have that Ag = Q[g],
where A denotes the Fréchet derivative with respect to @) (see Appendix). Moreover, by
the commutativity of the Fréchet derivative with total derivatives,

AFlg] = DiA(g7'g:) + Dy A(97"g2)

= DtAt(gilQ) + D:vAl‘(gilQ)

where we have introduced the “covariant derivative” operators

At: Dt+ [9_1gt7 ] 9 Am: D$+ [g_lgma ]

(the square brackets denote commutators). It can be shown that these operators com-
mute, as expected from the fact that the “connections” ¢~'g; and ¢g~'g, are pure gauges.
The symmetry condition (9) reads:

S@; 9) = (DiA,+ D, A,) (97'Q) = 0 mod Fg] (19)

and it is obviously in conservation-law form.
We now seek an auto-Bécklund transformation (BT) of the form (12) for the linear PDE
(19). This must be of the form

At(g_1Q> = K, , Am(g_lQ) = - K
for some function K(Q'; g). Let us try K(Q';9) = ¢~ ' Q"

At(g_lQ) = (g_lQ/)af ) Am(g_1Q> = = (g_lQ,)t (20)
Integrability for @)’ clearly requires that @) satisfy Eq.(19). The integrability condition
for @ can be written (by taking into account that covariant derivatives commute),
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Ay, Al (g7'Q) = 0.

After a somewhat lengthy calculation, and by using the operator identity

AD,+A,D,= DA+ D, A, — [Flg], ]
= D,A,+ D, A, modF|g]

we find that the above integrability condition yields the PDE

(DA + D, A,) (97'Q) = 0 mod F [g]

which is just the symmetry condition (19) for @'. We conclude that Eq.(20) is indeed an
auto-BT for the aforementioned symmetry condition. This BT is equivalent to a recursion
operator for symmetries of the field equation (18). It can be rewritten in the form (13),
as follows:

A (g7'Q™) = D, (¢71Q"*Y)
A, (07'Q™M) = — Dy (g71Q™Y)

(n= 0, £1, £2, ...). The conservation laws of the form (14) (which form a doubly infinite
set) are written, in this case,

(21)

(DtAt + D:cAr) (Q_IQ(H)) = 0 mod F [g] (22)
(where all conserved “charges” Q™ are symmetry characteristics), while the Lax pair
(17) reads,
D, (g7'%) = AA¢(g7'0) . Di(g7'¥) = A4 (g7'0) (23)
The proof of the Lax-pair property of the linear system (23) is sketched as follows: By
the integrability condition (¢7'W¥),; = (¢7'¥)¢, , we get:
S(W;g) = (DiA+ D, A,) (g7'0) = 0 (24)

On the other hand, the integrability condition X [A,, A,] (¢7'W) = 0, yields:

S(¥;g9) — [Flg), 9g7'¥] =0

which, in view of Eq.(24), becomes [F'[g] , g~ 'W¥] = 0. This is valid independently of
U if F' [g]=0, i.e., if g is a solution of the field equation (18). We conclude that the linear
system (23) is indeed a Lax pair for the nonlinear PDE (18), the solution ¥ of which
pair is a symmetry characteristic [as follows from Eq.(24)]. We note that this Lax pair is
different from that found several years ago by Zakharov and Mikhailov [9].
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We conclude this section by giving an example of using the BT (21) to find conserved
charges Q™. Let us consider the symmetry characteristic Q© = g M, where M is an
arbitrary constant matrix. The BT (21) with n=0, integrated for Q"), yields

Q(l) =49 [Xa M]7

where X is the potential of Eq.(18), defined by the system of equations

-1

9l =Xe , g 'g.=-Xu (25)

We note that Q) is the characteristic of a potential symmetry [3,6]. Higher-order charges
Q™ with n>1 (which also are higher-order potential symmetries) are similarly found by
recursive integration of the BT (21) with n= 1, 2, etc.

To find negatively-indexed charges and corresponding symmetries, we begin with the BT
(21) with n=—1, which we integrate for Q(~Y. The result is a rather uninteresting local
symmetry: QY = Ag, where A is any constant matrix. Iterating for n=-2, however, we
find a new characteristic Q(=?), given by the system of equations

Qi— Qg 'oi=9( "N, Qu— Qg '9a=—g (g "Ag),

(where we have put Q=2 = @ , for brevity). Higher-order, negatively-indexed charges
are obtained by further iteration.

Unfortunately, in contrast to the “internal” symmetries considered above, the local co-
ordinate symmetries [such as Q© = g,, Q© = g,, etc.] do not yield any new results by
applying the BT (21). These latter symmetries, however, play an equally important role
as internal ones in problems in more than two dimensions, as the example discussed in
the next section will show.

5. Self-Dual Yang-Mills Equation

The self-dual Yang-Mills (SDYM) equation is written in the form

FlJl= (' )y+ (J'L): =0 (26)

where J is assumed SL(N,C)-valued (i.e., det J=1). The four independent variables (ap-
pearing as subscripts) are constructed from the coordinates of an underlying complexified
Euclidean space in such a way that ¢ and Z become the complex conjugates of y and z,
respectively, when the above space is real. As usual, subscripts denote total derivatives
with respect to these variables.

Let §J = a@Q[J] be an infinitesimal symmetry of Eq.(26), where the characteristic Q
is subject to the condition that tr (J71Q) = 0, required for producing new SL(N,C)
solutions from old ones. The symmetry condition is, in analogy with Eq.(19),

S@Q; J) = (DyA, + D:A)(J7'Q) = 0 mod F|J] (27)
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where we have introduced the covariant derivatives

A,=D,+ [J7Y,, ], A.=D.+ [J'., ]

(note again that these operators commute). An auto-BT for the linear PDE (27) [analo-
gous to that of Eq.(20)], which is consistent with the physical requirement tr (J71Q) = 0,
is the following:

AJTQ) = (IR, AT = —(JT'Q);y (28)
Integrability for @)’ requires that @ satisfy Eq.(27). Integrability for @ , expressed by the
condition [Ay, flz] (J7'Q) = 0, and upon using the operator identity
A,Dy+A.D.= DyA,+ DA, — [F[J], ]

leads us again to Eq.(27), this time for Q). The BT (28) may be regarded as an invertible
recursion operator for the SDYM equation. It can be re-expressed as

A, (7Q0) = . (7gu) -
Az (J—lQ(n)) - ng (J—lQ(n—H))

(n= 0, £1, £2, ...). From this we get a double infinity of conservation laws of the form

(DyA, + D;A,) (J7'\Q™) = 0 mod F[J] (30)
Finally, the Lax pair for SDYM [analogous to those of Egs.(17) and (23)] is

D:(J7YW) = NA,(J7YY) | Dy (JIW) = —XA,(JTIO) (31)

The proof of the Lax-pair property is sketched as follows: By the integrability condition
(J_I\Ij)gg — (J_lql)gg =0 , We get:

S(U;J) = (DyA, + D:A.)(J'W) = 0 (32)
On the other hand, the integrability condition A [A,, A,] (J7'¥) = 0, yields:

S(U;J) — [F[J], J'Y] =0

which, in view of Eq.(32), becomes [F'[J] , J-'¥] = 0. This is valid independently
of W if F [J |=0, ie., if J is an SDYM solution. We conclude that the linear system
(31) is indeed a Lax pair for the SDYM equation (26), the solution ¥ of which pair is
a symmetry characteristic [as follows from Eq.(32)]. This Lax pair can be shown to be
equivalent to that reported previously by this author [5], although the systematic method
for explicitly constructing this system is presented here for the first time.



Electronic Journal of Theoretical Physics 7, No. 23 (2010) 1-16 11

We now give examples of using the BT (29) to find conserved charges Q™. Let us consider
the symmetry characteristic Q(® = JM, where M is a constant traceless matrix. The
BT (29) with n=0, integrated for QM) yields

QW = J[X, M],

where X is the potential of Eq.(26), defined by the system of equations

JN, =X, JUL = —X, (33)

We note that Q) is the characteristic of a potential symmetry [3,6]. Higher-order charges
Q™ with n>1 (which also are higher-order potential symmetries) are similarly found by
recursive integration of the BT (29) with n= 1, 2, etc.

To find negatively-indexed charges and corresponding symmetries, we begin with the BT
(29) with n=—1, which we integrate for Q. The result is a familiar local symmetry:
QY = A J, where A is any constant traceless matrix. Iterating for n=-2, we find a new
characteristic Q(~2), given by the system of equations

Q,— QJ ' J,=J(J AN, Q.- QJ 'L.=—J(J'AJ)

(where we have put Q"2 = @Q , for brevity). Higher-order, negatively-indexed charges
are obtained by further iteration.

In the preceding example, the initial symmetry characteristic Q(¥) represented an “inter-
nal” symmetry (a symmetry in the fiber space). Local coordinate symmetries (symmetries
in the base space), however, also lead to the discovery of infinite sets of potential symme-
tries and associated conservation laws for SDYM. As an example, consider the obvious
symmetry of y-translation, represented by the characteristic Q@ = J,. The BT (29)
with n=0, integrated for Q) gives

[where X is the SDYM potential defined in Eq.(33)], which is another potential symmetry.
Higher-order potential symmetries, whose characteristics Q™ (n>0) appear as conserved
charges in conservation laws of the form (30), can be found by repeated application of the
recursion operator (29). The infinite sets of potential symmetries generated by coordinate
transformations have been shown to possess a rich Lie-algebraic structure [10,11].

To conclude our example, let us find some negatively-indexed symmetries. The BT
(29) with n=—1 and Q© = J,, integrated for Q=Y gives: Q=Y = J., which is the
characteristic for the obvious Zz-translational symmetry. The first nontrivial result is
found for n=-2, yielding a characteristic Q=2 which is defined by the set of equations

Q,— QJ ', =J(J): . Q.— QJ N=—J (),

(where we have put Q2 = @ , for brevity).
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Summary

Motivated by the results of [1] for the Ernst equation, we have proposed a general, non-
Noetherian scheme for connecting symmetry and integrability properties of nonlinear
PDEs in conservation-law form. We have shown that, by starting with the symmetry
condition (which is itself a local conservation law for the associated nonlinear PDE), one
may derive significant mathematical objects such as a recursion operator for symmetries,
a Lax pair, and an infinite collection of (generally nonlocal) conservation laws. Such
objects are usually sought by trial-and-error processes, thus any systematic technique for
their discovery is useful.

The method was illustrated by using two physically significant examples, namely, the
chiral field equation and the self-dual Yang-Mills (SDYM) equation. The latter PDE has
been shown to constitute a prototype equation from which several other integrable PDEs
are derived by reduction [12,13]. Thus, the results regarding SDYM may also prove useful
for the study of other nonlinear problems.

Appendix: Total Derivatives and Fréchet Derivatives

To make this article as self-contained as possible, we define two key concepts that are being
used, namely, the total derivative and the Fréchet derivative. The reader is referred to the
extensive review article [14] by this author for more details. (It should be noted, however,
that our present definition of the Fréchet derivative corresponds to the definition of the
Lie derivative in that article. Since these two derivatives are locally indistinguishable,
this discrepancy in terminology should not cause any concern mathematically.)

We consider the set of all PDEs of the form F' [u]=0, where, for simplicity, the solutions
u (which may be matrix-valued) are assumed to be functions of only two variables z and
t: u=u(z,t). In general, F[u] = F(x, t, u, Uy, Uz, Ugz, Usg, Ugg, -+ ). Geometrically,
we say that the function F' is defined in a jet space [2,15] with coordinates z, t, u, and as
many partial derivatives of u as needed for the given problem. A solution of the PDE F
[u]=0 is then a surface in this jet space.

Let F [u] be a given function in the jet space. When differentiating such a function with
respect to x or ¢, both implicit (through u) and explicit dependence of F' on these variables
must be taken into account. If w is a scalar quantity, we define the total derivative
operators D, and D, as follows:

- 9 0 _9_ _9_
Dx — Oz + ul’@u + umaum + uxtaut +

_ 0 0 _9_ _9_
Dy = 57 + gy + Ungy, + vugy,, +

(note that the operators 0/0x and 0/0t concern only the explicit dependence of F' on
z and t). If, however, u is matrix-valued, the above representation has only symbolic
significance and cannot be used for actual calculations. We must therefore define the
total derivatives D, and D; in more general terms.
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We define a linear operator D,, acting on functions F' [u] in the jet space and having the
following properties:
1. On functions f (=, t) in the base space,

D, f(x,t)=0f/0x = 0.f.
2. On functions F' [u]= u or u,, u, etc., in the “fiber” space,
Dxu = Ug , Dxux = Ugg , Dzut = Uy = Ugy , €bC.
3. The operator D, is a derivation on the algebra of all functions F' [u] in the jet space
(i.e., the Leibniz rule is satisfied):

Dy (F[u] Glu]) = (Do F[u]) G [u] + F [u] DyG [u].

We similarly define the operator D;. Extension to higher-order total derivatives is obvious
(although these latter derivatives are no longer derivations, i.e., they do not satisfy the
Leibniz rule). The following notation has been used in this article:

D,Ful=F,[u], D,Fu]l=F;u].

Finally, it can be shown that, for any matrix-valued functions A and B in the jet space,
we have

(A7), =—ATTA, AT (A7), = AT A

and

Dm[A’B]: [AxaB]+[AaBm] ) Dt[A7B]: [At7B]+[A’Bt]

where square brackets denote commutators.

Let now du ~ a @ [u] be an infinitesimal symmetry transformation (with characteristic
Q [u] ) for the PDE F [u]=0. We define the Fréchet derivative with respect to the
characteristic () as a linear operator A acting on functions F' [u] in the jet space and
having the following properties:

1. On functions f (z, t) in the base space,

A f(z,t) =0
(this is a consequence of our liberty to choose all our symmetries to be in “vertical” form
2,3]).
2. On F [u]=u,

Au=Q[ul.

3. The operator A commutes with total derivative operators of any order.
4. The Leibniz rule is satisfied:

A(F[u] Gu]) = (AF[u]) Glu] + F[u] AG [u].
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The following properties can be proven:

Auy, = (Au)y, =Qlul , Auy=(Au);=Q ]

AAY) =—AYAA) A AJA, Bl= [AA, B+ [A, AB]

where A and B are any matrix-valued functions in the jet space.

If the solution u of the PDE is a scalar function (thus so is the characteristic @ ), the
Fréchet derivative with respect to () admits a differential-operator representation of the
form

0 0

8u + Qtta tt+ thaTM‘i‘"‘

Such representations, however, are not valid for PDEs in matrix form. In these cases we

must resort to the general definition of the Fréchet derivative given above.
Finally, by using the Fréchet derivative, the symmetry condition for a PDE F' [u]=0 can
be expressed as follows [2,3]:

AF[ul = 0 mod F [u).

This condition yields a linear PDE for the symmetry characteristic @) , of the form

S(@Q;u) =0 modF [ul.
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using the self-dual Yang-Mills (SDYM) equation as an example, we study a method for relating

symmetries and recursion operators of two partial differential equations connected to each other by a
non-auto-Béacklund transformation. We prove the Lie-algebra isomorphism between the symmetries
of the SDYM equation and those of the potential SDYM (PSDYM) equation, and we describe the
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the PSDYM symmetry algebra, we draw conclusions regarding the Lie algebraic structure of the
“potential symmetries” of the SDYM equation.
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1. Introduction

Recursion operators are powerful tools for the study of symmetries of partial differential
equations (PDEs). Roughly speaking, a recursion operator is a linear operator which pro-
duces a new symmetry characteristic of a PDE whenever it acts on an “old” characteristic
(see Appendix). The concept was first introduced by Olver [1, 2] and subsequently used by
many authors (see, e.g., [2, 3] and the references therein). An alternative view, based on
the concept of a Bécklund transformation (BT), was developed in a series of papers by the
present authors [4-6] who studied the symmetry problem for the self-dual Yang—Mills equa-
tion (SDYM). The general idea is that a recursion operator can be viewed as an auto-BT
for the “linearization equation” (or symmetry condition) of a (generally nonlinear) PDE.
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This idea was later further developed and put into formal mathematical perspective by
Marvan [7].

It has been known for some time (see, e.g., [3, Sec. 7.4] and the references therein) that,
when two nonlinear PDEs are connected by a non-auto-BT, symmetries of either PDE may
yield symmetries of the other. This can be achieved by using the original BT to construct
another non-auto-BT which relates solutions of the linearization equations of the two PDEs.
In the particular case of the SDYM equation, the original BT associates this PDE with the
“potential SDYM equation” (PSDYM). The symmetries of the latter PDE can then be used
to construct the “potential symmetries” of SDYM [5, 8]. We now attempt to go one step
further: Can we find a BT which relates recursion operators of two PDEs? Given that, as
said above, a recursion operator is itself an auto-BT, what we are after is a BT connecting
two auto-BTs, each of which produces solutions of a respective linear PDE (symmetry
condition). Thus, we are looking for “a transformation of transformations” rather than a
transformation of functions.

Our “laboratory” model will again be SDYM, for good reasons. First, it possesses a rich
symmetry structure; second, this PDE has been shown to constitute a sort of prototype
equation from which several other integrable PDEs are derived by reduction (see, e.g., [9,
10]). By employing a non-auto-BT that connects SDYM with PSDYM, we will show how
symmetries and recursion operators of either system can be associated with symmetries
and recursion operators, respectively, of the other system. Moreover, we will prove that the
symmetry Lie algebras of these two PDEs are isomorphic to each other. This conclusion is
more than of academic importance, since it allows us to investigate the symmetry structure
of the SDYM problem by studying the relatively easier PSDYM problem. As an example,
we will recover the known infinite-dimensional symmetry algebras of SDYM [11-13] from
the symmetry structure of PSDYM [8] and show how these algebras are related to potential
symmetries.

2. The Symmetry Problem for the SDYM-PSDYM System
We write the SDYM equation in the form
F[J) = Dy(J~'Jy) + Ds(J7'J,) = 0. (1)

We denote by 2 =y, 2,9,Z (0 =1,...,4) the independent variables, and by D,, D., etc.,
the total derivatives with respect to these variables. We will also use the notation D, F' = F,,
etc., for any function F'. We assume that J is SL(N, C)-valued (i.e., detJ = 1).

We consider the non-auto-BT

J, =X, TV =X, (2)

The integrability condition (Xy)z = (Xz)y yields the SDYM equation (1). The integrability
condition (Jy), = (J.),, which is equivalent to

Dy(J ') = D(J g + [T, T L] =0,

yields a nonlinear PDE for the “potential” X of (1), called the “potential SDYM equation”
or PSDYM:

GIX] = Xy5 + Xoz — [Xy, Xz] = 0. (3)



Backlund- Transformation-Related Recursion Operators 37

Noting that, according to (2), (trX)z = [tr(InJ)], = [In(det J)],, etc., we see that the con-
dition detJ = 1 can be satisfied by requiring that ¢trX = 0 [this requirement is compatible
with the PSDYM equation (3)]. Hence, SL(NN,C) SDYM solutions correspond to si(NV,C')
PSDYM solutions.

Let 6J = aQ and 06X = a® be an infinitesimal symmetry of system (2) (« is an
infinitesimal parameter). This means that (J 4+ 0J, X + §X) is a solution to the system
when (J, X) is a solution. This suggests that the integrability conditions F[J+§J] = 0 and
G[X + 6X]| = 0 are satisfied when the integrability conditions F[J] = 0 and G[X]| = 0 are
satisfied; that is, J+¢J and X + X are solutions of (1) and (3), respectively. The functions
Q@ and ® are symmetry characteristics for the above PDEs. Geometrically, the symmetries
of system (2) are realized as transformations in the jet-like space of the variables {z#, J, X }
and the various derivatives of J and X with respect to the x#. These transformations are
generated by vector fields which, without loss of generality, may be considered “vertical”,
i.e., with vanishing projections on the base space of the z* [2]. We formally represent these
vectors by differential operators of the form

V= Q— + (DE)iX( + prolongation terms). (4)

Consider a function M (J, X). Denote by AM(J, X) the Fréchet derivative [2] of M with
respect to V. The infinitesimal variation of M in the “direction” of V is then éM = aAM.
The linear operator A is a derivation on the algebra of all gi(/V, C)-valued functions. The
Leibniz rule is written

A(MN) = (AM)N + MAN. (5)

In particular, for the Lie algebra of si(/V,C')-valued functions, the Leibniz rule may also be
written as

A[M,N] = [AM,N]+ [M,AN]. (6)
By definition, the Fréchet derivatives of the fundamental variables J and X are given by
AJ=0Q, AX =07, (7)

We also note that the Fréchet derivative with respect to a wvertical vector field commutes
with all total derivative operators [2]. Finally, for an invertible matrix M,

AM™Y =M AM)M™!. (8)

(For a discussion of the general symmetry problem for matrix-valued PDEs, see [14].)
We introduce the covariant derivative operators (with square brackets denoting commu-

tators):
AyEDy"‘[J_le] = Dy + [Xz,] (9)
A, =D, +[J'J.,] =D, — [Xy,]

where the BT (2) has been taken into account. By using (3) and the Jacobi identity, the
zero-curvature condition [4,, A.] = 0 is shown to be satisfied, as expected in view of the fact
that the “connections” .J _1Jy and J~!J, are pure gauges. Moreover, the linear operators
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of (9) are derivations on the Lie algebra of si(IV,C)-valued functions, satisfying a Leibniz
rule of the form (6):

A,[M,N] = [A,M,N] + [M, A,N] (10)
A,[M,N] =[A,M,N] + [M,A,N].

If Egs. (1)—(3) are satisfied, then so must be their Fréchet derivatives with respect to the
symmetry vector field V' of (4). We now derive the symmetry condition for each of the above
three systems. For SDYM (1), the symmetry condition is AF[J] =0, or

DyA(J 1) + D:A(J L) =0 (11)

(since the Fréchet derivative A commutes with total derivatives). By using (5), (7), (8) and
(9), it can be shown that

AN = Ay (T71Q), A(JTNL) = A(J71Q). (12)
The SDYM symmetry condition (11) then becomes
(DyA, + D:A.)(J7'Q) = 0. (13)
The symmetry condition for PSDYM (3) is AG[X] = 0, or, by using (6), (7) and (9),
Aydy+ A0, = (A,Dy + A,D;)® = 0. (14)
We note the operator identity
AyDy+ A.D: = DA, + D:A, (15)

which is easily verified by letting the right-hand side act on an arbitrary function M. Then,
(14) is written in the alternate form,

(DyA, + D;A,)® = 0. (16)

Comparing (13) and (16), we observe that the symmetry characteristic ® of PSDYM, and
the function J~'Q, where @ is an SDYM symmetry characteristic, satisfy the same sym-
metry condition. We thus conclude the following (see also [5]):

e If Q is an SDYM characteristic, then ® = J~1Q is a PSDYM characteristic. Conversely,
o If & is a PSDYM characteristic, then @) = J® is an SDYM characteristic.

Finally, the Fréchet derivative with respect to V also leaves the system of PDEs (2)
invariant: A(J71J,) = (AX)z, A(J71J,) = —(AX);. With the aid of (12) and (7) we are
thus led to a pair of PDEs,

A(JTIQ) =dz, A(JT'Q) = -2y (17)

Equation (17) is a BT connecting the symmetry characteristic ® of PSDYM with the sym-
metry characteristic Q of SDYM. Indeed, the integrability condition (®z); = (®y)z yields
the symmetry condition (13) for SDYM. So, when @ is an SDYM symmetry characteristic,
the BT (17) is integrable for ®. Conversely, the integrability condition [Az, fly](J “1Q) =0,
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valid in view of the zero-curvature condition, yields the PSDYM symmetry condition (14)
for ® and guarantees integrability for Q).

We note that, for a given @, the solution of the BT (17) for ® is not unique, and vice
versa. To achieve uniqueness we thus need to make some additional assumptions: (a) If
® is a solution for a given @, then so is ® + M(y, z), where M is an arbitrary matrix
function. We make the agreement that any arbitrary additive term of the form M (y, z) will
be ignored when it appears in the solution for ®. (b) If @ is a solution for a given ®, then so
is Q + ¢(y, 2)J, where €(g, Z) is an arbitrary matrix function. We agree that any arbitrary
additive term of the form e(y, z).J will be ignored when it appears in the solution for Q.

With the above conventions, the BT (17) establishes a 1-1 correspondence between
the symmetries of SDYM and those of PSDYM. In particular, the SDYM characteristic
Q@ = 0 corresponds to the PSDYM characteristic ® = 0. It will be shown below that this
correspondence between the two symmetry sets is a Lie algebra isomorphism.

3. Recursion Operators and Lie-Algebra Isomorphism

Since the two PDEs in (17) are consistent with each other and solvable for ® when @ is an
SDYM symmetry characteristic, we may use, say, the first equation to formally express ®
in terms of Q:

®=D;'A,(J7'Q) = R(UJT'Q) (18)
where we have introduced the linear operator
R=D;'4,. (19)
Proposition 1. The operator (19) is a recursion operator for PSDYM.

Proof. Let ® be a symmetry characteristic for PSDYM. Then, ® satisfies the symmetry
conditions (14) or (16). We will show that ® = R® also is a symmetry characteristic.
Indeed,

(A,Dy + A.D;)® = (A,Dy + A,D;)R®
= A,D;'DyA,® + A A,
= A,D; Y (DyA, + D:A,)® 4 [A,, A)]® = 0,
in view of (16) and the zero-curvature condition [A,, A,] = 0. O

For sl(N,C) PSDYM solutions, the symmetry characteristic ® must be traceless. Then,
so is the characteristic ® = R®. That is, the recursion operator (19) preserves the sl(N, C)
character of PSDYM.

Is there a systematic process by which one could derive the recursion operator (19)? To
this end, we seek an auto-BT relating solutions of the PSDYM symmetry condition (14).
As shown in [5], such a BT is

A =0, A.0=-3 (19a)

The first of these equations can then be re-expressed as ® = R<I>, with R given by (19).
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Consider now a symmetry characteristic Q of SDYM, i.e., a solution of the symmetry
condition (13). Also, consider the transformation

Q' =JRUJ'Q) =TQ (20)
where we have introduced the linear operator
T=JRJL (21)
Proposition 2. The operator (21) is a recursion operator for SDYM.

Proof. By assumption, @ is an SDYM symmetry characteristic. Then, as shown above,
® = J1Q is a PSDYM characteristic. Since R is a PSDYM recursion operator, ® = R® =
R(J7'Q) also is a PSDYM characteristic. Then, finally, Q) = J®', given by (20), is an
SDYM characteristic. O

For SL(N,C) SDYM solutions, the symmetry characteristic () must satisfy the condition
tr(J='Q) = 0. As can be seen, this condition is preserved by the recursion operator (21).
[Note, in this connection, that the BT (17) or (18) properly associates SL(NV,C) SDYM
characteristics Q with sl(N,C) PSDYM characteristics ®.]

The recursion operator (21) also can be derived from an auto-BT for the SDYM sym-
metry condition (13). This BT was constructed in [6] by using a properly chosen Lax pair
for SDYM (we refer the reader to this paper for details). We may thus conclude that recur-
sion operators such as (19) or (21) in effect represent auto-BTs for symmetry conditions of
respective nonlinear PDEs (see also [7]).

Lemma. The Fréchet derivative A with respect to the vector V of (4), and the recursion
operator R of (19), satisfy the commutation relation

A, R] = D; @] (22)
where & = AX, according to (7).

Proof. Introducing an auxiliary function F', and using the derivation property (6) of A and
the commutativity of A with all total derivatives (as well as all powers of such derivatives),

we have:
ARF = AD;'A,F = D 'A(D,F + X, F])
rl(D AF +[(AX)s, F] + [ Xz, AF))
YA AF + [®5, F]) = RAF + D; [, F],
from which there follows (22). O

Proposition 3. The BT (17), or equivalently, its solution (18), establishes an isomorphism
between the symmetry Lie algebras of SDYM and PSDYM.

Proof. Let V be a vector field of the form (4), generating a symmetry of the BT (2). As
explained previously, since this BT is invariant under V', the same will be true with regard
to its integrability conditions. Hence, V' also represents a symmetry of the SDYM-PSDYM
system of Egs. (1) and (3). The SDYM and PSDYM characteristics are @ = AJ and
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® = AX, respectively, where A denotes the Fréchet derivative with respect to V. Consider
the linear map I defined by (18):

I:®=1{Q}=RJ'Q (23)
or
I:AX =I{AJ} = RJ'AJ. (24)

Consider also a pair of symmetries of system (2), indexed by i and j. These are generated
by vector fields V"), where r = i, j. The Fréchet derivatives with respect to the V(") will
be denoted A). The SDYM and PSDYM symmetry characteristics are Q") = A .J and
d(") = A X respectively. According to (24),

ANX = {AM J} = RITIAD T = RJTIQM; r =1, (25)

By the Lie-algebraic property of symmetries of PDEs, the functions [A(i),A(j)]J and
[A(i), AU )]X also represent symmetry characteristics for SDYM and PSDYM, respectively,
where we have put

[A(i),A( )]J ADAO) T — ADAG ] = ADQU) — ADQH)
[A@)A(J)]X =AODADX - AOAOD X = AOPU) — AP

We must now verify that
A ADX = [{[AD AT} = RIHAD, AW (26)
Putting 7 = j into (25), and applying the Fréchet derivative A®, we have:
ADADX = ADRT1QW = [AD RlJ1QU) 4+ RA® j-1Q0)
= Do, J-1QW)] + RAG) J-1QU),
where we have used the commutation relation (22). By (23) and (19),
o) = D.RITIQW = A4,771QW.
Moreover, by properties (5) and (8) of the Fréchet derivative,
ADJ1QU) = — -1 (A® ) J1QU) + J-TAD QL)
= —J1QW J-1QU) + J-IAGQU),
So,
ADAG) x — D;l[AyJ_lQ(i)7 JIQW] = RIQW QY + RITIADQW,
Subtracting from this the analogous expression for AVA® X we have:
AG AWX = AWAU X — AWAG X
= D} ([4,77'QW,77'QV + [171QY, 4 J—lQU)])
_R[J_lQ(i)’ J_lQ(j)] + RJ7HADQL) — ALQU))
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= DA, [J71QW, QW) — RTQW, QW)
+ RITHADAL) ] - ADAWD )
= RJITAD, AW g

where we have used the derivation property (10) of Ay and we have taken (19) into account.
Thus, (26) has been proven. O

Now, suppose P is a recursion operator for SDYM, while S is a recursion operator for
PSDYM. Thus, if @ and ¢ are symmetry characteristics for SDYM and PSDYM, respec-
tively, then Q' = PQ and ® = S® also are symmetry characteristics.

Definition. The linear operators P and S will be called equivalent with respect to the
isomorphism I (or I-equivalent) if the following condition is satisfied:

S® = I{PQ} when & = I{Q}. (27)
By using (23), the above condition is written
S® = RJT'PQ when ® = RJ7'Q = SRJ™'Q = RI'PQ.

Thus, in order that P and S be I -equivalent recursion operators, the following operator
equation must be satisfied on the infinite-dimensional linear space of all SDYM symmetry
characteristics:

SRJ™' = RJ'P. (28)

Having already found a PSDYM recursion operator S = R, we now want to evaluate the
I-equivalent SDYM recursion operator P. To this end, we put S = R in (28) and write

R(RJ~'—J'P)=0.
As is easy to see, this is satisfied for P = T, in view of (21). We thus conclude that

e The recursion operators R and 7', defined by (19) and (21), are I-equivalent.

We note that (28) is a sort of BT relating recursion operators of different PDEs, rather
than solutions or symmetries of these PDEs. Thus, if a recursion operator is known for
either PDE, this BT will yield a corresponding operator for the other PDE. Note that
we have encountered BTs at various levels: (a) The non-auto-BT (2), relating solutions of
two different nonlinear PDEs (1) and (3); (b) the BT (17), or equivalently (18), relating
symmetry characteristics of these PDEs; (¢) the recursion operators (19) and (21), which
can be re-expressed as auto-BTs for the symmetry conditions (14) and (13), respectively;
and (d) the BT (28), relating recursion operators for the original, nonlinear PDEs. (We
make the technical observation that the first three BTs are “strong”, while the last one is
“weak”; see Appendix.)
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Example. Consider the PSDYM symmetry characteristic ® = X, (z-translation). To find
the I-related SDYM characteristic @, we use (23):

RIT'Q=0=D'A,(J'Q) =X, = A,(J7'Q) = X..
2, .- _ _ _
= (J7Qy + Ty TRl = (T )
which is satisfied for @) = J,. By applying the recursion operator T on Q,

Q =TQ=JRJ'Q=JD;*A,(J ) = ID;Y{(J 1), + [T 1T, T L))

— Jp:Y(J1,), 2 IDsix,, = JX..

To find the I-related PSDYM characteristic ®’, we use (23) once more:
® = RJ'Q' = RX. = R®.

We notice that R® = I{T'Q} when & = I{Q}, as expected by the fact that R and T are

I-equivalent recursion operators.

Now, let Q) be some SDYM symmetry characteristic. By repeated application of the
recursion operator 1', we obtain an infinite sequence of such characteristics:
Q(l) — TQ(O), Q(Q) — TQ(l) — T?Q(O)7 o 7Q(n) — TQ(TL—l) — TTLQ(O)7 o

(we note that any power of a recursion operator also is a recursion operator). Also, let

3O = 1{Q}y = RJ1QO (29)

be the PSDYM characteristic which is I-related to Q). Repeated application of the
PSDYM recursion operator R will now yield an infinite sequence of PSDYM character-
istics. Taking into account that Rand T are I -equivalent recursion operators, we can write
this sequence as follows:

oM = RO = [{7Q}, 3@ = R20® = 1{72QO),. .,
o™ = Rre© = [{T"Q},....

Assume now that the infinite set of SDYM symmetries represented by the characteristics
{Q™1Y (n = 0,1,2,...) has the structure of a Lie algebra. This set then constitutes a
symmetry subalgebra of SDYM. Given that the set {®(} is I-related to {Q(™} and that
I is a Lie-algebra isomorphism, we conclude that the infinite set of characteristics {®(}
corresponds to a symmetry subalgebra of PSDYM which is isomorphic to the associated
subalgebra {Q(™} of SDYM.

More generally, let {Q,(CO)/ k=1,2,...,p} be a finite set of SDYM symmetry character-

istics, and let {@io)/k =1,2,...,p} be the I-related set of PSDYM characteristics, where

¢1(<30) _ I{Q](CO)} — RJ_lQI(cO); k=1,2,...,p. (30)
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Assume that the infinite set of characteristics
Q" =1"Q" /m=0,1,2,...;k=1,2,...,p} (31)

corresponds to a Lie subalgebra of SDYM symmetries. Then, the I-related set of
characteristics

(@0 = R0\ /n = 0,1,2,...;k=1,2,...,p} (32)

corresponds to a PSDYM symmetry subalgebra which is isomorphic to that of (31).
Let us summarize our main conclusions:

e The infinite-dimensional symmetry Lie algebras of SDYM and PSDYM are isomorphic,
the isomorphism I being defined by (23) or (24).

e The recursion operators 7' and R, defined in (21) and (19), when applied to I-related
symmetry characteristics [such as those in (29) or (30)], may generate isomorphic, infinite-
dimensional symmetry subalgebras of SDYM and PSDYM, respectively.

e Since the structures of the symmetry Lie algebras of SDYM and PSDYM are similar, all
results regarding the latter structure are also applicable to the SDYM case.

Comment. At this point the reader may wonder whether it is really necessary to go through
the PSDYM symmetry problem in order to solve the corresponding SDYM problem. In
principle, of course, the SDYM case can be treated on its own. In practice, however, it
is easier to study the symmetry structure of PSDYM first and then take advantage of
the isomorphism between this structure and that of SDYM. This statement is justified
by the fact that the PSDYM recursion operator is considerably easier to handle compared
to the corresponding SDYM operator. This property of the former operator is of great value
in the interest of computational simplicity (in particular, for the purpose of deriving various
commutation relations; cf. [8]).

4. Potential Symmetries and Current Algebras

We recall that every SDYM symmetry characteristic can be expressed as () = J®, where ®
is a PSDYM characteristic (we note that ® is not I-related to Q). Let ® be a characteristic
which depends locally or nonlocally on X and/or various derivatives of X. By the BT (2),
X must be an integral of J and its derivatives, and so this and its derivatives X, and X, are
nonlocal in J. On the other hand, according to (2), the quantities X3 and Xz depend locally
on J. Thus, in general, ® can be local or nonlocal in J. In the case where ® is nonlocal in
J, we say that the characteristic Q = J® expresses a potential symmetry of SDYM [3, 5].
(See Appendix for a general definition of locality and nonlocality of symmetries.)

4.1. Internal symmetries
The PSDYM equation is generally invariant under a transformation of the form
AO X =30 =[x, M) (33)

where M is any constant sI(N,C) matrix. Since the characteristic ®(© is nonlocal in .J, the
transformation

Q=Jo" = J[X, M]
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is a genuine potential symmetry of SDYM. Note that the SDYM characteristic which is
I-related to ®© is not @, but rather Q(¥) = JM, since we then have

RJT'Q© = RM = DY X., M] = [X, M] = .
Let {7} be a basis for sl(N,C):
[Ti,Tj] = Cng

Then M is expanded as M = oFry,, and (33) is resolved into a set of independent basis
transformations

AP X = ol = (X, 7]
corresponding to the SDYM potential symmetries
Qr = J\" = J[X, 7).
These are not the same as the I-related characteristics
AL T = Q0 = Jn.
Consider now the infinite set of transformations
AMX = = e = R[X, 7] (n=0,1,2,...) (34)
As can be shown, they satisfy the commutation relations of a Kac-Moody algebra:
AT AWX = chal" T x,
In view of the isomorphism I, this structure is also present in SDYM. Indeed, this is precisely

the familiar hidden symmetry of SDYM [11, 12]. The SDYM transformations which are
I-related to those in (34) are given by

A=W =1Q") =T J7, (n=0,1,2,...).

