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PREFACE

This short textbook is by no means a complete bwoknathematical analysis. It is
basically a concise, informal introduction to diffatiation and integration of real

functions of a single variable, supplemented witheeementary discussion of first-

order differential equations, an introduction tffefientiation and integration in higher

dimensions, and an introduction to complex analysisictional series (and, in par-
ticular, power series) are also discussed. The Ipo@k serve as a tutorial resource in
a short-term introductory course of mathematicallysis for beginning students of
physics and engineering who need to use differeatid integral calculus primarily

for applications.

Having taught introductory Physics at the HatleNaval Academy for over three
decades, | have often experienced situations wheyefirst-year undergraduates
needed reinforcement of their background in advareadculus in order to properly
follow the Physics course from the outset. Thisdnled to the idea of writing a short,
practical handbook that would be especially uséfulself-study “in a hurry”. The
present textbook is a translated and expandedoverdi the author’s lecture notes
written originally in Greek. Proofs of theoreticsthtements are limited to those con-
sidered pedagogically useful, while the theoryrngply supplemented with carefully
chosen examples. For a deeper study of the subjectader is referred to the bibli-
ography cited at the end of the book.

Despite the essentially practical charactethefbook, proper attention is given to
conceptual subtleties inherent in the subject.drtiqular, the concept of the differen-
tial of a function is carefully examined and it¢at®n to the “differential” inside an
integral is explained. For pedagogical purposesdibeussion of the indefinite inte-
gral — as an infinite collection of antiderivativegprecedes that of the definite inte-
gral; it is shown, however, that the latter condeptls in a natural way to the former
by allowing variable limits of integration.

The Appendix contains useful mathematical fdemwand properties needed for the
exercises, as well as a more detailed discussitimeodoncept of continuity of a func-
tion and its relationship with differentiability.irially, answers to selected exercises
are provided.

Costas J. Papachristou
August 2023
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CHAPTER 1

FUNCTIONS

1.1 Real Numbers

There are various sets of numbers in mathematics, as the set afatural numbers
N={1,2,3,...}, the set ofintegers Z={0, +1,+2,+3,...}, and the set ofational num-

bers Q={ p/q, wherep, q are integers ang+ 0}. Numbers such as/2,4/3, In3, etc.,
which cannotbe expressed as quotieptg of integers, are calleidrational. Rational
and irrational numbers together constitute theobetal numbersR.

In the seR of real numbers one may define various typastefvals

Open interval: @ b)={x/xeR, a<x<b}
Closed interval: [a,b] ={ x/xeR, a<x<b}
Semi-closed intervals: [a,b) ={x/xeR, a<x<b}

(& b]={ x/xeR, a<x<b}

Infinite intervals: (=00, €), (C, +), (-0, €], [C, +0), (—o0, +00)

1.2 Functions

Let D < Rbe a subset d® We consider a rulé : D —» R, such that, to every element
xeD there correspondsumiqueelementyeR (two or more elements & may, how-
ever, correspond to the same elemerR)oiVe write:

x€eD) |i> (yeR) or y=f(x.

The rule f constitutes aeal function We say that thdependent variable ig a func-
tion of theindependent variable.XxThe setD is called thedomain of definitiorof f,
while the set {y=f (x) / xeD}= f (D) is called thegangeof f.

Given a functiony=f (x) we can draw the correspondigtaph (Fig. 1.1). We as-
sume that the quantitiesandy aredimensionlesand, moreover, equal lengths on the
x- andy-axes correspond txual changesf x andy.

y

/— y= f(X)

Fig. 1.1. Graph of a function.
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A functiony=1(x) is said to beontinuousat the poink=Xxg if its valueyy=f (X) at
that point is defined and is equal to the limitfak) as x—Xp:

lim f(x) = f(x,).
X=X

In practical terms we may say that the graph 0 is a continuous curve atx, (it
does not “break” into two separate curves at tlggp. If we set x—x=4x and
f (X) — f (Xo)= y—¥=4Y, then, by the definition of a continuous functibfollows that
Ay—0 when 4x—0. More on continuous functions can be found inAppendix.

Below is a list of some elementary functions:

Constant function: y=f(x)=c (CeR

Power function: y=fX)=x* @eR)
Exponential function: y =@ =e”*

Logarithmic function: y={x) = Inx

Trigonometric functions: y =(X) = sinx, cosx, tanx, cotx
Inverse

trigonometric functions: y =) = arcsinx, arccosx,

arctanx, arccotx

By combining elementary functions we can cardtcomposite functions. Let us
consider the functiong=g(u) and u=h(x). We write

y =9g[h(x)] = (g-h)(x) .

We thus define theomposite functiorf=goh, so that

y=f(¥)=g[h(x)]=(@-h) (%) .

To simplify our notation we may writg=y(x) instead of the more explicit=f (X).
Similarly, y=y(u) and u=u(x). Then,

y=y() < [y=yu), u=u®)].
Examples:

1. The composite functiory = y(X) = ¢ can be decomposed into simple ones, as
follows:

y=y(W=¢, u=y=v e ¥

while the functiony = y(X) = & s decomposed as

y=y(W=¢, u=u W=+ w= W, w @l 1.
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2. The functiony = y(X) = In (1+ sir’ x) is decomposed as follows:
y=y(U)=Inu, u=W=1+ W, w W X=sin .
3. For the functiony = y(x) =cos’v ¥ + 1 we write

y=y(W)=1, u=uwW=cosw, w W=V 2 2, =z (@) °x1.

1.3 Domain of Definition of a Function

Consider a functioy=f (x). Its domain of definitionD, is the largest subset Bffor
which yeR, VxeD. Practically this means that the valuesf f (x) arereal andfinite
for all xeD. Below are the domains of definition of some elatagy functions:

y=f()=g+3gx+ gX+-+ak | D= R (~0,+0)
y=1(9=5 | D=R-{0} (~0) U(0,+)
y=f()=vx | D=[0+x)

y=f(X)=€ | D= R=(-00,+x0)

y=f(X)=Inx | D=(0,+x)

y= f(X)=sinx, cosx | D= R= {0 40 )
y=f(X)=tanx | D=R-{kr+7/2, k=01t 2, }
y=f(X)=cotx | D=R—-{kr, k=0,£1,£2,--}

y= f(x)=arcsinx, arccox | D= - 1,1]

y= f(x)=arctanx, arccok | D= R= o +© )

Let us also see some examples of domains of cotegfasictions:

_1 _1s — (0400
y_\/; = Yy u, u \/_X | D (01+ )
1 % U=Inx | D= (Orw0){ =(0,)U (L)

, u=vw, w=Inx | D=(1+xo)
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Exercise 1.1Find the domains of definition of the followingrfctions:

_In(x* +1) e _ arctanx _ X
Wy-"r= @y=EX @y @y arcco%mj

In(x+5 [Hint: &~ b’ =(a- h(d+ ab- B)]

AN

6)y=In(nx) (7)y=tanx (8)y= tan’35

1.4 Implicit and Multiple-Valued Functions
Implicit functionsare expressions of the form
F(xy)=0 1)

which relate the variables andy without expressing in terms ofx directly. In the
special case wheigx, y) = f (X)-V, relation (1) yields a function of the standarg-(e
plicit) form y=f (x).
Examples:
Fxy)=y =3y +x3=0
F(xy)=y+xe’-1=0
The functions we have met so far wemegle-valued in the sense that to every
value ofxeD there corresponds uniquevalue ofy=f (x). A function that does not
conform to this restriction is calledultiple-valued In general, implicit functions are
multiple-valued.
Example:
X+y?’=1 o F(xy)=x?+y*-1=0.
The graph is the unit circle on the plane (Fig).Ve write:
y=+1-x)""|D=[-1,1].