They constitute an infinite set of potential symmetries (note, for example, that A,gl)J =

JX, ] =J <I>,(€O)) and they satisfy the commutation relations
(m) A(m)) 7 _ ~k A(mtn)
(A AT = CHA, J.

4.2. Symmetries in the base space

A number of local PSDYM symmetries corresponding to coordinate transformations are
nonlocal in J, hence lead to potential symmetries of SDYM. By using isovector methods
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[4, 15], nine such PSDYM symmetries can be found. They can be expressed as follows:
AV =00 =, x (k=1,2,...,9) (35)

where the I:k are nine linear operators which are explicitly given by

Ly=D,, Ly=D., Ls=2D,—yD:, Li=yD.—zDy,

Ls =yDy, — 2D, — 4Dy + 2D, Lg=1+4yD,+ zD,,

Ly =1-§Dy —zDs;, Lg=ylL¢+ 2(yDz — 2Dy),

fzg = Zf/(; + g(ZDg — y.Dg)
The L1, Lo represent translations of y and z, respectively, while the L3, Ly represent rota-
tional symmetries. The Ls, Lg, L7 express scale transformations, while Lg and Lg represent
nonlinear coordinate transformations which presumably reflect the special conformal invari-
ance of the SDYM equatlons in their original, covariant form.

The first five operators Ll, .. L5 form the basis of a Lie algebra, the commutation
relations of which we write in the forrn

[Li,Lj] = —fELi (k=1,...,5).

Consider now the infinite set of transformations

AMX = oW = o) = RrE X (k=1,...,5). (36)
As can be shown [8], these form a Kac-Moody algebra:

AN AMX = fEATTYX,
Consider also the infinite sets of transformations
AMX = R"[¢X and AMWX = R"L;X. (37)
As can be proven [8], each set forms a Virasoro algebra (apart from a sign):
A AMX = —(m —n)AMT X

Taking the isomorphism [ into account, we conclude that the SDYM symmetry algebra
possesses both Kac-Moody and Virasoro subalgebras (“current algebras” [16]), both of
which are associated with infinite sets of potential symmetries. The former subalgebras
are associated with both internal and coordinate transformations, while the latter ones are
related to coordinate transformations only. These conclusions are in agreement with those
of [13], although the mathematical approach there is different from ours.

5. Summary

By using the SDYM-PSDYM system as a model, we have studied a process for associating
symmetries and recursion operators of two nonlinear PDEs related to each other by a non-
auto-BT. The concept of a BT itself enters our analysis at various levels: (a) The non-auto
BT (2) relates solutions of the nonlinear PDEs (1) and (3); (b) the non-auto-BT (17) or
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(18) relates symmetry characteristics of these PDEs; (¢) the auto-BTs for the symmetry
conditions (14) and (13) lead to the recursion operators (19) and (21), respectively; and (d)
the transformation (28) may be perceived as a BT associating recursion operators for the
original, nonlinear PDEs. We have proven the isomorphism between the infinite-dimensional
symmetry Lie algebras of SDYM and PSDYM, and we have used this property to draw
several conclusions regarding the Lie-algebraic structure of the potential symmetries of
SDYM.

For further reading on recursion operators, the reader is referred to [17-22]. A nice
discussion of the SDYM symmetry structure and its connection to the existence of infinitely
many conservation laws can be found in the paper by Adam et al. [23].
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Appendix: Some Basic Definitions

To make the paper as self-contained as possible, basic definitions of some key concepts that
are being used are given below:

A.1. Recursion operators

Consider a PDE Flu] = 0, in the dependent variable u and the independent variables
o (p=1,2,...). Let du = aQ[u] be an infinitesimal symmetry transformation of the PDE,
where Q[u] is the symmetry characteristic. The symmetry is generated by the (formal)
vector field

2 g b ()

V= Q[u]i + prolongation = Q g
Ouy

Du o0 o,

(where the Q, = D,Q, etc., denote total derivatives of ). The symmetry condition is
expressed by a PDE, linear in Q:

S(Q;u) = AF[u] =0 mod Flu] (A.2)
where A denotes the Fréchet derivative with respect to V. If u is a scalar quantity, then
(A.2) takes the form

OF oF oF

S(Q;u) =VFul =Q B
0%

Since the PDE (A.2) is linear in @, the sum of two solutions (for the same u) also is
a solution. Thus, for any given u, the solutions {Q[u]} of (A.2) form a linear space S,. A
recursion operator R is a linear operator which maps the space .9, into itself. Thus, if @) is
a symmetry characteristic of F[u] = 0 [i.e., a solution of (A.2)], then so is RQ:

S(RQ;u) =0 when S(Q;u) =0. (A.4)
We note that R2Q, R3Q, ..., R"Q also are symmetry characteristics. This means that

any powerR"of a recursion operator also is a recursion operator.
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Thus, starting with any symmetry characteristic (), we can obtain an infinite set of such
characteristics by repeated application of the recursion operator.

A symmetry operator L is a linear operator, independent of u, which produces a sym-
metry characteristic Q[u] when it acts on u. Thus, Lu = Q[u]. We note that RLu is a
symmetry characteristic, which means that

the product RL of a recursion operator and a symmetry operator is a symmetry operator.

Thus, given that R" is a recursion operator, we conclude that R"Lu is a member of S,,.
Examples of symmetry operators are the nine operators Ly that appear in (35), as well as
the operator L = [ , M] which is implicitly defined in (33).

A.2. “Strong” and “Weak” Bdcklund transformations

In the most general sense, a BT is a set of relations (typically differential, although in certain
cases algebraic ones are also considered) which connect solutions of two different PDEs (non-
auto-BT) or of the same PDE (auto-BT). The technical distinction between “strong” and
“weak” BTs [24, 25] can be roughly described as follows: In a strong BT connecting, say,
the variables u and v, integrability of the differential system for either variable demands
that the other variable satisfy a certain PDE. A weak BT, on the other hand, is much like a
symmetry transformation: v and v are not, a priori, required to satisfy any particular PDEs
for integrability. If, however, u satisfies some specific PDE, then v satisfies some related PDE.
(An example is the Cole-Hopf transformation, connecting solutions of Burgers’ equation to
solutions of the heat equation.)

The BT (2) is strong, since its integrability conditions force the functions J and X to
satisfy the PDEs (1) and (3), respectively. Similar remarks apply to the BTs (17) and (19a).
On the other hand, transformation (28) does not a priori impose any specific propertles
on the operators P and S. If, however, P is an SDYM recursion operator, then S is the
I-equivalent PSDYM recursion operator. Thus, equation (28) is a Béacklund-like transfor-
mation of the weak type, although this particular transformation relates operators rather
than functions.

A.3. Local and nonlocal symmetries

Let F[u] = 0 be a PDE in the dependent variable u and the independent variables z# (u =
1,2,...). A symmetry characteristic Q[u] represents a local symmetry of the PDE if @
depends, at most, on z*, u, and derivatives of u with respect to the z*#. A symmetry is
nonlocal if the corresponding characteristic () contains additional variables expressed as
integrals of u with respect to the x# (or, more generally, integrals of local functions of u).
As an example, the PSDYM characteristic ® = [X, M] (where M is a constant matrix)
represents a local symmetry of this PDE (since it depends locally on the PSDYM variable
X), whereas the SDYM characteristic ¢ = J[X, M| represents a nonlocal symmetry of
that PDE since it contains an additional variable X which is expressed as an integral of a
local function of the principal SDYM variable J [this follows from the BT (2)]. The infinite
symmetries (34), (36) and (37) are increasingly nonlocal in X for n > 0, since they are
produced by repeated application of the integro-differential recursion operator R.
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Abstract: A 3-dimensional reduction of the self-dual Yang-Mills (SDYM) equation, named
SDYMS3, is examined from the point of view of its symmetry and integrability characteristics.
By using a non-auto-Béacklund transformation, this equation is connected to its potential form
(PSDYM3) and a certain isomorphism between the Lie algebras of symmetries of the two systems
is shown to exist. This isomorphism allows us to study the infinite-dimensional Lie algebraic
structure of the “potential symmetries” of SDYM3 by examining the symmetry structure of
PSDYMS3 (which is an easier task). By using techniques described in a recent paper, the
recursion operators for both SDYM3 and PSDYM3 are derived. Moreover, a Lax pair and an
infinite set of nonlocal conservation laws for SDYM3 are found, reflecting the fact that SDYM3
is a totally integrable system. This system may physically represent gravitational fields or chiral
fields.
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1. Introduction

In a recent paper [1] we proposed a scheme by which symmetry and integrability aspects
of a certain class of nonlinear partial differential equations (PDEs) are interrelated. We
showed how, by starting with the symmetry condition of a PDE, one may derive in-
tegrability characteristics such as a Lax pair and an infinite set of (typically nonlocal)
conservation laws. Moreover, we described an algorithm for constructing a recursion op-
erator which, in principle, produces an infinite number of symmetries of the PDE from
any given one.
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As examples, we applied these ideas to two systems of physical interest: the two-
dimensional chiral field equation and the full, 4-dimensional self-dual Yang-Mills (SDYM)
equation. The former system is a 2-dimensional reduction of the latter, thus shares
some of its properties. However, there are differences: Although the SDYM recursion
operator produces infinite sets of nontrivial symmetries when acting on both internal
and coordinate symmetry transformations [2, 3], the chiral-field recursion operator yields
infinite sets of internal symmetries only.

In this paper, we study an intermediate model which represents a 3-dimensional reduc-
tion of SDYM. We will name it SDYM3. With appropriate adjustments, this model may
describe physical systems such as the complexified Ernst equation [4] or the 3-dimensional
chiral field equation [5]. Happily, some important symmetry properties of SDYM, which
are absent in the 2-dimensional chiral-field model, are restored in the 3-dimensional case.
Thus, the SDYM3 model possesses infinite sets of nontrivial symmetries on both the base
space (coordinate symmetries) and the fiber space (internal symmetries).

The Lie algebraic structure of symmetries of SDYM3 is certainly of interest. Although
this aspect of the problem will be treated in full in a subsequent paper, some basic ideas
are presented here. In the spirit of a recent paper on SDYM [6], we employ the concept
of a Bécklund transformation (BT) to connect SDYM3 with its counterpart in potential
form, to be called PSDYM3. This BT also allows one to connect symmetries and recursion
operators of the two systems. In particular, the symmetries of PSDYM3 yield “potential
symmetries” [6-8] of SDYM3. It is proven that a Lie algebra isomorphism exists between
the symmetries of SDYM3 and those of PSDYM3. Thus, to determine the Lie algebraic
structure of symmetries of the former system, it suffices to study the corresponding
structure of the latter system. This is not just a matter of academic significance but is
important for practical reasons also, given that, as will be seen, the PSDYM3 recursion
operator is simpler in form compared to the corresponding SDYM3 operator, with the
result that the various commutation relations are easier to handle in the PSDYM3 case.

The paper is organized as follows:

In Section 2, the SDYM3-PSDYM3 system and its symmetry conditions are presented.

In Sec.3, the SDYM3 recursion operator is found in the form of a BT for the linear
symmetry condition. This operator produces, in principle, an infinite number of symme-
try characteristics, which are also seen to be conserved “charges” for SDYM3. A Lax
pair for this PDE is also found.

In Sec.4, it is shown that the symmetries of PSDYM3 can be used to construct
potential symmetries for SDYM3.

In Sec.5, a Lie algebra isomorphism is shown to exist between the symmetries of
SDYM3 and those of PSDYMS3. The practical usefulness of this isomorphism is explained.

The concept of isomorphically related (equivalent) recursion operators [6] is intro-
duced in Sec.6. It is proven that the SDYM3 and PSDYMS3 recursion operators are
equivalent, thus they produce isomorphic symmetry subalgebras for the respective PDEs.

Finally, in Sec.7 we study the existence of infinite-dimensional abelian subalgebras of
symmetries of PSDYMS3, thus also of SDYM3. The presence of such algebras is a typical
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characteristic of integrable systems.

To facilitate the reader, we include an Appendix which contains definitions of the key
concepts of the total derivative and the Fréchet derivative. For fuller and more rigorous
definitions, the reader is referred to the book by Olver [9].

2. The SDYM3 — PSDYM3 System

We write the SDYMS3 equation in the form
FJ] = Dy(J7"J,) + D.(J7' ) = 0 (1)

(the bracket notation is explained in the Appendix). We denote by z# = y, z, § (u=
1, 2, 3) the independent variables (assumed complex) and by D,, D,, Dy the total
derivatives with respect to these variables. These derivatives will also be denoted by
using subscripts [a mixed notation appears in Eq.(1)]. We assume that J is SL(N,C)-
valued (i.e., det J = 1).

We consider the non-auto-BT

J V=X, JN.= —X, (2)

The integrability condition (Xj), = (X.)y yields the SDYM3 equation (1). The integra-
bility condition (.J,), = (J,),, which is equivalent to

D,(J7") =D, (J ') + [Jh, JUL] = 0,

yields a nonlinear PDE for the “potential” X of Eq.(1), called the “potential SDYM3
equation” or PSDYM3:

GIX] = Xyp+ Xeot [Xe, Xg] = 0 (3)

Noting that, according to Eq.(2), (trX), = [tr (InJ)], = [In (det J)],, etc., we see that
the condition det J = 1 can be satisfied by requiring that trX=0 [this requirement is com-
patible with the PSDYM3 equation (3)]. Hence, SL(N,C') SDYMS3 solutions correspond
to sl(IV,C) PSDYMS3 solutions.

At this point we introduce the covariant derivative operators

Ay =D, + [J7V,, | = Dy+ [X., ]

A, =D.+ [J7'., | = D.— [X;, ]
where the BT (2) has been taken into account. By using Eq.(3) and the Jacobi identity,
the zero-curvature condition [Ay , AZ] = 0 is shown to be satisfied, as expected in view of
the fact that the “connections” J~1'J, and J~'J, are pure gauges. Moreover, the above
operators are derivations on the Lie algebra of sl(N,C)-valued functions, satisfying a

Leibniz rule of the form
[M, N] = [A,M, N]+ [M, A,N]

~

A, M,
A.[M,N] = [A.M, N+ [M, A.N]
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for any matrix functions M, N.

Let 0J = a@Q[J] and 60X = o ® [X] be infinitesimal symmetries of Egs.(1) and (3), re-
spectively (« is an infinitesimal parameter), with corresponding symmetry characteristics
@ and ®. (We note that any symmetry of a PDE can be expressed as a transformation of
the dependent variable alone [7, 9], i.e., is equivalent to a “vertical” symmetry.) We will
denote by A M [J] the Fréchet derivative (see Appendix) of a function M with respect
to the characteristic Q. Similarly, by A N [X] we will denote the Fréchet derivative of
a function N with respect to ®. In particular, AJ = @ and A X = ®. The symmetry
conditions for the PDEs (1) and (3) are, respectively,

AF[J]=0 mod F[J]and AG[X]=0 mod G[X].

By using the commutativity of the Fréchet derivative with total derivatives (see Ap-
pendix), and the fact that

A7) = A,(07Q), AT = A(UTQ)
the first of the above conditions leads to a linear PDE for the characteristic Q:
S(Q;J) = (DyA, + D.A.)(J7'Q) = 0 mod FJ] (4)

which represents the symmetry condition for SDYMS3.
The symmetry condition for PSDYMS3 reads:

(A,Dy + A.D.)® =0

By using the operator identity

~

A,Dy+A.D,=DyA,+D. A, — [F[]], ]
= DyA,+D.A., mod FJ]
we get the linear PDE for ¢ :
S(®; X) =(DyA, + D.A,)®=0 mod G[X] (6)

By comparing Eqs.(4) and (6), we notice that J~*Q and @ satisfy the same PDE. Hence,
we conclude that

if Q is an SDYMS3 symmetry characteristic, then ® = J~1Q is a PSDYMS3 charac-
teristic.

Conversely,

if ® is a PSDYMS3 symmetry characteristic, then QQ = J® is an SDYMS characteris-
tic.

3. Recursion Operator, Conserved Charges, and Lax Pair

We seek a recursion operator [9] for SDYM3, i.e., a linear operator which produces new
symmetry characteristics @’ from “old” ones, Q). As in [1], we want to express this oper-
ator in the form of an auto-BT for the linear PDE (4) (which represents the symmetry
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condition for SDYM3). Moreover, this transformation must be consistent with the phys-

ical requirement ¢r (J~'Q) = 0 (i.e., Q' must satisfy this property if @ does), which is

necessary in order that the SL(N,C') character of the SDYM3 solution be preserved.
The auto-BT for the PDE (4) is similar to that found in [1] for SDYM. Specifically,

AJ7'Q) = (J7'Q). , A.JT'Q) = —(J'Q), (7)

Integrability for )’ requires that @) satisfy Eq.(4). Integrability for @), expressed by the
condition [A,, A.](J7'Q) = 0, and upon using the operator identity (5), leads us again
to Eq.(4), this time for @’. The BT (7) may be regarded as an invertible recursion
operator for the SDYMS3 equation. It can be re-expressed as

Ay (J—lQ(n)) — Dz (J—lQ(n-i—l))

. (8)
Az (Jle(n)> - Dg (J*lQ(TL‘Fl))

(n =0,£1,£2,...). From this we get a doubly infinite set of nonlocal conservation laws of
the form
(DyA, + D,A,) (J7'\Q™) =0 mod F[J] (9)

where the “conserved charges” Q™ are symmetry characteristics.
Finally, the Laz pair for SDYM3, analogous to that found in [1] for SDYM, is
D.(J7'W) = NA,(J7I) | Dy (JTIW) = —XA,(JT'D) (10)

(where A is a complex “spectral” parameter). The proof of the Lax-pair property is
sketched as follows: By the integrability condition (J'W),; — (J~'¥);, =0, we get:

S(U;J) = (DyA, + D.A.)(J'W) = 0

On the other hand, the integrability condition [A,, A.] (J~'W) = 0, by using the oper-
ator identity (5), yields:

S(U;J) — [F[J], J'¥] =0

Therefore, [F'[J] , J~'W¥] = 0. This is valid independently of W if F[J]=0, i.e., if J
is an SDYMS3 solution. We conclude that the linear system (10) is a Lax pair for the
SDYMS3 equation (1), the solution ¥ of which pair is a symmetry characteristic satisfying
Eq.(4): S(V; J) = 0. This Lax pair is different from that found by Nakamura for the
Ernst equation [4].

4. Potential Symmetries of SDYM3

We recall that every SDYM3 symmetry characteristic can be expressed as Q=J®, where ¢
is a PSDYMS3 characteristic. Let ® be a characteristic which depends locally or nonlocally
on X and/or various derivatives of X. By the BT (2), X must be an integral of J and
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its derivatives, and so it and its derivative X, are nonlocal in J. On the other hand,
according to Eq.(2), the quantities X; and X, depend locally on J. Thus, in general,
® can be local or nonlocal in J. In the case where ® is nonlocal in J, we say that the
characteristic Q=J® expresses a potential symmetry of SDYM3 [7, §].

Clearly, to obtain the complete set of potential symmetries of SDYMS3, one must first
find the totality of symmetries of PSDYMS3. To this end, we need the recursion operator
for the latter system. Having found the analogous operator for SDYM3, expressed by
the BT (7), and by using the fact that ® = J1Q is a PSDYM3 symmetry characteristic
when ) is an SDYM3 characteristic, we easily get the recursion operator for PSDYM3
in the form of a BT for the symmetry condition (6):

~

Ao=19,, Ad= -0 (11)

Since the above two PDEs are consistent with each other, we can use the first one to
write &’ = R ®, where we have introduced the linear operator

R = DA, (12)

To show that the operator (12) is indeed a recursion operator for PSDYM3, we consider
a symmetry characteristic ® of Eq.(3), i.e., a solution of Eq.(6): S(®;X) = 0. Then, by
using the operator identity (5), and by taking into account the commutativity of covariant
derivatives (zero-curvature condition), we have:

S(®;X)=S(R®;X)= (A,Dy + A.D,)R®

= A,D'D;A,® + A A,®

A ~

— A,D;Y (DA, + D,A,)® + [A,, AP

y]

= A,D;'S(®;X) + [A., A]® =0

which proves that & = R®is a symmetry when @ is a symmetry.

For sl(N,C') PSDYM3 solutions, the symmetry characteristic ® must be traceless.
Then, so will be the characteristic ® = R®. That is, the recursion operator (12)
preserves the sl(N,C) character of PSDYM3.

As is easy to see, any power R™ (n =0, £1, £2,--+) of an invertible recursion
operator also is a recursion operator. Thus, given any symmetry characteristic ®© one
may obtain, in principle, an infinite set of characteristics:

oM =Ro" Y =R"d® (n=0, £1, £2,---) (13)

Let us see some examples of using the recursion operator (12) to find PSDYM3 symmetries
and corresponding SDYM3 potential symmetries:
1. Take ®(© = M, where M is a constant, traceless matrix. Then,

oW =R = [X, M]
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The corresponding potential symmetry of SDYM3 is
QW = JoW = J[X, M|

(This is nonlocal in J due to the presence of X.) Higher-order potential symmetries
are found recursively by repeated application of the recursion operator (12). We thus
obtain an infinite sequence of “internal” symmetries (i.e., symmetry transformations in
the “fiber” space), of the form:

0 — Jom — TR © (n=0,1,2,---) (14)

In the case of the complexified Ernst equation, these are precisely the internal symmetries
found by Nakamura [4].

2. Take ®(© = Xy, which represents a coordinate symmetry (symmetry transforma-
tion in the “base” space of the independent variables x*), specifically, invariance under
y—translation. By applying the recursion operator, we get:

¢(1):R¢(0): Dz_l (ny+ [Xz, Xy]) = Dz_l (nyJr [J_l‘]zn Xy])

Both ®© and &M are nonlocal in J (due to the presence of the y—derivatives of X,
as well as of the integral operator with respect to z). We thus obtain the potential
symmetries of SDYM3,

QU =700 = JX, |
QW =Jo® = JD (X, + [J1,, X,]) .

We note that, by applying the recursion operator to the translational characteristics
®O® = X, and ®© = X, [both of which are local in J, in view of the BT (2)], we get,
respectively, @) = X, (which is nothing new) and @) = —X_ (again, nothing new).

3. Take @0 = yX, + 22X, + yXjy, which represents a scale change of the z*. This
is nonlocal in J due to X,. We leave it to the reader to show that

o :R@(O) = ZXy— ?jJ_IJy"‘ ?JDz_l (ny+ [J_ljy» Xy]) )

where the PSDYM3 equation (3) and the BT (2) have been taken into account. This
is also nonlocal in J. We conclude that J®© and J®® are potential symmetries for
SDYMS3.

5. Lie Algebra Isomorphism

We now study the connection between the Lie algebras of symmetries of SDYM3 and
PSDYMS3. If these algebras are isomorphic, then any Lie algebraic conclusion regarding
the PSDYMS3 equation will also be true for the SDYMS3 equation. What is the practical
value of this? As we saw, the recursion operator for PSDYMS3 is given by Eq.(12):

R = D;'A,
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On the other hand, from the BT (7) we get, by using the first equation,
Q' =JD'A,(J'Q) = JR(JT'Q) = TQ
where 7' is the operator form of the SDYM3 recursion operator:
T= JD'A,J = JRJ (15)

Obviously, R is of a simpler form compared to 7. Accordingly, the Lie algebraic structure
of the infinite sequences of symmetries generated by the former operator will be easier
to study compared to the corresponding structure of symmetries produced by the latter
operator. So, we are seeking an isomorphism between the Lie algebras of symmetries of
the PDEs (1) and (3).
In the spirit of [6], where the 4-dimensional SDYM case was studied, we consider the
pair of PDEs:
A,(J71Q) = @, A (JTIQ) = 9 (16)

Equation (16) is a BT connecting the symmetry characteristic ® of PSDYM3 with the
symmetry characteristic ¢ of SDYM3. Indeed, the integrability condition (®,); =
(®5). yields the symmetry condition (4) for SDYM3, while the integrability condition
[Ay , AZ] (J7'Q) = 0, valid in view of the zero-curvature condition, yields the PSDYM3
symmetry condition (6). Please note carefully that the @ and ® in Eq.(16) are not re-
lated by the simple algebraic relation @=J®. Note also that the system (16) is compatible
with the constraints that ® and J~1Q be traceless, as required for producing si(N,C)
PSDYMS3 solutions and SL(N,C') SDYM3 solutions, respectively.

We observe that, for a given @, the solution of the BT (16) for ® is not unique, and
neither is the solution for @), for a given ®. Indeed, in either case the solution may contain
arbitrary additive terms. We normalize the process by agreeing to ignore such terms, so
that, in particular, the characteristic () =0 corresponds to the characteristic ®=0. In
this way, the BT (16) establishes a one-to-one correspondence between the symmetries
of SDYM3 and those of PSDYM3. We will now show that this correspondence is a Lie
algebra isomorphism.

Lemma: The Fréchet derivative A with respect to the characteristic ®, and the
recursion operator R of Eq.(12), satisfy the commutation relation

AR = D' [®., | (17)

where & = AX.

Proof: Introducing an auxiliary matrix function M, and using the derivation property
of A and the commutativity of A with all total derivatives (as well as all powers of such
derivatives), we have:

ARM = AD;'A,M = D;'A (D,M + [X,, M])
= D' (DyAM + [(AX)., M] + [X., AM])
= D7V (A, AM + [®,, M]) = RAM + D;'[®., M],
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from which there follows (17).
Now, by the first equation of the BT (16), we can write:

® = D'A,(J'Q) = R(JT'Q) (18)

Equation (18) defines a linear map from the set of symmetries Q=AJ of the PDE (1)
to the set of symmetries ® = AX of the PDE (3). With the normalization conventions
mentioned earlier, this map can be considered invertible, thus constituting a one-to-one
correspondence between the symmetries of SDYM3 and those of PSDYM3, for any given
solutions J and X connected to each other by the BT (2). Calling this map I, we write:

I: &= 1{Q} = RJ'Q or AX=T{AJ} = RJT'AJ (19)

[Note: We may omit parentheses, such as those in Eq.(18), by agreeing that an operator
acts on the entire expression (e.g., product of functions) on its right, not just on the
function adjacent to it. Hence, PMN = P (MN).]

Proposition 1: The map [ defined by Eq.(19) is an isomorphism between the sym-
metry Lie algebras of SDYM3 and PSDYM3.

Proof: Consider a pair of symmetries of Eq.(1), indexed by i and j, generated by the
characteristics Q) = A1) J where [ = i, j. Similarly, consider a pair of symmetries of
Eq.(3), generated by (1) = A X (I =14, j). Further, assume that

o =7{Q"} or AWX =T{AWDJ}

That is,
P =ADX = RIIAW = RIIQW ; 1=, (20)

By the Lie-algebraic property of symmetries of PDEs, the functions [A®, AW)] J and
[A® AU)] X also are symmetry characteristics for SDYM3 and PSDYMS3, respectively,
where we have put

[A(i)7 A(j)]JE AOAG T ADAO T = AOQUW — AWQH)

AO A X = ADAUDX - ADADX = AOU) - AWP®
We must now show that
AD AV X = T{AD, AV J} = RJ! AD AD] g (21)
Putting [ = j into Eq.(20), and applying the Fréchet derivative A, we have:
ADADX = AORJAQW = [AD Rl J1QW + RADJ1QU)
= DI1[@Y, JIQU] + RADJIQW
where we have used the commutation relation (17). By Eq.(20),

oW = D.RJIQW = A, Q.
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Moreover, by the properties of the Fréchet derivative listed in the Appendix,
ADJQU) = —J=H(AG ) J71QU) 4 JTADQU)
= —J QW 1QU) + JTAGQU)

So,

ADADX = DTt [ij—lQ(i)’ JIQW] — RJTI\QWITQY + RITTAVQU).
Subtracting from this the analogous expression for AWA® X we have:

AO AV X = ADADX — ADAGX
= Dt ([4,77Q0, JQU] + [J71QU, 4,J71QU)

- R [J71QW, J1QU)] + }?J%(A(i)Q(j) — ADQW)

D;lfly [(J1QW, J1QW] — R[JIQ®, J1QW)

+ RITY(AOAD T — ADAG )
= RJVAD, AU g

where we have used the derivation property of Ay. Thus, Eq.(21) has been proven.

6. Isomorphically Related Recursion Operators

Following [6], we now introduce the concept of isomorphically related (I-related) recursion
operators. Let S be a recursion operator for the SDYM3 equation (1) [not necessarily
that of Eq.(15)], and let P be a recursion operator for the PSDYM3 equation (3) [not
necessarily that of Eq.(12)].

Definition: The linear operators P and S will be called equivalent with respect to
the isomorphism I (or I-equivalent, or I-related) if the following condition is satisfied:

Pd=T1{5Q} when ®=1{Q} (22)

where () and ® are symmetry characteristics for the PDEs (1) and (3), respectively.
Proposition 2: Any [—related recursion operators P and S satisfy the following
operator equation on the infinite-dimensional linear space of all SDYM3 symmetry char-
acteristics:
PRJ = RJ'S (23)
where R is the operator defined in Eq.(12).
Proof: By Egs.(19) and (22),

Pd=RJ'SQ when ®= RJ'Q = PRJ'Q= RJ'SQ
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for all SDYM3 characteristics Q).

Proposition 3: The recursion operators R and 7', defined by Egs.(12) and (15), are
I —equivalent.

Proof: Simply note that the operator equation (23) is satisfied by putting P =R
and S = T, and by taking Eq.(15) into account.

Now, let Q© be some SDYM3 symmetry characteristic, and let ®(© be the I—related
PSDYMS3 characteristic:

0= 1{QO}= RJIQ® (24)

Consider also the infinite sets of symmetries of the PDEs (1) and (3), respectively:
QW ="17"Q0 . n=0,1,2 - (25)
o™ = Rrd© . n=0,1,2 - (26)

Proposition 4: If the set (25) generates an infinite-dimensional Lie subalgebra of
SDYM3 symmetries, then the set (26) generates an infinite-dimensional Lie subalgebra
of PSDYM3 symmetries, isomorphic to the SDYM3 symmetry subalgebra.

Proof: Since the operators Rand T are [ —equivalent, by Eq.(24) we have:

RO = 1{TQ"}
By iterating,
R"®O = 1{T"Q®} or ™ =T{Q™}; n=01,2 --- (27)

Call V and W the infinite-dimensional linear spaces spanned by the basis functions (25)
and (26), respectively. The elements of V' and W are, correspondingly, symmetry char-
acteristics of SDYM3 and PSDYM3. Equation (27) defines an isomorphism between V'
and W. By assumption, the characteristics belonging to V' generate a Lie subalgebra of
the complete Lie algebra of symmetries of SDYM3. We must show that the elements of
W generate an isomorphic subalgebra of PSDYM3 symmetries. To this end, consider two
basis elements Q¥ = A®.J and Q) = AW .J of V. From these we construct the Lie
bracket,

[A(i)’ A(j)}JE AOAG T ADAO T = AOQU — AWQH

which is an SDYM3 symmetry characteristic. This characteristic belongs to the subspace
V' (since this space generates a Lie algebra). Now, let

20 = AUX = 1{QV} ; 1=, ]

be the basis elements of W which are I—related to the Q¥ (I = i, j), in the way dictated
by Eq.(27). By Eq.(21),

[A(i)7 AU)}XE ADPU) _ ADPH — I{[A(i), A(j)] J}

The quantity on the left is a PSDYM3 symmetry characteristic. Given that [ is a map
from V' to W, this characteristic belongs to the subspace W. Thus, W is closed under
the Lie bracket operation, which means that its elements generate a Lie subalgebra of
PSDYM3 symmetries. This subalgebra is I —related, i.e. isomorphic, to the corresponding
subalgebra of SDYM3 symmetries generated by the elements of V.
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7. Infinite-Dimensional Abelian Subalgebras

The study of the complete symmetry Lie algebra of SDYM3 will be the subject of a
future paper. Here, we confine ourselves to the existence of infinite-dimensional abelian
subalgebras, the presence of which is a typical characteristic of integrable systems. Since
the PDEs (1) and (3) constitute a 3-dimensional reduction of the 4-dimensional SDYM-
PSDYM system, certain symmetry aspects of the latter system are expected to be present
in the former one also. In particular, the PSDYM equation has been shown to possess
Kac-Moody symmetry algebras associated with both internal and coordinate transforma-
tions [2]. These algebras possess infinite-dimensional abelian subalgebras. Such abelian
structures exist for the reduced 3-dimensional system also. The following theorem follows
directly from a more general one concerning the 4-dimensional PSDYM equation [2]:
Theorem: Consider a PSDYM3 symmetry, having a characteristic of the form

2O =AOX =L X

where L is a linear operator. By repeated application of the recursion operator (12), we
construct an infinite sequence of PSDYM3 characteristics,

oM = AMX = RO =R"LX ; n=0,1,2 --- (28)

We assume that the operator L obeys the commutation relations
[AM [|=0and [L, R] =D;'[D.LX, ]|.
Then, the set (28) represents an infinite-dimensional abelian symmetry algebra:

[A(m)7 A(”)]X = AMe® _ Ampmm) —
We note that the commutation relation (17) is written, in this case,
A™ R =D '[D.A™WX, | = DY [D.R"LX, |

As an example, it can be checked that the conditions of this theorem are satisfied for the
linear operators L= D, and Ly= yD, + zD, + y Dy, corresponding to the PSDYM3
symmetries ®© = X, and ®© = yX, + 2 X, + §X, respectively. The I—related
SDYM3 symmetries are Q) = Jy and QO = yJy + zJ, +yJy;. We thus obtain two
infinite-dimensional abelian subsymmetries of PSDYMa3:

(D(n):A(n)X:énX . TL:O, 1’ 2,

Yy
¢ = AMX = R"(yX, +2X. +§Xg); n=0,1,2 -

and two [—related abelian (by Proposition 4) sybsymmetries of SDYM3:

Q(n):A(n)J:TnJy :n=0,1,2,---

QU =AM =Ty Jy+2J.+§J5); n=0,1,2,---
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Summary

We have explored the symmetry and integrability characteristics of a 3-dimensional re-
duction of the full 4-dimensional self-dual Yang-Mills system. The former model is phys-
ically interesting since, with appropriate adjustments, it may describe chiral fields [5, 10]
or axially-symmetric gravitational fields [4]. We have used the techniques described in
[1] to derive a recursion operator, a Lax pair, and an infinite set of conserved “charges”.
We have studied the existence of potential symmetries, and we have investigated certain
aspects of the Lie algebraic structure of symmetries of our model. The study of the full
symmetry algebra of this model will be the subject of a future paper.

Appendix

To make this article as self-contained as possible, we define two key concepts that are being
used, namely, the total derivative and the Fréchet derivative. The reader is referred to the
extensive review article [11] by this author for more details. (It should be noted, however,
that our present definition of the Fréchet derivative corresponds to the definition of the
Lie derivative in that article. Since these two derivatives are locally indistinguishable,
this discrepancy in terminology should not cause any concern mathematically.)

We consider the set of all PDEs of the form F' [u] = 0, where, for simplicity, the solu-
tions u (which may be matrix-valued) are assumed to be functions of only two variables,
x and t: v = u(z,t). In general,

F[u] = F(ZL‘, t7 Uy, Ugy Uty Ugg, Utt, Uyt )

Geometrically, we say that the function F' is defined in a jet space [9, 12] with coordinates
x,t,u, and as many partial derivatives of u as needed for the given problem. A solution
of the PDE F'[u] = 0 is then a surface in this jet space.

Let F'[u] be a given function in the jet space. When differentiating such a function
with respect to x or ¢, both implicit (through u) and explicit dependence of F' on these
variables must be taken into account. If u is a scalar quantity, we define the total derivative
operators D, and D, as follows:

— 90 0 _0_ _0
Dm — Oz + umau + um’auz + uwtaut +

— 0 0 _0_ _0_
Dy= 77 + wgy + Useg,, + ungy, +

(note that the operators 0/0x and 0/0t concern only the explicit dependence of F' on
x and t). If, however, u is matrix-valued, the above representation has only symbolic
significance and cannot be used for actual calculations. We must therefore define the
total derivatives D, and D; in more general terms.

We define a linear operator D,, acting on functions F' [u] in the jet space and having
the following properties:
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1. On functions f(x,t) in the base space,
D, f(z,t)=0f/0x = 0,f.

2. On functions F'[u] = u or u,, u, etc., in the “fiber” space,

Dyu=1wu,, Dty =Uzpy , Dytty = upp = uy; , ete.

3. The operator D, is a derivation on the algebra of all functions F' [u] in the jet space
(i.e., the Leibniz rule is satisfied):

Dy (F'lu) G [u]) = (Do Fu]) Glu] + Flu] DG [ul

We similarly define the operator D;. Extension to higher-order total derivatives is obvious
(although these latter derivatives are no longer derivations, i.e., they do not satisfy the
Leibniz rule). The following notation has been used in this article:

D,Ful=F,[u], D;Fu]l=F;u

Finally, it can be shown that, for any matrix-valued functions A and B in the jet space,
we have

(A, =—ATA, A1 (A, =—A4,A7!

and
Dx[A7B]: [AxaB]‘l’[AaBz] ’ Dt[AaB]: [AtaB]+[A7Bt]

where square brackets denote commutators.

Let now du ~ a @ [u] be an infinitesimal symmetry transformation (with characteristic
Q [u]) for the PDE F[u] = 0. We define the Fréchet derivative with respect to the
characteristic ) as a linear operator A acting on functions F'[u] in the jet space and
having the following properties:

1. On functions f(z,t) in the base space,

A f(z,t)=0
(this is a consequence of our liberty to choose all our symmetries to be in “vertical” form
(7, 9]).
2. On F'[u] = u,

Au=Q[ul

3. The operator A commutes with total derivative operators of any order.
4. The Leibniz rule is satisfied:

A(Fu] Glu]) = (AF[u]) Gu] + Fu] AG [u]
The following properties can be proven:
Auy, = (Au)y, =Qylul , Auy=(Au)y=Qu]

AA Y =—AYAA) A ; A[A,B]= [AA, B]+ [A, AB]
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where A and B are any matrix-valued functions in the jet space.

If the solution u of the PDE is a scalar function (thus so is the characteristic @), the
Fréchet derivative with respect to () admits a differential-operator representation of the
form

0 0

+ Qur—+ Qo +---

Q_+ Qa} + Qt + Qx:cau (9 Uy 8umt

Such representations, however, are not valid for PDEs in matrix form. In these cases we
must resort to the general definition of the Fréchet derivative given above.

Finally, by using the Fréchet derivative, the symmetry condition for a PDE F [u] =0
can be expressed as follows [7, 9]:

AF[u] =0 mod Fu
This condition yields a linear PDE for the symmetry characteristic (), of the form

S(@Q;u) =0 mod Ful

References

[1] C. J. Papachristou, Elec. J. Theor. Phys. (EJTP) 7, No. 23 (2010) 1
(http://www.ejtp.com/articles/ejtpv7i23pl.pdf ).

[2] C. J. Papachristou, Phys. Lett. A 154 (1991) 29.

[3] C. J. Papachristou, J. Phys. A: Math. Gen. 24 (1991) L1051.

[4] Y. Nakamura, J. Math. Phys. 24 (1983) 606.

[5] T. loannidou and R. S. Ward, Phys. Lett. A 208 (1995) 209.

[6] C. J. Papachristou and B. K. Harrison, J. Nonlin. Math. Phys., Vol. 17, No. 1 (2010)

35
(see also http://arxiv.org/abs/0809.0981).

7] G. W. Bluman and S. Kumei, Symmetries and Differential Equations (Springer-
Verlag, 1989).

[8] C. J. Papachristou, Phys. Lett. A 145 (1990) 250.

9] P. J. Olver, Applications of Lie Groups to Differential Equations, 2" ed. (Springer-
Verlag, 1993).

[10] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering (Cambridge University Press, 1991).

[11] C. J. Papachristou, Symmetry and Integrability of Classical Field Equations,

arXiv;0803.3688
http://arxiv.org/abs/0803.3688.

[12] C. Rogers and W. F. Shadwick, Backlund Transformations and Their Applications
(Academic Press, 1982).






5/6/2017 [1205.2326] Foundations of Newtonian Dynamics: An Axiomatic Approach for the Thinking Student

Physics > Classical Physics

Foundations of Newtonian Dynamics: An Axiomatic
Approach for the Thinking Student

C. J. Papachristou
(Submitted on 10 May 2012 (v1), last revised 2 Jun 2017 (this version, v4))

Despite its apparent simplicity, Newtonian Mechanics contains conceptual subtleties that may
cause some confusion to the deep-thinking student. These subtleties concern fundamental issues
such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction
between genuine physical laws and derivative theorems. This article attempts to clarify these
issues for the benefit of the student by revisiting the foundations of Newtonian Dynamics and by
proposing a rigorous axiomatic approach to the subject. This theoretical scheme is built upon two
fundamental postulates, namely, conservation of momentum and superposition property for
interactions. Newton's Laws, as well as all familiar theorems of Mechanics, are shown to follow
from these basic principles.

Comments: 11 pages; extensively revised and expanded version

Subjects: Classical Physics (physics.class-ph); Physics Education (physics.ed-
ph)

Journal reference: Nausivios Chora Vol. 4 (2012) 153-160

Cite as: arXiv:1205.2326 [physics.class-ph]

(or arXiv:1205.2326v4 [physics.class-ph] for this version)

https://arxiv.org/abs/1205.2326

17






Foundations of Newtonian Dynamics:
An Axiomatic Approach for the Thinking Student*

C. J. Papachristou?

Department of Physical Sciences, Hellenic Navald&oay, Piraeus 18539, Greece

Abstract. Despite its apparent simplicity, Newtonian mechamontains conceptual
subtleties that may cause some confusion to thp-tiéeking student. These subtle-
ties concern fundamental issues such as, e.gautider of independent laws needed
to formulate the theory, or, the distinction betwgenuine physical laws and deriva-
tive theorems. This article attempts to clarifyshessues for the benefit of the stu-
dent by revisiting the foundations of Newtonian dgrics and by proposing a rigor-
ous axiomatic approach to the subject. This thaaiescheme is built upon two fun-
damental postulates, namely, conservation of maumnend superposition property
for interactions. Newton’s laws, as well as all fi@an theorems of mechanics, are
shown to follow from these basic principles.

1. Introduction

Teaching introductory mechanics can be a majorlemgd, especially in a class of
students that are not willing to take anything doanted! The problem is that, even
some of the most prestigious textbooks on the subyey leave the student with
some degree of confusion, which manifests itsetfuastions like the following:

e Is the law of inertia (Newton’s first law) a law ofotion (of free bodies) or is
it a statement of existence (of inertial referefmaenes)?

e Are the first two of Newton’s laws independent atk other? It appears that
the first law is redundant, being no more thaneci case of the second law!

e Is the second law a true law or a definition (ot&)?

e |Is the third law more fundamental than conservatibmomentum, or is it the
other way around?

e Does the “parallelogram rule” for composition ofdes follow trivially from
Newton’s laws, or is an additional, independemgiple required?

e And, finally, what is the minimum number ofdependentaws needed in or-
der to build a complete theoretical basis for maas?

In this article we describe an axiomatic @agh to introductory mechanics that is
both rigorous and pedagogical. It purports to flagsues like the ones mentioned
above, at an early stage of the learning procéss, @iding the student to acquire a
deep understanding of the basic ideas of the thédsynot the purpose of this article,
of course, to present an outline of a complete sswf mechanics! Rather, we will
focus on the most fundamental concepts and priesjfghose that are taught at the
early chapters of dynamics (we will not be concdmh kinematics, since this sub-
ject confines itself to a description of motionhat than investigating the physical
laws governing this motion).

! See Note at the end of the article.
2 papachristou@snd.edu.gr
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The axiomatic basis of our approach consittsvo fundamental postulates, pre-
sented in Section 3. The first postulaRl)(embodies both the existenceioértial
reference frameand theconservation of momentywhile the second oné’®) ex-
presses auperposition principldor interactions Thelaw of inertiais deduced from
Pl

In Sec. 4, the conceptfoirce on a particle subject to interactions is definasli
Newton’s second lamandP2is used to show that a composite interaction dréicle
with others is represented by a vector sum of grédenP1 andP2 are used to de-
rive theaction-reaction lawFinally, a generalization to systems of partidabject to
external interactions is made.

For completeness of presentation, certainvaere concepts such as angular
momentum, work, kinetic energy, etc., are discuseefiec. 5. To make the article
self-contained, proofs of all theorems are included

2. A critical look at Newton'’s theory

There have been several attempts to reexamine N&nBws even since Newton’s
time. Probably the most important revision of New$adeas — and the one on which
modern mechanics teaching is based — is that déenst Mach (1838-1916) (for a
beautiful discussion of Mach’s ideas, see the mamsicle by H. A. Simon [1]). Our
approach differs in several aspects from those atiMand Simon, although all these
approaches share common characteristics in sfot. a historical overview of the
various viewpoints regarding the theoretical ba$islassical mechanics, see, e.g., the
first chapter of [2].)

The question of thendependencef Newton’s laws has troubled many genera-
tions of physicists. In particular, still on thiaydsome authors assert that the first law
(the law of inertia) is but a special case of tkeosid law. The argument goes as fol-
lows:

“According to the second law, the acceleration gfaaticle is proportional to
the total force acting on it. Now, in the case dfee particle the total force
on it is zero. Thus, a free particle must not beeterating, i.e., its velocity
must be constant. But, this is precisely what éwedf inertia says!”

Where is the error in this line of reasonidg®wer: The error rests in regarding
the acceleration as an absolute quantity indeperafehe observer that measures it.
As we well know, this is not the case. In particutae only observegntitledto con-
clude that a non-accelerating object is subjectamet force is amertial observey
one who uses amertial frame of referencéor his/her measurements. It is precisely
the law of inertia thatlefinesinertial frames anduaranteegheir existence. So, with-
out the first law, the second law becomes indeteaitei, if not altogether wrong, since
it would appear to be valid relative to any obsemegardless of his/her state of mo-
tion. It may be said that the first law defines therrain” within which the second
law acquires a meaning. Applying the latter lawhwiit taking the former one into
account would be like trying to play soccer withpossessing a soccer field!

The completeness of Newton’s laws is anoigsre. Let us see a significant ex-
ample: As is well known, thprinciple of conservation of momentusna direct con-
sequence of Newton’s laws. This principle dictated the total momentum of a sys-
tem of particles is constant in time, relative toirertial frame of reference, when the
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total external force on the system vanishes (iniqdar, this is true for amsolated
system of particles, i.e., a system subject to xtereal forces). But, when proving
this principle we take it for granted that the tdtace on each particle is the vector
sum of all forces (both internal and external) ragton it. This isnot something that
follows trivially from Newton’s laws, however! Imatt, it was Daniel Bernoulli who
first stated thigrinciple of superpositiomafter Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a totdloofr — rather than just three — basic
laws.

The question now is: can we somehow “comfyéddtie axiomatic basis of New-
tonian mechanics in order for it to consist of aaen number of independent princi-
ples? At this point it is worth taking a closer koat the principle of conservation of
momentum mentioned above. In particular, we natfdhowing:

e For an isolated “system” consisting of a singletipk, conservation of mo-
mentum reduces to the law of inertia (the momentilnms also the velocity,
of a free particle is constant relative to an ilaftame of reference).

e For an isolated system of two particles, conseswatif momentum takes us
back to the action-reaction law (Newton’s third Jaw

Thus, starting with four fundamental lawse(three laws of Newton plus the law
of superposition) we derived a new principle (conagon of momentum) that yields,
as special cases, two of the laws we started Wiib.idea is then that, by takitigs
principle as our fundamental physical law, the namtf independent laws necessary
for building the theory would be reduced.

How about Newton’s second law? We take tlevyiadopted by several authors
including Mach himself (see, e.g., [1,3-7]) thastaw” should be interpreted as the
definition of force in terms of the rate of change of momentu

We thus end up with a theory built ugaro fundamental principles, i.e., the con-
servation of momentum and the principle of supatjos In the following sections
these ideas are presented in more detail.

3. The fundamental postulates and their consequees
We begin with some basic definitions.

Definition 1. A frame of referencéor reference framgis a system of coordinates
(or axes) used by an observer to measure physiealtifjes such as the position, the
velocity, the acceleration, etc., of any particiespace. The position of the observer
him/herself is assumdtkedrelative to his/her own frame of reference.

Definition 2. An isolated system of particles a system of particles subject only
to their mutual interactions, i.e., subject to exiernal interactions. Any system of
particles subject to external interactions that eloowv cancel one another in order to
make the system’s motion identical to that of aated system will also be consid-
ered “isolated”. In particular, an isolated systeonsisting of a single patrticle is
called afree patrticle

Our first fundamental postulate of mechamscstated as follows:
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Postulate 1. A class of frames of referencedrtial frameg exists such that, for
anyisolatedsystem of particles, a vector equation of theofelihg form is valid:

Z m ¥ = constant in tim (1)

where V; is the velocity of the particle indexed byi=1,2,--) and wherem is a

constant quantity associated with this particlejciwiguantity is independent of the
number or the nature of interactions the partglsubject to.

We callm themassand p. =m Yy themomentunof theith particle. Also, we call

P=2my=>"% ) (2

thetotal momentunof the system relative to the considered referéracee. Postulate
1, then, expresses tpeinciple of conservation of momentuthe total momentum of
an isolated system of particles, relative to antialereference frame, is constant in
time. (The same is true, in particular, for a fpaeticle.)

Corollary 1. A free particle moves with constant velocity (i.@ith no accelera-
tion) relative to annertial reference frame.

Corollary 2. Any two free particles move with constant velastrelative to each
other (their relative velocity is constant and threlative acceleration is zero).

Corollary 3. The position of a free particle may define thegioriof an inertial
frame of reference.

We note that Corollaries 1 and 2 constitltieriaate expressions of tihew of in-
ertia (Newton'’s first law.

Byinertial observerwe mean an “intelligent” free particle, i.e., aat can per-
form measurements of physical quantities such decig or acceleration. By
convention, the observer is assumed to be locatdearigin of his/her own inertial
frame of reference.

Corollary 4. Inertial observers move with constant velocities.(they do not ac-
celerate) relative to one another.

Consider now an isolated system of two pl@siof massesn, andm,. Assume

that the particles are allowed to interact for samme intervaldt. By conservation of
momentum relative to an inertial frame of referenwee have:

AB+P)=0 = Ap=-4p, = mAY=— ma7y.

We note that the changes in the velocities of we particles within the (arbitrary)
time intervaldt must be in opposite directions, a fact that isfieel experimentally.
Moreover, these changes are independent of thécydart inertial frame used to
measure the velocities (although, of course, thiecitees themselvesre frame-
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dependent!). This latter statement is a consequehtiee constancy of the relative
velocity of any two inertial observers (the studesninvited to explain this in detail).
Now, taking magnitudes in the above vector equatienhave:

|AY1| _Me constan 3)
|av,|  my

regardless of the kind of interaction or the tifte(which also is an experimentally
verified fact). These demonstrate, in practice vagity of the first postulate. Equa-
tion (3) allows us to specify the mass of a pagtimimerically, relative to the mass of
some other particle (which particle may arbitrakiy assigned a unit mass), by letting
the two particles interact for some time. As argabdve, the result will be independ-
ent of the specific inertial frame used by the obsewho makes the measurements.
That is, in the classical theomass is a frame-independent quantity

So far we have examined the case of isolsgstbms and, in particular, free parti-
cles. Consider now a particle subject to interatiwith the rest of the world. Then,
in general (unless these interactions somehow taneeanother), the particle’s mo-
mentum will not remain constant relative toiaartial reference frame, i.e., will be a
function of time. Our second postulate, which egpes thesuperposition principle
for interactions asserts that external interactions act on agbaitidependently of
one anotheand their effects are superimposed.

Postulate 2. If a particle of masan is subject to interactions with particles
m,, m,,---, then, at each instaptthe rate of change of this particle’s momentuta-re

tive to an inertial reference frame is equal to
dp dp
—r_ Bl 4
-2l @

Where(d p/ dt)i Is the rate of change of the particle’s momentwa dolely to the
interaction of this particle with the partictg (i.e., the rate of change ¢ if the par-
ticle minteractedbnly with m ).

4. The concept of force and the Third Law
We nowdefinethe concept of force, in a manner similaN@wton’s second law

Definition 3. Consider a particle of mass that is subject to interactions. Let
p(t) be the particle’s momentum as a function of tim®,measured relative to an

inertial reference frame. The vector quantity

d

o]

F= (5)

o

t

is called theotal forceacting on the particle at tinte
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Taking into account that, for a single pagtico = mv with fixed m, we may re-
write EQ. (5) in the equivalent form,

—

F=ma=

T
— | <l

(6)

where a is the particle’s acceleration at tiheGiven that both the mass and the ac-
celeration (prove this!) are independent of thetiakframe used to measure them, we
conclude thathe total force on a particle is a frame-independgmantity

Corollary 5. Consider a particle of mass subject to interactions with particles
m,, m,---. Let F be the total force om at timet, and letF. be the force om due
solely to its interaction withm . Then, by the superposition principle for interawas
(Postulate 2) as expressed by Eq. (4), we have:

F=2F Y

Theorem 1. Consider two particles and2. Let F,, be the force on particte due

to its interaction with particl@ at timet, and letF,, be the force on partict due to
its interaction with particlé at the same instant. Then,

—

l:12 == 'le (8)

Proof. By the independence of interactions, as exprebsethe superposition
principle, the forces,, and F,, are independent of the presence or not of othei pa

cles in interaction with particlesand2. Thus, without loss of generality, we may as-
sume that the system of the two particles is iedlaifhen, by conservation of mo-
mentum and by using Eq. (5),

d . dp df - =
a(pﬁr p)=0 = d_%:_TF?[Z = Fy=—Fy .

Equation (8) expresses thetion-reaction law(Newton’s third lavy.

Theorem 2. The rate of change of the total moment@tt) of a system of parti-

cles, relative to an inertial frame of referenapads the totaéxternalforce acting on
the system at time

Proof. Consider a system of particles of massg$i=1,2,--). Let F. be the total
externalforce onm (due to its interactions with particle®t belongingto the sys-

tem), and Ietlf”- be theinternal force onm due to its interaction witim, (by con-

—

vention, F; =0 wheni=j). Then, by Eq. (5) and by taking into account &9,
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dp - B,
S _FE+YE, .
dat ; !

By using Eqg. (2) for the total momentum, we have:

dP_$dA_vE,.TE
Py yeTe.
But,
- L le. -
Z':ij:ZFjiZEZ(FuJFFﬁ):O'
ij ji

ij
where the action-reaction law (8) has been takenaocount. So, finally,

P - -
E:ZE:Fext (9)

where F,

ext

represents thtal external forceon the system.

5. Derivative concepts and theorems

Having presented the most fundamental conceptsechanics, we now turn to some
useful derivative concepts and related theorend) as those of angular momentum
and its relation to torque, work and its relatienkinetic energy, and conservative
force fields and their association with mechanaargy conservation.

Definition 4. Let O be the origin of amnertial reference frame, and |&€t be the
position vector of a particle of mass relative toO. The vector quantity

[=Fxp=m(FxV) oj1

(where p=mvV is the particle’s momentum in the considered fraimealled thean-
gular momentunof the particle relative t@.

Theorem 3. The rate of change of the angular momentum ofrticieg relative to
O, is given by

—=rxF =T (11)
where F is thetotal force on the particle at tinteand whereT is thetorqueof this
force relative tdO, at this instant.

Proof. Equation (11) is easily proven by differentiatiig. (10) with respect to
time and by using Eq. (5).
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Corollary 6. If the torque of the total force on a particldatee to some poinD,
vanishes, then the angular momentum of the pamatéive toO is constant in time
(principle of conservation of angular momenjum

Under appropriate conditions, the above cmas®n principle can be extended to
the more general case of a system of particles ¢sge [2-8]).

Definition 5. Consider a particle of massin aforce field F(F), wheref is the

particle’s position vector relative to the origihof an inertial reference frame. L&t
be a curve representing the trajectory of the garfrom pointA to pointB in this
field. Then, the line integral

W,g = jf E(F). dF o

represents thevork done by the force field om along the patl€. (Note: This defini-
tion is valid independently of whether or not adbhtl forces, not related to the field,

are acting on the particle; i.e., regardless ofttdeor notF (F) represents the total
force onm.)

Theorem 4. Let F(F) represent théotal force on a particle of mass in a force
field. Then, the work done on the particle alonzpehC from A to B is equal to

Bﬁ — —
Wy =[, F(7)-df = Ecg— Exa= 4E, (13)
where

(14)

is thekinetic energyof the particle.
Proof. By using Eq. (6), we have:

E.dr=md

<l

dr=my dve s mEv =S mey= mvg

o
—

from which Eq. (13) follows immediately.

Definition 6. A force field F(F) is said to beconservativef a scalar function
E,(F) (potential energyexists, such that the work on a particle alangpath from
A to B can be written as

Bﬁ — —
Wy =[, F(7)-df = E, ;- E 5=—4E (15)

p
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Theorem 5. If the total forceF (F) acting on a particlen is conservative, with an
associated potential ener@y, (r) , then the quantity

E:Ek+Ep:%m\?+ (7 (16)

(total mechanical energygf the particle) remains constant along any pedhed by
the particle ¢onservation of mechanical enejgy

Proof. By combining Eq. (13) (which is generally valid finy kind of force) with
Eq. (15) (which is valid foconservativdorce fields) we find:

AR =-4E, = A(E+ E)=0 = E+ E,= cons

Theorems 4 and 5 are readily extended tac#se of a system of particles (see,
e.g., [2-8]).

6. Some conceptual problems

After establishing our axiomatic basis and demattisty that the standard Newtonian
laws are consistent with it, the development ofrést of mechanics follows familiar
paths. Thus, as we saw in the previous sectiorgamedefine concepts such as angu-
lar momentum, work, kinetic and total mechanicargres, etc., and we can state de-
rivative theorems such as conservation of angulamentum, conservation of me-
chanical energy, etc. Also, rigid bodies and cardirs media can be treated in the
usual way [2-8] as systems containing an arbitrdailge number of particles.

Despite the more “economical” axiomatic basisNewtonian mechanics sug-
gested here, however, certain problems inheretitarclassical theory remain. Let us
point out a few:

1. The problem of “inertial frames”

An inertial frame of reference is only a tretecal abstraction: such a frame can-
not exist in reality. As follows from the discussim Sec. 3, the origin (saf) of an
inertial frame coincides with the position of a btipetical free particle and, more-
over, any real free particle moves with constanbaity relative toO. However, no
such thing as an absolutely free particle may arighe world. In the first place,
every material particle is subject to the infintédng-range gravitational interaction
with the rest of the world. Furthermore, in order & supposedly inertial observer to
measure the velocity of a “free” particle and wettiat this particle is not accelerat-
ing relative to him/her, the observer must somel@eract with the particle. Thus,
no matter how weak this interaction may be, theigarcannot be considered free in
the course of the observation.

2. The problem of simultaneity

In Sec. 4 we used our two postulates, togetitd the definition of force, to de-
rive the action-reaction law. Implicit in our argants was the requirement that action



10 C. J. Papachristou

must besimultaneouswith reaction. As is well known, this hypothesmhich sug-
gests instantaneous action at a distance, ignioecknite speed of propagation of the
field associated with the interaction and violatagsality.

3. A dimensionless “observer”

As we have used this concept, an “obsengdni intelligent free particle capable
of making measurements of physical quantities sischelocity or acceleration. Such
an observer may use any convenient (preferablyamgalar) set of axes
(%, ¥, 2) for his/her measurements. Different systems @samsed by this observer
have different orientations in space. By conventtbe observer is located at the ori-
gin O of the chosen system of axes.

As we know, inertial observers do not acakerelative to one another. Thus, the
relative velocity of the origins (sa@) andQ’) of two different inertial frames of ref-
erence is constant in time. But, what if the axethese frames are ielative rota-
tion (although the origin® and O" move uniformly relative to each other, or even
coincide)? How can we tell which observer (if arsyan inertial one?

The answer is that, relative to the systeraxals of an inertial frame, a free parti-
cle does not accelerate. In particular, relativa totating frame, a free particle will
appear to possess at least a centripetal acceler&tiich a frame, therefore, cannot be
inertial.

As mentioned previously, an object with #ndimensions (e.g., a rigid body) can
be treated as an arbitrarily large system of dagidNo additional postulates are thus
needed in order to study the dynamics of such gectbrhis allows us to regard
momentum and its conservation as more fundamedrdal angular momentum and its
conservation, respectively. In this regard, ourrapph differs significantly from,
e.g., that of Simon [1] who, in his own treatmealces the aforementioned two con-
servation laws on an equal footing from the outset.

7. Summary

Newtonian mechanics is the first subject in Physicsundergraduate student is ex-
posed to. It continues to be important even atintermediate and advanced levels,
despite the predominant role played there by theengeneral formulations of La-
grangian and Hamiltonian dynamics.

It is this author's experience as a teachet, tdespite its apparent simplicity,
Newtonian mechanics contains certain conceptudletids that may leave the deep-
thinking student with some degree of confusion. @kerage student, of course, is
happy with the idea that the whole theory is budon three rather simple laws attrib-
uted to Newton’s genius. In the mind of the morendeding student, however, puz-
zling questions often arise, such as, e.g., howynraaependent laws we really need
to fully formulate the theory, or, which ones shibbke regarded as truly fundamental
laws of Nature, as opposed to others that can fieedeas theorems.

This article suggested an axiomatic apprdadhtroductory mechanics, based on
two fundamental, empirically verifiable laws; nameheprinciple of conservation of
momentumand theprinciple of superposition for interaction¥Ve showed that all
standard ideas of mechanics (including, of coukmyton’s laws) naturally follow
from these basic principles. To make our formulai&s economical as possible, we
expressed the first principle in terms of a systdnparticles and treated the single-
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particle situation as a special case. To makeriweaself-contained for the benefit of
the student, explicit proofs of all theorems werkeg.

By no means do we assert, of course, thatghrticular approach is unique or
pedagogically superior to other established methbds adopt different viewpoints
regarding the axiomatic basis of classical mectsarboreover, as noted in Sec. 6,
this approach is not devoid of the usual theorkpecablems inherent in Newtonian
mechanics (see also [9,10]).

In any case, it looks like classical mechamamains a subject open to discussion
and re-interpretation, and more can always be aaadit things that are usually taken
for granted by most students (this is not exclugitieeir fault, of course!). Happily,
some of my own students do not fall into this catggl appreciate the hard time they
enjoy giving me in class!
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Abstract. The concept of electromotive force (emf) may be introduced in various ways in
an undergraduate course of theoretical electromagnetism. The multitude of alternate
expressions for the emf is often the source of confusion to the student. We summarize the
main ideas, adopting a pedagogical logic that proceeds from the general to the specific.
The emf of a “circuit” is first defined in the most general terms. The expressions for the
emf of some familiar electrodynamical systems are then derived in a rather straightforward
manner. A diversity of physical situations is thus unified within a common theoretical
framework.

1. INTRODUCTION

The difficulty in writing this article was not just due to the subject itself: we had to first
overcome some almost irreconcilable differences in educational philosophy between an
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer.
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.

Having taught intermediate-level electrodynamics courses for several years, we have come
to realize that, in the minds of many of our students, the concept of electromotive force (emf) is
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the
electric field along a closed path? And what if a magnetic rather than an electric field is present?

Generally speaking, the problem with the emf lies in the diversity of situations where this
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas,
choosing a pedagogical approach that proceeds from the general to the specific. We begin by
defining the concept of emf of a “circuit” in the most general way possible. We then apply this
definition to certain electrodynamic systems in order to recover familiar expressions for the emf.
The main advantage of this approach is that a number of different physical situations are treated
in a unified way within a common theoretical framework.

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5)
application is made to particular cases, such as motional emf, the emf due to a time-varying
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6,
the connection between the emf and Ohm’s law is discussed.
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2. THE GENERAL DEFINITION OF EMF

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or
any other elements whose presence may contribute to the e/m field).

We arbitrarily assign a positive direction of traversing the loop C, and we consider an element

dl of C oriented in the positive direction. Imagine now a test charge g located at the position of

dl, and let F be the force on g at time t:

g di

)

This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources
(e.g., batteries) that can interact electrically with g. The force per unit charge at the position of

dl attime t,is

f= (1)

|

Note that 7 is independent of g, since the force by the e/m field and/or the sources on g is
proportional to the charge. In particular, reversing the sign of g will have no effect on f

(although it will change the direction of F).
We now define the electromotive force (emf) of the circuit C at time t as the line integral

of f along C, taken in the positive sense of C:

£= §[>C f-di @)

Note that the sign of the emf is dependent upon our choice of the positive direction of
circulation of C: by changing this convention, the sign of £is reversed.
We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial

observers since at this limit the force F is invariant under a change of frame of reference.
In the following sections we apply the defining equation (2) to a number of specific
electrodynamic situations that are certainly familiar to the student.
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3. MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC
FIELD

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic
field B(7). Let U be the velocity of the element di of C relative to our inertial frame of

reference. A charge q (say, a free electron) at the location of d/ executes a composite motion,
due to the motion of the loop C itself relative to our frame, as well as the motion of g along C.
The total velocity of g relative to us is 4, =6 +0', where U is the velocity of g in a direction

parallel to 4 . The force from the magnetic field on qis

FZQ(GtotXE)ZQ(GXE)"‘(](UXB) =

f=£=(5x1§)+(5’x§)
q

By (2), then, the emf of the circuit Cis
g =<}'>C f-dl:cﬁc (DxB)-di + <.[>C (0'x B)-di
But, since U’ is parallel to di, we have that (5'x B)-di =0 . Thus, finally,
5=<j>c (Ox B)-di ®3)

Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note

also that the velocity & may vary around the circuit.
By using (3), it can be proven (see Appendix) that

_do
dt

(4)

where (D:JE-cTa is the magnetic flux through the wire C at time t. Note carefully that (4)

does not express any novel physical law: it is simply a direct consequence of the definition of
the emf!

4. EMF DUE TO ATIME-VARYING MAGNETIC FIELD

Consider now a closed wire C that is at rest inside a time-varying magnetic field B(F,t). As

experiments show, as soon as B starts changing, a current begins to flow in the wire. This
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And,
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed

experimentally that, if the magnetic field B stops varying in time, the current in the wire
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disappears. The only field that can put an initially stationary charge in motion and keep this
charge moving is an electric field.

We are thus compelled to conclude that a time-varying magnetic field is necessarily
accompanied by an electric field. (It is often said that “a changing magnetic field induces an
electric field”. This is somewhat misleading since it gives the impression that the “source” of an
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of
any e/m field are the electric charges and the electric currents!)

So, let E(7,f) be the electric field accompanying the time-varying magnetic field B .
Consider again a charge g at the position of the element 4/ of the wire. Given that the wire is
now at rest (relative to our inertial frame), the velocity of g will be due to the motion of the
charge along the wire only, i.e., in a direction parallel to 41 : 0,, =0 (since 5=0). The force on
q by the e/m field is

F=qlE+(0, xB)=q[E+(@'xB)] =

f=—=E+@WxB)

Q|

The emf of the circuit Cis now
I =<j>c f-dl:cﬁc E-dl+<j>c (5'x B)-di
But, as explained earlier, (5'x B)-dl =0 . Thus, finally,
£ = c.[)CE -dl (5)

Equation (4) is still valid. This time, however, it is not merely a mathematical
consequence of the definition of the emf ; rather, it is a true physical law deduced from
experiment! Let us examine it in some detail.

In a region of space where a time-varying e/m field (E,B) exists, consider an arbitrary
open surface S bounded by the closed curve C:

da
@,

C

(The relative direction of 4/ and the surface element %, normal to S, is determined

according to the familiar right-hand rule.) The loop Cis assumed stationary relative to the inertial
observer; hence the emf along C at time tis given by (5). The magnetic flux through S at this
instant is

http://nausivios.snd.edu.gr/nausivios
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@, ()= B-da

(Note that the signs of £ and ®,, depend on the chosen positive direction of C.) Since the field

B is solenoidal, the value of ®,, for a given C is independent of the choice of the surface S.
That is, the same magnetic flux will go through any open surface bounded by the closed curve
C.

According to the Faraday-Henry law,

do
E=——™" 6
o (6)
or explicitly,
S d ¢ - —
gSCE-dzz—EjSB-da (7)

(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)
Equation (7) can be re-expressed in differential form by using Stokes’ theorem,

¢ E-dl=[ (VxE)-da
and by taking into account that the surface S may be arbitrarily chosen. The result is

OB

VxE=-—=
ot

(8)
We note that if dB/dt+0, then necessarily E#0. Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B is static (
dB/10t=0), then E is irrotational: VxE =0 < cj}Ecﬁ:O, which allows for the possibility

that E=0.
Corollary: The emf around a fixed loop C inside a static e/m field (E(?), E(?)) is £€=0
(the student should explain this).

5. EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance)
connected to an external resistor. As shown below, the emf of the circuit in the direction of the
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the
work per unit charge done by the source (battery).

ISSN:1791-4469 Copyright © 2014, Hellenic Naval Academy
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A
— ]70

/|
& a “'t p

E<~—

—_— I
We recall that, in general, the emf of a circuit C at time tis equal to the integral
e=¢_f-di

where f = F/q is the force per unit charge at the location of the element 4i of the circuit, at
time t. In essence, we assume that in every element 4/ we have placed a test charge g (this

could be, e.g., a free electron of the conducting part of the circuit). The force F on each q is
then measured simultaneously for all charges at time t. Since here we are dealing with a static
(time-independent) situation, however, we can treat the problem somewhat differently: The

measurements of the forces F on the charges g need not be made at the same instant, given
that nothing changes with time, anyway. So, instead of placing several charges g around the

circuit and measuring the forces F on each of them at a particular instant, we imagine a single
charge g making a complete tour around the loop C. We may assume, e.g., that the charge g is
one of the (conventionally positive) free electrons taking part in the constant current / flowing in

the circuit. We then measure the force F on g at each point of C.
We thus assume that g is a positive charge moving in the direction of the current I. We
also assume that the direction of circulation of C is the same as the direction of the current

(counterclockwise in the figure). During its motion, g is subject to two forces: (1) the force F, by
the source (battery) that carries g from the negative pole a to the positive pole b through the
source, and (2) the electrostatic force F, = gE due to the electrostatic field E at each point of
the circuit C (both inside and outside the source). The total force on qis

.. . . . L F F . . .
F=F+F =F+qFE > f=—=-"2+E=f+E
q9 q
Then,
szcﬁcf-dlzcﬁc fo-dl+<ﬁCE-dl=<j>C f,-di )

since cﬁc E-dl =0 for an electrostatic field. However, the action of the source on g is limited to

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence,

f, =0 outside the source, so that (9) reduces to

e=[ fy-di (10)
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Now, since the current / is constant, the charge g moves at constant speed along the circuit.
This means that the total force on q in the direction of the path Cis zero. In the interior of the

resistor, the electrostatic force F, = ¢E is counterbalanced by the force on g due to the

collisions of the charge with the positive ions of the metal (this latter force does not contribute to
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however,

where there is no resistance, the electrostatic force F, must be counterbalanced by the
opposing force F, exerted by the source. Thus, in the section of the circuit between a and b,

- o~ - - F - - - -
F=F+F =0 = f:;:f0+E:O = f,=—-FE
Equation (10) then takes the final form,
b - —
g=—["E-dI=V,-V,=V (11)

where V, and V, are the electrostatic potentials at a and b, respectively. This is, of course,
what every student knows from elementary e/m courses!
The work done by the source on g upon transferring the charge from ato bis

b -~ — b - —
W=["F-di=q[ f,-di=q¢ (12)

[where we have used (10)]. So, the work of the source per unit charge is W/q= £ . This work is

converted into heat in the resistor, so that the source must again supply energy in order to carry
the charges once more from a to b. This is something like the torture of Sisyphus in Greek
mythology!

6. EMF AND OHM’S LAW

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery)
and may also be in motion relative to our inertial frame of reference. Let g be a test charge at

the location of the element di of C, and let F be the total force on g (due to the e/m field
and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-
independent quantity.) The force per unit charge at the location of 4/ at time t then, is

f = F /q . According to our general definition, the emf of the circuit at time tis

szgﬁcf-il (13)

Now, if o is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p.
285 of [1]) we have:

~i
Il
q

~1

(14)
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where J is the volume current density at the location of di at time t (Note that the more
common expression J =gE, found in most textbooks, is a special case of the above formula.

Note also that J is measured relative to the wire, thus is the same for all inertial observers.) By
combining (13) and (14) we get:

szlgﬁcj.il (15)

Taking into account that J isin the direction of 4] at each point of C, we write:

j-dlz]dlzidl
S

where S is the constant cross-sectional area of the wire. If we make the additional assumption
that, at each instant t, the current /is constant around the circuit (although / may vary with time),
we finally get:

g=Lg-Ply_ g (16)
oS S

where /is the total length of the wire, p=1/0 is the resistivity of the material, and R is the total
resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.

As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery
with internal resistance r. Let R, be the external resistance connected to the battery. The total
resistance of the circuit is R=R,+r. As before, we call V=V, -V, the potential difference between
the terminals of the battery, which is equal to the voltage across the external resistor. Hence,
V=IR,, where I is the current in the circuit. The emf of the circuit (in the direction of the current)
is

E=IR=1(Rp+n=V+Ir

Note that the potential difference V between the terminals a and b equals the emf only when
no current is flowing (/=0).
As another example, consider a circuit C containing an ideal battery of voltage V and
having total resistance R and total inductance L :

L

(’R_mm_

—)

In this case, the emf of C in the direction of the current flow is

http://nausivios.snd.edu.gr/nausivios
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E(t) =V+V, = V—L% = I(t)R

To understand why the total emf of the circuit is V+V,, we think as follows: On its tour around
the circuit, a test charge g is subject to two forces (ignoring collisions with the positive ions in the
interior of the wire): a force inside the source, and a force by the non-conservative electric field
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry
law (6). The latter emf is precisely V, ; it has a nonzero value for as long as the current /is
changing.

Some interesting energy considerations are here in order. The total power supplied to the
circuit by the battery at time tis

P=1V=12R+L1ﬂ
dt

The term /2R represents the power irreversibly lost as heat in the resistor (energy, per unit
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the
source in order to maintain the current against dissipative losses in the resistor. On the other
hand, the term L/ (dl/df) represents the energy per unit time required to build up the current
against the “back emf” V, . This energy is retrievable and is given back to the source when the
current decreases. It may also be interpreted as energy per unit time required in order to
establish the magnetic field associated with the current. This energy is “stored” in the magnetic
field surrounding the circuit.

7. CONCLUDING REMARKS

In concluding this article, let us highlight a few points of importance:

1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”)
in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain
sources such as batteries.

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of
reference with respect to which it is measured.

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present,
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of
the battery and represents work per unit charge done by the source.