We notice that to every value 8&D there correspontivo values ofy.

X—i—ﬂ

Fig. 1.2. A unit circle on the plane.
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1.5 Exponential and Logarithmic Functions

We consider the sequence

We define:

e=Ilim g =lim (1+£j =27
n

n—oo n—oo

Definition: Let a>0 be a positive real number, and let

a=eP

for somebeR. The number
b=Ina

is called thdogarithm of a. Notice that weeannotdefineln a for a<0! Moreover,
dF Inc < a=c
Examples

1. In1="

Let In1=x.Then, 1=* = e*=e? = x=0 = INn1=C

2. Ine=?

Let Ine=x.Then,e=e* = e*=e! = x=1 = Ine=1

3. In(18) = ?

Let In (1) =x.Then, ¥=e* = e*=e™ = x=-1 = In (1/e)= -1

4. Similarly we can show that Inve=1/2, In(AA/e)=-1/2

5 liminx=7?

x—>0"

In general, Ix =y < x= eY. We notice thatx->0" as y — —o . Thus, conversely,
y=Inx— - whenx—0" . Thatis,

Iimln x=—o0

x—0"
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Properties of logarithms:

In€*)=a, Vaes R
2. €?=a, Yac R
3. In(@b)=Ina+Inb (a>0, b>0)

4. N2~ na-Inb=-In2 (a>0, b> 0)
b a

5. Iniz—lna (a>0)

6. In@)=klna (a>0, ke B
Proof :

.letin(e)=x=> €=¢€ = »x a
. Lete®=x= Ina=Inx= x= a
. Let Ina=x, Inb=y, In@b)=z.We show thatx+ty=1z:

In(ab)=z= ab=¢é, nha x> a & Inb ¥y e
ab=€¢ = €€é=86=> &'= é=> X ¥y z

. Let Ina=x, Inb=y, In@hb)=z.We show thatx-y=1z:

In(a/lb)=z= ab=¢é, Ina x> & & Inb ¥y b'e
alb=€¢ = €/é=86= &'= é=> X ¥y 2z
In(a/b)=Ilna-Inb=-(nb-In g=-In( W A.

.In(lB)=Inl-lnha=0-lna=-Ina.

. Let In@"=x, Ina=y . We show thax=Kky:

n(@)=x= a“=¢, ha y= a é;
k=€ = (== &= &= ky >
Exercise 1.2Show that

In(a—bj: Ina+Inb-Inc
C

Exercise 1.3Find the values of the following expressions:

@ In(sin%j (2) |n(e_12j 3 | ezx/_GJ

Je
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The function
y=f(X)= € = exp x

is called theexponential functiomand is defined for akteR. Its domain of definition
is, therefore,D=R.

The function
y=f(X)=Inx

is called thdogarithmic function What is its domain of definition? We notice that
y=Inx= x=¢€¢ = x0,V y F.

Hence,D=R" = (0, +x). As we showed earliellirgln X=—o00,

Graphs:
y y
=Inx
y=¢ Y
/1 0 1 X
0 X //

Fig. 1.3. Graphs of exponential and logarithmicctions.

1.6 Linear Function

The function
y=f(x)=ax+b @+0) 1)

is calledlinear functionbecause its graph is a straight line (Fig. 1.4).

y
46'*)(\0
Y OA=b
A 0<él<r
P X
e O

Fig. 1.4. Graph of a linear function.
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For x=0 we have thaf (0)=b . The geometrical significance @ is found as fol-
lows (see Fig. 1.5).

y
Y>
Y1 :
< )
- o x X,

Fig. 1.5. Graph of linear function.

Lety,=axit+b, y,=axo+b . Subtracting the first equation from the secondl setting
AX=X-Xq , AY=Y>-y1, we find that

Ay=adx < 4y = a = const (2)
AX

Relation (2) is the necessawd sufficient condition in order that the functigef (X)
be linear. Now, from the above figure we see thgt1x=tar). Hence,

a = tand 3)
The constana is called theslopeof the straight line (1).
Problem:Find the equation of a line passing through thietp@, , yo) and forming

an angle? with thex-axis.

Solution: By (2) and (3) we have thatly= a4x, where a= tanf, Ax=x-xo and
Ay=y-y . Thus,

y-y=a(x-x) 4)

Alternatively, we seek an equation of the form f(i)suitable values cd andb. The

constanta is equal to tad. Puttingx= X, andy=yjp in (1), we have:yo= axotbh =
b=yo—ax,. Substituting this value df into (1), we get (4)

Problem:Find the equation of a line passing through thatpdx , y1) and &, y»).

Solution: Since the line passes through ,(y:1) it will be described by an equation
of the form (4) with X1, y1) in place of %o, Yo): Y — y=a(x — %) . On the other hand,
the slopea is equal toa= Ay/Ax= (Y. — W)/(X2 — %) . We thus have:

y_y1: o— %
X=X %=X

()

By a property of proportions (see Appendix), fraB) = (y—y)/(x—x)=(y=)/(Xx—%)
(show this!). We thus obtain an equation equivaier{b).
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1.7 Quadratic Function

The function
y=f(x)=ax’+bx+c @+ 0)

is calledquadratic functiorand is represented graphically bgaabola(Fig. 1.6).

y

O

\_/ §

Fig. 1.6. A parabola.

Theroots of a quadratic function are the real or complemharsp; , p» for which
f (p1)=T (p2)=0; they are given by the formula

_—b+4

. A=Db’-4ac.
P12 2a

The roots are real and differentdi# 0, real and equal #=0, and complex conjugates
if 4<0.

1.8 Even and Odd Functions

Consider a functiog=f (x) with domain of definitiorD. We assume that ¥cD, then
(-x)eD also. We say that

f (x) is anevenfunction if f (—x) =f (x) , ¥YxeD , while

f (x) is anoddfunction if f (-x) = - f(X), VxeD.

Of course, an arbitrary function need be neithenavor odd! For example, the func-
tion f (X)=x *+1 is neither even nor odd.

The graph of andd function (see Fig. 1.7) always passes througlotigen of the
X-y system of axes (provided, of course, that theevgh0 belongs td). Indeed, by
puttingx=0 in the relationf (—x)+ f (x)=0 we find thatf (0)=0.
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\\O// ” 7 "

Even functior Odd functior

Fig. 1.7. An even and an odd function.

Examples:
Even _Odd
f(x)=c X, X, ¥, f(x)=x %, ¥, X,
f(x) =] x| f (X) =sinx
f (X) = cosx f (x) =tanx, cotx
f()=€+e’ f(x)=e- e

Exercise 1.4Prove the validity of the following statements:

The product (and likewise the quotient) of texenor two odd functions is an
evenfunction.

The product (and likewise the quotient) of @renand anodd function is an
odd function.

The sum and the difference of twgenfunctions is arevenfunction.

The sum and the difference of twddfunctions is arodd function.

The sum of an even and an odd function is a fundtiat is neither even nor
odd.

Proposition:Everyfunction f (x) can be written as the sum of @renfunction A(x)
and anodd function B(X) .

Proof: We write

f(x)=%[f(x)+ f(—x)]+—;[ (- (-% = AX+ B where
A(x)=%[f(x)+ (3], sx=—;[ (X - X

It is not hard to show thaa(—x)=A(X) and B(-x) =-B (X) .

Example: For f (x)= e* we write:

c_ligs e i lia ea
e—z(e‘+e)+2(é €)= A} B).

10
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Exercise 1.5For each of the following functions, examine wiegtit is even, odd
or neither.

D FfX)=2x"-3¢+1 (2 fXx)=2¢-3x @) fxxr X+ 1

(4) f()=Ix+1k [x=1] O)f &K} k+ 14+ k- 1| (6)f X3 %:%
(7) F(x)=sinx  (8) f()= ¥ cosx  (9) f (X} ti’;X (10) f &} C)‘(’:X
1.9 Periodic Functions
A function y=f (x) is calledperiodicwith period a#0 (Fig. 1.8)if
f (x+a) =f (x) 1)

If (1) is valid then it is true that, more geneyall
f(x+tka) =f (x), k==£1,42,+3, ...

(show this!). That is, if is a period off (X), then so ika, wherek is any integer.
Typically, by “period” we mean themallest positive periodf a periodic function.

y
fy: f()
\\/m\/ X
a2 —]
Fig. 1.8. Periodic function.
Examples:

In the following examples, use will be made of thgonometric equations presented
in the Appendix.

1. y=f (X)=sinx. We check iff is periodic with period:

f(x+a) =f(X) = sin(x+a)=sinx = x+a=x+2kr or x+a= (2k+1)x —X
so thata=2kz or a=(2k+1)7 —2x (k=0,+1,+2,43,...). The second solution is not
acceptable sinca must be a constant, independentxoffhe solutiona=2kz has a
minimum positive value fok=1. Thereforey=f (X)=sinx is periodic with fundamen-

tal period equal to
a=2n

11
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2. y=f (X)=cosx. Show that this function is periodic with period

a=2r

3. y=f (X)=sin2x or co2x. Show that these functions are periodic with pkrio

a=rn

4. y=f (X)=sin(x/2) or cogx/2). Show that these functions are periodic withqae
a=4r

5. y=f (x)=sinJx or cosix (1eR"). Show that these functions are periodic with quri
a=2r/

6. y=f (X)=tanx or cotx. Show that these functions are periodic with perio

a=r

7. y=f (X)=tanix or cotix (AeR"). Show that these functions are periodic with qukri
a=nll

8. Every constant functiory=f (x)=c is periodic with arbitrary period. Indeed:

f(x+a)=c=f(x), for any value ofa.

Exercise 1.6Show the following:

e |If f(x) is periodic with period, then A f(x) and f (x)+c (wherel, c are con-
stants) will also be periodic with peried

e Let f; (X) andf, (X) be periodic with period. Then f; (X)*f, (x) will also be pe-
riodic with perioda.

e Let f1(X) andf, (X) be periodic with perioa. Then f; (X)-f> (X) and f1 (X) / 2 (X)
will also be periodic with period (which, however, may not be thaimallest
period).

Assume now thdt (x) andf, (xX) are periodic with corresponding smallest periods
a; anday . We want to check if the surfa (x)+f, (X) is a periodic function. This will be
the case if; (X) andf, (x) have some common period, not necessarily thelsshane
of eitherfy (x) or f,(X). The sets of positive periods of the two funcsi@me

S ={ka/ k=1.2,3:}={ a2 a3 3"},
S ={ka/ k=1.2,3,}={ 32 33 3}

Let us assume that the intersectiorSpand$; is not the null setS N S #&. Then

the functionf; (X)+f, (X) will be periodic with period equal to the smallegement of
SN'S (i.e., the least common multiple afanday).

12
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How about the function§; (x)-f» () and f; (X) / 2 (X)? Again, the smallest element
of the setS (1S is a period of these functions, but it will notcaesarily be their
smallest period. Let us see an example:

We will check the periodicity of the functidiix)=tanx. We can work in two ways:

(@ f (x+ta)=f (X) = tan(x+a)= tanx = x+a= xtkr = a=kr (k=1,2,3,...). The
smallest value of the period &=« .

(b) We write the given function in the form of a geait: f (X)=sinx/cosx. The func-
tions in both the numerator and the denominatoparadic with common (smallest)
period 2. This will also be a period fdr(x), but will it be its smallest period? Lat
be the smallest period 6{x). Then,

sin(x+a) _ sinx

f(x+a)= (¥ = = .
cos(x+a) cosx

This can be satisfied in either of two ways:

e sin(x+a) = sinx and cos(x+a) = cosx = Xx+a=x+2kr, or

e sin(x+a) =-sinx and cos(x+a) =—cosx = x+a = Xx+(2k+1)r .

Thus, a=2kz or a=(2k+1)z . These may be combined by writiagiz (1=1,2,3,...).
The smallest value d, for A=1, isa= 7. We notice that the period of the quotient
sinx/cosx, equal tor, issmallerthan the period2of both sinx and cosx!

Examples:
1. Examine whether the functiorf{x) = sinv/x and f (x) =sinx® are periodic.

Solution: In both cases the relatioin(x+a)= f (x) yields expressions foa that are
not constant quantities but functionsxfshow this). Therefore, neither of the given
functions is periodic.