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s
law can be expressed in terms of the emf by equation (16).
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APPENDIX

Here is an analytical proof of equation (4) of Sec.3:
Assume that, at time f, the wire describes a closed curve C that is the boundary of a plane
surface S. At time = t+dt, the wire (which has moved in the meanwhile) describes another

curve C’that encloses a surface S”. Let di be an element of C in the direction of circulation of

the curve, and let U be the velocity of this element relative to an inertial observer (the velocity
of the elements of C may vary along the curve):

—_—> C

¢ di

The direction of the surface elements % and @ is consistent with the chosen direction of
dl, according to the right-hand rule. The element of the side (“cylindrical”) surface S** formed
by the motion of C, is equal to

da" =dIx (6 dt) = (dlx0)dt

Since the magnetic field is static, we can view the situation in a somewhat different way:
Rather than assuming that the curve C moves within the time interval dt so that its points
coincide with the points of the curve C” at time t’, we consider two constant curves C and C~ at

the same instant t. In the case of a static field B, the magnetic flux through C* at time t'= t+dt
(according to our original assumption of a moving curve) is the same as the flux through this
same curve at time t, given that no change of the magnetic field occurs within the time interval

dt. Now, we note that the open surfaces S;=S and S,= S” U S§"" share a common boundary,
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux ®,, passes
through S; and S, at time t. That s,

J‘S1B~da1 =J‘S2B~da2 = ISB~da =J‘S,B~da +J‘S”B~da
But, returning to our initial assumption of a moving curve, we note that

Is B-da= @, (1) = magnetic flux through the wire at time t

and

http://nausivios.snd.edu.gr/nausivios
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J‘S B-dd = @, (t+dt)= magnetic flux through the wire at time t+dt

Hence,

@m(r)zam(r+dr)+js,,é.%" -

d®, =d (1+di)—-D, (1) :—J'S,,E.W:_dt Sﬁcé.(ﬁxg) N

d@, ¢ 7z = o £ B =
- _q}cB.(dlxu)_q.)C(uxB)«dl—E

in accordance with (3) and (4).
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Abstract equality £&=w is satisfied only in the special case where the

. . . magnetic field varies linearly with time.
In the literature of Electromagnetism, the elective g y

force of a “circuit” is often defined as work done a unit
charge during a complete tour of the latter aratinedcircuit.
We explain why this statement cannot be generaljparded
as true, although it is indeed true in certain $engases.
Several examples are used to illustrate thesegoint

2. Thegeneral definitions of emf and work per
unit charge

Consider a region of space in which an electromiagne
(e/m) field exists. In the most general sense,@dogedpath

C (or loop) within this region will be called &circuit”
(whether or not the whole or parts @fconsist of material
objects such as wires, resistors, capacitors, rizdfeetc.).
We arbitrarily assign a positive direction of traversing the

1. Introduction

In a recent paper [1] the authors suggested a pgdaag
approach to thelectromotive forcdemf) of a “circuit”,
fundamental concept of Electromagnetism. Rathem tha loop C, and we consider an elementt of C oriented in the
defining the emf in arad hocmanner for each particular positive direction (Fig. 1).

electrodynamic system, this approach begins withnttost

general definition of the emf and then specializesertain

cases of physical interest, thus recovering theili@mex-

g dl
pressions for the emf.
Among the various examples treated in [1, ¢hse of a
simple battery-resistor circuit was of particularterest +
since, in this case, the emf was shown to be efudhe C
work, per unit chargedone by the source (battery) for a

complete tour around the circuit. Now, in the htiere of

Electrodynamics the emf is oftefefinedas work per unit Figure 1: An oriented loop representing a circuit.

charge. As we explain in this paper, this is nategally true _ -

except for special cases, such as the aforemeadtiome Imagine now a test chargglocated at the position of
In Section 2, we give the general definitafrthe emf., dl, and letF be the force om at timet. This force is ex-

and, separately, that of the work per unit chavgejone by  erted by the e/m field itself, as well as, possitily addi-
the agencies responsible for the generation angepration  tional energy sourcege.g., batteries or some external me-
of a current flow in the circuit. We then state trecessary  chanical action) that may contribute to the genienaand
conditions in order for the equalif=w to hold. We stress  preservation of a current flow around the Ic@pTheforce

that, by their very definitions] andw aredifferentconcepts.  per unit chargeat the position ofl| at timet, is

Thus, the equatiofi=w suggests the possible equality of the

valuesof two physical quantities, not the conceptuahtite
fication of these quantities!

Section 3 reviews the case of a circuit cstitgj of a
battery connected to a resistive wire, in whichecalse . ) )
equality&=w is indeed valid. Note that-]c is mdependent of,, since the elec-tromagnetlc

In Sec. 4, we study the problem of a wire ingv force onq is proportional to the charge;ln particular, msve
through a static magnetic field. A particular stton where  ing the sign ofg will have no effect onf (although it will
the equality€=w is valid is treated in Sec. 5. change the direction df ).

Finally, Sec. 6 examines the case of acstaty wire In general, neither the shape nor the siz@ isfrequired
inside a time-varying magnetic field. It is showmat the  to remain fixed. Moreover, the loop may be in motiela-
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tive to an external inertial observer. Thus, fdo@p of (pos-

sibly) variable shape, size or position in space,will use

the notatiorC(t) to indicate the state of the curve at time
We now define theslectromotive force(emf) of the

circuit C at timet as the line integral of alongC, taken in
thepositivesense o€C:

f(F,t)-dl

(t)

5@:@

C

)

(wherer is the position vector ofll relative to the origin

of our coordinate system). Note that the sign ef &imf is
dependent upon our choice of the positive direatibaircu-

lation of C: by changing this convention, the sign &fis
reversed.

As mentioned above, the force (per unit cepagefined
in (1) can be attributed to two factors: the intéian of g
with the e/m field itself and the action grdue to any addi-
tional energy sources. Eventually, this latter riatgion is
electromagnetién nature even when it originates from some
external mechanical action. We write:

f=fnt o

®3)

where f,_is the force due to the e/m field arfg, is the

applied forcedue to an additional energy source. We note
that the force (3) does not include aegistive(dissipative)
forces that oppose a charge flow alddgit only contains
forces that may contribute to the generation aedgrvation
of such a flow in the circuit.

Now, suppose we alloasingle charge to make a full
trip around the circui€ under the action of the force (3). In

doing so, the charge describes a cu@/ein space(not
necessarily a closed one!) relative to an externeitial

observer. Letdl’ be an element of’ representing an in-

finitesimal displacement af in space, in timet. We define
the work per unit chargdor this complete tour around the
circuit by the integral:

w= [ fdf (4)

For astationarycircuit of fixed shape,C’ coincides with the
closed curveC and (4) reduces to

( fixed C) (5)

w=¢ f-dl
It should be noted carefully that the intédga is evalu-
atedat a fixed time,twhile in the integrals (4) and (5) time
is allowed to flow! In general, the value wfdepends on the
time to and the poinP, at whichq starts its round trip o@.
Thus, there is a certain ambiguity in the defimtiaf work
per unit charge. On the other hand, the ambigusty t0
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speak) with respect to the emf is related to theeddence
of the latter on timé.

The question now is: can the emf be equaklueto the
work per unit charge, despite the fact that thesentties

are defined differently? For the equalifyw to hold, both&
and w must be defined unambiguously. Thésmust be

constant independent of timed€/dt=0) while w must not

depend on the initial tim& or the initial pointP, of the
round trip ofg on C. These requirements amecessary con-

ditionsin order for the equalit§=w to be meaningful.

In the following sections we illustrate theiskeas by
means of several examples. As will be seen, thsfaetion
of the above-mentioned conditions is the exceptather
than the rule!

3. Aresistivewireconnected to a battery

Consider a circuit consisting of an ideal batterg.( one
with no internal resistance) connected to a metiat wf
total resistanc® (Fig. 2). As shown in [1] (see also [2]), the
emf of the circuitin the direction of the currens equal to
the voltageV of the battery. Moreover, the emf in this case
represents the work, per unit charge, done by thecse
(battery). Let us review the proof of these stateine

R
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Figure 2: A battery connected to a resistive wire.

A (conventionally positijemoving chargej is subject to
two forces around the circui€: an electrostatic force

F,=qE at every point ofC and a forceF,  inside the

battery, the latter force carryirggfrom the negative pola
to the positive pold through the sourceAccording to (3),
the total force per unit charge is

f=f+f,=E+f,.

The emf in the direction of the current (i.e., ctawmolock-
wise), at any time, is

gzécf-&
:¢c Eal+¢c

-[[7.-d

—

f o.dl
app

(6)



where we have used the facts tq‘}act E. al =0 for an elec-

trostatic field and that the action of the sourneyads limited
to the region between the poles of the battery.

Now, in a steady-state situatidn=(constant) the charge
g moves at constant speed along the circuit. Thisnm¢hat
the total force om in the direction of the pat@ is zero. In

the interior of the wire, the electrostatic forBe=qE is

counterbalanced by the resistive forcegodue to the colli-
sions of the charge with the positive ions of thetah (as
mentioned previously, this latter force doexd contribute to
the emf). In the interior of the (ideal) batterypowever,
where there is no resistance, the electrostatiefonust be

counterbalanced by the opposing force exerted hgy th

source. Thus, in the section of the circuit betwaemdb,
f_=—f,=-E.By(6), then, we have:

app

g=-["E-di=y-v =V @)

whereV, andV, are the electrostatic potentialsatndb,
respectively. We note that the emf is constantirmet as
expected in a steady-state situation.

Next, we want to find the work per unit charfpr a
complete tour around the circuit. To this end, Weva a
single charge go make a full trip aroun®€ and we use
expression (5) (since the wire is stationary andfixéd
shape). In applying this relation, time is assunmetiow as
g moves alongC. Given that the situation is static (time-
independent), however, time is not really an issinee it
doesn’t matter at what moment the charge will gassny
given point ofC. Thus, the integration in (5) will yield the
same result (7) as the integration in (6), degpi¢efact that,
in the latter case, time was assurfigdd We conclude that

the equalityw=£ is valid in this case: the erdbesrepresent
work per unit charge.

4. Movingwireinside a static magnetic field

Consider a wireC moving in thexy-plane. The shape and/or
size of the wire need not remain fixed during itstion. A

static magnetic fieldB(F) is present in the region of space
where the wire is moving. For simplicity, we assuthat
this field is normal to the plane of the wire arickdtedinto
the page.

In Fig. 3, the-axis is normal to the plane of the wire and
directed towards the reader. We cdl an infinitesimal
normal vector representing an element of the plaméace

bounded by the wire (this vector is direciatb the plane,
consistently with the chosen clockwise directiontravers-

ing the loopC ). If 0, is the unit vector on theaxis, then

da=-(da U and B=-B(F){,, where B(F) =| B(F) |.
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Figure 3: A wireC moving inside a static magnetic
field.

Consider an elementl of the wire, located at a point

with position vector relative to the origin of our inertial
frame of reference. Calb (') the velocity of this element

relative to our frame. Let| be a ¢onventionally positiJe
charge passing by the considered point at tirfiéais charge

executes a composite motion, having a velocityalong
the wire and acquiring an extra velocity(f') due to the
motion of the wire itself. The total velocity gfrelative to
usisv,, =0, +0.

F f L By
r-n FappL D¢
_____________ f N o,

®B(F) 3

Figure 4: Balance of forces per unit charge.

The balance of forces acting qnis shown in the dia-
gram of Fig. 4. Theanagnetic forceon q is normal to the

charge’s total velocity and equal t&, =q(5,,xB) .

Hence, the magnetic force per unit Charge?nis: Dy X B.

Its component along the wire (i.e., in the directaf (?I) is

counterbalanced by thessistive forcef , which opposes

the motion ofg alongC (this force, as mentioned previously,
doesnot contribute to the emf). However, the component of
the magnetic forcaormal to the wire will tend to make the
wire move “backwards” (in a direction opposing thesired
motion of the wire) unless it is counterbalanced doyne
external mechanical action (e.g., our hand, which pulls the
wire forward). Now, the charggtakes a share of this action
by means of some force transferred to it by thecttire of
the wire. This force (which will be called applied forcé
must benormal to the wire (in order to counterbalance the
normal component of the magnetic force). We derbée



applied force per unit charge l:)&lpp. Although this force

originates from an external mechanical actiors delivered
to g through arelectromagnetidnteraction with the crystal
lattice of the wire (not to be confused with thesiséve
force, whose role is different!).

According to (3), the total force contribgito the emf

of the circuitis f = Fm + Fapp. By (2), the emf at timeis

£ =¢

c(t)

i Td

m app

The second integral vanishes since the appliec fraor-
mal to the wire element at every point@f The integral of
the magnetic force is equal to

$. (6% B)-dl = (5,xB)-dl + § @xB)- ql.

The first integral on the right vanishes, as canséen by
inspecting Fig. 4. Thus, we finally have:

£0 = ¢, [6(NxBM]-dl (®)

As shown analytically in [1, 2], the emf®fis equal to
d

EM)=-—0,(t) 9)
dt

where we have introduced theagnetic fluxhroughC,

o (1) = jsmé(r)-cﬁz jw B(7) da (10)

[By St) we denoteany open surface bounded Byat timet;
e.g., the plane surface enclosed by the wire.]

Now, letC' be the path ofy in space relative to the
external observer, for a full trip af around the wire (in
general,C’' will be anopen curve). According to (4), the
work done per unit charge for this trip is

w= J.c, f.dl+ IC, f-dl .

The first integral vanishes (cf. Fig. 4), while fie second
one we notice that

dl = f_.dl+f_.d’"=f_.dl

fapp ’ app’ app’ app

(since the applied force is normal to the wire edatmeve-
rywhere; see Fig. 4). Thus we finally have:

w= jc, f-dl (1B)

with
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dl =, dlI"=f, - odt

(1b)

app

where dI” = 5 dt is the infinitesimal displacement of the
wire element in timelt.

5. An example: Mation insidea uniform
magnetic field

Consider a metal bamlf) of lengthh, sliding parallel to
itself with constant speed on two parallel rails that form
part of a U-shaped wire, as shown in Fig. Sumform mag-

netic field B , pointing into the page, fills the entire region.

hre b )
Oda B
— p=const
B 1di
d a X
O —>| X
0z

Figure 5: A metal barap) sliding on two parallel rails
that form part of a U-shaped wire.

A circuitC(t) of variable size is formed by the rectangu-
lar loop @bcdg. The field and the surface element are writ-

ten, respectively, aB=-B{, (where B=|B|= const)

and da=(da) y (note that the direction of traversing the
loop C is now counterclockwise).

The general diagram of Fig. 4, representirggialance
of forces, reduces to the one shown in Fig. 6. Nio& this
latter diagram concerns only theoving part @b) of the
circuit, since it is in this part only that the oeity o and

the applied force?app are nonzero.

Figure 6: Balance of forces per unit charge.

The emf of the circuit at tintds, according to (8),

£0 =9, ©xB)-dl



_ .[bUBdl _ qude _ UBh. 6. Stationary wireinside atime-varying

magnetic field
Alternatively, the magnetic flux throughis Our final example concerns stationary wire C inside a
time-varying  magnetic field of the form
®_(t)= jsm B(F)- da= —js(o Bda= — ng) da B(F,t)=—B(F,t)d, (where B(F,t)=|B (F,t)]), as shown
in Fig. 7.
= -Bhx
(wherex is the momentary position of the bar at titheso y

that Dc \4‘

d dx
Et)=—— (t) =Bh— = Bhv .
dt dt

di ®da
®B(F,t)
We note that the emf is constant (time-independent) r
Next, we want to use (11) to evaluate thekwmar unit C
charge for a complete tour of a charge aroGndince the
applied force is nonzero only on the sectiab) (of C, the 0z X

path of integrationC’ (which is a straight line, given that
the charge moves at constant velocity in spacd)awilre-
spond to the motion of the charge along the metalonly,
i.e., froma to b. (Since the bar is being displaced in space
while the charge is traveling along it, the li@é will notbe
parallel to the bar.) According to (11),

Figure 7: A stationary wireC inside a time-varying
magnetic field.

As is well known [1-7], the presence of adirarying

magnetic field implies the presence of an eledteicd E as
well, such that

w= [ f,,-dl' with . B
e VxE=-— (12)
wp Al =F - dl"=f_dl"=f__odt ot

(cf. Fig. 6). Now, the role of the applied forcetiscounter- ~ AS discussed in [1], the emf of the circuit at titie given

balance thex-component of the magnetic force in order that by
the bar may move at constant speed irxttigection. Thus,

= - d
fopp = fnCOSO = v, B co® = Bu, ® <j50 (r,t) it @) (13)
and where
f,pp U dt=Boo_dt= Bo dl ®,(t) = [ B(F,1)-da= [ B(F 1) da (14)

(sincevc dt represents an elementary displacenutrdf the is the magnetic flux throug@ at this time.
charge along the metal bar in tii§. We finally have: On the other hand, the work per unit chaogeaffull trip

X . around C is given by (5): W:CJ‘D f.-dl , where
w=["Bodli=Bv[ di=Bvh. oL ) c
2 a f=f,=E+(v,xB), sothat

We note that, in this specific example, the valtithe work _ _
per unit charge is equal to that of the emf, bbtisé quanti- w= q‘> E-dl+ q‘> (6, B)- dI .
ties being constant and unambiguously defined. Woisld ¢ ¢
not have been the case, however, if the magnetic Vel

nonuniform As is easy to see (cf. Fig. 7), the second integaaishes,

thus we are left with

w=¢_E- dl (15)
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The similarity of the integrals in (13) aritb] is decep-
tivel The integral in (13) is evaluated a fixed time,twhile
in (15) time is allowed to flow as the charge moaksgC.
Is it, nevertheless, possible that tr@uesof these integrals
coincide? As mentioned at the end of Sec. 2, assace
condition for this to be the case is that the tmgrations

yield time-independent results. In order théatbe time-
independent (but nonzero), the magnetic flux (1#)us the
magnetic field itself — must increalirearly with time. On
the other hand, the integration (15) far will be time-
independent if so is the electric field. By (12)en, the
magnetic field must be linearly dependent on timvajch
brings us back to the previous condition.

As an example, assume that the magnetic ifsetif the
form

B=-B,tl, (B = cons).

A possible solution of (12) foE is, in cylindrical coordi-
nates,

[We assume that these solutions are valid in adigniegion
of space (e.g., in the interior of a solenoid whagis coin-
cides with thez-axis) so thap is finite in the region of inter-
est.] Now, consider a circular wife of radiusR, centered at

the origin of thexy-plane. Then, given that| :—(dl)ﬁ(p ,

B

Olt 2
5 g)cdl =-B,7R".

5:qSCE-cT|:—

Alternatively,

®,=[ Bda= Bz R 1,

sothat€=- d®_/dt= - Bz R . We anticipate that, due

to the time constancy of the electric field, thensaresult
will be found for the workw by using (15).

7. Concludingremarks

No single, universally accepted definition of thefeseems
to exist in the literature of Electromagnetism. Teinition
given in this article (as well as in [1]) comessdao those
of [2] and [3]. In particular, by using an examgienilar to
that of Sec. 5 in this paper, Griffiths [2] makeslear dis-
tinction between the concepts of emf and work peit u
charge. In [4] and [5] (as well as in humerous ptfext-
books) the emf is identified with work per unit che, in
general, while in [6] and [7] it is defined as as#d line
integral of the non-conservative part of the eledteld that
accompanies a time-varying magnetic flux.
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The balance of forces and the origin of worla con-
ducting circuit moving through a magnetic field ameely
discussed in [2, 8, 9]. An interesting approacthtorelation
between work and emf, utilizing the concept ofuaftwork,
is described in [10].

Of course, the list of references cited abmvdy no
means exhaustive. It only serves to illustratediversity of
ideas concerning the concept of the emf. The sidxlén-
herent in this concept make it an interesting stttpé study
for both the researcher and the advanced studenassical
Electrodynamics.
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Certain aspects of the concept of the electromdtivee (emf) of a “circuit”, as
this concept was defined in recent publications,discussed. In particular, the
independence of the emf from the conductivity @f tircuit is explained and the
role of the applied force in motional emf is analgz

1. Definition and analytical expression of the emf

In recent articles [1,2] we studied the concepthafelectromotive forcdemf) of a
“circuit” and examined the extent to which the empresents work per unit charge
for a complete tour around the circuit. This edigcet note contains some additional
remarks regarding the emf; it may be regarded aldendum to the aforementioned
publications.

We consider a closed pdth(or loop) in a region of space where an electromag-
netic (e/m) field exists (Fig. 1). Generally spewakithis loop will be called &cir-
cuit” if a charge flow can be sustained on it. 8hkitrarily assign a positive direction

of traversing the loof© and we consider an elemett of C oriented in the positive
direction.

Figure 1

Letq be atest chargewhich at timet is located at the position afi , and letF

be the force o at this time. The forcé& is exerted by the e/m field itself as well as,
possibly, by additiona¢nergy sourcegsuch as batteries or some external mechanical
action) that may contribute to the generation ame$grvation of a current around the

loop C. Theforce per unit charget the position ofdl, at timet, is f = F/q. We

note thatf is independent o since the e/m force on a charge is proportion&héo
charge.

Since, in general, neither the shape nositbe ofC is required to remain fixed,
and since the loop may also be in motion relativart external observer, we will use
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the notationC(t) to indicate the state, at timeof a circuit of generally variable shape,
size or position in space.
Theelectromotive forcdemf) of the circuitC at timet is defined as the line inte-

gral of f alongC, taken in thepositivesense of:

W) =¢ f(rt)-di (1)

c)

whereF is the position vector ofll relative to the origin of our coordinate system.
Obviously, the sign of the emf is dependent uponabwice of the positive direction
of circulation ofC. It should be noted carefully that the integrgl i€levaluatedat a
given time t Thus, the forcef must be measuresimultaneouslyat timet, at all
points ofC.

The forcef can be attributed to two factors) the interaction ofj with the ex-

isting e/m field itself; andh) the action org by any additional energy sources that
may be necessary in order to maintain a steady dfogharge orC. (This latter inter-
action also ielectromagnetian nature, even when it originates from some ewxter
mechanical action.) We write

—h|
I
.l
+
—h|

em app (2)

where f,, is the force due to the e/m field arfg,p is theapplied forcedue to an ad-

ditional energy source.

Two familiar cases of emf-driven circuits wdean additional applied force is re-
quired are the following:

1. In a battery-resistor circuit [1-3] an &pg force is necessary in order to carry a
(conventionallypositivg mobile charge from the negative to the positieéef the
battery,throughthe source. This force is provided by the batitseif.

2. In the case of a closed metal wiranoving in a time-independent magnetic
field [2-5] the current o€ is sustained for as long as the motioiCafontinues. This,
in turn, necessitates the action of an externaefanC (say, by our hand), as will be
explained in Sec. 4.

Now, by (1) and (2),

€0 =Py Ton 0T+ 9 T T = Eom() + Eapol) ©

We would like to find an analytical expression &r{t). So, Iet(E(f,t) , E(f,t)) be

the e/m field in the region of space where the I is lying. Letq be a test charge
located, at time, at the position ofil and leto,,, be the total velocity off in space,
relative to some inertial frame of reference. Weenr

Uit =0+ U,
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where o, is the velocity ofj alongC (i.e., in a direction parallel tdl) while & is the

velocity of di itself due to a possible motion in space, or msteformation over
time, of the loopC(t) as a whole. The total e/m force @is

lfem: (:I[E_i_(l_jtot>< B)] )

so that
N
fem:E:E+[(u+ung] .
Hence,
Eem(t) = C(t)E-dI+<ﬁC(t)(uxB)-d|+<ﬁc(t)(uc><B)-dI.

Given thato, is parallel todl, the last integral on the right vanishes. Thuslfy,
Eem(t) = cj;c(t) E(F,t)-di + qSC(t)[u(r,t)xB(r,t)]-dl = Eo(t) + En(D) (4)

We note that, in our definition of the entifetforce per unit charge was defined as
f =F /q, assuming that a replica of a test chardge placed at every point of the cir-
cuit and that the forceF on all test charges are measus@dultaneoushat timet.
Now, in the case of a conducting loGp(say, a metal wire) it is reasonable to identify
g with one of the (conventionally positive) mobiled electrons. This particular iden-
tification, although logical for practical purposés nevertheless not necessary, given
that the forcef is eventually independent gf Thus, in generaly may just be con-

sidered as &ypotheticaltest charge that is not necessarily identifiechvah actual
mobile charge.

2. Independence from conductivity

Let C(t) be a conducting loop (say, a metal wire) insidgvan e/m field. The emf of
C at timet is given by (3) and (4). We note from (4) that paet E.m Of the total emis

independent of the velocity, of qalongC (whereg may be conveniently — although
not necessarily — assumed to be a mobile freeretecif the conductor, convention-
ally considered aspositivecharge). We may physically interpret this as foo

The e/m field creates an efif, that tends to generate a charge flonGriHow-
ever, this emf does not by itself determieav fastthe mobile charges move aloGg
Presumably, this will depend on physical propertieshe pathC that are associated

with its conductivity (For example, in a battery-resistance circuitpbeential differ-
ence at the ends of the resistance — thus the wéltie electric field inside the con-

ductor — does not by itself determine the velocityof the mobile charges along the
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circuit, since this velocity is related to the @amnt generated by the source, which cur-
rent depends, in turn, on the resistance of tlwaiitjraccording to Ohm’s law.)

Now, the role of the pafy, of the total emf (3) is tanaintainthe charge flow on
C(t) that is generated bfen. We thus anticipate thakp, will also be independent of

U, (this is, e.g., the case in our previous examplere&,p, is equal to the voltage of
the battery [1-3]). In conclusion,

the total em&(t) of a conducting loop @ is not dependent upon the velocity
of motion of the mobile charges g along the loop.

This leads us to a further conclusion:

The total em€(t) of a conducting loop @) inside an e/m field is not depend-
ent upon the conductivity of the loop.

This can be justified by noting that, by its detiom, the force (2) does not include
contributions fromresistive forceghat oppose a charge flow @ it only contains
e/m interactions that may contribute to the gemamadnd preservation of a current in
the circuit. Note, however, that tiarrentitself doesdepend on theonductivitys of

C, according to Ohm's lawd = o f ) [3].

Alternatively, as argued above, the emf dussdepend orj,. Now, in a steady-
state situation under given electrodynamic conaéti¢thus, for a giverf ) this veloc-
ity is a linear function of themobility x of g, according to the empirical relation
O, = U f (by which Ohm’s law is deduced). On the other hahd conductivity ofC

is given bys=gnu. Thedensity nof mobile charges, as well as the value,ofannot
affect the value of the emf since that quantitgie§ined per unit charge. We thus con-

clude that the emf of cannot depend om, as well as om andg; hence is inde-
pendent of.

3. Emf and the Faraday-Henry law
Consider a region of space in which a (generaihetidependent) e/m fiel(E, B)

exists. LetC be afixed conducting loop in this region. There is no addiéil applied
force onC, so (3) reduces t6(t)=Een(t). Furthermore, sinc€ is stationary,o (r',t)

vanishes identically and, by (£J(t)=0 and&en{t)= E(t). Thus, finally,

E(t) = gSC E(,t)-dI (5)

By Stokes’ theorem,
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whereSis any open surface bounded®yFig. 2).

da
&
C
Figure 2
Moreover, by thé-araday-Henry law
- - 0B
VxE=-— 6
X ot (6)
So, (5) yields
d ( 5 — d
E)=—-—— | B-da=-—_(t 7
0=-—1 5 n( (7)
where

D, (1) =j8|§(r,t)-aa

is themagnetic fluxhroughC at timet. As commented in [1], relation (7) expresses a
genuine physical law, not a mere consequence afdfieition of the emf.

4. Motional emf dueto a static magnetic field
Let C(t) be a conducting loop inside a static magnetild fiB(f) (Fig. 3). The time

dependence of indicates a motion and/or a deformation of theplower time. We
will show that the emf o€ at timet is given by the expression

() = Em(®) = [6(N) xB(N] - (8)
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\+

S

dl

=

c®

Figure 3

Letqg be a mobile charge (say, a conventionplbgitivefree electron) located at
the positionf (relative to our coordinate system) of the loggneéntdi at timet. As
in Sec. 1, we denote the velocity di with respect to our frame of reference by
u(r), the velocity ofg alongC by o, and the total velocity df relative to our frame
by 0, =0+ 0.

Since there is no electric field in the regad interest,

Eolt) = gSC E(F,t)-di=0 and Eem(t) = Em(t) (9)
Also, if fapp Is the applied force per unit charge at the pmsitfq, at timet,

Eapp(t) = § , Fapp(T1)-dIT (10)

The role of the applied force is to keep the curfeawing. This will happen for as
long as the loo® is moving or/and deforming, so tha{r’) is not identically zero for

all t. Why is an external force needed to kéemoving or deforming? Let us care-
fully analyze the situation.
The magnetic force apis

Fro=q@0xxB) sothat f,=0,xB .

Now, imagine a temporary, local 3-dimensional negtdar system of axes,(y, z) at
the locationr of g at timet. We assume, without loss of generality, thatzlais is
in the direction ofdl . (The orientation of the mutually perpendicutaandy-axes on
the plane normal to theaxis may be chosen arbitrarily.) Then we may write

— — — —

fmzfmx+fmy+fm fa+f

NIl

where f.=f__ is the component of the magnetic formleng the loop (i.e., in a

C m, z

direction parallel todi) while f, = f_ +f  is the componenormalto the loop
(thus todl).
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In a steady-state situation (steady curriemt)f fc is counterbalanced by the resis-

tive force that opposes charge motion al@¢ps mentioned before, this latter force
does not contribute to the emf). However, to codoralance the normal component

f , some external action (say, by our hand that maredeforms the loo[C) is
needed in order fo€ to keep moving or deforming. This is precisely e applied

force fapp does. Clearly, this force must bermal to C at each point of the loop.

From (10) we then conclude that
Eapt) = 0.

Combining this with (3), (4) and (9), we finallynfg the validity of (8).
It can be shown [1,3] directly from (8) that

M) = — % @, (t) 1j1

where ®(t) is the magnetic flux throug@ at timet. This looks like(7) for a fixed
geometrical loop in a time-dependent e/m fieldha@ligh the origins of the two rela-
tions are different. Indeed, equation (11) is @&dirconsequence of the definition of
the emf and may be derived from (8) essentiallyrathematical manipulation (see,
e.g., the Appendix in [1]). On the contrary, toider(7) the Faraday-Henry law (6)
was used. This is aexperimentalaw, hence so is the expression (7) for the emf. |
other words, relation (7) is not a mere mathembtoasequence of the definition of
the emf.

5. An example

Consider a metal baalf) of lengthh, sliding parallel to itself with constant speed
on two parallel rails that form part of a U-shapéde, as shown in Fig. 4. Aniform
magnetic fieldB, pointing into the page, fills the entire regiéncircuit C(t) of vari-
able size is formed by the rectangular loabdd3.

y
hie - =
O da B}
—— v =const
®B 14di
d a X
O — | X
Oz
Figure 4
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In Fig. 4, thez-axis is normal to the plane of the wire and dirdd@ward the

reader. We callda an infinitesimal normal vector representing anmedat of the
plane surface bounded by the wire (this vectorinscted toward the reader, consis-

tently with the chosen counterclockwise directidrtraversing the loof€). If G, is
the unit vector on the-axis, then the field and the surface element artenr respec-
tively, asB=—-B{, (whereB=|B|= const) andda=(da 1y .

The balance of forces is shown in Fig. 5 fpywe denote the resistive force per

unit charge, which does not contribute to the emfjte that this diagram concerns
only themovingpart @b) of the circuit, since it is in this part only tithe velocityo

and the applied forcd, _ are nonzero.

app

—D)
Fm UC Dtot
; B 0L 0,
dl @
___________ o0 faon
®B ﬂ X

Figure 5

The emf of the circuit at tintas, according to (8),

E®) =¢_ (65xB)-di :j:uBm:qu:dl:uBr.

c(t)
Alternatively, the magnetic flux througbis

@m(t)=js(t)é-aa=—jso Bda= — BLU da= — Bh

(wherex is the momentary position of the bar at tithso that, by (11),

d dx
E)=——d (1) =Bh— = Bhv .
(t) at m(t) it

Now, the role of the applied force is to ctarbhalance thex-component of the
magnetic force in order that the bar may move asstant speed in the direction.
Thus,

fapp = fmCOSO = v,B co® =Bo, .

We note that, althoughp, depends on the speegdof a mobile charge along the bar,
the associated part of the emf is itself independém.! Specifically, as argued in
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Sec. 4 £4p(t)=0. On the other hand, in this particular exampé&workw of f,, for a

complete tour around the circuit is equal to thaltemf (cf. [2]): w=£=Bho. This

equality, however, is accidental and does not ceflemore general relation between
the work per unit charge and the emf. (Another sadcidental” case is the battery-
resistance circuit [1-3].)

6. Summary

This article is an addendum to our study of theceph of the electromotive force
(emf), as this concept was pedagogically approaahgatevious publications [1,2].
We have focused on some particular aspects ofubed that we felt are important
enough to merit further discussion. Let us revibam:

1. For a conducting lodp inside an e/m field, we explained why the emiCof
does not depend on the conductivity of the loop:‘@ws/ious” as this statement may
seem, one still needs to justify it physically anddemonstrate its consistency with
Ohm’s law.

2. We expressed the Faraday-Henry law ingavfrthe emf of a closed conduct-
ing curve inside a time-dependent e/m field.

3. We studied the case of motional emf in saetail (see also [2-5]). Particularly
important is the role of the applied force in tbaése. In addition to analyzing this role
and, in the process, deriving an explicit expres$w the emf, we explained why the
physics of the situation is different from thattbe Faraday-Henry law, despite the
similar-looking forms of the emf in the two cas@d.course, as Relativity has shown,
this similarity is anything but coincidental!
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Abstract

The charging capacitor is the standard textbook and
classroom example for explaining the concept of the so-
called Maxwell displacement current. A certain aspect of
the problem, however, is often overlooked. It concerns the
conditions for satisfaction of the Faraday-Henry law inside
the capacitor. Expressions for the electromagnetic field are
derived that properly satisfy all four of Maxwell’s equations
in that region.

1. Introduction

The charging capacitor is the standard paradigm used in
intermediate-level Physics courses, textbooks and articles to
demonstrate the significance of the Maxwell “displacement
current” (see, e.g., [1-7]). The point is correctly made that,
without this “current” term, the static Ampére’s law would
be incomplete with regard to explaining the conservation of
charge as well as the existence of electromagnetic radiation.
Also, the line integral of the magnetic field around a closed
curve would be an ill-defined concept.

There is, however, a certain subtlety of the situation
which is often passed by. It concerns the Faraday-Henry
law both inside and outside the capacitor. The purpose of
this short note is to point out the need for a more careful
examination of the satisfaction of this law in the former
region, i.e., in the interior of the capacitor. We will seek
expressions for the electromagnetic field that properly
satisfy the entire set of Maxwell’s equations; in particular,
the Faraday-Henry law as well as the Ampére-Maxwell law.

2. Thestandard approach to the charging
capacitor problem

We consider a parallel-plate capacitor with circular plates of
radius a, thus of area A=za’. The space in between the
plates is assumed to be empty of matter. The capacitor is
being charged by a time-dependent current I(t) flowing in
the +z-direction. The z-axis is perpendicular to the plates
(the latter are therefore parallel to the Xy-plane) and passes

through their centers, as seen in Fig. 1 (by U, we denote the
unit vector in the +z direction):

Figure 1: A current | charging a parallel-plate capacitor

The capacitor is being charged at a rate dQ/dt=I(t),
where +Q(t) is the charge on the right plate (as seen in
the figure) at time t. If o(t)=Q(t)/za’=Q(t)/A is the
surface charge density on the right plate, then the time
derivative of o is given by

o'(t) = 10 )
A

We assume that the plate separation is very small
compared to the radius &, so that the electromagnetic
(e/m) field inside the capacitor is practically independent
of z although it doesdepend on the normal distance p
from the z-axis. (We will not be concerned with edge
effects, thus we will restrict out attention to points that
are not close to the edges of the plates.) In cylindrical
coordinates (p,p,Z) the e/m field at any time t will thus
only depend on p (it will not depend on the angle ¢, as
follows by the symmetry of the problem).

The magnetic field inside the capacitor is azimuthal,
of the form

B=B(p.h0,.

A standard practice is to assume that the electric field in
that area is uniform, of the form

. ot

E= L) a, 2)
80

while everywhere outside the capacitor the electric field
vanishes. With this assumption the magnetic field inside
the capacitor is found to be [2,3,6]
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Expressions (2) and (3) must, of course, satisfy the
Maxwell system of equations in empty space, which
system we choose to write in the form [1,8]

Lo . oB
(@ V-E=0 () VxE=-—
ot
I
.o . oE
(b) V-B=0 (d) VszgoyOE

By using cylindrical coordinates and by taking (1) into
account, it is not hard to show that (2) and (3) satisfy
three of Eqgs. (4), namely, (a), (b) and (d). This is not the
case with the Faraday-Henry law (4c), however, since by
(2) and (3) we find that

VxE=0,

while
B _ ' Op i
ot 2A 7

An exception occurs if the current | is constant in time,
i.e., if the capacitor is being charged at a constant rate,
so that | '(t)=0 (this is, e.g., the assumption made in [2]).
But, for a current I(t) with arbitrary time dependence, the
pair of fields (2) and (3) does not satisfy the third
Maxwell equation.

3. A moregeneral formulafor the e/m field inside
the capacitor

To remedy the situation and restore the validity of the full
set of Maxwell’s equations in the interior of the capacitor,
we must somehow correct the expressions (2) and (3) for the
e/m field. To this end, we make use of the following Ansatz

E= (&+ f(p,t)j a,,

80
R I(t
B= (”‘)—()p+ a(p. t)) 0, ; 5)
2A
o'(t) =1 (t) /A

where f (p,t) and g(p,t) are functions to be determined
consistently with the given current function I(t) and for
given initial conditions. It is easy to check that the solutions
(5) automatically satisfy the first two Maxwell equations
(4a) and (4b). By the Faraday-Henry law (4c) and the
Ampére-Maxwell law (4d) we get the following system of
partial differential equations:

11

of o9 ul'®p
_——_— —

0 ot 2A @

5/() ) a(pf) ©
P9 _ ” P (b)
op ot

Note in particular that the “classical” solution with f (p,t)=0
and g(p,t)=0 is possible only if | '(t)=0 <> |=constant in time
(i.e., if the capacitor is being charged at a constant rate), as
mentioned earlier.