2. Examine the periodicity of the functidi{x) = 3sinx+2cosX.

Solution: Let f; (X)=3sinX and f, (X)=2cosX. Then, f (X)=f; (X)+f, (X) . The func-
tion f(x) will be periodic if thef; (X) and f, (X) have some common period; that is, if
SN S =Y, whereS, andS, are the (infinite) sets of periods of the two ftiois.
The period of (x) will then be the smallest element of the Sgf) S,. Now, we recall

that the functions sifix and cosix are periodic with (smallest) period/2 . Thus the
set of periods of each function i&21 (k=1,2,3,...). Analytically, forA=2 and 1=3
we have:

S_:{ kz | k:]-’2131"'}:{7[1272',372',"'},
2k or 4t

S :{T/ k:1,2,3,---}:{—3, —3,27[,---}

13
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We observe that the smallest element of the intése S (1 S is 2. Hence the
given functionf (x) is periodic with perioda=2r .

3. Examine the periodicity of the functidr{x) = sin®x .
Solution: f(x+a)= f(X) = sin®(x+a)= sin®x. This is satisfied in two ways:

e sin(x+a) =sinx = x+a=x+2kr or x+a = (2k+1)r—x (not acceptable),

e sin(x+a) =-sinx = x+a=x+(2k+1)r or x+a = 2kr—x (not acceptable)
(the two solutions that were rejected would givecalependend). We thus have that
a=2kr or a=(2k+1)z. Combining these results, we writg=ir (1=1,2,3,...). For the
smallest period we sét 1, so thata= . The given function is thus periodic with pe-
riod a=7
4. We consider the functions

1, cost, sinwt, coRLwt, Sin2wt, ..., cCOfwt, SiNnwt, ...
wherew is a positive constant. The constant function fieisodic witharbitrary pe-
riod. The remaining functions have a common pefie@xr /w which, however, is the
smallestperiod only forcoswt and sinwt (in general, coswt and simwt both have
smallest period equal tarZnw=7/n). We now consider a functioh(t) that is ex-

pressed in the form of an infinite series (ChapwBpse terms contain the above
trigonometric functions multiplied by arbitrary ciant coefficients:

f(t) =ap + (a;coswt + by sinwt) + (a;cos2wt + by sin2wt) + ... +
+ (a,cosnwt + by sinnwt) + ...

or

f(t)=i(an cosnwt+h, sinmw t) (2)

n=0
The functionf (t) is periodic with period=2z/w; that is,f (t+7) =f(t).

Note: It can be proven thaveryperiodic function with period’ can be expanded
into a series of the form (2), with=2z/T and suitable coefficient, , b, . This series
is calledFourier serieq1,2].

Exercise 1.7Show that a functioff (t) expressed in the Fourier-series form
2rnt
f(t cos— in——
-3 5, sin

Is periodic with period’.
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Exercise 1.8Examine the periodicity (or not) of the followifignctions:

(D) f(x)=sin2x+ cos/ 2  (2)f & ¥ 2cos{ /2) 5sin( /
(3) f(x)=5sin2x— 3cosx (4)f k¥ tadx

1.10 Inverse Function

Let y=f (X) be a function and ldD be its domain odlefinition. Therangeof f is the

set B={ f (X) / xeD}=f (D) . The function defines mappingof the seD onto the set
B, such that to every poixieD there corresponds uniquepointyeB. If, moreover,
to every poinyeB there correspondsumiquepointxeD, the mapping is callebijec-

tive or “one-to-one” (1-1). In this case,

X1=X2 & f(x))=1f (xo) or, equivalently, x;#% < f (xX)#f (%) .

A functiony=f (x) which is 1-1 is calledhvertible since it allows us to define thie-
verse functionx=f (), with domain of definitiorB and rang®, so that

FEfI=x, fIfXyl=y.
We notice that
f(ref)®=x, (fofH(y=y.
We say that the composition bfand f ~* is theidentity function
Examples:

1. The functiony= f (x)= x* is 1-1, with D=B=R. The inverse function is
x=f(y)=3y.

2. The function y= f (x)= e* is 1-1, withD=R andB=R". The inverse function is
x=f (y)=Iny.

3. The functiony=f (x)= x*, with D=R andB= [0, +x), is not 1-1 since to every value
y>0 there correspontivo valuesx:i\/?. Thus this function isiot invertible (the
inverse function isnultiple-valued see Sec. 1.4).

4. The functiony= f (X)=sinx, with D=R andB= [-1, 1], is not 1-1 since to every

value ye[-1, 1] there corresponthfinitely manyvalues of x= arcsiny . Thus this
function is not invertible.
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1.11 Monotonicity of a Function
Consider a functioly=f (x) with domain of definitiorD, and let §, b] = D be an in-

terval on thex-axis. The functionf is said to beincreasingin [a, b] if, for any
X, % €[ad such that; < x;, we havef (x1) <f (x2), while f is decreasingn the

considered interval if, for any, X, € [a  with x; < X2, we havef (x;) > f (x). A

function that is either increasing or decreasingdme interval is said to meonotone
in that interval.

Exercise 1.9Show that a functiorf that is monotone in itentire domain of defi-
nition is invertible, and the inverse functiofi~ also is monotone (increasing or de-
creasing, in accordance wifl).

Examples:

1. The linear functiory=ax+b is increasing fora>0 and decreasing fa<O0.
2. The functiony = € is increasing on the entireaxis.

3. The functiony = € * is decreasing on the entixexis.

4. The functiony = x* is decreasing ino, 0] and increasing in [6:x) .

Exercise 1.10Verify the above statements.

References

1. A.F.Bermant, I. G. Aramanovichlathematical AnalysigMir Publishers, 1975).
2. M. D. GreenbergAdvanced Engineering Mathemati@nd Edition (Prentice-Hall,
1998).
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DERIVATIVE AND DIFFERENTIAL

2.1 Definition

In a sense, the derivative is a “measure of seitgitiof a function y=f (x) to small
changes ok. The larger the change gf the bigger is the sensitivity of the function.
This sensitivity generally depends gnThis observation leads to the definition of a
new functiony’=f ’(x) , called thederivativeof f(X).

Let y=f (X) be a continuous function. We consider an arbit@range ofx,
namely, x— x+4x. This induces a corresponding changg: o§y— y+4y, where

Ay=1 (x+4x)—-f (X) sothat y+A4y="f(X)+ Ay="f (x+4X) .

A measure of the sensitivity df(x) at pointx is the quotientty/4x, provided thatix
is very small. We have:

Ay _ f(x+4X- (X
AX AX

This expression is a function tfo independent variables, nametyandAx. If, how-
ever, we take the limit oty/Ax for A4x—0, the result will depend only oqi.e., it will
be a function ok. This function is called théerivativeof f(x) and is denoted "(x):

£1(x) = lim Y jim 1O+ 4%- (X

Ax—>0 AX  Ax>0 AX

We will often write: y’=f "(x) . The value off "(x) at a particular poink=x, is
F'(%) = /() |xy, -

If this value exists, the function is said todifferentiableat X, . The process of find-
ing the derivative of a function is calladifferentiation (to differentiatea function
means to find its derivative).