As a special case, let us assume that the functions f and g
are time-independent, i.e., of/ot = dg/ot=0 < f=f(p), g=g(p).
From (6a) we get:

ANOY:
4A

f(p)

This can only be valid if | ‘(t)=constant < | "’(t)=0. On the
other hand, (6b) yields: pg=constant = 1 < g(p)= A/p. In
order for g(p) to be finite for p=0, we must set 1=0, so that
d(p)=0. The solution (5) for the e/m field inside the capacitor
is then written:

z_ (a(t) A ’(t)nzj 0

&, 4A

5. A4 Op G, ™
2A

1")=0, o'(t)y=1(@)/A

This formula preserves the familiar expression (3) for the
magnetic field but corrects Eq. (2) for the electric field in
order that the Faraday-Henry law be satisfied.

4. Summary

The purpose of this note was to point out the need to revisit
the problem of the charging capacitor and to carefully
examine the expressions for the e/m field in the interior of
this system. As was noted, the standard formulas assumed
for this field, tailor-made to satisfy the Ampere-Maxwell
law, fail to satisfy the Faraday-Henry law except in the
special case where the capacitor is being charged at a
constant rate. We have derived a general expression for the
e/m field that satisfies the full set of Maxwell’s equations
for arbitrary charging rate of the system. This result reduces
to the familiar set of equations in the case of a constant
charging rate.

Analogous corrections need to be made to the standard
expressions for the e/m field in the exteriorof the capacitor.
This will be the subject of a subsequent paper.
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On solving Maxwell’s equations for a charging capacitor
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Abstract. The charging capacitor is used as a standard paradigm for illustrating the concept
of the Maxwell “displacement current”. A certain aspect of the problem, however, is often
overlooked. It concerns the conditions for satisfaction of the Faraday-Henry law both in the
interior and the exterior of the capacitor. In this article the situation is analyzed and a
mathematical process is described for obtaining expressions for the electromagnetic field that
satisfy the full set of Maxwell’s equations both inside and outside the capacitor.

Keywords: Maxwell equations, Faraday-Henry law, displacement current, capacitor

PACS: 03.50.De, 41.20.-q, 01.55.+b, 01.40.Fk

1. Introduction

The charging capacitor is the standard paradigm used in intermediate-level Physics courses,
textbooks and articles to demonstrate the significance of the Maxwell “displacement current”
(see, e.g., [1-7]). The point is correctly made that, without this “current” term, the static
Ampere’s law would be incomplete with regard to explaining the conservation of charge as well
as the existence of electromagnetic radiation. Also, the line integral of the magnetic field around
a closed curve would be an ill-defined concept.

There is, however, a certain subtlety of the situation which is often passed by. It concerns the
satisfaction of the Faraday-Henry law both inside and outside the capacitor. Indeed, although
care is taken to ensure that the expressions used for the electromagnetic (e/m) field satisfy the
Ampére-Maxwell law, no such care is exercised with regard to the Faraday-Henry law. As it
turns out, the usual formulas for the e/m field satisfy this latter law only in the special case where
the capacitor is being charged at a constant rate. But, if the current responsible for charging the
capacitor is time-dependent, this will also be the case with the magnetic field outside the
capacitor. This, in turn, implies the existence of an “induced” electric field in that region,
contrary to the usual assertion that the electric field outside the capacitor is zero. Moreover, the
time dependence of the magnetic field inside the capacitor is not compatible with the assumption
that the electric field in that region is uniform, as the case would be in a static situation.

The purpose of this article is to exhibit the theoretical inconsistencies inherent in the
“classical” treatment of the charging capacitor problem and to describe a mathematical process

ISSN:1791-4469 Copyright © 2018, Hellenic Naval Academy
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for deriving expressions for the e/m field that satisfy the full set of the Maxwell equations
(including, of course, the Faraday-Henry law) both inside and outside the capacitor.

After a preliminary discussion of the concept of the electric current through a loop (Section
2), the standard “textbook” approach to the charging-capacitor example in connection with the
concept of the displacement current is presented in Section 3. New and more general solutions of
the Maxwell system of equations in the interior and the exterior of the capacitor are then derived
in Sections 4 and 5, respectively.

2. The current through a loop

Before we proceed to write the Ampeére-Maxwell law in its integral form, we must carefully
define the concept of the total current through a loop C (where by “loop” we mean a closed
curve in space).

Proposition. Consider a region R of space within which the distribution of charge, expressed
by the volume charge density p, is time-independent (0p/ot=0). Let C be an oriented loop in R,
and let S be any open surface in R bordered by C and oriented accordingly. We define the total

current through C as the surface integral of the current density J over S:
Iy = [, J-da 1)

Then, the quantity I;, has a well-defined value independent of the particular choice of S (that is,
lin is the same for all open surfaces S bounded by C).

Proof. By the equation of continuity for the electric charge (see, e.g., [8], Chap. 6) and by the

fact that the charge density p inside the region R is static (9p/6t=0), we have that V-J =0.
Therefore, within this region of space the current density has the properties of a solenoidal field.

In particular, the value of the surface integral of J will be the same for all open surfaces S
sharing a common border C.

As an example, let us consider a circuit carrying a time-dependent current I(t). If the circuit
does not contain a capacitor, no charge is piling up at any point and the charge density at any
elementary segment of the circuit is constant in time. Moreover, at each instant t, the current | is
constant along the circuit, its value changing only with time. Now, if C is a loop encircling some
section the circuit, as shown in Fig. 1, then, at each instant t, the same current I(t) will pass
through any open surface S bordered by C. Thus, the integral in (1) is well defined for all t,
assuming the same value I;,=I(t) for all S.

Figure 1

http://nausivios.hna.gr/
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Things change if the circuit contains a capacitor which is charging or discharging. It is then
no longer true that the current I(t) is constant along the circuit; indeed, I(t) is zero inside the
capacitor and nonzero outside. Thus, the value of the integral in (1) depends on whether the
surface S does or does not contain points belonging to the interior of the capacitor.

3. Maxwell displacement current in a charging capacitor

Figure 2 shows a simple circuit containing a capacitor that is being charged by a time-
dependent current I(t). At time t, the plates of the capacitor, each of area A, carry charges +Q(t).

a
-—

-Q +Q C

| s
A

Figure 2

Assume that we encircle the current | by an imaginary plane loop C parallel to the positive
plate and oriented in accordance with the “right-hand rule”, consistently with the direction of |
(this direction is indicated by the unit vector U ). The “current through C” is here an ill-defined
notion since the value of the integral in Eq. (1) is li,=I for the flat surface S; and 1;;=0 for the
curved surface S, (Fig. 2). This, in turn, implies that Ampére’s law of magnetostatics [1-4,8]
cannot be valid in this case, given that, according to this law, the integral of the magnetic field B
along the loop C, equal to uolin , would not be uniquely defined but would depend on the surface
S bounded by C.

Maxwell restored the single-valuedness of the closed line integral of B by introducing the
so-called displacement current, which is essentially the rate of change of a time-dependent
electric field:

oE

S — OE —
= © Id=ISJd~da=gO.[SE-da )

Ja =&

The Ampere-Maxwell law reads:

ISSN:1791-4469 Copyright © 2018, Hellenic Naval Academy
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oE ®)
P Bl = pioly + 2oty [ —=-da = 1o (14 1)y

where li, is given by Eq. (1).

Now, the standard “textbook” approach to the charging capacitor problem goes as follows:
Outside the capacitor the electric field vanishes everywhere, while inside the capacitor the
electric field is uniform — albeit time-dependent — and has the static-field-like form

g-2W,_QW @)

& A

where o(t)=Q(t)/A is the surface charge density on the positive plate at time t. This density is
related to the current I, which charges the capacitor, by

oy Q0 _10

== 5
A y ()
(the prime indicates differentiation with respect to t). Thus, inside the capacitor,
ﬁza(t)a:ma (6)
ot g EA

Outside the capacitor the time derivative of the electric field vanishes everywhere and, therefore,
so does the displacement current.

Now, on the flat surface S; the total current through C is (I+lg)in = 1+0 = I(t). The Ampére-
Maxwell law (3) then yields:

jcéa=y0|(t) ()

On the curved surface S;, the total current through C is (I+1g)in=0+lg,in = l4in, Where the quantity
on the right assumes a nonzero value only for the portion S;” of S, which lies inside the capacitor.
This quantity is equal to

OE — 1(t) —

Id’in:gOJ'SZ'E'da:TJ.SZ’U'da (8)
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da. =d-da K plate of area A
L=

(side view)
Figure 3

The dot product in the integral on the right of (8) represents the projection of the surface element

da onto the axis defined by the unit vector U (see Fig. 3). This is equal to the projection da, of
an elementary area da of S,” onto the flat surface of the plate of the capacitor. Eventually, the
integral on the right of (8) equals the total area A of the plate. Hence, 14i,=I(t) and, given that
lin=00on S;, the Ampére-Maxwell law (3) again yields the result (7).

So, everything works fine with regard to the Ampére-Maxwell law, but there is one law we
have forgotten so far; namely, the Faraday-Henry law! According to that law, a time-changing
magnetic field is always accompanied by an electric field (or, as is often said, “induces” an
electric field). So, the electric field outside the capacitor cannot be zero, as claimed previously,
given that the time-dependent current I(t) is expected to generate a time-dependent magnetic
field. For a similar reason, the electric field inside the capacitor cannot have the static-field-like
form (4) (there must also be a contribution from the rate of change of the magnetic field between
the plates).

An exception occurs if the current | which charges the capacitor is constant in time, since in
this case the magnetic field will be static everywhere. This is actually the assumption silently or
explicitly made in many textbooks (see, e.g., [2], Chap. 21). Physically this means that the
capacitor is being charged at a constant rate. But, in the general case where I(t)=constant, the
preceding discussion regarding the charging capacitor problem needs to be significantly revised
in order to take into account the entire set of the Maxwell equations; in particular, the Ampere-
Maxwell law as well as the Faraday-Henry law.

4. The Maxwell equations inside the capacitor

We consider a parallel-plate capacitor with circular plates of radius a, thus of area A=ra*. The
space in between the plates is assumed to be empty of matter. The capacitor is being charged by a
time-dependent current I(t) flowing in the +z direction. The z-axis is perpendicular to the plates
(the latter are therefore parallel to the xy-plane) and passes through their centers, as seen in Fig. 4

(by U, we denote the unit vector in the +z direction).

ISSN:1791-4469 Copyright © 2018, Hellenic Naval Academy

Cc-7



NAUSIVIOS CHORA, VOL. 7,2018

[ ==

-Q +Q

Figure 4

The capacitor is being charged at a rate dQ/dt=I(t), where +Q(t) is the charge on the right
plate (as seen in the figure) at time t. If o(t)=Q(t)/za’=Q(t)/A is the surface charge density on the
right plate, then the time derivative of o is given by Eq. (5).

We assume that the plate separation is very small compared to the radius a, so that the
electromagnetic (e/m) field inside the capacitor is practically independent of z, although it does
depend on the normal distance p from the z-axis. (We will not be concerned with edge effects,
thus we will restrict out attention to points that are not too close to the edges of the plates.) In
cylindrical coordinates (p, ¢, z) the magnitude of the e/m field at any time t will thus only depend
on p (it will not depend on the angle ¢, as follows by the symmetry of the problem).

We assume that the positive and the negative plate of the capacitor of Fig. 4 are centered at
z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the plate separation d is
much smaller than the radius a of the plates. The interior of the capacitor is then the region of
space with 0<p<a and 0<z<d.

The magnetic field inside the capacitor is azimuthal, of the form B = B(p,t) u,. As noted in

Sec. 3, a standard practice is to assume that, at all t, the electric field in this region is uniform, of
the form

e- 2y, ©
o

while everywhere outside the capacitor the electric field vanishes. With this assumption the
magnetic field inside the capacitor is found to be [2,3,6]

= MlMp o wlt)p .
B= ud = U 10
2ra®>  ? 2A 7 (10)

Expressions (9) and (10) must, of course, satisfy the Maxwell system of equations in empty
space, which system we write in the form [1,8]

@ V.E=0 ©) ?xéz_i_?
. (11)
. L oF
b) V-B=0 A) VxB=gyup 5
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By using cylindrical coordinates (see Appendix) and by taking into account that ¢"(t)=I(t)/A [Eq.
(5)], it is not hard to show that (9) and (10) satisfy three of Egs. (11), namely, (a), (b) and (d).
This is not the case with the Faraday-Henry law (11c), however, since by (9) and (10) we find

that VxE =0, while

ﬁﬁizzﬁ%l’ﬂ)p>a
ot 2A 7

An exception occurs if the current | is constant in time, i.e., if the capacitor is being charged at a
constant rate, so that /'(t)=0. But, for a current I(t) with arbitrary time dependence, the pair of
fields (9) and (10) does not satisfy the third Maxwell equation.

To remedy the situation and restore the validity of the full set of Maxwell’s equations in the
interior of the capacitor, we must somehow correct the expressions (9) and (10) for the e/m field.
To this end, we employ the following Ansatz:

- t R s I(t n
E:[%O)+ f(p,t)j d, , Bz(ﬂoz—;\)p+g(,0,t)j Uy

o'(t) =1 (t) /A

(12)

where f (p,t) and g(p,t) are functions to be determined consistently with the given current function
I(t) and the given initial conditions. It is easy to check that the solutions (12) automatically
satisfy the first two Maxwell equations (11a) and (11b). By the Faraday-Henry law (11c) and the
Ampére-Maxwell law (11d) we get the following system of partial differential equations:

of _ a_g + IUOI'(t)p (a)

op ot 2A

f
N O ol

(13)

Note in particular that the “classical” solution with f (p,t)=0 and g(p,t)=0 is possible only if
I'(t)=0 < I=constant in time (i.e., if the capacitor is being charged at a constant rate), as
mentioned earlier.

As a special case, let us assume that the functions f and g are time-independent, i.e., of /ot =
og /ot=0 < f=f (p), g=g(p). From (13a) we get (ignoring an arbitrary constant):

’ 2

This can only be valid if 7°(t)=constant < /"’(t)=0. On the other hand, (13b) yields: pg=constant

= 1 < g(p)= Alp. In order for g(p) to be finite for p=0, we must set 1=0, so that g(p)=0. The
solution (12) for the e/m field inside the capacitor is then written:
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= [a(m uol'(t)pzj 6 gotlOpy
& 4A 2A 7 (14)

1"()=0, o'(t)=1(t)/A

We notice that, since /7'(t)=0, Eqg. (6) is still valid and the displacement current inside the
capacitor is again given by lq=I(t). What is different here is the correction to the electric field in
order for the Faraday-Henry law to be satisfied.

5. The Maxwell equations outside the capacitor

We recall that the positive and the negative plate of the capacitor of Fig. 4 are centered at z=0
and z=d, respectively, on the z-axis, where the plate separation d is much smaller than the radius
a of the plates. The space exterior to the capacitor consists of points with p >0 and z¢(0,d), as
well as points with p >a and 0<z<d. (In the former case we exclude points on the z-axis, with
p=0, to ensure the finiteness of our solutions in that region.)

The e/m field outside the capacitor is usually described mathematically by the equations
[2,3,6]

E_o, B-%'0 a, (15)
27tp

As the case is with the standard solutions in the interior of the capacitor, the solutions (15) fail to
satisfy the Faraday-Henry law (11c) (although they do satisfy the remaining three Maxwell

equations), since VxE =0 while

B ul') .
—=00 g .
ot 2mp 7

As before, an exception occurs if the current | is constant in time, i.e., if the capacitor is being
charged at a constant rate, so that 7'(t)=0.

To find more general solutions that satisfy the entire set of the Maxwell equations, we work
as in the previous section. Thus, we assume the following general form of the e/m field
everywhere outside the capacitor:

E=f(o)4,, E§=(M+g(p.t)j u, (16)
27p

where f and g are functions to be determined consistently with the given current function I(t). The
solutions (16) automatically satisfy the first two Maxwell equations (11a) and (11b). By Egs.
(11c) and (11d) we get the following system of partial differential equations:
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of _og | ul'(t)

% a2 @ an
f
e e

Again, the usual solution with f (p,t)=0 and g(p,t)=0 is possible only if 7°(t)=0, i.e., if the
capacitor is being charged at a constant rate.

As a special case, let us assume that the functions f and g are time-independent, i.e., f=f (p),
9=g(p). From (17a) we get:

()= 22 in(up)

where x is a positive constant quantity having dimensions of inverse length. This can only be
valid if 7'(t)=constant < 7"’(t)=0. On the other hand, (17b) yields: pg=constant= 1 < g(p)= A/p.
Since p>0, by assumption, we could now let 2#0. For reasons of continuity, however (see below),
we set =0, so that g=0. The solution (16) for the e/m field outside the capacitor is then written:

27p

E- 40 hpya, B ,
/A

(18)
1"(t) =0

Note, in particular, that the magnetic field in the strip 0 <z <d is continuous for p=a, since the

expression for B in (18) matches the corresponding expression in (14) upon substituting p=a
(remember that 4=zd?). No analogous continuity exists, however, for the electric field.
Physically, this may be attributed to fringing effects at the edges of the plates.

6. Summary

The purpose of this article is to point out the need to revisit the problem of the charging
capacitor, as this is discussed in connection with the Maxwell displacement current, and to
carefully examine the expressions for the e/m field both in the interior and the exterior of this
system. As was noted, the standard formulas assumed for this field, tailor-made to satisfy the
Ampere-Maxwell law, fail to satisfy the Faraday-Henry law except in the special case where the
capacitor is being charged at a constant rate. We have derived general expressions for the e/m
field that satisfy the full set of Maxwell’s equations for arbitrary charging rate of the system.
These results may reduce to the familiar set of equations in the case of a constant charging rate.

Note

This article is an extensively revised and expanded version of an article published previously in
letter form [9]. In particular, the results contained in Sec. 5 of this article are new.
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Appendix: Vector operators in cylindrical coordinates
Let A be a vector field, expressed in cylindrical coordinates (p, ¢, z) as
A: Ap(p’(D’ Z)ljp + A;p(p’ ®, Z)lj¢ +Az(p1¢’ Z)ljz :

The div and the rot of this field, in this system of coordinates, are written respectively as follows:

p op 01

S 0 oA oA
G (L AN (A A (0L A
p Oop 01 p\ op op

- 0
V~A=£i(,0Ap)+1 A¢+8i’

In particular, if the vector field is of the form A=A (p)u, + A, (0)4,, then V- A=0.
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Approximate solutions of Maxwell’s equations
for a charging capacitor

C. J. Papachristou

Department of Physical Sciences, Hellenic Naval Academy
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Abstract. In previous articles we derived a system of partial differential equations by
means of which one may obtain expressions for the electromagnetic field in the interior
and the exterior of a charging capacitor. In the present article a recursive process is
described for finding solutions of this system in power-series form with respect to time.
This allows one to find approximate solutions of Maxwell’s equations in a number of
situations of physical interest.

Keywords: Maxwell’s equations, Faraday’s law, charging capacitor

1. Introduction

In previous articles [1,2] we described a mathematical process for finding expressions
for the electromagnetic (e/m) field — i.e., solutions of Maxwell’s equations — in the
interior and the exterior of a charging capacitor. These solutions generalize the
“classical” results found in the educational literature of electrodynamics [3-9], which
results were noted to not satisfy, in general, the Faraday-Henry law (Maxwell’s third
equation).

Our method was based on a simple idea: we started with the known (incomplete)
solutions and “corrected” them by adding unknown functions to be determined by
using the Maxwell system. This led to a system of partial differential equations
(PDEs) for these functions, in which system the (generally) time-dependent current
that charges the capacitor appears as a sort of parametric function.

In the present article we suggest a mathematical process for obtaining solutions of
the aforementioned system of PDEs in the form of power series with respect to time.
This allows one to find approximate expressions for the e/m field in certain situations.
For example, a slowly varying (thus almost time-independent) current allows for the
“classical” solutions given in the literature, while a current that is almost linearly
dependent on time (as may be assumed, in general, for any smoothly varying current
in a very short time period) allows for new solutions that correct the standard
expressions for the electric field while retaining the corresponding expressions for the
magnetic field.

It should be noted that, regarding the solutions in the exterior of the capacitor, no
retardation effects related to the finite speed of propagation of e/m interactions will
concern us here. Indeed, as discussed in Sec. 4, our solutions are valid at points of
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space not far from the capacitor, so that any change in the physical system will be felt
“simultaneously” at all points of interest.

2. Solutions of Maxwell’s equations inside the capacitor

We consider a parallel-plate capacitor with circular plates of radius a, thus of area
A=ma*. The space in between the plates is assumed to be empty of matter. The
capacitor is being charged by a time-dependent current /(¢) flowing in the +z direction
(see Fig. 1). The z-axis is perpendicular to the plates (the latter are therefore parallel
to the xy-plane) and passes through their centers, as seen in the figure (by . we

denote the unit vector in the +z direction).

Figure 1

The capacitor is being charged at a rate dQ/dt=I(t), where +(Q(¢) is the charge on
the right plate (as seen in the figure) at time z. If o(£)=0(¢)/ma*=0(t)/A is the surface
charge density on the right plate, then the time derivative of ¢ is given by

a0 1@
a'(t) y y (1)

We assume that the plate separation is very small compared to the radius a, so that
the e/m field inside the capacitor is practically independent of z, although it does
depend on the normal distance p from the z-axis. In cylindrical coordinates (p, ¢,z) the
magnitude of the e/m field at any time ¢ will thus only depend on p (due to the
symmetry of the problem, this magnitude will not depend on the angle ¢).

We assume that the positive and the negative plate of the capacitor of Fig. 1 are
centered at z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the
plate separation d is much smaller than the radius a of the plates. The interior of the
capacitor is then the region of space with 0<p<a and 0<z<d.

The magnetic field inside the capacitor is azimuthal, of the form B = B(p, 1) i, A

standard practice in the literature is to assume that, at all ¢, the electric field in this
region is uniform, of the form

E=-20 @
)

while everywhere outside the capacitor the electric field vanishes. With this
assumption the magnetic field inside the capacitor is found to be [4,5,8]
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= Hlp . mlOp .
B= o u, = 2y u, (3)

Expressions (2) and (3) must, of course, satisfy the Maxwell system of equations
in empty space, which system we write in the form [3,10]

(@) V-E=0 (c) WE:—‘Z-?
OE )
(b) V-B=0 (d) WE:.L;O;;OE

By using cylindrical coordinates (see Appendix I) and by taking (1) into account, one
may show that (2) and (3) satisfy three of Egs. (4), namely, (@), (b) and (d). This is not
the case with the Faraday-Henry law (4c), however, since by (2) and (3) we find that

VxE =0, while

0B _ pul'(H)p .
—="—""1, .
ot 24 ¢

An exception occurs if the current / is constant in time, i.e., if the capacitor is being
charged at a constant rate, so that /'(#)=0. This is actually the assumption silently or
explicitly made in many textbooks (see, e.g., [4], Chap. 21). But, for a current /(¢)
with arbitrary time dependence, the pair of fields (2) and (3) does not satisfy the third
Maxwell equation.

To remedy the situation and restore the validity of the full set of Maxwell’s
equations in the interior of the capacitor, we must somehow correct the above
expressions for the e/m field. To this end we employ the following Ansatz, taking into
account Lemma 1 in Appendix II:

E- [“(’) + f(p,r)j i,

&g

- I(t n
B- (%+ g(p,t)J iy )

o'(t)=1(t)/A

where f(p,f) and g(p,f) are functions to be determined consistently with the given
current function /() and the given initial conditions. It can be checked that the
solutions (5) automatically satisfy the first two Maxwell equations (4a) and (4b). By
the Faraday-Henry law (4c) and the Ampére-Maxwell law (4d) we get the following
system of PDEs:
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of _og , ml'®p
dp ot 24
10 0
10(pg) _ fotty af
p Op ot

(6)

Note in particular that the “classical” solution with f(p,)=0 and g(p,f)=0 is possible
only if I'(£)=0, i.e., if the current / is constant in time, which means that the capacitor
is being charged at a constant rate.

The quantity (1/p)0(pg)/0p in the second equation, having its origin at the
expression for Vx B in cylindrical coordinates, must tend to a finite limit for p—0 in
order that the rot of the magnetic field be finite at the center of the capacitor. For this
to be the case, 0(pg)/Op must only contain terms of at least first order in p. This, in
turn, requires that g itself must be of at least first order (i.e., linear with no constant
term) in p for all ¢, or else g must be identically zero. We must, therefore, require that

g(p,t) > 0 for p—0 (7)

for all 7. Keeping this condition in mind, we can rewrite the system (6) in a more
symmetric form:

9f _ %2, HI'®p

op Ot 2A4

d d
(pg) _ Gty (pf)
op ot

®)

In principle, one needs to solve the system (8) for a given current /(f) and for
given initial conditions. An alternative approach, leading to approximate solutions of
various forms, is to expand all functions (i.e., f, g and /) in powers of time, . We thus
write:

0= 1,0 (9a)
n=0
Fp=3 f(p)" (98)
n=0
g0 =Y g, ()" 9)

n=0

Then, for example,
I'(t)y=>nl, " = (n+1I, 1", etc.
n=1 n=0

Obviously, 7, has dimensions of current x (time) ", while £, and g, have dimensions of
field intensity (electric and magnetic, respectively) x (time) .
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Substituting the series expansions (9) into the system (8), and equating
coefficients of similar powers of ¢ on both sides of the ensuing equations, we get a
recursion relation in the form of a system of PDEs:

1 (p)=(n+ 1){8,”1(/?) + /;Oj 4 n+1}

(10)
[pg,(0)] =+ sopty £ (P)

for n=0,1,2,... All non-vanishing functions g,(p) are required to satisfy the boundary
condition (7); 1.e., g,(p)—0 for p—O0.

An obvious solution of the system (10) is the trivial solution f,(p)=0 and g,(p)=0
for all n=0,1,2,..., corresponding to f{(p,/)=0 and g(p,r)=0. For this to be the case, we
must have 7,+;=0 for all n=0,1,2,..., which means that /(f)=Iy=constant (independent
of 7). This is the case typically treated in the literature, although the condition /=const.
is usually not stated explicitly.

The simplest nontrivial solution of the problem is found by assuming that f'and g
are time-independent, i.e., are functions of p only. Then, by (96) and (9c¢), f=fy(p) and
g=go(p), while £,(p)=0 and g,(p)=0 for n>0. The system (10) for n=0 gives

ol p

5, od [pgo(p)] =0

fo (p)=

with solutions

Hol, p’
44

fo(p) = +C and go(p)=% ,

respectively. The boundary condition go(p)—0 for p—0 cannot be satisfied for 4#0;
we are thus compelled to set A=0. Given that f{p,f)=fo(p) and g(p,t)=go(p), the solution
of the system (8) is

tol, p°
f(p,t)= °41A +C, g(p,H)=0 (11)

As is easy to check, by the first of Egs. (10) it follows that 7,=0 for n>1. Therefore
I(¢) is linear in ¢, i.e., is of the form I(¢f)=Iy+/;z. By assuming the initial condition
1(0)=0, we have that /=0 and

I =1t (12)

On the other hand, by integrating Eq. (1): ¢'()=I(t)/4, and by assuming that the
capacitor is initially uncharged [a(0)=0], we get:

NG
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Finally, by Egs. (5), (11), (12) and (13) the e/m field in the interior of the
capacitor is

EF- L _|_!‘011/02 5
2¢,4 44 27
Holitp
u
24 7

(14)

B

where we have set C=0 since, in view of the assumed initial conditions, there is no
electric field inside the capacitor if 7;=0. In order for the solution (14) to be valid, the
current /(¢) charging the capacitor must vary linearly with time, according to (12).

3. Solutions of Maxwell’s equations outside the capacitor

We recall that the positive and the negative plate of the capacitor of Fig. 1 are
centered at z=0 and z=d, respectively, on the z-axis, where the plate separation d is
much smaller than the radius a of the plates. The space exterior to the capacitor
consists of points with p >0 and z¢(0,d ), as well as points with p>a and 0<z<d.
(In the former case we exclude points on the z-axis, with p=0, to ensure the finiteness
of our solutions in that region.) We assume that the current /(¢) is of “infinite” extent
and hence the magnitude of the e/m field is practically z-independent.

The e/m field outside the capacitor is usually described mathematically by the
equations [4,5,8]

E=0, B=
27p

, (15)

As the case is with the standard solutions in the interior of the capacitor, the solutions
(15) fail to satisfy the Faraday-Henry law (4c¢) (although they do satisfy the remaining

three Maxwell equations), since V x E =0 while

OB ul'(t) .
—=cq .
ot  2mp 7

As before, an exception occurs if the current / is constant in time, i.e., if the capacitor
is being charged at a constant rate, so that /'(¢)=0.

To find more general solutions that satisfy the entire set of the Maxwell equations,
we work as in the previous section. Taking into account Lemma 2 in Appendix II, we
assume the following general form of the e/m field everywhere outside the capacitor:

E= f(p,0)i, ,

Hol (1)

. (16)
= (WJr g(P,f)j i,

oo ]!
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where f and g are functions to be determined consistently with the given current
function /(¢). The solutions (16) automatically satisfy the first two Maxwell equations
(4a) and (4b). By Egs. (4¢) and (4d) we get the following system of PDEs:

of _og  ml'0)

op Ot 27p (17)
opg) _ ., 9(pf)
=&ty
op ot

Again, the usual solution with f(p,£)=0 and g(p,f)=0 is possible only if 7'(¥)=0, i.e., if
the capacitor is being charged at a constant rate. Note also that, since now p=0, the
boundary condition (7) for g no longer applies.

As we did in the previous section, we seek a series solution of the system (17) in
powers of ¢. We thus expand f, g and / as in Egs. (9), substitute the expansions into the
system (17), and compare terms with equal powers of . The result is a new recursive
system of PDEs:

fn’(p) = (n+l)|:gn+l(p)+2’u_oln+l:|
7 (18)

[pgn (,0)]’ =(n+D ety pra(p)

for n=0,1,2,... Again, an obvious solution is the trivial solution f£,(p)=0 and g,(p)=0 for
all n=0,1,2,..., corresponding to f{(p,f)=0 and g(p,f)=0. This requires that /,;;=0 for all
n=0,1,2,..., so that I(f)=Iy=constant (independent of 7).

As in Sec. 2, we seek time-independent solutions for f and g, so that f=fy(p) and
g=go(p) while f,(p)=0 and g,(p)=0 for n>0. The system (18) for n=0 gives

Holy

' ()I '
fo (p) = 5 and [pg,(p)] =0
7P

with solutions

1
0 ln(kp) and gy(p) ==,
2 2mp

fo(p) =

respectively (remember that p>0), where x is a positive constant quantity having
dimensions of inverse length, and where a factor of 2z has been put in go(p) for future
convenience. Given that f{(p,t)=fo(p) and g(p,f)=go(p), the solution of the system (17)
is

I
Fp0 =200 a(p,f) =2 (19)
Va 27mp

By the first of Egs. (18) it follows that 7,=0 for n>1. Therefore /(¢) is linear in ¢, of
the form /(¢#)=Iy+I;t. By assuming the initial condition /(0)=0, we have that /,=0 and
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I6)=1t (20)

In view of the above results, the e/m field (16) in the exterior of the capacitor is

- I
E=2" gy a,
T
21
L lit+ A @1
="
2np 7

For this solution to be valid, the current /(f) must vary linearly with time.

By comparing Eqgs. (14) and (21) we observe that the value of the electric field
inside the capacitor does not match the value of this field outside for p=a, where a is
the radius of the capacitor. This discontinuity of the electric field at the boundary of
the space occupied by the capacitor is a typical characteristic of capacitor problems, in
general. On the other hand, in order that the magnetic field in the strip 0 <z <d be

continuous for p=a, the expression for B in (21) must match the corresponding
expression in (14) upon substituting p=a and by taking into account that 4=ra”. This
requires that we set A=0 in (21), so that this equation finally becomes

~ 1
E=2" gy a,
r
(22)
= it
B= u
2np 7

4. Discussion

As we have seen, expressions for the e/m field inside and outside a charging capacitor
may be sought in the general form given by Egs. (5) and (16), respectively. These
expressions contain two unknown functions f(p,f) and g(p,f) which, in view of
Maxwell’s equations, satisfy the systems of PDEs (8) and (17). These PDEs, in turn,
admit series solutions in powers of 7, of the form (9), where it is assumed that the
current /(¢) itself may be expanded in this fashion.

The coefficients of expansion of f and g may be determined, in principle, by
means of the recursion relations (10) and (18), both of which are of the general form

1, (p)=(n+D[g,..(p)+h(p)],,]

, (23)
[pg.,(P)] =(n+D &ty pf,a(p)

This is not an easy system to integrate, so we are compelled to make certain ad hoc

assumptions. Suppose, e.g., that we seek a solution such that £,(p)=0 and g,(p)=0 for

n>k (k>0). It then follows from the first of Eqgs. (23) that 1,;;,=0 for n>k or,

equivalently, 7,=0 for n>k+1. Thus, if k=0, I(f) must be linear in ¢; if k=1, I(f) must be

quadratic in ¢; etc.
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For a current varying sufficiently slowly with time, we may approximately assume
that 7,=0 for n>0, so that I(f)=Iy=const. This allows for the possibility that f and g
vanish identically, as is effectively assumed (though not always stated explicitly) in
the literature. On the other hand, any smoothly varying /() may be assumed to vary
linearly with time for a very short time period. Then, a solution of the form (14) and
(22) is admissible.

There are several aspects of the solutions described by Egs. (14) and (22) that may
look unphysical: (a) the electric field in (22) apparently diverges for p—o; (b) the
magnetic field in both (14) and (22) diverges for t—o0; (c) although, by assumption,
there are no charges at the interface between the interior and the exterior of the
capacitor (i.e., on the cylindrical surface defined by 0<z <d and p=a) the electric field
is non-continuous on that surface, contrary to the general boundary conditions
required by Maxwell’s equations; (d) the constant x in (22) appears to be arbitrary.
We may thus use the above solutions only as approximate ones for values of p not
much larger than the radius a of the plates, as well as for short time intervals. (Note
that p has to be much smaller than the length of the wire that charges the capacitor if
this wire is to be considered of “infinite” length, hence if the external e/m field is to
be regarded as z-independent.) We may smoothen the discontinuity problem of the
electric field for p=a by assuming that this field is continuous at /=0, i.e., at the
moment when the charging of the capacitor begins. By setting p=a in (14) and (22)
and by equating the corresponding expressions for £ we may then determine the
value of the constant « in (22). The result is: k=e"?/a.

For an enlightening discussion of the subtleties concerning the e/m field produced
by an infinitely long straight current, the reader is referred to Example 7.9 of [3].

Appendix 1. Vector operators in cylindrical coordinates

Let A be a vector field, expressed in cylindrical coordinates (p, ¢, z) as

A=A4,(p,p,2)u,+A,(p,p,2)i, + A (p,p,2)u, .

The div and the rot of this field in this system of coordinates are written, respectively,
as follows:

- 04
A:li(p p)+l_¢+aAZ ,
p Op p op Oz
L 04 0A 04
VxA= i% _ ? | _ P % 7+ l i __ P MAZ
pop o0z )" oz op)? plop” 7 0
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In particular, if the vector field is of the form
A=4,(p)u,+A4.(p)u, ,

then V-A=0.

Appendix II. General form of the electric field

To justify the general expression for the electric field implied in the Ansatz (5) used to
find solutions of Maxwell’s equations inside the capacitor, we need to prove the
following:

Lemma 1. If the magnetic field inside the capacitor is azimuthal, of the form
B=B(p,0)i, (A.1)

then the electric field (also assumed dependent on p and ) is of the form

E=E(p.0)i, (A2)
Proof. Let
E=E, (p,0)u,+E,(p,)u,+E (p,1)u, (A.3)

Then (cf. Appendix I) from Gauss’ law (4a) it follows that

% -0 - £, =

In order for the electric field to be finite at the center of the capacitor (i.e., for p=0)

we must set a()=0, so that E,(p,r)=0. On the other hand, the z-component of
Faraday’s law (4c¢) yields

% oty 1,20 =

Again, finiteness of the electric field for p=0 dictates that f(#)=0, so that E,(p,)=0.
Eventually, only the z-component of the electric field is non-vanishing, in accordance
with (A.2).

The solutions outside the capacitor are subject to the restriction p>0. The
expression for the electric field implied in the Ansatz (16) is based on the following
observation:
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Lemma 2. If the magnetic field outside the capacitor is azimuthal, of the form
(A.1), then the electric field (also assumed dependent on p and ) is again of the form
(A.2).

Proof. Let the electric field be of the form (A.3). Then from Gauss’ law (4a) and
from the z-component of Faraday’s law (4¢) we get (A.4) and (A.5), respectively. On
the other hand, from the p- and gp-components of the fourth Maxwell equation (4d) we
find that OE,/0t=0 and OE,/0t=0, which means that o and f are actually constants.
Thus the general form of the electric field outside the capacitor should be

u,+—u,+f(p,0)u, .

Obviously, the function f(p,?) is related to the time-change of the magnetic field and is
expected to vanish if the current / that charges the capacitor is constant. If the electric
field itself is to vanish when [=constant, both constants o and f must be zero.
Eventually, the electric field outside the capacitor must be of the general form (A.2).
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Abstract. Backlund transformations (BTs) are traditionally regarded as a tool for
integrating nonlinear partial differential equations (PDEs). Their use has been recently
extended, however, to problems such as the construction of recursion operators for
symmetries of PDEs, as well as the solution of linear systems of PDEs. In this article, the
concept and some applications of BTs are reviewed. As an example of an integrable linear
system of PDEs, the Maxwell equations of electromagnetism are shown to constitute a BT
connecting the wave equations for the electric and the magnetic field; plane-wave
solutions of the Maxwell system are constructed in detail. The connection between BTs
and recursion operators is also discussed.

Keywords: Backlund transformations, integrable systems, Maxwell equations,
electromagnetic waves

PACS: 02.30.1k, 02.30.Jr, 41.20.Jb

1. INTRODUCTION

Bécklund transformations (BTs) were originally devised as a tool for obtaining solutions of
nonlinear partial differential equations (PDEs) (see, e.g., [1] and the references therein). They
were later also proven useful as recursion operators for constructing infinite sequences of
nonlocal symmetries and conservation laws of certain PDEs [2—6].

In simple terms, a BT is a system of PDEs connecting two fields that are required to
independently satisfy two respective PDEs [say, (a) and (b)] in order for the system to be
integrable for either field. If a solution of PDE (a) is known, then a solution of PDE (b) is
obtained simply by integrating the BT, without having to actually solve the latter PDE (which,
presumably, would be a much harder task). In the case where the PDEs (a) and (b) are
identical, the auto-BT produces new solutions of PDE (a) from old ones.

As described above, a BT is an auxiliary tool for finding solutions of a given (usually
nonlinear) PDE, using known solutions of the same or another PDE. But, what if the BT itself is
the differential system whose solutions we are looking for? As it turns out, to solve the problem
we need to have parameter-dependent solutions of both PDEs (a) and (b) at hand. By properly
matching the parameters (provided this is possible) a solution of the given system is obtained.
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The above method is particularly effective in linear problems, given that parametric solutions
of linear PDEs are generally not hard to find. An important paradigm of a BT associated with a
linear problem is offered by the Maxwell system of equations of electromagnetism [7,8]. As is
well known, the consistency of this system demands that both the electric and the magnetic field
independently satisfy a respective wave equation. These equations have known, parameter-
dependent solutions; namely, monochromatic plane waves with arbitrary amplitudes,
frequencies and wave vectors (the “parameters” of the problem). By inserting these solutions
into the Maxwell system, one may find the appropriate expressions for the “parameters” in order
for the plane waves to also be solutions of Maxwell’'s equations; that is, in order to represent an
actual electromagnetic field.

This article, written for educational purposes, is an introduction to the concept of a BT and its
application to the solution of PDEs or systems of PDEs. Both “classical” and novel views of a
BT are discussed, the former view predominantly concerning integration of nonlinear PDEs
while the latter one being applicable mostly to linear systems of PDEs. The article is organized
as follows:

In Section 2 we review the classical concept of a BT. The solution-generating process by
using a BT is demonstrated in a number of examples.

In Sec. 3 a different perception of a BT is presented, according to which it is the BT itself
whose solutions are sought. The concept of conjugate solutions is introduced.

As an example, in Secs. 4 and 5 the Maxwell equations in empty space and in a linear
conducting medium, respectively, are shown to constitute a BT connecting the wave equations
for the electric and the magnetic field. Following [7], the process of constructing plane-wave
solutions of this BT is presented in detail. This process is, of course, a familiar problem of
electrodynamics but is seen here under a new perspective by employing the concept of a BT.

Finally, in Sec. 6 we briefly review the connection between BTs and recursion operators for
generating infinite sequences of nonlocal symmetries of PDEs.

2. BACKLUND TRANSFORMATIONS: CLASSICAL VIEWPOINT

Consider two PDEs P[u]=0 and Q[v]=0 for the unknown functions u and v, respectively. The
expressions P[u] and Q[v] may contain the corresponding variables u and v, as well as partial
derivatives of u and v with respect to the independent variables. For simplicity, we assume that
u and v are functions of only two variables x, t. Partial derivatives with respect to these variables
will be denoted by using subscripts: uy, U, Uy, Uy, Uy, etc.

Independently, for the moment, also consider a pair of coupled PDEs for u and v:

B,[u,v]=0 (a)  B,[u,v]=0 (b) (1)

where the expressions B, [u,V] (i=1,2) may contain u, v as well as partial derivatives of u and v
with respect to x and t. We note that u appears in both equations (a) and (b). The question then
is: if we find an expression for u by integrating (a) for a given v, will it match the corresponding
expression for u found by integrating (b) for the same v? The answer is that, in order that (a)
and (b) be consistent with each other for solution for u, the function v must be properly chosen
so as to satisfy a certain consistency condition (or integrability condition or compatibility
condition).

By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for solution for v,
for some given u, the function u must now itself satisfy a corresponding integrability condition.

If it happens that the two consistency conditions for integrability of the system (1) are
precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a Backlund
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transformation (BT) connecting solutions of P[u]=0 with solutions of Q[v]=0. In the special case
where P=Q), i.e., when u and v satisfy the same PDE, the system (1) is called an auto-Bé&cklund
transformation (auto-BT) for this PDE.

Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able to find a
BT connecting solutions u of this equation with solutions v of the PDE Q[v]=0 (if P=Q, the auto-
BT connects solutions u and v of the same PDE) and let v=vy(x,t) be some known solution of
Q[v]=0. The BT is then a system of PDEs for the unknown u,

Bu,v,]=0, i=12 (2)

The system (2) is integrable for u, given that the function v, satisfies a priori the required
integrability condition Q[v]=0. The solution u then of the system satisfies the PDE P[u]=0. Thus
a solution u(x,t) of the latter PDE is found without actually solving the equation itself, simply by
integrating the BT (2) with respect to u. Of course, this method will be useful provided that
integrating the system (2) for u is simpler than integrating the PDE P[u]=0 itself. If the
transformation (2) is an auto-BT for the PDE P[u]=0, then, starting with a known solution vy(x,f)
of this equation and integrating the system (2), we find another solution u(x,t) of the same
equation.

Let us see some examples of the use of a BT to generate solutions of a PDE:

1. The Cauchy-Riemann relations of Complex Analysis,
u,=v, (@  u,=-v, () (3)
(here, the variable t has been renamed y) constitute an auto-BT for the Laplace equation,
Plwl=w, +w, =0 (4)

Let us explain this: Suppose we want to solve the system (3) for u, for a given choice of the
function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we must compare them
in some way. We thus differentiate (a) with respect to y and (b) with respect to x, and equate the
mixed derivatives of u. That is, we apply the integrability condition (uy),= (u,)x . In this way we
eliminate the variable u and find the condition that must be obeyed by v(x,y):

Plvl=v,+v, =0 .

Similarly, by using the integrability condition (v,),= (v,)« to eliminate v from the system (3), we
find the necessary condition in order that this system be integrable for v, for a given function
u(x,y):

Plul=u, +u,, =0 .

In conclusion, the integrability of system (3) with respect to either variable requires that the
other variable must satisfy the Laplace equation (4).

Let now vy(x,y) be a known solution of the Laplace equation (4). Substituting v=v, in the
system (3), we can integrate this system with respect to u. It is not hard to show (by eliminating
vo from the system) that the solution u will also satisfy the Laplace equation (4). As an example,
by choosing the solution vo(x,y)=xy, we find a new solution u(x,y)=(x*-y*)2 +C .

2. The Liouville equation is written
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Plul=u,—-€e"=0 < u,=é" (5)

Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus sought by
means of a BT. We consider an auxiliary function v(x,f) and an associated PDE,

Ovl=v, =0 (6)

We also consider the system of first-order PDEs,
u +v, =2 2 (a) u,—v, =2 )2 (b) (7)

Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and eliminating
(us —v¢) and (uytv,) in the ensuing equations with the aid of (a) and (b), we find that u and v
satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is a BT connecting solutions of
(5) and (6). Starting with the trivial solution v=0 of (6), and integrating the system

ux:ﬁeu/Z, ut:\/aeu/Z,

we find a nontrivial solution of (5):
X+t

u(x,t):—Zln[C—ﬁj :

3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., in the study
of crystalline solids, in the transmission of elastic waves, in magnetism, in elementary-particle
models, etc. The equation (whose name is a pun on the related linear Klein-Gordon equation) is
written

Plul=u,—sinu=0 < u,=sinu (8)

The following system of equations is an auto-BT for the nonlinear PDE (8):

1 . (u—=v 1 I . (u+v
E(u+v)x—asm( 5 J , E(M—v)t—;sm( 5 j (9)

where a (#0) is an arbitrary real constant. [Because of the presence of a, the system (9) is called
a parametric BT.] When u is a solution of (8) the BT (9) is integrable for v, which, in turn, also is
a solution of (8): P[v]=0; and vice versa. Starting with the trivial solution v=0 of v,=sinv, and
integrating the system

. u 2 . u
u,=2asin— , wu,=—sin— ,
a

we obtain a new solution of (8):

a

u(x,t) =4arctan {C exp (ax + Lj} .
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3. CONJUGATE SOLUTIONS AND ANOTHER VIEW OF A BT

As presented in the previous section, a BT is an auxiliary device for constructing solutions of
a (usually nonlinear) PDE from known solutions of the same or another PDE. The converse
problem, where solutions of the differential system representing the BT itself are sought, is also
of interest, however, and has been recently suggested [7,8] in connection with the Maxwell
equations (see subsequent sections).
To be specific, assume that we need to integrate a given system of PDEs connecting two
functions u and v:
B [u,v]=0, i=12 (10)

Suppose that the integrability of the system for both functions requires that v and v
separately satisfy the respective PDEs

Plu]=0 (a)  Q[v]=0 (b) (11)

That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, that
these PDEs possess known (or, in any case, easy to find) parameter-dependent solutions of the

form
u=f,y;a.p,..) , v=gxy;x,4,..) (12)

where a, B, K, A, etc., are (real or complex) parameters. If values of these parameters can be
determined for which u and v jointly satisfy the system (10), we say that the solutions v and v of
the PDEs (11a) and (11b), respectively, are conjugate through the BT (10) (or BT-conjugate, for
short). By finding a pair of BT-conjugate solutions one thus automatically obtains a solution of
the system (10).

Note that solutions of both integrability conditions P[u]=0 and Q[v]=0 must now be known
in advance! From the practical point of view the method is thus most applicable in linear
problems, since it is much easier to find parameter-dependent solutions of the PDEs (11) in this
case.

Let us see an example: Going back to the Cauchy-Riemann relations (3), we try the
following parametric solutions of the Laplace equation (4):

u(x:y):a(xz_yz)-i-ﬂx_'_}/y )
v(x,y)=kxy+Ax+uy .

Substituting these into the BT (3), we find that k=2a, y=6 and A= —y. Therefore, the solutions

u(xay):a(xz_yz)-i-ﬂx_'_?/y 9
v(x,y)=2axy—yx+pBy

of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.
As a counter-example, let us try a different combination:

ux,y)=axy , v(x,y)=pxy .
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Inserting these into the system (3) and taking into account the independence of x and y, we
find that the only possible values of the parameters a and 8 are a=£=0, so that u(x,y)= v(x,y)=0.
Thus, no non-trivial BT-conjugate solutions exist in this case.

4. EXAMPLE: THE MAXWELL EQUATIONS IN EMPTY SPACE

An example of an integrable linear system whose solutions are of physical interest is
furnished by the Maxwell equations of electrodynamics. Interestingly, as noted recently [7], the
Maxwell system has the property of a BT whose integrability conditions are the electromagnetic
(e/m) wave equations that are separately valid for the electric and the magnetic field. These
equations possess parameter-dependent solutions that, by a proper choice of the parameters,
can be made BT-conjugate through the Maxwell system. In this and the following section we
discuss the BT property of the Maxwell equations in vacuum and in a conducting medium,
respectively.

In empty space, where no charges or currents (whether free or bound) exist, the Maxwell
equations are written (in S.1. units) [9]

(a) V-E=0 (¢) @xE:—z—f
3 (13)
B VB0 @) VxBegu o

where E and B are the electric and the magnetic field, respectively. Here we have a system
of four PDEs for two fields. The question is: what are the necessary conditions that each of
these fields must satisfy in order for the system (13) to be self-consistent? In other words, what
are the consistency conditions (or integrability conditions) for this system?

Guided by our experience from Sec. 2, to find these conditions we perform various
differentiations of the equations of system (13) and require that certain differential identities be
satisfied. Our aim is, of course, to eliminate one field (electric or magnetic) in favor of the other
and find some higher-order PDE that the latter field must obey.

As can be checked, two differential identities are satisfied automatically in the system
(13):

(V-E),=V-E,, (V-B),=V-B,
Two others read
Vx(VxE)=V(V-E)-V’E (14)
Vx(VxB)=V(V-B)-V’B (15)

Taking the rot of (13c¢) and using (14), (13a) and (13d), we find
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- 0°E
VPE — gy pty— = 16
Oluo 812 ( )
Similarly, taking the rot of (13d) and using (15), (13b) and (13c), we get
-
— B
sz_goﬂoaa?: (17)

No new information is furnished by the remaining two integrability conditions,
(VxXE),=VxE, , (VxB),=VxB, .

Note that we have uncoupled the equations for the two fields in the system (13), deriving
separate second-order PDEs for each field. Putting

1 1
oy =— & c= (18)
¢’ \ €0 o
(where c is the speed of light in vacuum) we rewrite (16) and (17) in wave-equation form:
-
VZE—iaf=o (19)
¢ Ot
-
vzé—iafzo (20)
c” Ot

We conclude that the Maxwell system (13) is a BT relating solutions of the e/m wave
equations (19) and (20), these equations representing the integrability conditions of the BT. It
should be noted that this BT is not an auto-BT! Indeed, although the PDEs (19) and (20) are of
similar form, they concern different fields with different physical dimensions and physical
properties.

The e/m wave equations admit plane-wave solutions of the form ﬁ(E -F—mwt), with
%:c where & =|k | (21)

The simplest such solutions are monochromatic plane waves of angular frequency w,
propagating in the direction of the wave vector £ :

E(F,0)=E,expli(k-F—wt)} (a)
B(F,0)=B,exp{i(k-F—wt)} (b)
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where EO and l;’o are constant complex amplitudes. The constants appearing in the above
equations (amplitudes, frequency and wave vector) can be chosen arbitrarily; thus they can be

regarded as parameters on which the plane waves (22) depend.
We must note carefully that, although every pair of fields (E,B) satisfying the Maxwell

equations (13) also satisfies the wave equations (19) and (20), the converse is not true. Thus,
the plane-wave solutions (22) are not a priori solutions of the Maxwell system (i.e., do not
represent actual e/m fields). This problem can be taken care of, however, by a proper choice of
the parameters in (22). To this end, we substitute the general solutions (22) into the BT (13) to
find the extra conditions the latter system demands. By fixing the wave parameters, the two
wave solutions in (22) will become BT-conjugate through the Maxwell system (13).

Substituting (22a) and (22b) into (13a) and (13b), respectively, and taking into account

that Ve *” = ik e'*" we have

By ey e =0 = (F-By)e e 0,
(B’Oe—iwr).ﬁeilif =0 = (E.éo)ei(léf—m) -0,

so that
k-E,=0, k-B,=0. (23)

Relations (23) reflect the fact that that the monochromatic plane e/m wave is a transverse
wave.
Next, substituting (22a) and (22b) into (13¢) and (13d), we find

e*iwt (Veik-F)XEO :ia)Boei(k-?fmt) =

(kXEO)e[(k-F—mt) — a)BOe[(k-Ffmt) ,

(Exéo)ei(lz-r-—m/) - _ Cﬁz _’Oei(/{.f,m,) ’
so that
kxE,=wB,, lgxl?o:_ﬁzgo (24)
c

We note that the fields £ and B are normal to each other, as well as normal to the direction
of propagation of the wave. We also remark that the two vector equations in (24) are not

independent of each other, since, by cross-multiplying the first relation by k , we get the second
relation.
Introducing a unit vector 7 in the direction of the wave vector & ,

t=klk (k=|k|=wl/c),

we rewrite the first of equations (24) as

http://nausivios.snd.edu.gr/nausivios
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- ko - 1 . -
By=—(xE))=—(txE)) .
0] c
The BT-conjugate solutions in (22) are now written

E(F,ty=E,expli(k -7 —wt)} ,
o 1 . = - 1. = (25)
B(r,t)=—(txE))expli(k-r —wt)} =—TxE

C C

As constructed, the complex vector fields in (25) satisfy the Maxwell system (13). Since
this system is homogeneous linear with real coefficients, the real parts of the fields (25) also
satisfy it. To find the expressions for the real solutions (which, after all, carry the physics of the
situation) we take the simplest case of linear polarization and write

E,=E e (26)

where the vector EO,R as well as the number a are real. The real versions of the fields (25),

then, read
E:EO’R cos(k-¥ —ott+a),

N . 1. (27)
B=—(txE z)cos(k-r —ot+a)=—TxE
c c

We note, in particular, that the fields £ and B “oscillate” in phase.
Our results for the Maxwell equations in vacuum can be extended to the case of a linear
non-conducting medium upon replacement of &, and uy with € and p, respectively. The speed of
propagation of the e/m wave is, in this case,

In the next section we study the more complex case of a linear medium having a finite
conductivity.

5. EXAMPLE: THE MAXWELL SYSTEM FOR A LINEAR
CONDUCTING MEDIUM

Consider a linear conducting medium of conductivity . In such a medium, Ohm’s law is
satisfied: J, = oE, where jf is the free current density. The Maxwell equations take on the
form [9]
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S S B
(a) V-E=0 (¢) VxE:—%—t
. (28)
(b) V-B=0 (d) ﬁxé:yamgﬂ%—t
By requiring satisfaction of the integrability conditions
Vx(VxE)=V(V-E)-V’E ,
Vx(VxB)=V(V-B)-V’B,
we obtain the modified wave equations
. O’E OE
VE - ¢ —uoc—=0
o TH
0°B oB )
V’B-¢ — o —=0
Mo 1% %

which must be separately satisfied by each field. As in Sec. 4, no further information is

furnished by the remaining integrability conditions.

The linear differential system (28) is a BT relating solutions of the wave equations (29).
As in the vacuum case, this BT is not an auto-BT. We now seek BT-conjugate solutions. As can
be verified by direct substitution into equations (29), these PDEs admit parameter-dependent

solutions of the form

E(F,t)= E,exp{—st -7 +i (k-7 — wt)}

=EO exp{('—%j IE?} exp(—imt) ,

B(¥,t)= Byexp{—st-F +i(k -F — wt)}
:EO exp{(z’—%j E-F} exp(—imt)

where 7 is the unit vector in the direction of the wave vector Ig :

(30)

t=klk (k=|k|=w/v)

(u is the speed of propagation of the wave inside the conducting medium) and where, for
given physical characteristics ¢, y, o of the medium, the parameters s, k and w satisfy the

algebraic system
s’—k*+euw’ =0, puocw-2sk=0 (31)
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We note that, for arbitrary choices of the amplitudes EO and E’O, the vector fields (30) are

not a priori solutions of the Maxwell system (28), thus are not BT-conjugate solutions. To obtain
such solutions we substitute expressions (30) into the system (28). With the aid of the relation

o il (i-2) 7 (-5
k
one can show that (28a) and (28b) impose the conditions
k-E,=0, k-B,=0 (32)

As in the vacuum case, the e/m wave in a conducting medium is a transverse wave.
By substituting (30) into (28c¢) and (28d), two more conditions are found:

(k+is)txE, = oB, (33)

(k+is)tx B, = —(suw+iuc)E, (34)

Note, however, that (34) is not an independent equation since it can be reproduced by cross-
multiplying (33) by 7, taking into account the algebraic relations (31).
The BT-conjugate solutions of the wave equations (29) are now written

E(F,t) _ Eoe—.s'f-Fei(k-?—(ut) ’

k+is (35)

B(I_:,t) — (Z'_‘XEﬁvo)e—Sf-?ei(k-f‘fm[)

To find the corresponding real solutions, we assume linear polarization of the wave, as
before, and set

=F @

- i
E, 0r€ -

We also put
k+is=|k+is|e’ =k>+s> e ; tanp=s/k.

Taking the real parts of equations (35), we finally have:
E(f,f) = EO,R e St cos(E-F—ctha) ,

VE? + 52
w

B(#,t) = (#xEyz)e ™ cos(k - F—at+a+g).

As an exercise, the student may show that these results reduce to those for a linear non-
conducting medium (cf. Sec. 4) in the limit c—0.
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6. BTS AS RECURSION OPERATORS

The concept of symmetries of PDEs was discussed in [1]. Let us review the main facts:
Consider a PDE F[u]=0, where, for simplicity, u=u(x,t). A transformation

u(xt) - u'(xt)

from the function u to a new function u” represents a symmetry of the given PDE if the
following condition is satisfied: u’(x,t) is a solution of F[u]=0 if u(x,t) is a solution. That is,

Flu'1=0 when Flu]l=0 (36)
An infinitesimal symmetry transformation is written
u'=u+ou=u+aQlu] (37)

where a is an infinitesimal parameter. The function Q[ul=Q(x, t, u, uy, u;,...) is called the
symmetry characteristic of the transformation (37).
In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it must
satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We write, symbolically,

S(Q;u)=0 when Flu]l=0 (38)

where the expression S depends linearly on Q and its partial derivatives. Thus, (38) is a
linear PDE for Q, in which equation the variable u enters as a sort of parametric function that is
required to satisfy the PDE F[u]=0.

A recursion operator R [10] is a linear operator which, acting on a symmetry
characteristic Q, produces a new symmetry characteristic Q' = IAQQ. That is,

S(RO;u)=0 when S(Q;u)=0 (39)

It is not too difficult to show that any power of a recursion operator also is a recursion
operator. This means that, starting with any symmetry characteristic Q, one may in principle
obtain an infinite set of characteristics (thus, an infinite number of symmetries) by repeated
application of the recursion operator.

A new approach to recursion operators was suggested in the early 1990s [2,3] (see also
[4-6]). According to this view, a recursion operator is an auto-BT for the linear PDE (38)
expressing the symmetry condition of the problem; that is, a BT producing new solutions Q" of
(38) from old ones, Q. Typically, this type of BT produces nonlocal symmetries, i.e., symmetry
characteristics depending on integrals (rather than derivatives) of u.

As an example, consider the chiral field equation

Flgl=(g 'g) +(g7'g,), =0 (40)

(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued function of x
and t (i.e., an invertible complex nxn matrix, differentiable for all x, t).
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C-14



PART C: Natural Sciences and Mathematics

Let Q[g] be a symmetry characteristic of the PDE (40). It is convenient to put

Q[g] = g P[d]

and write the corresponding infinitesimal symmetry transformation in the form
g'=g+og=g+agPlg] (41)

The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in ® also. As can
be shown [4], this PDE is

S(@;9)=® _+, +[g g, D ]+[g g, D,]=0 (42)

which must be valid when F[g]=0 (where, in general, [A, B] = AB-BA denotes the
commutator of two matrices A and B).
For a given g satisfying F[g]=0, consider now the following system of PDEs for the matrix
functions ® and ¢":

O =D, +[g g, , D]
, . (43)
—(Dt:(Dx+-bg gx,(D]

The integrability condition (@), =(®}),, together with the equation F[g]=0, require that ® be
a solution of (42): S(®;g) =0. Similarly, by the integrability condition (®,), =(®d,), one finds,

after a lengthy calculation: S(®”; g) = 0.

In conclusion, for any g satisfying the PDE (40), the system (43) is a BT relating solutions
@ and &’ of the symmetry condition (42) of this PDE; that is, relating different symmetries of the
chiral field equation (40). Thus, if a symmetry characteristic Q=g® of (40) is known, a new
characteristic Q =g®" may be found by integrating the BT (43); the converse is also true. Since
the BT (43) produces new symmetries from old ones, it may be regarded as a recursion
operator for the PDE (40).

As an example, for any constant matrix M the choice ®=M clearly satisfies the symmetry
condition (42). This corresponds to the symmetry characteristic Q=gM. By integrating the BT
(43) for @7, we get ®'=[X, M] and Q =g[X, M], where X is the “potential” of the PDE (40), defined
by the system of PDEs

X.=g'g, . -X,=g'g (44)

Note the nonlocal character of the BT-produced symmetry Q°, due to the presence of the
potential X. Indeed, as seen from (44), in order to find X one has to integrate the chiral field g
with respect to the independent variables x and f. The above process can be continued
indefinitely by repeated application of the recursion operator (43), leading to an infinite
sequence of increasingly nonlocal symmetries.
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7. SUMMARY

Classically, Backlund transformations (BTs) have been developed as a useful tool for finding
solutions of nonlinear PDEs, given that these equations are usually hard to solve by direct
methods. By means of examples we saw that, starting with even the most trivial solution of a
PDE, one may produce a highly nontrivial solution of this (or another) PDE by integrating the BT,
without solving the original, nonlinear PDE directly (which, in most cases, is a much harder task).

A different use of BTs, that was recently proposed [7,8], concerns predominantly the solution
of linear systems of PDEs. This method relies on the existence of parameter-dependent
solutions of the linear PDEs expressing the integrability conditions of the BT. This time it is the
BT itself (rather than its associated integrability conditions) whose solutions are sought.

An appropriate example for demonstrating this approach to the concept of a BT is furnished
by the Maxwell equations of electromagnetism. We showed that this system of PDEs can be
treated as a BT whose integrability conditions are the wave equations for the electric and the
magnetic field. These wave equations have known, parameter-dependent solutions -
monochromatic plane waves — with arbitrary amplitudes, frequencies and wave vectors playing
the roles of the “parameters”. By substituting these solutions into the BT, one may determine the
required relations among the parameters in order that these plane waves also represent
electromagnetic fields (i.e., in order that they be solutions of the Maxwell system). The results
arrived at by this method are, of course, well known in advanced electrodynamics. The process
of deriving them, however, is seen here in a new light by employing the concept of a BT.

BTs have also proven useful as recursion operators for deriving infinite sets of nonlocal
symmetries and conservation laws of PDEs [2-6] (see also [11] and the references therein).
Specifically, the BT produces an increasingly nonlocal sequence of symmetry characteristics,
i.e., solutions of the linear equation expressing the symmetry condition (or “linearization”) of a
given PDE.

An interesting conclusion is that the concept of a BT, which has been proven useful for
integrating nonlinear PDEs, may also have important applications in linear problems. Research
on these matters is in progress.
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Abstract

Backlund transformations (BTs) are a useful toal ifde-
grating nonlinear partial differential equations DEs).
However, the significance of BTs in linear problestmould
not be ignored. In fact, an important linear systfnPDESs
in Physics, namely, the Maxwell equations
electromagnetism, may be viewed as a BT relatiegnthve
equations for the electric and the magnetic fidghiese
equations representing integrability conditions $ofution
of the Maxwell system. We examine the BT propeftyhis
system in detail, both for the vacuum case andffercase
of a linear conducting medium.

of

1. Introduction

Backlund transformations (BTs) are an effectivel tioy
integrating partial differential equations (PDES$hey are
particularly useful for obtaining solutions of nivdar
PDEs, given that these equations are often notslichard
to solve by direct methods (see [1] and the refa¥sn
therein).

Generally speaking, given two PDEs — sgyafid b) —
for the unknown functions andv, respectively, a BT relat-
ing these PDEs is a system of auxiliary PDEs cairtgi
bothu andyv, such that the consistenaptégrability) of this
system requires that the original PDB} &nd p) be sepa-
rately satisfied. Then, if a solution of PD&) (s known, a
solution of PDE lf)) is found simply by integrating the BT,
without having to integrate the PDb)(directly (which,
presumably, is a much harder task).

In addition to being a solution-generatingchremnism,
BTs may also serve agcursion operatorgor obtaining
infinite hierarchies of (generally nonlocal) symniet and
conservation laws of a PDE [1-7]. It is by this hoet that
the full symmetry Lie algebra of the self-dual Ya¥igls
equation was found [3,6].

In this article, the nature of which is mggiedagogical,
we adopt a somewhat different (in a sense, inverisey of
a BT, suitable for the treatment of linear proble®gppose
we are given a system of PDEs for the unknown fansu
andv. Suppose, further, that the consistency of thigesy
requires that two PDEs, one farand one fow, be sepa-
rately satisfied (thus, the given system is a Biineting

system, then a solution to this system has beendfoln
other words, we are seeking solutions of the gisgstem
by using known, parameter-dependent solutions efriti-
vidual PDEs expressing the integrability conditiafsthis
system. Pairs of functions,{) satisfying the system will be
said to represefBT-conjugatesolutions

This modified view of the concept of a BT has
important application in electromagnetism that seras a
paradigm for the significance of BTs in linear geohs. As
discussed in this paper, the Maxwell equationsaftinear
medium exactly fit this BT scheme. Indeed, as idl we
known, the consistency of the Maxwell system rezgithat
the electric and the magnetic field satisfy sepanmative
equations. These equations have known, parameter-
dependent solutions, namely, monochromatic planeesia
with arbitrary amplitudes, wave vectors, frequesgietc.
(the “parameters” of the problem). By insertingshesolu-
tions into the Maxwell system, one may find the essary
conditions on the parameters in order that theeplaaves
for the two fields represent BT-conjugate solutioof
Maxwell's equations.

The paper is organized as follows:

Section 2 reviews the classical concept @dTa The
solution-generating process by using a BT is demnatesl
in a number of examples.

In Sec. 3 the concept of parametric, BT-cgata solu-
tions is introduced. A simple example illustrates idea.

In Sec. 4 the Maxwell equations in empty space
shown to constitute a BT in the sense describeSeinn 3.
For completeness of presentation (and for the itenfethe
student) the process of constructing BT-conjugdsmes
wave solutions is presented in detail.

Finally, in Sec. 5 the Maxwell system forimehr con-
ducting medium is similarly examined.

The results of Secs. 4 and 5 are, of cowsdl, known
from classical electromagnetic theory. It is mathéoally
interesting, however, to revisit the problem of stoacting
solutions of Maxwell’s equations from a novel pabfitview
by using the concept of a BT and by treating tleetelc and
the magnetic component of a plane e/m wave as BT-
conjugate solutions.

2. Backlund transformations: definition and
examples

these PDEs). The PDEs are assumed to possess known

solutions foru andv, each solution depending on a number
of parameters. If, by a proper choice of the patarse
these functions are made to satisfy the originfiedintial

The general idea of a Backlund transformation (BVEs
explained in [1] (see also the references therdir}. us
review the main points:



We consider two PDHER[u]=0 and Q[v]=0, where the
expressiond[u] and Q[v] may contain the unknown func-
tionsu andv, respectively, as well as some of their partial
derivatives with respect to the independent vagigbFor
simplicity, we assume thatandv are functions of only two
variablesx, t. Partial derivatives with respect to these vari-
ables will be denoted by using subscripts, aig, U, Uy,

Uyt , Uy, €tC.
We also consider a system of coupled PDEs &rdy,

B[uv=0, i=12 (1)
where the expressior [u,v] may containu, v and certain
of their partial derivatives with respect xcandt. The sys-
tem (1) is assumed to be integrabledthe two equations
are compatible with each other for solution f9rwhenu
satisfies the PDIP[u]=0. The solutiorv, then, satisfies the
PDE Q[Vv]=0. Conversely, the system (1) is integrable for
if v satisfies the PDE)[V]=0, the solutioru then satisfying
P[u]=0.

If the above assumptions are valid, we say tihe sys-
tem (1) constitutes a BT connecting solutionsPpfi|=0
with solutions ofQ[v]=0. In the special case wheR=Q,
i.e., whenu andv satisfy the same PDE, the system (1) is
called armauto-Béacklundransformation (auto-BT).

Suppose now that we seek solutions of the PIE=O.
Also, assume that we possess a BT connecting aotuti
of this equation with solutionsof the PDEQ[V]=0 (if P=Q
the auto-BT connects solutiomsandv of the same PDE).
Let v=vy(x,t) be a known solution dd[v]=0. The BT is then
a system of equations for the unknown

B[luv]=0, i=12

. )
Given thatQ[vg]=0, the system (2) is integrable forand its
solution satisfies the PDE[u]=0. We may thus find a solu-
tion u(xt) of P[u]=0 without solving the equation itself,
simply by integrating the BT (2) with respect to Of
course, the use of this method is meaningful preithat
we know a solutiomvy(x,t) of Q[v]=0 beforehand, as well as
that integrating the system (2) foiis simpler than integrat-
ing the PDEP[uU]=0 directly. If the transformation (2) is an
auto-BT, then, starting with a known solutiog(x,t) of
P[u]=0 and integrating the system (2), we find anot@u-
tion u(x,t) of the same equation.

Let us see some examples of using a BT tergém
solutions of a PDE:

1. TheCauchy-Riemann relatioraf complex analysis,

u =V,

(& y=-v (Y ©)

(here, the variablehas been renamsgl constitute an auto-
BT for the (linear)Laplace equation

PIwW =w,+w =0 (4)

53

Indeed, differentiating @ with respect toy and (d) with
respect tok, and demanding that thietegrability condition
(uy=(uy)x be satisfied, we eliminate the variahlgo find
the consistency condition that must be obeyed/(gy) in
order that the system (3) be integrableuor

PM=v,+v,=0.

Conversely, eliminating from the system (3) by using the
integrability condition ),=(w)x , we find the necessary
condition foru in order for the system to be integrablevor

Plu=u,+u, =0.

Now, letvg(x,y) be a known solution of the Laplace equa-
tion (4). Substitutingr=v, in the system (3), we can inte-
grate the latter with respect toto find another solution of
the Laplace equation. For example, by choosyigy)=xy
we find the solutioru(x,y)= (*~y?)/2 +C .

2. TheLiouville equationis written

Plu=uy,-€=0 < y,=2¢ (5)

Solving the PDE (5) directly is a difficult task inew of
this equation’s nonlinearity. A solution can be ridu how-
ever, by using a BT. We thus consider an auxilfanction
v(x,t) and an associated linear PDE,

QM =v, =0 (6)
We also consider the system of first-order PDEs,
u +v, = \/E guv/2
(7

u, -y, :\/E QU2

It can be shown that the self-consistency of thetesy (7)
requires that andv independently satisfy the PDEs (5) and
(6), respectively. Thus, this system constituteBTacon-
necting solutions of (5) and (6). Starting with thivial
solutionv=0 of (6) and integrating the system

UXZ\/EGUIZ, U‘:\/_Z eu/2 ,

we find a solution of (5):

u(xt) =—2In(C—X—+tj .
2

3. The 8ine-Gordon” equatiorhas applications in vari-
ous areas of Physics, such as in the study of aliyst
solids, in the transmission of elastic waves, irgnaism, in
elementary-particle models, etc. The equation (&@htame



is a pun on the related linear Klein-Gordon equmtits
written

u, =sinu (8)
As can be proven, the differential system

1 (u-v

—(u+v), = asinf —

2 2

)
1 —

[where a (#0) is an arbitrary real constant] is a parametric
auto-BT for the PDE (8). Starting with the trivisblution
v=0 of v,= sinv, and integrating the system

. u 2
u,=2asin— , U =— si
2 a

NS =

we obtain a new solution of (8):

3. BT-conjugate solutions

u(xt)=4 arctar{ C exé

Consider a system of coupled PDEs for the functioasd
v of two independent variablesy:

B[uv=0, i=12 (20)
Assume that the integrability of this system fothow andv
requires that the following PDEs be independeratisfed:

P[u=0 (8 dvy=0 (b 11)
That is, the system (10) represents a BT connedtieg
PDEs (11). Assume, further, that the PDEs (11) gssss
parameter-dependent solutions of the form

u= f(x y,a,b.7,..) ,

(12)

v=9(X Yk, A,4,...)
wherea, B, x, A, etc., are (real or complex) parameters. If
values of these parameters can be determined fahwh
andv satisfy the system (10), we say that the solutioasd
v of the PDEs (14) and (1b), respectively, areonjugate
through the BT(10) (orBT-conjugatefor short).

Let us see an example: Going back to the IBauc
Riemann relations (3), we try the following pararitet
solutions of the Laplace equation (4):
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u(x y)=a(X-y)+pxry,
VX, Y=k Xy+ A X uy.

Substituting these into the BT (3), we find that2a, u=p
andA= —y. Therefore, the solutions

u(x, =a(X-y)+Bxyy,
V(X Y)=2axy—y X+ By

of the Laplace equation are BT-conjugate througé th
Cauchy-Riemann relations.
As a counter-example, let us try a differeminbination:
u(x y)=axy, vxy=pgxy.
Inserting these into the system (3) and taking adoount
the independence afandy, we find that the only possible
values of the parametessandf area=£=0, so thau(x,y)=

v(x,y)=0. Thus, no non-trivial BT-conjugate solutions éxis
in this case.

4. Application to the Maxwell equations in
empty space

As is well known, according to the Maxwell theotyedec-
tromagnetic (e/m) disturbances propagate in spaceaaes
running at the speed of light. It is interestingnfr the
mathematical point of view that the vacuum waveatigns
for the electric and the magnetic field are conegdb each
other through the Maxwell system of equations ircmthe
same way two PDEs are connected via a Backlung-tran
formation. In fact, certain parameter-dependenttgmis of
the two wave equations are BT-conjugate through the
Maxwell system.

In empty space, where no charges or curr@vitether
free or bound) exist, th®axwell equations are written in
S.1. units [8]:

N S 0B
(@ V-E=0 (¢ VxE=-—
ot
. (13)
(b) V-B=0  (d) ﬁxézgoyoa—

ot

where E and B are the electric and the magnetic field,
respectively. In order that this system of PDESs sed-
consistent (thus integrable for the two fields)yt&@i& consis-
tency conditions (omtegrability conditiony must be satis-
fied. Four are satisfied automatically:

0, V-(VxB)=0,

|

(6 )t=§'a '



Two others read:

Vx(VXE)=V(V-E)-V’E (14)

Vx(VxB)=V(V-B)-V’B (15)
Taking therot of (13x) and using (14), (18 and (138l), we
find:

(16)

Similarly, taking therot of (13d) and using (15), (1% and
(13c), we get:

V’B - (17)

No new information is furnished by the remainingptimte-
grability conditions,

(ﬁxé)tzﬁxét . (Vx B),=VxB
Putting

! c ! (18)
E =" <& =

¢’ NENTR

. 190°E
V’E - — =0 (19)

¢ ot?

,~ 1 0°B
VB - — =0 (20)

c’ ot?

The PDEs (19) and (20) are consistency conditidma t

must be separately satisfied Byand B in order that the
differential system (13) be integrable for eithigld, given
the value of the other field. In other words, tlygstem (13)
is a BT relating solutions of the wave equation8) (and
(20).

It should be noted carefully that the BT (18not an
autoBT! Indeed, although the PDEs (19) and (20) look
similar, they concerdifferentfields with different physical
dimensions and physical properties. A true autosBould
connect similar objects (such as, e.g., differeathamatical
expressions for the electric field).