Examples:

1. y=1f(X)= c (constant function). We have:

Ay=F(x+ 49— f(9=c 0= Y _0= im&¥-0.
AX Ax—>0 A X

Thus,
y=()=0 .
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2. y=f(X)= ax+b (linear function). We have:

Ay=f(x+A4X)— f(Y=[& x+A4 X+ b—( ax b= 4 =

ﬂza = lim ﬂ: a
AX Ax—>0 A X
Thus,
y'= (axtb)'=a .

3. y=f(x)=x*. We have:

Ay = f(x+A4X) - f(N=(x+A4 - X=2x1 % (4 ¥ =

ﬂ=2x+Ax = lim ﬂ:2x
AX Ax—>0 A X

Thus,
y'= (X% =2x .

4. y=f(x)=x*. We have:
Ay=f(x+4X) - f(N=(x+4 P - X=3 4 %34 ¥+d ¥ =
%:SXZJFBXAXJF(AX)Z: lim 2Y = 3

Ax—>0 A X

Thus,
y= (%) =3x .

5. y=f(X)=x® (acR). As can be proven [1,2],
y'= (x%) =ax®*".

Let us see some examples:

SR R S

The derivative of a function admits a geomaetriaterpretation to be discussed in
Sec. 2.10.
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2.2 Differentiation Rules

1. Derivative of a sum or difference of functions:

(00 H(0x-) = f,(NE f(R£-

e The derivative of a sum or difference of functiegeals the sum or difference,
respectively, of the derivatives of these functions

2. Derivative of a product of functionkdibniz rulg:

(R0O)F(0) = () B3+ T (Y

(F0O)F00 f(R) = £ L3 B3+ 80X BOX § ¥+ { X & X § ¥
etc. In particular, ifc is a constant, thefc)’=0 and

cfl(]" = cf'(x) .

3. Derivative of a quotient of functions:

{f(x)]: /() g(X— (X d( ¥
g(x) [9(X)]?

Exercise 2.1Find the derivatives of the following functions:

(1) y=§—% @ y=1%  (3) y= 2/ ¢ 3INX
X X X

The following important theorem will be proventhe Appendix:

If the derivative of a functioh(x) is defined at a poink=x,, the function is
continuous akg .

It should be noted carefully that the conversehed theorem isiot true, in general!
Indeed, a function may be continuous at a pointrevtiis derivative is not defined.
For example, the direction of the graph bfx) may change abruptly at some point
X=Xo, as seen in Fig. 2.1. The derivativgx) will then be non-continuous &, in
accordance with the geometrical interpretationhaf tlerivative (to be discussed in
Sec. 2.10).
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%

Fig. 2.1. A continuous function with a non-contimgalerivative ak=x,.

2.3 Derivatives of Trigonometric Functions
1. For the functiony=f (x)= sinx we have:

sin(X+ 4Xx)— sinx

00 = fm =
But,
sin(X+ A4x)— sinx= 25in(X+AX)_ X cchJrAZ)9+ X 25%)( CGZSX;—A) '
So,
Zsinﬁ COSLH_AX sin@( cosi2 Xt AX
f'(x) = lim 2 2 _|m —2 2
AX—0 AX AX—0 ﬁ
2
. AX
=| lim Sm? lim 0052X+AX =1 co 2x+0
- ﬂ_)o AX Ax—0 - 2
22
where we have used the fact tha%w =1. Thus,
u—0 U
| (sinx) = cosx |
2. For y=f(x)= cosx,
£1(x) = lim COS(X+ AX)— COX
 Ax50 AX '
We have:
COS(X+ AX)— COSX= 25':(.X+A2X)+X sir‘x_();A )9:_ 25+|41—X smtznﬂ) .
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DERIVATIVE AND DIFFERENTIAL

Thus,

. AX L 2X+AX AX . 2X+AX
-2sin— sin——— sin— si———
f'(x) = lim 2 __|im
Ax—0 AX Ax—0 ﬁ
2

. AX

oSN/ . 2X+ AX . 2x+0

=—| lim lim sin =-1-sin
A% g AX Ax—0
2 2

and therefore

| (cosx ) = — sinx|

3. For the functiony=f (x)= tanx we have:

, sinx)  (sinx) cosx— sinx (cox’) cbsx  Sinx
F/(x) = - )
COSX cos x cod x
tanx ) =
(tanx) cos X
Similarly,
(cotx) =——
sin? x
2.4 Table of Derivatives of Elementary Functions

(c)'=0 (c= const)
(x*) =ax"* (¢e R
() = ¢

(Inxy =2
X

(sin ¥ = cos x

(cos xj=—sinx

tan x) =
(tan cos X
, 1
(cotx) =——
sin® x

(arcsinX

1-x2

(arccos<' ¥ —

(arctanx’)=

(arccotx )=—

1- x?

Y

1

1+ X
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2.5 Derivatives of Composite Functions

Let y=f (u) andu=¢(x) be two differentiable functions. We define thenpmsite func-
tion

y=(fep)(¥) = flo(X] .
The derivative of this function with respectxas equal to
y'=(feop)(X)=f(W)e'(x .

4y _ Ay Au
AX  Au AX

Proof: We write: . Since ¢ is continuous (why?)4u—0 when

AXx—0. Now,

y' = lim 4y lim (ﬂﬁj}:[lim ﬂj(lim ﬂj: f(uely .

Ax>0 AX  4x>00 AU AX Am0A U 404 X

We will adopt the simpler notatioy=y(u) and u=u(x) so that, by composition of
these functionsy=y(x). We thus write

Y=y uu® .
Similarly, by composition of/=y(u), u=u(w) andw=w(x) we havey=y(x) and
Y=y uuww ,

etc. The above differentiation rule for compositedtions is often called the “chain
rule”.

Examples:
1. y(X)= €*. We write y(u)= €", u(x)=2x. Then,

Y=y u(3=(&'2 ¥=2 = (¥)=2%.
2. y(X)=e™ We write y(u)= €, u(x)= —x. Then,

YX¥Y )&y @) X=-t=> (€)= ¢

3. In general,

(e®)=ae” (ac R
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4. y(x) =¥ write y(u)= €', UW=+v w= W? wXx= %+1. Then,

(= (e k- 41 we _xe_ xe"
N@—W@MWM&%@(WM%HLJ{ZWj&xmim_JW:
(GM)’: X ghea
X +1

5. In general,

(e”x))' = f'(x) ™

6. As can be easily shown,

| (sinax) = acosax , (cosx)=— asinax (& R

More generally,

[sin f (x)]'= f'(X)cosf (x), [cosf k)]=— f' (xX)sinf (x)
[tan f (x)] = f'(X)/cog f (x), [cotf X)]=— f (X)/siR f (x