The above wave equations admit plane-wavetisok

of the formE (k- F — w t) , with
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%:c where k= [K | 1)

The simplest such solutions armnochromatic plane waves
of angular frequency, propagating in the direction of the

wave vectork :

(T, exp{l (k r—owt)} (a) 22)
(F,

exp{l(k r-ot)} (b

where the EO and I§0 represent constant complex ampli-

tudes. Since all constants appearing in equati®f} (that
is, amplitudes, frequency and wave vector) canrbérar-
ily chosen, they can be regardedbasameterson which the
solutions (22) of the wave equations depend.

Clearly, although every pair of field&, B) that satis-

fies the Maxwell equations (13) also satisfies ribspective
wave equations (19) and (20), the converse isrnet This
means that the solutions (22) of the wave equatiemota
priori solutions of the Maxwell system of equations (id®
not represent e/m fields). This problem can be diedk
however, by appropriate choice of the parameteosthis
end, we substitute the general solutions (22) timosystem
(13) in order to find the extra conditions this teys re-
quires; that is, in order to make the two functiamq22)
BT-conjugate solutions of the respective wave dqoat
(19) and (20).

Substituting (28 and (2®) into (13) and (1®), re-

spectively, and taking into account thae'*" = ik ",
we have:

(Eo e—iwl).ﬁeik'vr' -0 > (—k- E) é(k‘-r'—ml) =0 '

(éo efiml).ﬁeik'vr' -0 > (T( ”g) é(k’~r>wt) =0 ,
so that

k-E =0, k-B=0. (23)

Physically, this means that the monochromatic plafme
wave is aransversavave.

Next, substituting (29 and (2d) into (1%) and (18l),
we find:

(k f-ot)

th(velkr)X% w"%
(k % EO) el (k-r—wt) % (kr wt)
efiwt (6 ei k‘-r')X —% - —iw £, 1, T;o ei(lZ»r'—wt) =
-5 i (KF-ot) “ - i (KF-ot)
(kxB))e = E e ,



so that

- = o @ -
kxE =w B , kx%:—g E (24)

This means that the field& and B are normal to each
other as well as being normal to the direction of
propagation. It can be seen that the two vectoataus in
(24) are not independent of each other; indeedssero

multiplying the first relation byz we get the second one.
Introducing a unit vectof in the direction of the wave

vectork ,
f=klk (k=|kl=w/c),

we rewrite the first of Egs. (24) as

k . - 1. -
B,=—(rxE)=—(txE) .
[ Cc

The BT-conjugate solutions in (22) are now written:

E(F,t)=E exp{i(k-T-wt)} ,
B(F,t) 1 (FxE,)exp{i(k-T - ot)} (25)
C
1. -
=—7xE
Cc

As constructed, the complex vector field§2B) satisfy
the Maxwell system (13), which is a homogeneousdin
system with real coefficients. Evidently, the rgalrts of
these fields also satisfy this system. To find ékpressions
for the real solutions (which, after all, carry thRysics of
the situation) we take the simplest case of a tiggaolar-
ized e/m wave and write:

E,=E,€" (26)

where the vectoE, , and the numbes are real. Theeal
versions of the fields (25), then, read:

m
Il
o
@]
)
=
—
|
S
i
Q
A

E

.
Il

~~
N>

xE Jcosk - o t+a) (27)

>

X
m

olr olr Jm

We note, in particular, that the fields and B “oscillate”
in phase.

Our results for the Maxwell equations in vacucan be
extended to the case oflimear non-conducting medium
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upon replacement of, and zo with ¢ andx, respectively.
The speed of propagation of the e/m wave is, ;¢hse,

1

N

5. The Maxwell system for a linear conducting
medium

1%

=~ |2

In a linear conducting medium of conductivity in which
Ohm's law is satisfiedJ, = cE (where J, is the free
current density), the Maxwell equations read [8]:

(a)
* (28)
oE

(b) (d) Vx B= po E+eu —
ot

By the integrability conditions
Vx(VxE)=V(V-E)-V’E,
Vx(VxB)=V(V-B)-V?’B,

we get thenodified wave equations

oE
—uo—=0
ot

d’E
ot?
d’B
ot?

V’E

ep

oB @9
—uo—=0
ot

V°B -

Ep

No new information is furnished by the remainindein
grability conditions (cf. Sec. 4).

We observe that the linear differential syst@8) is a
BT relating solutions of the wave equations (29 é&-
plained in the previous section, this BTnigt an auto-BT).
As in the vacuum case, we seek BT-conjugate sulth so
tions. As can be verified by direct substitutionoirEqgs.
(29), these PDEs admit parametric plane-wave swisitbf
the form

E(,t) = E, exp{-s7-F+i (k- T - wt)}
=E, exp{(i—fj IZ-F} expfimt )

B(F,t) = B, exp{-st-T+i(k-T— ot)}

=B, exp{(i—fj R-F} expFiot )

(30)



where 7 is the unit vector in the direction of the waveve
tor k ,

f=klk (k=|k|=wlv)

(v is the speed of propagation of the wave insidecthe
ducting medium) and where, for given physical cheeas-
tics e, u, o of the medium, the parametexk andw satisfy
the algebraic system

Sz—k2+g,ua)2:0, 31)
How—2sk=0

Up to this point the complex amplitud§§ and BO in
relations (30) are arbitrary and the vector figl@i8) are not

We also set

K+ 8§ & ;

k+is=|k+is|e" =

tanp=s/k .

Taking the real parts of Egs. (35), we finally have

E(f,t)=E,,e " "cos(k-T-wt+a),
o \V k2+32 A~ = _sti N
B(f,t)=—— (rxER)e cosk-T-ot+ta+e).

4]

6. Summary and concluding remarks

Backlund transformations (BTs) were originally dmd as

a priori solutions of the Maxwell equations (28), thus are a tool for finding solutions of nonlinear partiaffdrential

not yet BT-conjugate solutions of the respectiveevaqua-
tions in (29). To find the restrictions these amyles must
satisfy, we insert Egs. (30) into the system (28)th the
aid of the relation

it is not hard to show that (a38and (2®) impose the condi-
tions
k-E =0, k-B=0 (32)
Again, this means that the e/m wave is a transvwesase.
Substituting (30) into (28 and (28l), we find two more
conditions:

(k+is)7x E = 0B (33)

(k+i8)7x B, = — (suw + iuo) E, (34)
However, (34) is not an independent equation sincan be
reproduced by cross-multiplication of (33) byand use of
relations (31).

The BT-conjugate solutions of the wave ecunti(29)
are now written:

E(F,t) — Eo e—sr-T‘ ei(k-f—(ot) ,

. K+iS . = oir i (35)
B(F,t) = (txE,)e gk
w

To find the corresponding real solutions, we asslinear
polarization of the e/m wave and set, as before,

E,=E.€e".
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equations (PDEs). They were later also proven usefu
nonlocal recursion operators for constructing iitdinse-
guences of symmetries and conservation laws ofaicert
PDEs [2-7].

Generally speaking, a BT is a system of PBdmect-
ing two fields that are required to independendiisfy two
respective PDEs in order for the system to be ratadg for
either field. If a solution of either PDE is knowthen a
solution of the other PDE is obtained by integmatine BT,
without having to actually solve the latter PDE koifly
(which, presumably, would be a much harder task)the
case where the two PDEs are identical, an autoiBdiyzces
new solutions of a PDE from old ones.

As described above, a BT is an auxiliary foolfinding
solutions of a given (usually nonlinear) PDE, uskmpwn
solutions of the same or another PDE. In this lasticow-
ever, we approached the BT concept differently ttyally
inverting the problem. According to this schemeisitthe
solutions of the BT itself that we are after, haviparame-
ter-dependent solutions of the PDEs that expressrte-
grability conditions at hand. By a proper choicetlté pa-
rameters, a pair of solutions of these PDEs magiblysbe
found that satisfies the given BT. These solutiares then
said to beconjugatewith respect to the BT.

A pedagogical paradigm for demonstrating frasticu-
lar approach to the concept of a BT is offered Hxy Max-
well system of equations of electromagnetism. Wenstd
that this system can be thought of as a BT whasgiiabil-
ity conditions are the wave equations for the eleend the
magnetic field. These wave equations have knowrgme-
ter-dependent solutions (monochromatic plane wawéts)
arbitrary amplitudes, frequencies, wave vectors, &y
substituting these solutions into the BT, one matkednine
the required relations among the parameters inrahaé the
plane waves also represent electromagnetic fiéles,are
BT-conjugate solutions of the Maxwell system. Thsults
arrived at by this method are, of course, well knowv
advanced electrodynamics. The process of deriviregnt
however, is seen here in a new light by employhegdon-
cept of a BT.



We remark that the physical situation wasmgrad
from the point of view of a fixed inertial observérhus,
since no spacetime transformations were involves used

the classical form of the Maxwell equations (wEhand B
retaining their individual characters) rather thhe mani-
festly covariant form of these equations.

An interesting conclusion is that the conceyt a
Béacklund transformation, which has been provenesxély
useful for finding solutions of nonlinear PDEs, darcertain
cases also prove useful for integratiligear systemsof
PDEs. Such systems appear often in Physics andrigéc
Engineering (see, e.g., [9]) and it would certaibg of in-
terest to explore the possibility of using BT methdor
their integration.

Acknowledgment
| thank Aristidis N. Magoulas for many fruitful digssions.
References
[1] C. J. Papachristolsymmetry and integrability of

classical field equations
http://arxiv.org/abs/0803.3688

[2] C. J. PapachristolRotential symmetries for self-
dual gauge fieldsPhys. Lett. A 145 (1990) 250.

[3] C. J. PapachristolRecursion operator and current
algebras for the potential SL(N,C) self-dual Yang-
Mills equation Phys. Lett. A 154 (1991) 29.

[4] C. J. Papachristod,ax pair, hidden symmetries,
and infinite sequences of conserved currents for
self-dual Yang-Mills fieldsJ. Phys. A 24 (1991) L
1051.

[5] C. J. Papachristolsymmetry, conserved charges,
and Lax representations of nonlinear field equa-
tions: A unified approachElectron. J. Theor. Phys.
7, No. 23 (2010) 1.

[6] C. J. Papachristou, B. K. HarrisoiBacklund-
transformation-related recursion operators: Appli-
cation to the self-dual Yang-Mills equatjod.
Nonlin. Math. Phys., Vol. 17, No. 1 (2010) 35.

[7]1 C. J. Papachristolgymmetry and integrability of a
reduced, 3-dimensional self-dual gauge field
mode| Electron. J. Theor. Phys. 9, No. 26 (2012)
119.

[8] D. J. Griffiths, Introduction to Electrodynamics
3rd Edition (Prentice-Hall, 1999).

[9] E. C. Zachmanoglou, D. W. Thoktroduction to
Partial Differential Equations with Applications
(Dover, 1986).

58



6/4/2020 Plane-wave solutions of Maxwell's equations: An educational note | META Publishing

Plane-wave solutions of Maxwell's equations: An educational
note

Costas J. Papachristou
Hellenic Naval Academy

Synopsis

In electrodynamics courses and textbooks, the properties of plane electromagnetic waves in both conducting and
non-conducting media are typically studied from the point of view of the prototype case of a monochromatic
plane wave. In this note an approach is suggested that starts from more general considerations and better

exploits the independence of the Maxwell equations.

metapublishing.org/index.php/MP/catalog/book/70

11






META Publishing March 2020

Plane-wave solutions of Maxwell's equations:
An educational note

C. J. Papachristou

Department of Physical Sciences, Hellenic Navald&oay, Piraeus 18539, Greece
E-mail: papachristou@hna.gr

Abstract

In electrodynamics courses and textbooks, the ptiegeof plane electromag-
netic waves in both conducting and non-conductireglim are typically studied
from the point of view of the prototype case of anochromatic plane wave. In
this note an approach is suggested that starts finone general considerations
and better exploits the independence of the Maxagglations.

1. Introduction

Plane electromagnetic (e/m) waves constitute aifgignt type of solution of the
time-dependent Maxwell equations. A standard edealt approach in courses and
textbooks (at both the intermediate [1-4] and ttheaaced [5,6] level; see also [7,8])
Is to examine the prototype case of a monochronpédite wave in both a conducting
and a non-conducting medium.

In this note a more general approach to ttublpm is described that makes
minimal initial assumptions regarding the specifimctional forms of the plane
waves representing the electric and the magnedid. fThe only assumption one does
need to make from the outset is that both fieltkc{gc and magnetic) are expressible
in integral form as linear superpositions of monoahatic waves. In particular, it is
not even necessary gopriori require that the plane waves representing thefitas
travel in the same direction.

In Section 2 we review the case of a monaolatec plane e/m wave in empty
space. A more general (non-monochromatic) treatioktite plane-wave propagation
problem in empty space is then described in Seln Sec. 4 this general approach is
extended to plane-wave solutions in the case ahnaucting medium; an interesting
difference from the monochromatic case is noted.

2. The monochromatic-wave description for empty sgce

In empty space, where no charges or currents (whétde or bound) exist, thdax-
well equations are written (in S.I. units)

(@) V-E=0 (0 ﬁsz—%
oF M)
(b) V-B=0 (d) ﬁxézgoﬂoa

where E and B are the electric and the magnetic field, respebtivBy applying the
identities
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Vx(VxE)=V(V-E)-V’E,
Vx(VxB)=V(V-B)-V?B,

we obtain separate wave equationsfoand B :

,= 1 8°E
V2E - =0 2)
vzé—iazB:o (3)
c® ot?
where
e 1

e (4)

We try monochromatic plane-wave solutiong)fand (3), of angular frequency
o, propagating in the direction of the wave vedtar

E(r,t)=E,exp{i (k-F—wt)} (a)

B B . 5)
B(F,t)=Byexp{i (k-T-wt)} (b
where E, and B, are constant complex amplitudes, and where
a) —
¢ (k=lk]) (6)

The general solutions (5) do raopriori represent an e/m field. To find the extra
constraints required, we must substitute Eqs.nt®) the Maxwell system (1). By tak-

ing into account thaVe'*" = ik &7, thediv equations (a) and (1) yield
k-E=0 (@) k- B=0 (b 7)
while therot equations (&) and (H) give

KkxE=w B (3 T«B:-?E(b (8)

2

Now, we notice that the four equations (7)-48 not form an independent set
since (b) and (&) can be reproduced by usingafand (&). Indeed, taking the dot

product of (&) with kK we get (B), while taking the cross product ofaj8with k
and using (@) and (6), we find (B).

So, from 4 independent Maxwell equations viraimed only 2 independent
pieces of information. This happened because wa” “bair trial solutions (5) with
more information than necessary, in anticipatiorresfults that followa posteriori
from Maxwell’'s equations. Thus, we assumed from déset that the two waves
(electric and magnetic) have similar simple funatibforms and propagate in the
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same direction. By relaxing these initial assumpjoour analysis acquires a richer
and much more interesting structure.

3. A more general approach for empty space

Let us assume, more generally, that the fididand B represent plane waves propa-
gating in empty space in the directions of the uaitorsz and o, respectively:

E(F,t)=F(-F—ct), B(f,t)=G (& -F—ct) (9)

Furthermore, assume that the functidhsand G can be expressed as linear combi-
nations of monochromatic plane waves of the forin f(r continuously varying val-
ues ofk andw, wherew=ck, according to (6). Theft and B can be written in Fou-
rier-integral form, as follows:

E:J‘ Eo(k) é’k(ff—ct) dk

10
B:J- E)(k) ék(é'-rfct) dk ( )

In general, the integration varialitas assumed to run from O teo+ For notational
economy, the limits of integration with respeckiwill not be displayed explicitly.
By setting

u=rz-r-ct, v=o-T-ct (11)
we write
E(u)=[ B (K & d w2
é(v)zj B (K & dk
We note that
veki = jkrdkt, vev= i & (13)

By using (12) and (13) we find that
?-E:jikf-éo(k)ék“dk, Vézjik&-éo(k)ék"dk,
V x E:jikfx Ey(K) &Y dk Vx B:jikc}x B, (K) &< dk.
Moreover, we have that

8E_ . = iku aB_ . S kv
E_-ijo(k)é dk, E_-juwso(k)é dk

where, as alwaysy=ck.
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The two Gauss’ lawsdland (D) yield
jkf- E,(k) é“ dk=0 and jkc}- B,(K) €“ dk=0,

respectively. In order that these relations bedvalentically for allu and allv, re-
spectively, we must have

7-Ey(K)=0 and &-By(k)=0, for allk (14)

From Faraday's law @ and the Ampéere-Maxwell law ¢} we obtain two more in-
tegral equations:

jkfxéo(k) gl dk:ja)”@( X & d (15)
[kex By(K) ékakz—jC—“; (k& d (16)

where we have taken into account Eqg. (4).
Taking the cross product of (15) wish and using (16), we find the integral rela-
tion

[KI(6-Bp) #—(6-7) E)] & dk=—] KT & d.
This is true for all if
(6-E)i-(6-0)E=-E = (6-7-D)E= (6" B)7.

Given that, by (14)E0 andz are mutually perpendicular, the above relation aalg

be valid if -7 =1 and - E, =0. This, in turn, can only be satisfieddf=7. The
same conclusion is reached by taking the crossugtoaf (16) with7 and by using
(15) as well as the fact thﬁb is normal toc . From (11) we then have that

u=v=r-T—ct

so that relations (12) become

E(F,1) = j E, (k) €% dk= j B(p BET ¢

17
é(r,t)zjéo(k) ék“dkzj'ﬁ%(& K@Er-ch g ")
Equations (14) are now rewritten as
7-E,(k)=0 and 7-B,(k)=0, for allk (18)

Furthermore, in order that (15) and (16) (witland 7 in place ofv and &, respec-
tively) be identically valid for alu, we must have
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kixEy(W=wB(K < 7x B(R= cB( k (19)
and
x By =—5 BB = 7x By e=—% Bk (20)

for all k, wherek=w/c. Notice, however, that (19) and (20) are not irehejent equa-
tions, since (20) is essentially the cross prodfi¢19) with 7 .

In summary, the general plane-wave solutitmghe Maxwell system (1) are
given by relations (17) with the additional constta (18) and (19). This is, of
course, a well-known result, derived here by stgrtvith more general assumptions
and by best exploiting the independence [9] of\Mlaxwell equations.

Let us summarize our main findings:

1. The fieldsE and B are plane waves traveling in the same directiefindd
by the unit vector: ; these fields satisfy the Maxwell equations in gngpace.

2. The e/m wav€E, B) is atransversavave. Indeed, from equations (17) and the
orthogonality relations (18) it follows that

7-E=0 and 7-B= C (21)

3. The fieldsE and B are mutually perpendicular. Moreover, € B,7) define

a right-handed rectangular system. Indeed, by aragtplying (17) with 7 and by
using (19) and (20), we find:

FxE=cB, 7xB-_1E (22)
C

4. Takingeal valuesof (21) and (22), we have:

A

7-ReE=0, 7- RB= ( and 7xReE=cReB (23)

The magnitude of the last vector equation in (28¢ga relation between the instan-
taneous values of the electric and the magnett: fie

|ReE | ¢ |ReB 42
The above results for empty space can bend&tkin a straightforward way to the
case of dinear, non-conducting, non-dispersingedium upon replacement gf and
o With & andu, respectively [3]. The (frequency-independent)esbef propagation
of the plane e/m wave in this casesis1/(gu)*>.

4. The case of a conducting medium

The Maxwell equations for a conducting medium afidwctivity c may be written as
follows [1,3]:
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(a) V-E=0 © ﬁxéz_%
. (25)
- - = oE
(b) V-B=0 (d) V x B:IIJO' E+€,Lla
By using the vector identities
Vx(VxE)=V(V-E)-VZ?E,
Vx(VxB)=V(V-B)-V?B,
the relations (25) lead to timeodified wave equations
= 0°E oE
V’E - ¢ —uo—=0 26
HoF THO (26)
. 0°B 0B
VB -¢ - —=0 27
HoT T HO (27)

Guided by our monochromatic-wave approadhegoroblem in [7,8], we now try
a more general, integral form of solution of theabwave equations:

E(r,t):jéo(k) g ST dkir-en dk:j B( kexp{ (ik ¥-"F o)t d

_ . N . (28)
B(f,t):jBo(k) g ST gkiT-on dkzj' B( kexp{ (ik ¥ "¢ dt dl
wheres is a real parameter related to the conductivitthef medium. As in the vac-
uum case, the unit vectar indicates the direction of propagation of the wa\etice

that we have assumed from the outset that both svavelectric and magnetic —
propagate in the same direction, in view of thd that our results must agree with

those for a non-conducting medium (in particular,the vacuum) upon settirsg0.
It is convenient to set

exp{(k—-s)7-T—iwtj=A[ 1) (29)
Then, Eqg. (28) takes on the form

E(7,1) :jEO(k) A(T, t) dk

- - (30)
B(r,t)zjso(k) AT, t) dk
The following relations can be easily proven:
VA(F,t) = (ik —s) 7 A(T, t) (31)
V2A(T,t) = (s* — k- 2isk) AT, 1) (32)
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Moreover,

2
%A(F,t) —_iwA(Ft) and %A(F,t) — A1),

From (26) we get
I[(SZ— k2t spuw®+ i(uow-2sK] BE(§ A1) dkeO

[a similar integral relation is found from (27)]hiB will be identically satisfied for all
r andt if

s>~ k*+euw®=0 and pow- 2sk= ( (33)

By using relations (33)y ands can be expressed as functionk,0és required in or-
der that the integral relations (28) make sensdicBloin particular, that, by the sec-
ond relation (33)s=0 if 6=0 (non-conducting medium). Then, by the first relat
wlk=1/(e1)*?, which is the familiar expression for the speegmipagation of an e/m
wave in a non-conducting medium [3].

From the two Gauss’ laws @5%and (2%) we get the corresponding integral rela-
tions

J(k=9)7-B(K AT, 9 dk=0,
j(ik—s)f-a)(k) AT, 1Y) dk=0.
These will be identically satisfied for afl andt if
7-Ey(k)=0 and 7-B,(k)=0, for allk (34)
From (2%) and (2%l) we find

[(k=9)7xEy(K AT, 9 dk=[ wB(B A1) db
and

[(k=9)7xB(K AT, 9 dk= [ (uo - buw) B(R ATt ) dk,
respectively. To satisfy these for @llandt, we require that

(k+is)7x By(R = B(R (35)

and

(k+i8)7x By(K) = ~(suw+ o) By(K (36)

Note, however, that (36) is not an independent Bgjuaince it can be reproduced by
cross-multiplying (35) withr and by taking into account Egs. (33) and (34).
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We note the following:
1. From (30) and (34) we have that

7-E=0 and 7-B= ( (37)

or, in real form,7-ReE = 0 and7- R&= . This means that botReE and ReB

are normal to the direction of propagation of treve:
2. From (30) and (35) we get

A= o o -
erzijO(k)A(r,t)dk (38)

The integral on the right-hand side of (38) is, erafly, not a vector parallel t& .
Now, in the limit of negligible conductivitys€0) the relations (33) give=0 and
wlk=1/(eu)"%. The ratio w/k represents the speed of propagatiorin the non-
conducting medium, for the frequeney If the medium isnon-dispersivethe speed
v=wlk is constant, independent of frequency. Then &). (withs=0) becomes

FxE=0[B(k AT, dk=0 B

and, in real form, it reads x ReE =v ReB. Geometrically, this means that the
(ReE, ReB 7 ' define a right-handed rectangular system.

3. As shown in [7,8], th& and B are always mutually perpendicular imeno-
chromatice/m wave of definite frequeney, traveling in a conducting medium. Such
a wave is represented in real form by the equations

E(F,t)=E,e 5 cos(kF- tT-wt+a),
2 2 o
B(r.t)= VK4S B e cos(6- T-o t+ B )
w
where Eo is a real vector and where tgng¢)=s/k. This perpendicularity betweeh
and B ceases to exist, however, in a non-monochromatiewef the form (28).
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Independence of Maxwell’s equations:
A Biacklund-transformation view

C. J. Papachristou @ and A. N. Magoulas ®)

@ Department of Physical Sciences, Hellenic Naval Academy
® Department of Electrical Engineering, Hellenic Naval Academy

Abstract. It is now widely accepted that the Maxwell equations of Electrodynamics
constitute a self-consistent set of four independent partial differential equations.
According to a certain school of thought, however, half of these equations — namely,
those expressing the two Gauss’ laws for the electric and the magnetic field — are
redundant since they can be “derived” from the remaining two laws and the principle
of conservation of charge. The status of the latter principle is thus elevated to a law of
Nature more fundamental than, say, Coulomb’s law. In this note we examine this line
of reasoning and we propose an approach according to which the Maxwell equations
may be viewed as a Bécklund transformation relating fields and sources. The
conservation of charge and the electromagnetic wave equations then simply express
the integrability conditions of this transformation.

Keywords: Classical electrodynamics, Maxwell’s equations, Backlund transformations

1. Is Gauss’ law of Electrodynamics redundant?

As we know, the Maxwell equations describe the behavior (that is, the laws of change
in space and time) of the electromagnetic (e/m) field. This field is represented by the
pair (E,B), where E and B are the electric and the magnetic field, respectively. The

Maxwell equations additionally impose certain boundary conditions at the interface of
two different media, while certain other physical demands are obvious (for example,
the e/m field must vanish away from its localized “sources”, unless these sources emit
e/m radiation).

The Maxwell equations are a system of four partial differential equations (PDEs)
that is self-consistent, in the sense that these equations are compatible with one
another. The self-consistency of the system also implies the satisfaction of two
important conditions that are physically meaningful:

o the equation of continuity, related to conservation of charge; and

e the e/m wave equation in its various forms.

We stress that these conditions are necessary but not sufficient for the validity of the
Maxwell system. Thus, although every solution (E,B) of this system obeys a wave
equation separately for the electric and the magnetic field, an arbitrary pair of fields
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(E,B), each field satisfying the corresponding wave equation, does not necessarily

satisfy the Maxwell system itself. Also, the principle of conservation of charge cannot
replace any one of Maxwell’s equations. These remarks are justified by the fact that
the aforementioned two necessary conditions are derived by differentiating the
Maxwell system and, in this process, part of the information carried by this system is
lost. [Recall, similarly, that cross-differentiation of the Cauchy-Riemann relations of
complex analysis yields the Laplace equation (see Sec. 2) by which, however, we
cannot recover the Cauchy-Riemann relations. ]
The differential form of the Maxwell equations is

(@) V-E=L (¢) VxE=_28
& ot
- (D
L Lo OF
b) V-B=0 () VxB=pu]+eu,

where p, J are the charge and current densities, respectively (the “sources” of the

e/m field). Both the fields and the sources are functions of the spacetime variables
(x,y,z,t). Equations (la) and (1b), which describe the div of the e/m field at any
moment, constitute Gauss’ law for the electric and the magnetic field, respectively. In
terms of physical content, (1a) expresses the Coulomb law of electricity, while (1)
rules out the possibility of existence of magnetic poles analogous to electric charges.
Equation (1¢) expresses the Faraday-Henry law (law of e/m induction) and Eq. (1d)
expresses the Ampere-Maxwell law. Equations (la) and (1d), which contain the
sources of the e/m field, constitute the non-homogeneous Maxwell equations, while
Egs. (1b) and (1c) are the homogeneous equations of the system.

By taking the div of (1d) and by using (1a), we obtain the equation of continuity,
which physically expresses the principle of conservation of charge (see, e.g., [1], Sec.
9.6):

v.7+%P 2 )

Although the charge and current densities on the right-hand sides of (1a) and (1d) are
chosen freely and are considered known from the outset, relation (2) places a severe
restriction on the associated functions. A different kind of differentiation of the
Maxwell system (1), by taking the rot of (c) and (d), leads to separate wave equations
(or modified wave equations, depending on the medium) for the electric and the
magnetic field (see, e.g., [1], Sec. 10.4).

In most textbooks on electromagnetism (e.g., [2—6] and many more) the Maxwell
equations (1) are treated as a consistent set of four independent PDEs. A number of
authors, however, have doubted the independence of this system. Specifically, they
argue that (1a) and (10) — the equations for the div of the e/m field, expressing Gauss’
law for the corresponding fields — are redundant since they “may be derived” from
(1c¢) and (1d) in combination with the equation of continuity (2). If this is true,
Coulomb’s law — the most important experimental law of electricity — loses its status
as an independent law and is reduced to a derivative theorem. The same can be said
with regard to the non-existence of magnetic poles in Nature.

http://nausivios.hna.gr/
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As far as we know, the first who doubted the independent status of the two Gauss’
laws in electrodynamics was Julius Adams Stratton in his 1941 famous (and,
admittedly, very attractive) book [7]. His reasoning may be described as follows:

By taking the div of (1¢), the left-hand side vanishes identically while on the right-
hand side we may change the order of differentiation with respect to space and time
variables. The result is:

8 /= =
a(V-B)zo &)

On the other hand, by taking the div of (1d) and by using the equation of continuity
(2), we find that

ﬁ(vﬁ—ﬁ}:o (4)

And the line of argument continues as follows: According to (3) and (4), the
quantities V-B and (V-E—p/ &,) are constant in time at every point (x,y,z) of the

region Q of space that concerns us. If' we now assume that there has been a period of
time during which no e/m field existed in the region €, then, in that period,

V-B=0 and V-E-ple,=0 (5)

identically. Later on, although an e/m field did appear in Q, the left-hand sides in (5)
continued to vanish everywhere within this region since, as we said above, those
quantities are time constant at every point of €. Thus, by the equations for the rof of
the e/m field and by the principle of conservation of charge — the status of which was
elevated from derivative theorem to fundamental law of the theory — we derived Egs.
(5), which are precisely the first two Maxwell equations (1a) and (15)!

According to this reasoning, the electromagnetic theory is not based on four
independent Maxwell equations but rather on three independent equations only;
namely, the Faraday-Henry law (1c¢), the Ampére—Maxwell law (1d), and the principle
of conservation of charge (2).

What makes this view questionable is the assumption that, for every region Q of
space there exists some period of time during which the e/m field in © vanishes. This
hypothesis is arbitrary and is not dictated by the theory itself. (It is likely that no such
region exists in the Universe!) Therefore, the argument that led from relations (3) and
(4) to relations (5) is not convincing since it was based on an arbitrary and, in a sense,
artificial initial condition: that the e/m field is zero at some time /=0 and before.

Let us assume for the sake of argument, however, that there exists a region Q
within which the e/m field is zero for ¢ <t, and nonzero for > t,. The critical issue is
what happens at =y ; specifically, whether the functions expressing the e/m field are
continuous at that moment. If they indeed are, the field starts from zero and gradually
increases to nonzero values; thus, the line of reasoning that led from (3) and (4) to (5)
is acceptable. There are physical situations, however, in which the appearance of an
e/m field is so abrupt that it may be considered instantaneous. (For instance, the
moment we connect the ends of a metal wire to a battery, an electric field suddenly
appears in the interior of the wire and a magnetic field appears in the exterior. An

ISSN:1791-4469 Copyright © 2022, Hellenic Naval Academy

C-5



NAUSIVIOS CHORA, VOL. 8, 2022

even more “dramatic” example is pair production in which a charged particle and the
corresponding antiparticle are created simultaneously, thus an e/m field appears at that
moment in the region.) In such cases the e/m field is non-continuous at t=t; and its
time derivative is not defined at this instant. Therefore, the line of reasoning that leads
from (3) and (4) to (5) again collapses.

Note, finally, a circular reasoning in Stratton’s approach. It is assumed that, in a
region  where no e/m field exists, the second of relations (5) is valid identically.
This means that the vanishing of the electric field in 2 automatically implies the
absence of electric charge in that region. This fact, however, follows from Gauss’ law
(1a); thus it may not be used a priori as a tool for proving the law itself!

Regarding charge conservation, we mentioned earlier that Eq. (2) is derived from
the two non-homogeneous Maxwell equations, namely, Gauss’ law (la) for the
electric field, and the Ampére—-Maxwell law (1d). This means that the principle of
conservation of charge is a necessary condition in order for the Maxwell system to be
self-consistent. This condition is not sufficient, however, in the sense that it cannot
replace any one of the system equations. Indeed, by the Ampére—Maxwell law and the
conservation of charge there follows the time derivative of Gauss’ law for the electric
field [Eq. (4)]; this, however, does not imply that Gauss’ law itself is valid. Of course,
the reverse is true: because Gauss’ law is valid, the same is true for its time derivative.

Our view, therefore, is that the Maxwell equations form a system of four
independent PDEs that express respective laws of Nature. Moreover, the self-
consistency of this system imposes two necessary (but not sufficient) conditions that
concern the conservation of charge and the wave behavior of the time-dependent e/m
field. In the next section the problem is re-examined from the point of view of
Bécklund transformations.

2. A Biacklund-transformation view of Maxwell’s equations

In previous articles [8,9] we suggested that, mathematically speaking, the Maxwell
equations in empty space may be viewed as a Backlund transformation (BT) relating
the electric and the magnetic field to each other. Let us briefly summarize a few key
points regarding this idea. To begin with, let us see the simplest, perhaps, example of
a BT.

The Cauchy-Riemann relations of complex analysis,

ux=vy (@  wy=—v (b) (6)

(where subscripts denote partial derivatives with respect to the indicated variables)
constitute a BT for the Laplace equation,

Wy T Wy, =0 (7)

Let us explain this: Suppose we want to solve the system (6) for u, for a given choice
of the function v(x,y). To see if the PDEs (6a) and (65) match for solution for u, we
must compare them in some way. We thus differentiate (6a) with respect to y and
(6b) with respect to x, and equate the mixed derivatives of u. That is, we apply the
integrability condition (or consistency condition) (uy),= (u,)r . In this way we
eliminate the variable # and we find a condition that must be obeyed by v(x,)):

http://nausivios.hna.gr/
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Vie T v, = 0.

Similarly, by using the integrability condition (v,),= (vy). to eliminate v from the
system (6), we find the necessary condition in order that this system be integrable for
v, for a given function u(x,y):

Uy T Uy, = 0.

In conclusion, the integrability of system (6) with respect to either variable requires
that the other variable satisfy the Laplace equation (7).

Let now vy(x,y) be a known solution of the Laplace equation (7). Substituting
v=Vy in the system (6), we can integrate this system with respect to u. It is not hard to
show (by eliminating vy from the system) that the solution u will also satisfy the
Laplace equation. As an example, by choosing the solution vy(x,y)=xy of (7), we find
a new solution u(x,y)= (x*—*)2+C.

Generally speaking, a BT is a system of PDEs connecting two functions (say, u
and v) in such a way that the consistency of the system requires that u and v
independently satisfy the respective, higher-order PDEs F[u]=0 and G[v]=0.
Analytically, in order that the system be integrable for u, the function v must be a
solution of G[v]=0; conversely, in order that the system be integrable for v, the
function u must be a solution of F[u]=0. If F and G happen to be functionally
identical, as in the example given above, the BT is said to be an auto-Bdcklund
transformation (auto-BT).

Classically, BTs are useful tools for finding solutions of nonlinear PDEs. In [8,9],
however, we suggested that BTs may also be useful for solving linear systems of
PDEs. The prototype example that we used was the Maxwell equations in empty
space:

(a) V-E=0 (c) vxE:_z_f
OF ®)
(b) V-B=0 (d) WE:aME

Here we have a system of four PDEs for two vector fields that are functions of the
spacetime coordinates (x,y,z,t). We would like to find the integrability conditions
necessary for self-consistency of the system (8). To this end, we try to uncouple the

system to find separate second-order PDEs for E and B, the PDE for each field
being a necessary condition in order that the system (8) be integrable for the other
field. This uncoupling, which eliminates either field (electric or magnetic) in favor of
the other, is achieved by properly differentiating the system equations and by using
suitable vector identities, in a manner similar in spirit to that which took us from the
first-order Cauchy-Riemann system (6) to the separate second-order Laplace
equations (7) for u and v.

As discussed in [8,9], the only nontrivial integrability conditions for the system
(8) are those obtained by using the vector identities

Vx(VxE)=V(V-E)-V’E 9)
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Vx(VxB)=V(V-B)-V’B (10)
By these we obtain separate wave equations for the electric and the magnetic field:

VE - ¢ i—o (11)
oMo EYE

3

= 0
V°B — Oyoﬁzo (12)

We conclude that the Maxwell system (8) in empty space is a BT relating the e/m
wave equations for the electric and the magnetic field, in the sense that the wave
equation for each field is an integrability condition for solution of the system in terms
of the other field.

The case of the full Maxwell equations (1) is more complex due to the presence of
the source terms p, J in the non-homogeneous equations (1a) and (1d). As it turns

out, the self-consistency of the BT imposes restrictions on the terms of non-
homogeneity as well as on the fields themselves. Before we get to this, however, let
us see a simpler “toy” example that generalizes that of the Cauchy-Riemann relations.

Consider the following non-homogeneous linear system of PDEs for the functions
u and v of the variables x, y, z, ¢ :

ue=vy (@) u:=v:tpx,y,z,0 (c)
(13)
Uy = —Vx (b) Ur =Vt +Q(x7yazﬂ t) (d)

where p and ¢ are assumed to be given functions. The necessary consistency
conditions for this system are found by cross-differentiation of the system equations
with respect to the variables x, y, z, ¢. In particular, by cross-differentiating (a) and (b)
with respect to x and y we find that u,+u,,=0 and v, +v,,=0; hence both u and v must
satisfy the Laplace equation (7). On the other hand, cross-differentiation of (¢) and (d)
with respect to z and ¢ eliminates the fundamental variables # and v, yielding a
necessary condition for the terms of non-homogeneity, p and ¢; that is, p,— g. =0. This
means that the functions p and ¢ cannot be chosen arbitrarily from the outset but must
conform to this latter condition in order for the system (13) to have a solution.

As an application, let us take v=xy+zt (which satisfies the Laplace equation
Vi tv,,=0) and let us choose p=2¢ and g=2z (so that p,— ¢g. =0). It is not hard to show
that the solution of the system (13) for u is then given by

u(x,y,z, ) = (x*—y*)/2+3zt + C.

Notice that u,+u,,=0, as expected.

Let us now return to the full Maxwell equations (1), which we now view as a BT
relating the electric and the magnetic field and containing additional terms in which
only the sources appear. As can be checked, there are now three nontrivial
integrability conditions, namely, those found by applying the vector identities (9) and
(10), as well as the identity

http://nausivios.hna.gr/
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V(ﬁxé):o (14)

(the corresponding one for E is trivially satisfied in view of the Maxwell system). By
(9) and (10) we get the non-homogeneous wave equations

. 0E 1 - oJ
VE -¢cu,——=—Vp+ u — 15
oMo Y P+t o (15)
)= 0°B Lo
V B—goyoﬁz—yOVxJ (16)

Additionally, the integrability condition (14) yields the equation of continuity (2),

V.71 ¢ (17)

expressing conservation of charge. Notice that, unlike (15) and (16), the condition
(17) places a priori restrictions on the sources rather than on the fields themselves!

In any case, the three relations (15) — (17) are necessary conditions imposed by
the requirement of self-consistency of the BT (1). As explained in Sec. 1, however,
these conditions are not sufficient, in the sense that none of them may replace any
equation in the system (1). In particular, the equation of continuity (17) may not be
regarded as more fundamental than the Gauss law (1a) for the electric field.

3. Conclusions

Let us summarize our main conclusions:

1. The Maxwell equations (1) express four separate laws of Nature. These
equations are mathematically consistent with one another but constitute a set of
independent vector relations, in the sense that no single equation may be deduced by
the remaining three. In particular, the physical arguments that attempt to render the
two Gauss' laws “redundant” are seen to be artificial and unrealistic.

2. We consider the Maxwell equations as physically acceptable simply because
the system (1) and all conclusions mathematically drawn from it represent
experimentally verifiable situations in Nature. Among these conclusions are the
conservation of charge and the conservation of energy (Poynting’s theorem). It should
be kept in mind, however, that conservation laws appear as consequences of the
fundamental equations of a theory, and not vice versa. In particular, conservation of
charge, in the form of the continuity equation (17), is a physically verifiable
mathematical conclusion drawn from the Maxwell system (1) but it may not be
regarded as more fundamental than any equation in the system. The same can be said
with regard to the existence of e/m waves, expressed mathematically by Egs. (11) and
(12).

3. From a mathematical perspective, the Maxwell system (1) may be viewed as a
Bécklund transformation (BT) the integrability conditions of which (i.e., the
necessary conditions for self-consistency of the system) yield separate (generally non-
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homogeneous) wave equations (15) and (16) for the electric and the magnetic field,
respectively, as well as the equation of continuity (17). These integrability conditions
are derived by differentiating the BT in different ways; hence they carry less
information than the BT itself. Consequently, none of the integrability conditions may
replace any equation in the Maxwell system.
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Infinitesimal symmetry transformations of matrix-valued
differential equations: An algebraic approach
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Abstract. The study of symmetries of partial differential equations (PDEs) has been
traditionally treated as a geometrical problem. Although geometrical methods have been
proven effective with regard to finding infinitesimal symmetry transformations, they present
certain conceptual difficulties in the case of matrix-valued PDEs; for example, the usual
differential-operator representation of the symmetry-generating vector fields is not possible in
this case. An algebraic approach to the symmetry problem of PDEs is described, based on
abstract operators (characteristic derivatives) which admit a standard differential-operator
representation in the case of scalar-valued PDEs.

Keywords: Matrix-valued differential equations, symmetry transformations, Lie algebras,
recursion operators
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1. Introduction

The problem of symmetries of a system of partial differential equations (PDESs) has been
traditionally treated as a geometrical problem in the jet space of the independent and the
dependent variables (including a sufficient number of partial derivatives of the latter variables
with respect to the former ones). Two more or less equivalent approaches have been followed:
(a) invariance of the system of PDEs itself, under infinitesimal transformations generated by
corresponding vector fields in the jet space [1]; (b) invariance of a differential ideal of
differential forms representing the system of PDEs, under the Lie derivative with respect to the
vector fields representing the symmetry transformations [2-6].

Although effective with regard to calculating symmetries, these geometrical approaches
suffer from a certain drawback of conceptual nature when it comes to matrix-valued PDEs. The
problem is related to the inevitably mixed nature of the coordinates in the jet space (scalar
independent variables versus matrix-valued dependent ones) and the need for a differential-
operator representation of the symmetry vector fields. How does one define differentiation with
respect to matrix-valued variables? Moreover, how does one calculate the Lie bracket of two
differential operators in which some (or all) of the variables, as well as the coefficients of partial
derivatives with respect to these variables, are matrices?

Although these difficulties were handled in some way in [4-6], it was eventually realized that
an alternative, purely algebraic approach to the symmetry problem would be more appropriate in
the case of matrix-valued PDEs. Elements of this approach were presented in [7] and later

ISSN:1791-4469 Copyright © 2018, Hellenic Naval Academy

C-31


mailto:papachristou@snd.edu.gr

NAUSIVIOS CHORA, VOL. 7,2018

applied in particular problems [8-10]; no formal theoretical framework was fully developed,
however.

An attempt to develop such a framework is made in this article. In Sections 2 and 3 we
introduce the concept of the characteristic derivative — an abstract operator generalization of the
Lie derivative used in scalar-valued problems — and we demonstrate the Lie-algebraic nature of
the set of these derivatives.

The general symmetry problem for matrix-valued PDEs is presented in Sec. 4, and the Lie-
algebraic property of symmetries of a PDE is proven in Sec. 5. In Sec. 6 we discuss the concept
of a recursion operator [1,8-14] by which an infinite set of symmetries may in principle be
produced from any known symmetry.

Finally, an application of these ideas is made in Sec. 7 by using the chiral field equation as an
example.

To simplify our formalism, we restrict our analysis to the case of a single matrix-valued PDE
in one dependent variable. Generalization to systems of PDEs is straightforward and is left to the
reader (see, e.g., [1] for scalar-valued problems).

2. Total and characteristic derivative operators

A PDE for the unknown function u=u(x*, X2, ... ) = u(x) [where by (x) we collectively denote
the independent variables x*, X2, ...] is an expression of the form F[u]=0, where F[u]=F(x*, u, uy,
g, ...) is a function in the jet space [1] of the independent variables (x), the dependent variable
u, and the partial derivatives of various orders of u with respect to the x*, which derivatives will
be denoted by using subscripts: U, Ui , Uk , €tc. A solution of the PDE is any function u=p(x")
for which the relation F[u]=0 is satisfied at each point (x*) in the domain of ¢.

We assume that u, as well as all functions F[u] in the jet space, are square-matrix-valued of
fixed matrix dimensions. In particular, we require that, in its most general form, a function F[u]
in the jet space is expressible as a finite or an infinite sum of products of alternating x-dependent
and u-dependent terms, of the form

Flul=>a(x*)II[u] b(x*)IT'[u] c(x")--- (2.1)

where the a(x“), b(x“), c(x"), etc., are matrix-valued, and where the matrices II[u], I1'[u], etc., are
products of variables u, ug, uy, etc., of the “fiber” space (or, more generally, products of powers
of these variables). The set of all functions (2.1) is thus a (generally) non-commutative algebra.

If u is a scalar quantity, a total derivative operator can be defined in the usual way [1] as

Di=i+ui£+uij£+uijki+m (2.2)
X' au ou; Uy

where the summation convention over repeated up-and-down indices (such as j and k in this
equation) has been adopted and will be used throughout. If, however, u is matrix-valued, the
above expression is obviously not valid. A generalization of the definition of the total derivative
is thus necessary for matrix-valued PDEs.
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Definition 2.1. The total derivative operator with respect to the variable x' is a linear operator
D; acting on functions F[u] of the form (2.1) in the jet space and having the following properties:

1. On functions f (x“) in the base space, Dj f(x) = &f/ox' = 6; f(x").
2. For F[u]=u, ui, ujj, etc., we have: Dju=u;, Dju;= Dju;=u;=Uu;i, etc.

3. The operator D; is a derivation on the algebra of all matrix-valued functions of the form (2.1)
in the jet space; i.e., the Leibniz rule is satisfied:

D, (F[ulG[u]) = (D,F[u])G[u]+ F[u] D,G[u] (2.3)

Higher-order total derivatives D;;=D;D; may similarly be defined but they no longer possess
the derivation property. Given that 0;0;=0;; and that u;=u;i, it follows that D;D; = D;D; & Dj; =
D;i ; that is, total derivatives commute. We write: [D;, D;j]=0, where, in general, [A, B] = AB-BA
will denote the commutator of two operators or two matrices, as the case may be.

If uis the inverse of u, such that uu=u"u=1, then we can define

D (u?)=-u™(Du)u (2.4)
Moreover, for any functions A[u] and B[u] in the jet space, it can be shown that
Di[A B]=[D;A B]+[A D,B] (2.5)

As an example, let (x!, x%) = (x, t) and let F[u]=xtu®, where u is matrix-valued. Writing
F[u]=xtuyuy, we have: Dy F[u]:qu2 + Xt (Uxt U + Uy Uyt ).

Let now Q[u] = Q (X, u, Uy, Ua , ...) be a function in the jet space. We will call this a
characteristic function (or simply a characteristic) of a certain derivative, defined as follows:

Definition 2.2. The characteristic derivative with respect to Q[u] is a linear operator Aq
acting on functions F[u] in the jet space and having the following properties:

1. On functions f (x“) in the base space,

Ao F(x*)=0 (2.6)
(that is, Aq acts only in the fiber space).
2. For F[u]=u,
Aqu=Q[u] (2.7)
3. Aqg commutes with total derivatives:
AqD =DAg < [Ag, D]=0 (alli) (2.8)
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4. The operator Aq is a derivation on the algebra of all matrix-valued functions of the form (2.1)
in the jet space (the Leibniz rule is satisfied):

Aq (F[u]G[u]) = (AoF[u])G[u] + F[u] AoG[u] (2.9)
Corollary: By (2.7) and (2.8) we have:
AqU; =AgDu=D,Q[u] (2.10)

We note that the operator Aq is a well-defined quantity, in the sense that the action of Ag on u
uniquely determines the action of Ag on any function F[u] of the form (2.1) in the jet space.
Moreover, since, by assumption, u and Q[u] are matrices of equal dimensions, it follows from
(2.7) that Aq preserves the matrix character of u, as well as of any function F[u] on which this
operator acts.

We also remark that we have imposed conditions (2.6) and (2.8) having a certain property of
symmetries of PDEs in mind; namely, every symmetry of a PDE can be represented by a
transformation of the dependent variable u alone, i.e., can be expressed as a transformation in the
fiber space (see [1], Chap. 5).

The following formulas, analogous to (2.4) and (2.5), may be written:

Ag(u™)=—u(Aqu)u™ (2.11)
Ao[A B]=[AgA B+[ A AGB] (2.12)

As an example, let (<}, x%) = (x, t) and let F[u]=a(x,t)u?b(x,t)+[ux , u] , where a, b and u are
matrices of equal dimensions. Writing u?=uu and using properties (2.7), (2.9), (2.10) and (2.12),
we find: Aq F[u]=a(x,t)(Qu+uQ)b(x,t)+[Dx Q, u+[ux, D: Q].

In the case where u is scalar-valued (thus so is Q[u]), the characteristic derivative Ag admits a
differential-operator representation of the form

o o 8
Aq =Q[u]a+(DiQ[u])a—Ui+(Di DjQ[u])aTij+--- (2.13)

(See [1], Chap. 5, for an analytic proof of property (2.8) in this case.)

3. The Lie algebra of characteristic derivatives
The characteristic derivatives Aqg acting on functions F[u] of the form (2.1) in the jet space

constitute a Lie algebra of derivations on the algebra of the F[u]. The proof of this statement is
contained in the following three Propositions.
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Proposition 3.1. Let Aq be a characteristic derivative with respect to the characteristic Q[ul;
i.e., Agu=QJ[u] [cf. Eq. (2.7)]. Let A be a constant (real or complex). We define the operator 1Aq
by the relation

(AAQ) F[u] = A (Aq F[u]).
Then, AAq is a characteristic derivative with characteristic AQ[u]. That is,
ADg =40 (3.1)

Proof. (a) The operator 1Aq is linear, since so is Ag .
(b) For Flul=u, (AAg)u= A(Aqu)=AQ[u].
(c) AAq commutes with total derivatives D;, since so does Ag .
(d) Given that Ag satisfies the Leibniz rule (2.9), it is easily shown that so does 1Aq .
Comment: Condition (c) would not be satisfied if we allowed A to be a function of the x,

instead of being a constant, since A(x) generally does not commute with the D;. Therefore,
relation (3.1) is not valid for a non-constant A.

Proposition 3.2. Let A; and A, be characteristic derivatives with respect to the characteristics
Q1[u] and Qz[u], respectively; i.e., Aju=Q;[u], A,u=Q>[u]. We define the operator A;+A; by

(A1+A2) F[U] =/ F[U] + A, F[U] .
Then, A1+A; is a characteristic derivative with characteristic Q1[u]+Qz[u]. That is,
A +A, =Aq with Qu]=Q[u]+Q,[u] (3.2

Proof. (a) The operator A;+A; is linear, as a sum of linear operators.
(b) For F[u]=u, (A1+Az)u=Aju+Au=Q;[u]+Q.[u] .
(c) AitA, commutes with total derivatives D;, since so do A; and A; .

(d) Given that each of A; and A; satisfies the Leibniz rule (2.9), it is not hard to show that the
same is true for A;+A; .

Proposition 3.3. Let A; and A, be characteristic derivatives with respect to the characteristics
Q1[u] and Q[u], respectively; i.e., Aqu=Q1[u], A2u=Q,[u]. We define the operator [A1, Az] (Lie
bracket of A; and A;) by

[A1, Ao] F[u] = A1 (A2 F[u]) - Az (AL F[u]) .

Then, [A1, A2] is a characteristic derivative with characteristic A;Q2[u]-A2Q:[u]. That is,

[A, A ]=Aq with Qu]=A;Q,[u]—A,Q[u]= Q,,[u] (3.3)
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Proof. (a) The linearity of [A1, Az] follows from the linearity of A; and A;.
(b) For F[u]l=u, [A1, AoJu=A1(Azu)—Az(Aru) = A1Q2[u]-A2Q:[u] = Q1 2u] .
(c) [A1,A;] commutes with total derivatives Dj, since so do A; and A; .

(d) Given that each of A; and A, satisfies the Leibniz rule (2.9), one can show (after some
algebra and cancellation of terms) that the same is true for [A1, Az].

In the case where u (thus the Q’s also) is scalar-valued, the Lie bracket admits a standard
differential-operator representation [1]:

0 0
a+(DiDle,2)£+m (3.4)

i ij

0
[A), Azl = Ql,z[u]a + (Di Q1,2>
where Qg [u] =[A1, AJu = A1Qo[u] —A>Qa[u] .

The Lie bracket [A1, Az] has the following properties:

1. [A1, aAx+bAs] = a[A1, A] +b[A1, Ag] ;
[aA1+bA;, Ag] = a[A1, As] +b[Az, Ag] (a, b = const.)

2. [A1,A7]=—[A2,A1] (antisymmetry)

3. [A1,[Az, As]] + [Az, [As, A]] + [As, [A1,A2]] =0
[[A1, A2], As] +[[A2, As], A1] + [[Az, A1], A2] =0 (Jacobi identity)

4. The symmetry problem for PDEs

Let F[u]=0 be a PDE in the independent variables x“=x!, x4, ..., and the (generally) matrix-
valued dependent variable u. A transformation u(x*)—u’(x*) from the function u to a new
function u’ represents a symmetry of the PDE if the following condition is satisfied: u’(x") is a
solution of F[u]=0 when u(x") is a solution; that is, F[u’]=0 when F[u]=0.

We will restrict our attention to continuous symmetries, which can be expressed as
infinitesimal transformations. Although such symmetries may involve transformations of the
independent variables (x“), they may equivalently be expressed as transformations of u alone (see
[1], Chap. 5), i.e., as transformations in the fiber space.

An infinitesimal symmetry transformation is written symbolically as

U— u=u+du

where Ju is an infinitesimal quantity, in the sense that all powers (Ju)" with n>1 may be
neglected. The symmetry condition is thus written

Flu+ou] =0 when F[u]=0 (4.2
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An infinitesimal change ou of u induces a change 6F[u] of F[u], where
oF[u] = Flu+ou] — F[u] < F[utdu] = F[u] + 6F[u] (4.2)
Now, if Ju is an infinitesimal symmetry and if u is a solution of F[u]=0, then u+du also is a
solution; that is, F[u+ou]=0. This means that 6F[u]=0 when F[u]=0. The symmetry condition
(4.1) is thus written as follows:

OoF[u]=0 mod F[u] 4.3)

A symmetry transformation (we denote it M) of the PDE F[u]=0 produces a one-parameter
family of solutions of the PDE from any given solution u(x). We express this by writing

M:u(x) > T(x*;a) with T(x*;0)=u(x*) (4.4)
For infinitesimal values of the parameter «,

aT(x*;a) = u(x*)+aQ[u] where Q[u]=j—U (4.5)
94

a=0

The function Q[u] = Q(X*, u, Uk, Ua , ..) in the jet space is called the characteristic of the
symmetry (or, the symmetry characteristic). Putting

Su=u(x*;a)— u(x¥) (4.6)
we write, for infinitesimal «,
ou = aQ[u] 4.7

We notice that the infinitesimal operator ¢ has the following properties:
1. According to its definition (4.2), ¢ is a linear operator :

S(F[u]+G[u]) = (F[u~+0u]+ G[u+du]) — (F[u]+G[u]) = SF[u]+dG[u] .

2. By assumption regarding the nature of our symmetry transformations, ¢ produces changes in
the fiber space while it doesn’t affect functions f (x“) in the base space [this is implicitly stated in

(4.6)].

3. Since ¢ represents a difference, it commutes with all total derivatives D; :

0 (DiA[u]) = D (o4[u]) .
In particular, for A[u]=u,
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ou; = 5(Di U) =D (511) =aD;j Q[U] )

where we have used (4.7).

4. Since o expresses an infinitesimal change, it may be approximated to a differential; in
particular, it satisfies the Leibniz rule:

o (Au]B[u]) = (94 [u]) B[u] + A[u] 6B[u] .

For example, d(u?) = d(uu) = (u)u+udu = o (Qu+uQ).

Now, consider the characteristic derivative Aq with respect to the symmetry characteristic
Q[u]. According to (2.7),

Aqu=Q[u] (4.8)

We observe that the infinitesimal operator ¢ and the characteristic derivative Ag share common
properties. From (4.7) and (4.8) it follows that the two linear operators are related by

ou =alqu 4.9
and, by extension,
oui=aD;iQu]l =a AU, etc.

[see (2.10)]. Moreover, for scalar-valued u and by the infinitesimal character of the operator o,
we may write:

OoF[u]= i§u +ﬁ5ui +o=a ﬁQ[u]+ﬁ DiQ[u]+£Di D,Q[u]+--
ou ou: ou ou; O :

i 1]
while, by (2.13),
oF oF oF
ou oy, ou;;
The above observations lead us to the conclusion that, in general, the following relation is
true:
OF[u]=a Aq F[u] (4.12)
The symmetry condition (4.3) is thus written:
AgF[u]=0 mod F[u] (4.12)

In particular, if u is scalar-valued, the above condition is written
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a—FQ[u]Jra—FDiQ[u]+a—FDi D;Q[u]+---=0 mod F[u] (4.13)
ou oy, ou;;

which is a linear PDE for Q[u]. More generally, for matrix-valued u and for a function F[u] of
the form (2.1), the symmetry condition for the PDE F[u]=0 is a linear PDE for the symmetry
characteristic Q[u]. We write this PDE symbolically as

S(Q;u)=AgF[u]=0 mod Fu] (4.14)

where the function S(Q; u) is linear in Q and all total derivatives of Q. (The linearity of S in Q
follows from the Leibniz rule and the specific form (2.1) of F[u].)
Below is a list of formulas that may be useful in calculations:

° AQ Ui =D Q[U] 5 AQ Uij = D;j Dj Q[U] , etc.

o Aqu®=Aq(uu)=Q[ulu+uQ[u] (etc.)

o A(UY)=—ut(Aquyut=—u'Qulu"

o Aq[Alu], B[u]] =[AqA, B] +[A, AqB]

Comment: According to (4.12), Aq F[u] vanishes if F[u] vanishes. Given that Aq is a linear
operator, the reader may wonder whether this condition is identically satisfied (a linear operator
acting on a zero function always produces a zero function!). Note, however, that the function
F[u] is not identically zero; it becomes zero only for solutions of the given PDE. What we need
to do, therefore, is to first evaluate AqF[u] for arbitrary u and then demand that the result vanish
when u is a solution of the PDE F[u]=0.

An alternative — and perhaps more transparent — version of the symmetry condition (4.12) is
the requirement that the following relation be satisfied:

AgF[u]l=LF[u] (4.15)

where L is a linear operator acting on functions in the jet space (see, e.g., [1], Chap. 2 and 5, for
a rigorous justification of this condition in the case of scalar-valued PDES). For example, one
may have

AoFul=> B (X)D, F[u]+ > y;; (x)D; D; Ful+ AXX)F[u] + F[u]B(x*)
i i

where the gi and p; are scalar-valued, while A and B are matrix-valued. Let us see some
examples, restricting for the moment our attention to scalar PDEs.

Example 4.1. The sine-Gordon (s-G) equation is written

Fu]l= ux—sinu=0.
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Here, (x},x?)=(x,t). Since sinu can be expanded into an infinite series in powers of u, we see that
F[u] has the required form (2.1). Moreover, since u is a scalar function, we can write the
symmetry condition by using (4.13):
S(Q;u)=Qx — (cosu)Q=0 mod F[u]

where S(Q; u)= Aq F[u] and where by subscripts we denote total differentiations with respect to
the indicated variables. Let us verify the solution Q[u]=ux. This characteristic corresponds to the
symmetry transformation [cf. Eq. (4.4)]

M: u(xt) >u(xt;a)=u(x+a,t) (4.16)

which implies that, if u(x,t) is a solution of the s-G equation, then T (Xx,t)=u(Xx+«, t) also is a
solution. We have:

Qyxt — (cosu) Q = (uy) xt — (cosu)uy = (ux; — Sinu)x=DyF[u]=0 mod F[u].

Notice that AgF[u] is of the form (4.15), with L= D, . Similarly, the characteristic Q[u] = u;
corresponds to the symmetry

M: u(x,t) >u(xt;a)=u(x,t+a) (4.17)
That is, if u(x,t) is a solution of the s-G equation, then so is U (x,t) =u(x, t+«). The symmetries
(4.16) and (4.17) reflect the fact that the s-G equation does not contain the variables x and t

explicitly. (Of course, this equation has many more symmetries which are not displayed here;
see, e.g., [1].)

Example 4.2. The heat equation is written
Ful= ui—ux=0.
The symmetry condition (4.13) reads
S(Q;u)=Q - Q=0 mod F[u]

where S(Q; u)=AqF[u]. As is easy to show, the symmetries (4.16) and (4.17) are valid here, too.
Let us now try the solution Q[u] =u. We have:

Qi — Q= U—Ux=F[u] =0 mod F[u].
This symmetry corresponds to the transformation
M: u(x,t) >u(x t;a)=e“u(xt) (4.18)

and is a consequence of the linearity of the heat equation.
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Example 4.3. One form of the Burgers equation is
Flu] = Ui— Uy—Ul=0.
The symmetry condition (4.13) is written
S(Q;u)=0Q; —Qxx—2uxQx=0 mod F[u]

where, as always, S(Q; u)=Aq F[u]. Putting Q= uyx and Q= u;, we verify the symmetries (4.16)
and (4.17):

Qt — Qux — 2UxQyx = Uyt — Uxxx — 2UxUxx = DxF [U] =0 mod F [U]
Qt — Qux — 2uxQy = Uyt — Uxxt— 2UxUxy = D{F[u] =0 mod F[u]

Note again that AgF[u] is of the form (4.15), with L=D, and L=D,. Another symmetry is Q
[u]=1, which corresponds to the transformation

M:u(x,t) >u(xt;a)=u(x,t)+a (4.19)

and is a consequence of the fact that u enters F[u] only through its derivatives.
Example 4.4. The wave equation is written

Flu]l= ug— c?ux=0 (c=const.)

and its symmetry condition reads
S(Q1 U) = Qtt —CzQxx: 0 mod F[U] .

The solution Q[u] =xux+tu; corresponds to the symmetry transformation
M: u(x,t) > (X t;a) =u(ex, et) (4.20)

expressing the invariance of the wave equation under a scale change of x and t. [The reader may
show that the transformations (4.16) — (4.19) also express symmetries of the wave equation.]

It is remarkable that each of the above PDEs admits an infinite set of symmetry
transformations [1]. An effective method for finding such infinite sets is the use of a recursion
operator, which produces a new symmetry characteristic every time it acts on a known
characteristic. More will be said on recursion operators in Sec. 6.

5. The Lie algebra of symmetries

As is well known [1], the set of symmetries of a PDE F[u]=0 has the structure of a Lie
algebra. Let us demonstrate this property in the context of our abstract formalism.
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Proposition 5.1. Let £ be the set of characteristic derivatives Ag With respect to the symmetry

characteristics Q[u] of the PDE F[u]=0. The set £ is a (finite- or infinite-dimensional) Lie

subalgebra of the Lie algebra of characteristic derivatives acting on functions F[u] in the jet
space (cf. Sec. 3).

Proof. (a) Let Age £ < AgF[u]=0 (mod F[u]). If 4 is a constant (real or complex, depending

on the nature of the problem) then (1Aq)F[u]=AAq F[u]=0, which means that 1Aqe L. Given that

AAq = Ay [see Eq. (3.1)] we conclude that, if Q[u] is a symmetry characteristic of F[u]=0, then
so is AQ[u].

(b) Let A1eL and A, L be characteristic derivatives with respect to the symmetry characteristics
Qi[u] and Qfu], respectively. Then, A;F[u]=0, A,;F[u]=0, and hence, (A1+A)F[u] =
A1F[u]+A2F[u]=0; therefore, (A1+A2)eL. It also follows from Eqg. (3.2) that, if Q:[u] and Q2[u]
are symmetry characteristics of F[u]=0, then so is their sum Q[u]+Q2[u].

(c) Let A1eL and A, L, as above. Then, by (4.15),
AF[ul=L,Flu], A,F[u]=L,F[u].
Now, by the definition of the Lie bracket and the linearity of both A; and I:i (1i=1,2) we have:
[A, A,1F[ul = Ay (AF[ul) — Ay (A FUD) = A (LF[U]) ~ A (L F[U])
= (AL, —A,L)F[u]=0 mod F[u]
We thus conclude that [A;, A]€ L. Moreover, it follows from Eq. (3.3) that, if Q1[u] and Q[u]
are symmetry characteristics of F[u]=0, then so is the function

Q12[u] = A1Qz[u] — A2Qu[U] .

Assume now that the PDE F[u]=0 has an n-dimensional symmetry algebra £ (which may be

a finite subalgebra of an infinite-dimensional symmetry Lie algebra). Let {A1, Az, ..., An}={A},
with corresponding symmetry characteristics {Q}, be a set of n linearly independent operators

that constitute a basis of £, and let Aj, Aj be any two elements of this basis. Given that [A;,

Aj]€ L, this Lie bracket must be expressible as a linear combination of the {A«}, with constant
coefficients. We write

[Ai, Ajl=D i A (6.1)
k1

where the coefficients of the Ay in the sum are the antisymmetric structure constants of the Lie
algebra £ in the basis {Ay}.
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The operator relation (5.1) can be expressed in an equivalent, characteristic form by allowing
the operators on both sides to act on u and by using the fact that A,u=Qx[ul]:

[A;, Ajlu= (Zn:ciijkJu = icikj (A u) =
= a

AQIUI- A, QU] = 3¢k QU] (5.2)
k=1

Example 5.1. One of the several forms of the Korteweg-de Vries (KdV) equation is
Fu]= ui+uuy+ Uk =0.
The symmetry condition (4.14) is written
S(Q;u)=Qt+QuUx+ UQx+ Qux=0 mod F [u] (5.3)

where S(Q; u)=AqF[u]. The KdV equation admits a symmetry Lie algebra of infinite dimensions
[1]. This algebra has a finite, 4-dimensional subalgebra £ of point transformations. A symmetry
operator (characteristic derivative) Aq is determined by its corresponding characteristic Q[u]=Aq
u. Thus, a basis {A1,..., A4} of £ corresponds to a set of four independent characteristics {Q ,...,
Q4}. Such a basis of characteristics is the following:

Qi[ul=ux, Qoful=u;, Qsful=tux—1, Qa[u]=xux+3tu;+ 2u
The Q1,..., Q4 satisfy the PDE (5.3), since, as we can show,

S(Q1;u)=DxF[u], S(Qz;u)=DiF[u], S(Qs;u)=tDiF[u],
S(Q4;u)=(5+xDy+3tDy)F[u]

[Note once more that AgF[u] is of the form (4.15) in each case.] Let us now see two examples of
calculating the structure constants of £ by application of (5.2). We have:

A1Qy —AQ =AUy — AUy = (AgU) — (A U), = (Qp —(Q2)x= (U —(Ux=0

a k
= chz Qx
k=1
Since the Q are linearly independent, we must necessarily have 01"2 =0, k=12,34. Also,

AyQ3—A3Q, =A,(tu, —1)—Azu =t(A,U), —(A3U) =1(Qy), —(Q3);

4
=TUy, _(ux +tuxt) =—Uy= _Ql = ZC|2(3Qk
k=1
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1 _ —c3 —c4 =
Therefore, c3;=—1, C53=C5;=Cy=

6. Recursion operators

Let ou=aQ[u] be an infinitesimal symmetry of the PDE F[u]=0, where Q[u] is the symmetry
characteristic. For any solution u(x“) of this PDE, the function Q[u] satisfies the linear PDE

S(Q:u) = AgF[u] =0 6.1)

Because of the linearity of (6.1) in Q, the sum Q;[u]+Q2[u] of two solutions of this PDE, as well
as the multiple AQ[u] of any solution by a constant, also are solutions of (6.1) for a given u. Thus,
for any solution u of F[u]=0, the solutions {Q[u]} of the PDE (6.1) form a linear space, which we
call S, .

A recursion operator R is a linear operator that maps the space Sy into itself. Thus, if Q[u] is
a symmetry characteristic of F[u]=0 (i.e., a solution of (6.1) for a given u) then so is RQ[u]:

S(RQ;u)=0 when S(Q;u)=0 (6.2)

Obviously, any power of a recursion operator also is a recursion operator. Thus, starting with any
symmetry characteristic Q[u], one may in principle obtain an infinite set of such characteristics
by repeated application of the recursion operator.

A new approach to recursion operators was suggested in the early 1990s [11,15-17] (see also
[8-10]) according to which a recursion operator may be viewed as an auto-Bdcklund
transformation (BT) [18] for the symmetry condition (6.1) of the PDE F[u]=0. By integrating the
BT, one obtains new solutions Q’[u] of the linear PDE (6.1) from known ones, Q[u]. Typically,
this type of recursion operator produces nonlocal symmetries in which the symmetry
characteristic depends on integrals (rather than derivatives) of u. This approach proved to be
particularly effective for matrix-valued PDEs such as the nonlinear self-dual Yang-Mills
equation, of which new infinite-dimensional sets of “potential symmetries” were discovered
[9,11,15].

7. An example: The chiral field equation
Let us consider the chiral field equation
Flgl=(979,)x+ (97'9,), =0 (7.1)
where, in general, subscripts x and t denote total derivatives Dy and Dy, respectively, and where g
is a GL(n,C)-valued function of x and t, i.e., a complex, non-singular (nxn) matrix function,

differentiable for all x and t. Let og=aQ[g] be an infinitesimal symmetry transformation for the
PDE (7.1), with symmetry characteristic Q[g]=Aq g . It is convenient to put
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Qlgl=g®[g] < @[g]=g"Qld].
The symmetry condition for (7.1) is
AqF[g]=0 mod F[g].

This condition will yield a linear PDE for Q or, equivalently, a linecar PDE for ®. By using the
properties of the characteristic derivative, we find the latter PDE to be

S(®;9) = D, (@, +[9 gy, ®])+ D, (@, +[g ‘g, ®])=0 mod F[g]  (7.2)

where, as usual, square brackets denote commutators of matrices.
A useful identity that will be needed in the sequel is the following:

(9790« — (970, +[97'9,, 979,1=0 (7.3)
Let us first consider symmetry transformations in the base space, i.e., coordinate

transformations of x, t. An obvious symmetry is x-translation, x '=x-+a, given that the PDE (7.1)
does not contain the independent variable x explicitly. For infinitesimal values of the parameter
a, We write dx=a. The symmetry characteristic is Q[g]=gx, so that ®[g]=g ‘g, . By substituting
this expression for @ into the symmetry condition (7.2) and by using the identity (7.3), we can
verify that (7.2) is indeed satisfied:

S(®;9)=DxF[g] =0 mod F[g].
Similarly, for t-translation, ¢ '=¢+a (infinitesimally, dt=a) with Q[g]=0:, we find

S(®;9)=D:F[g] =0 mod F[g].
Another obvious symmetry of (7.1) is a scale change of both x and t: x'=Ax, #'=A¢. Setting
A=1+a, where o is infinitesimal, we write dx=ax, Jt=at. The symmetry characteristic is

Q[g]=xgx+tg: , so that ®[g]=xg *gx+tg g . Substituting for @ into the symmetry condition (7.2)
and using the identity (7.3) where necessary, we find that

S(@;0) = (2+XD,+tD) Fg] =0 mod Flg].

Let us call Qi[g]=0x , Q2[9]=0: , Qs[g]=xgx+tg: , and let us consider the corresponding
characteristic derivative operators A; defined by A; g=Q; (i=1,2,3). It is then straightforward to
verify the following commutation relations:

[A1,A2]0=A1Q2 —A2Q1=0 < [A1,A2]=0;

[A1,A3]g=A1Q3 —A3Q1 =—-0x=-Q1=-A190 < [A1,As] =—Ay;
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[A2,A3]9 = A2Q3 —A3Q2 = 0= —Q2=—A290 & [Az,A5] =—A;.

Next, we consider the “internal” transformation (i.e., transformation in the fiber space)
g’'=gA, where A is a non-singular constant matrix. Then,

Flg'1=A'F[g]A=0 mod F[g],

which indicates that this transformation is a symmetry of (7.1). Setting A=1+aM, where « is an
infinitesimal parameter while M is a constant matrix, we write, in infinitesimal form, dg=agM.
The symmetry characteristic is Q[g]=gM, so that ®[g]=M. Substituting for ® into the symmetry
condition (7.2), we find:

S(®;9)=[F[g],M]=0 mod F[g].

Given a matrix function g(x,t) satisfying the PDE (7.1), consider the following system of
PDE:s for two functions ®[g] and ®'[q]:

O =0, +[g'g,, D
=@ +[97g,, D] (7.4)
-0y =, +[g7'g, , D]

The integrability condition (or consistency condition) (®:), = (®;), of this system requires that
® satisfy the symmetry condition (7.2); i.e., S(®; g)=0. Conversely, by applying the integrability
condition (®,), =(®d,), and by using the fact that g is a solution of F[g]=0, one finds that @’

must also satisfy (7.2); i.e., S(®";g) =0.

We conclude that, for any function g(x,t) satisfying the PDE (7.1), the system (7.4) is an
auto-Bdcklund transformation (BT) [18] relating solutions @ and @ of the symmetry condition
(7.2) of this PDE; that is, relating different symmetries of the chiral field equation. Thus, if a
symmetry characteristic Q=g® of the PDE (7.1) is known, a new characteristic Q '=g®" may be
found by integrating the BT (7.4); the converse is also true. Since the BT (7.4) produces new
symmetries from old ones, it may be regarded as a recursion operator for the PDE (7.1) [8-
11,15-17].

As an example, consider the internal-symmetry characteristic Q[g]=gM (where M is a
constant matrix) corresponding to ®[g]=M. By integrating the BT (7.4) for @, we get ®'=[X, M]
and thus Q '=g[X, M], where X is the “potential” of the PDE (7.1), defined by the system of PDEs

X, =970, » —X, =979, (7.5)

Note the nonlocal character of the BT-produced symmetry Q°, due to the presence of the
potential X. Indeed, as seen from (7.5), in order to find X one has to integrate the chiral field g
with respect to the independent variables x and t. The above process can be continued
indefinitely by repeated application of the recursion operator (7.4), leading to an infinite
sequence of increasingly nonlocal symmetries.

Unfortunately, as the reader may check, no new information is furnished by the BT (7.4) in
the case of coordinate symmetries (for example, by applying the BT for Q=g we get the known
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symmetry Q=g ). A recursion operator of the form (7.4), however, does produce new nonlocal
symmetries from coordinate symmetries in related problems with more than two independent
variables, such as the self-dual Yang-Mills equation [8-11,15].

8. Concluding remarks

The algebraic approach to the symmetry problem of PDEs, presented in this article, is, in a
sense, an extension to matrix-valued problems of the ideas contained in [1], in much the same
way as [4] and [5] constitute a generalization of the Harrison-Estabrook geometrical approach [2]
to matrix-valued (as well as vector-valued and Lie-algebra-valued) PDEs. The main advantage of
the algebraic approach is the bypassing of the difficulty associated with the differential-operator
representation of the symmetry-generating vector fields that act on matrix-valued functions in the
jet space.

It should be noted, however, that the standard methods [1,4,5] are still most effective for
calculating symmetries of PDEs. In this regard, one needs to enrich the ideas presented in this
article by describing a systematic process for evaluating (not just recognizing) symmetries, in the
spirit of [4,5]. This will be the subject of a subsequent article.
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