7. y(X)=In(sinx). Write y(u)=Inu, u(x)=sinx. Then,

y'(¥) = y(u u(3=(n g'(sin >9’=% cos #% =

| [In(sinx)] = cotx|

Similarly,

| [In(cosx)] = — tanx|

More generally,

WHME%%
8. In general,
((FO%) =al N % (ae R
For example,

(sin®x) = [(sinx)*] = 2sinx (SinXx)= 2SiNX cox= Sin§

. w2, _ 1 -1 Ju—
(inxy' =[in 9" =50 3 §'=———
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2.6 Derivatives of Functions of the Formy = f (x)]**
Consider a function of the forng= [ f (x)]°® , where f (x)>0 for all values of in
some subset of the domain of definitionfofWe want to find the derivativg with
respect t.
Technique: We write
f() =" sothat y=[e"0]" = gt = gn,
Then,

y=[e""=dg(3 &= g x €O =g Wn (K[ (K
=[p(x)In £(X]"y

Examples:
1. y=a* (a>0). We write
a:elna - y:d:(épa)x: é(lna

yr:(exlna)r:(xln @r é(lna:(ln a é
That is,

(@a¥)'=(Ina)a* (a>0)

2. y=x* (x>0). We write

X:elnx = y= %:(é']X)x: é(lnx
y!:(exlnX)/:(xln )9r é(InX:(1+|n )) %
That is,

(X)) =(@1+Inx)x* (x> 0)

Exercise 2.2Find the derivatives of the following functions:
(1) y= e () yo co§(\3/ ® + ]) (3) y= tan(sih X)
(4 y=In[In(x*+1)] ) y=vVInvX¥+1 (6) y= (x 1" (x> -1)

7)) y=x" (x>0) (8) y= (sinxf°> (< x<7z) (9 y= In|x| (¢ O

[Hint for (9): [x=x if x>0 while |x= —x if x<0. Examine the two cases separately.
What do you observe?]
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2.7 Differential of a Function

Consider a functioly = f (x). Let 4x be an arbitrary change of the independent vari-
able, from an initial valua to x+4x. The corresponding changeofs

Ay=f(x+4X)— f(X .
Note thaty is a function otwo independent variableg,and Ax.
The derivative off at a pointx has been defined as

f/(x)= lim_ P+ A= 109 _ iy AY
X—> AX Ax>0 AX

This suggests that a functiar(x, 4X) must exist such that

AY ) +e(xAx)  where lim &(x 4% =0 .
AX AX—0

Thus,
Ay = f'(X)AX+ (X AXA X (1)
The productf " (X)4x is linear (i.e., of the first degree) ialx, while the product

(X, 4xX)A x must only contain termsf the second degree and higlwerx (that is, it
may not contain a constant term as well as a litexar). We write, symbolically,

e(X,AX)Ax= 04 ¥) where Ax?=(4X)? (;t A(xz)!) .

Equation (1) is then written

Ay = f/(X) Ax+ O(4 X) (2)

We observe thaty is the sum of a linear and a higher-order termxnFurthermore,
the derivative off atxis the coefficient o#1x in the linear term.

Example: Let y =f(x) =x3. Then,
Ay = f(x+4x) — F(X) = (x+4x) 3 = x3 = 3x2 Ax + (BxAxXE + AX)
from which we have thatf (x) = 3?2 and O(4x?) = 3x4x% + AX° .

The linear term in (2), which is a function»ofndAx, is called thalifferential of
the functiony = f (x) and is denotedy:

[dy=df(x="f"(x)Ax] (3)
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Equation (2) is then written

Ay = dy+ O(4x%) (4)

If Ax is infinitesimal (Ux|<<1) we can make the approximaticB(4x%) ~0.
Hence,

Ay =~ dy=1f "(X) Ax for infinitesimalAx .

Note however that, fdiinite Ax the differencedy and thedifferential dyare separate
quantities, in general!

An exception is the case of lindanctions. Lety = f (X) = ax+b . Then,

Ay = f (x+4x) — f(X) = [a(x+4X)+b] — (ax+b) = adx
and
dy = f "(X) Ax = (axth)’'4x = adx = Ay .

That is,for linear functions (and_onlyor these functions) the differential dy is the
same as the differencty, even if these quantities assume finite valuess feans

that, for linear functionsQ(4x?) = 0.
Let us see a few applications of the definii{@nof the differential:

Forf(x)=x = d(X¥)=(¥)4x= ax'a;
Forf X e = d€ @1 x &

For f(x)=Inx = d(n Y =(In ¥4 x==4>
X
For the functionf (x) = X we have: dx= k"M x= 14X =

in accordance with our earlier remark regardingdinfunctions. Relation (3) may
thus be rewritten more symmetrically as

ldy=df(®="f (x)dx|

Dividing this bydx, we obtain the following expression for the detivex

dy _ df(3

f (x) =
) dx dx

In words: The derivative of a function is equal to the défaial of the function di-
vided by the differential (or, equivalently, theaolye) of the independent variable.
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Exercise 2.3Verify the following properties of the differential

1. d[f(X¥+ o R]=di{ X+ d§ X
2. d[f(¥) o= (3 dg x+ ¢ x df )
3. d[cf(X]=cdfl X (c=const)

d{f(x)}: g(¥ df(® - (3 dg ¥

9(x) [ %]

2.8 Differential Operators
We introduce a notation that proves to be importahigher mathematics:

atl) _ 9t
dx dx

Notice that this notation attempts to “mimic” theoperties of ordinary multiplication

of numbers:

af_a g
4 4

except that the expressi%gk is definitelynota number! The symboz;i is called a
X X

differential operatorand, when placed in front of a functidn(x), it instructsus to
take the derivative of (x). We thus write:

df(x _ d

===

The above relation exhibits three different notagifor the derivative of a function!

Note the following properties:

d Cdf(®, dgy d d
1. &[f(x)ig(x)]— ix t roai dxf(>9i dqu

d df(®) dgy ., d d
2. &[f(x)g(x)]_—dx d ¥+ f(X—dX = { X dx())<+ (J)de(f)*

In words: The differential operator isliaear operator that satisfies theeibniz rule
(Sec. 2.2). Operators having these properties @tedalerivationsand are of great
importance in physical theories such as electraglyeand quantum mechanics.
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2.9 Derivative of a Composite Function by Using & Differential

We consider two functionsand g such thaty=f (u) andu=g(x). As we know, the
composite functior{ fo g) is defined by the relation

y=(feg) () =fla(].
To simplify our notation, we writg=y(u), u= u(x) andy=y(x)= y[u(X)] .

We want to find an expression for the derivatdiy with respect tox. This deriva-
tive is equal to the quotiemly/dx We write:

_dy_dydu

dx du dx:y (W u ()

which expresses the familiar “chain rule” for theridative of a composite function
(see Sec. 2.5).

2.10 Geometrical Significance of the Derivative ahthe Differential

y
M7
y= (X B
M 9'/
A
AX
(@) X X+AX X

Fig. 2.2. Graph of a functiopef (X) and the tangent line at poikit

Figure 2.2 shows a section of the graph of a fongt f (x). We consider an arbi-
trary pointM= (x, y) of the curve and we draw the tangent line to thiwve atM. This
line forms an anglé with thex-axis. As we see in the figure, to the charigeMA of

X there corresponds the chan@yg=AM" of y. The linear sectionB then represents
the differentialdy of f for the given values of and4x, while the derivative of atx is
equal totand. Indeed,

0= tim A = jim AM iy AML_ABhe
Ax->0 AX MA-0 MA BM -0 MA MA

where we have used the fact tBid"—0 when M4 —0. Therefore,

e the valueof the derivative of the functioy= f (x) for some giverx is equal to
the slope of the line tangent to the graph ¢%) fat the point M= (X, y)

(cf. Sec. 1.6). We also have:
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dy =f " (X) 4x = (tan ) 4x = Q_,i MA =AB.

Finally, from equation (4) of Sec. 2.7 we h#vat
O(Ax?)= Ay —dy =AM’ —AB = BM .

If the function f is linear, then B= M’ so thatO(4x’) = 0 and Ay=dy=45.

2.11 Higher-Order Derivatives

Thesecond derivativef a functiony=f (x) is defined as follows:

=1t =S A Fdx(_ (x)j (—dg 109=-T 103

or
d’f(x) d’y
dx? dx

v = ()=

where dxX?=(dX)? . In an analogous way we define thed derivative

= =[f (] = f() ddf)ff) z_g

In general, thenth-order derivativeof y=f(x) is written:

d" f(x) dy

(M — §m — f — )
y (x) = == =4

Examples:
1. (x*) =ax®?, (x®) ' =a(a-1)x*?, (XY =a(@-1@- 2)x**,-- (ac R
2. (sinx)"=cosx, (sinx)”" =-sinx, (sinx)"""=-cosx, (sinx)”"""=sinx, etc.
3. @) =) =) = =e
Note, in particular, that the simple expondriigction y=€* is theonly function

that is equal to its derivative (and, thereforeitdaderivatives of all orders). In fact, it
is by this property that the functigree* is often defined.
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Exercise 2.4 For any two functionsi(x) andv(x), show the following:
1. (u+Vv)"'=u"+v"’", (U+V)" =u""+Vv""", etc.

(uv)" =u"v+2uv'+uv”’
UV =u""v+3Uu'Vv+3uVv +uv’’

2.12 Derivatives of Implicit Functions

Let the algebraic relatiofr (x, y)=0 define an implicit function (Sec. 1.4). In princi-
ple, by this relation the variabjemay be regarded as a functiorxoy=y(x). There is,
however, no simple mathematical formula that waenglicitly expressy in terms of
x. How then will we find the derivativg (x)?

In this case we work as follows: we differetdi¢ghe relatiorf (x, y)=0 with respect
to x, keeping in mind tha is implicitly a function ofx.

Examples:

1. Let F (x,y) =x*+y?~1= 0 (unit circle on thexy-plane). Taking the-derivative,
9y 1y—0= 2 D6 oy oyy- 0o y=- X
dx dy dx y

2. Let F (x,y) =y*—3xy+X° = 0. Taking thex-derivative, we find:

2 r / y_X2
3y’y -3y-3xy+3X=0= y=-= .
yZ — X

3. Let F(x,y)=eY-x=0 (x>0), which is equivalent t@”= x or y=In x. Taking the
derivative ofF (x, y)=0 with respect tx, we find the familiar expression for the de-
rivative of the logarithmic function:

ye 1=0= y=g'=1 .
X
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SOME APPLICATIONS OF DERIVATIVES

3.1 Tangent and Normal Lines on Curves

Consider a functiory=f (x) and letM = (Xo, Yo) [whereyo= f (Xo)] be a point of its
graph on thexyplane (Fig. 3.1). We calf=T (x) the linear function describing the
tangentline to the curvd (x) at pointM, and we cally=N (x) the equation of the line
normalto the tangent line at/. The linesT (X) andN (x) are, therefore, perpendicular
to each other. We seek the explicit equations deegrthese lines.

y y=N(X
y=T(X
0
Yol----------2 T
' y=1(%
0 X X

Fig. 3.1. Tangent ling=T(x) and normal ling/=N(x) to the curvey=f (x).
Tangent liney=T (x)

As we saw in Sec. 1.6, a line passing throughyp) and having slop@=tané is de-
scribed mathematically by the equation

Y—Yo=a(X—xo) .

Also, according to Sec. 2.10 the slope of the tahgethe curve/=f(x) at o, Yo) IS
equal toa=f " (xp) . Hence the equation of the tangent line is

Y—Yo= (X=X f"(xo)

Normal line y=N (x)

This line passes throughy(, yo) and forms an angl&<{z/2) with thex-axis; thus its
slope is a’= tan@+z/2)= — cotd = — 1/tand = — 1/a, wherea=tand=f " (Xo) is the
slope of the tangent line. The equation of the raime is, therefore,

YYo= a (X—X) = — (1/a) (X—X) =

Y—Yo= — (X=X /' (%)
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3.2 Angle of Intersection of Two Curves

We consider two curveS; andC, described, respectively, by the functigrsf; (X)
andy="f,(X). The curves intersect at a poMt= (X, Vo), Wheref; (Xo)= f2 (X0)= Yo (Fig.
3.2). Lety=T; (X) andy=T, (X) be the lines tangent 6; andC, atM. We seek the
anglep formed by these two tangents.

y (3

T,(X)

O
Fig. 3.2. Angley of intersection of the curvesf;(x) andy=f,(x) at pointM.
Letd; andé, be the angles formed by the two tangents withxtagis (we assume
that 6,>6,). The angle between these tangents is iprerv;—0, . Now, the slopes of
the two lines are equal to

a=tanfi=f1" (xg) , a=tand="f," (X) .

Therefore,
tang, - targ,

1+ tang, targ,

tang = tan@, -0, =

tang = a-a, _ flr(xo)_ fé(xc))

1+ 8, 1+ fll (Xo)le(xo)

Special cases:

1. If ay=a, then tap=0 andg= 0. That is, the two tangent lines coincide.
2.1f y= -1/a; & 1+a;a,=0, then tamp=c and ¢= /2. That is, the two tangents
intersect at right angles.

Note: Consider, in general, two lines on theplane, having slopes;= tand; and
a,=tand,. The angley= 0,—0, formed by these lines is then given by the retatio

al_ a‘2
1+aa,

tang =

In particular, if a;= a, the two lines arparallel to each other, while ib;= -1/a;, <
1+ a,=0 the lines arperpendicularto each other.
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Examples:

1. Lety=f (X)= €”. We seek the equations of the tangent and theaidme at the
point %o, Yo)=(0,1). We havef " (xo)= f " (0)= 2. Thus, for the tangent line,

Y=Yo=(X=X)f (%) = y-1= (x-0)f"(0) = y=2x+1
while for the normal line,
Y-=Yo= —(X=%0) /T (X) = y-1= - (x-0)2 = y= —x/2+1.

We notice that the slopes of the two lines argyeesvely,a=2 anda’'= —-1/2, so that
the condition of perpendicularity+ aa’= 0, is satisfied.

2. Consider the lineg=f; (X)= x andy=f, (X)= —x. We call &, Yo) their point of in-
tersection. At that pointf; (Xo)= f2 (Xo)= Yo . Obviously, X = yo= 0 < (X0, Yo) = (0,0).
Now, the slopes of these lines amg=1 and a,= —1. We observe that 12 a, = 0,
which means that the two lines intersect at rigigies at (0,0)

3.3 Maximum and Minimum Values of a Function

Consider a functiory=f (x). We say that (x) is increasingat x=xo if for h>0, suffi-
ciently small,

f (Xo—h) <f(x0) <f(xot+h) .
Similarly, f(x) is decreasingat x=xo if
f (Xo—h) >f(x0) >f(Xot+h) .
The following can be proven:
o If f'(Xg)>0 thenf(x)isincreasingatx=Xxp.
o If f'(X)<O0 thenf(x)isdecreasingatx=Xxg.
o If f’'(X)=0 thenf(x) isstationaryat x=Xo.
A point (X, Yo) at whichf "(xp)= 0 is called ecritical point of y=f(X).
The functiory=f (x) has docal maximumatx=x, if for h>0, sufficiently small,
f(x) >f(x-h) and f(x) >f(x+h),

while it has docal minimumatx=xg if

f(x0) <f(x—h) and f(x) <f(x+h)

33



CHAPTER 3

ocal maximurr

o /N
\\_/ o X
\J local minimurr

Fig. 3.3. A local maximum and a local minimum dtaction.

(see Fig. 3.3). In general, a (local) maximum onimum off (x) is called arextre-
mum(extreme value) of this function.

There are two methods for determining the maxamd minima of a function:

First-derivative test
1. We solve the equatioh’(x)= 0 to find the critical points ofy=f (x).
2. Letx=xp be a critical point and Iét>0, sufficiently small. Then,
o f(xp) is amaximumf f '(Xo—h) >0 andf "(xoth) <0 ;
o f(Xp) is aminimumif f "(Xo—h) <0 andf "(Xo+h) >0 ;

e f(Xp) isneither a maximum nor a minimumf "(xo—h) f "(xoth) >0 .

Second-derivative test
1. We solve the equatioih’(x)= 0 to find the critical points ofy=f (x).
2. Letx=xp be a critical point. Then,
o if f77(X) <0, f(xo)isamaximuni
o if f77(X0) >0, f(x)Iisaminimum,

o if f"(Xp) =0 or w, the test fails (we use the first-derivative testéad).

Comment:The conditionf "(xg)= 0 isneither necessary nor sufficieint order that
the critical pointx=x, be an extremum of=f (x)! This is demonstrated in Fig. 3.4.
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y y

\/ /O )
0 X
(@) V2)

Fig. 3.4. In cased) the function has a minimum &0, although its derivative does not van-
ish there. In casef] we havef (0)=0 but the poinix=0 is not an extremum (it is neither a
maximum nor a minimum).

Exercise 3.1 Study the functiong/=sinx andy=cosx. Find @) the critical points,

(b) the intervals where each function is increasinglecreasing, anc) the maxi-
mum and minimum values ofin each case.

3.4 Indeterminate Forms and L’Hospital’s Rule
The process of finding the limit of a function foer X, often leads to expressions that

cannot be defined mathematically. The most comnypest of suchindeterminate
formsare the following:

9, E, 00, w—00 , dJ, f,ooO
0 0

Problems of this kind are treated by ushrigospital’s theoreni1,2].

Theorem: Let f(x) andg(x) be two functions such that

lim f(x)=lim g3 =0 or lim f(x)=%lm g =co
X% X=X X %

X%
(wherexo may be finite or infinite). Then,

jim 2 _ i 0
% g(X) % g'(X)
If lim f’(xX)=Ilim g(X) =0 or «, then
X=X X%

fim L _ i )

— (and so forth) .
% g(x) =% g(x)

By this theorem we treat the cas¥#6 and o/« directly.
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The case -&® reduces to the previous ones as follows: Assuraefi{x)—>0 and
g(X)—>. We then write

f(x)- g(¥) = 1/”?)%% or f(x-g(X= 1/95?)43.

The caseo—w is treated as follows: Let(x)—>+o0 and g(x)—>+w. We write

11 (Ug)- (Uf)

F)-0(9 = 1/fx) 1/g(x)  1/(f-g) 0

The cases 9 1" and (+0)° are treated by using the transformation

[f(X)]g(X) :[elnf(x)]g(x) _ 90010 (9

and by taking into account thdim e" :exp[ lim h(x)} .
X%

X=X

Examples:
1. lim 3NX (O/O)—Imﬁle .

x—=0 X 1
2. im 229 (0/0) = lim—""_ (0/0) = lim-2% o

x->0 X—SIn X x>01- CcOSX x>0 SINX
3. For a>0, lim I_x (00/ 0) = lim i_o (we say thak® tends to infinityfaster

X—>+00 x X—>+0 q
than Inx).
4. For n>0, I|m(x InX) (0-0) = I|m In_x (00/0) =—1Iim i:o .
0"1/x -0 n

5. lim (L—ij (oo-0) = im XInx=xt1 5,0

-1 Xx=1 Inx r (x=1)Inx
- "m+ln—x (0/0) = +L_E _
o |0y X1 . A/x)+(@1/%) 2
X

6. Let A= lim x* (0°). We write: A= lim &'"* = exp[ Ilm(xln x)}

x—0" x—0"

According to Example 4,I|rrg+(xln X) =0. Thus,A=1. Symbolically we write %1,
X—

in the sense thalim x* =1 .

x—0"
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Exercise 3.2Find the following limits:

. X— XCOsX
(1) lim 222227
x->0 X—SINX

(2) lim (1 —cot xj

x—0"\ X

. 2
(3) lim(cosx )}’

x—0

(4) lim (cotx)!/!"*

x—0"
References
1. D. D. BerkeyCalculus 2nd Edition (Saunders College, 1988).
2. A.F.Bermant, I. G. AramanovicMathematical AnalysigMir Publishers, 1975).
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INDEFINITE INTEGRAL

4.1 Antiderivatives of a Function

Definition: Consider a functiorf (x). Every functionF(x) whose derivative is equal to
F’(xX)=f (X) constitutes aantiderivativeof f(Xx).

If F(X) is an antiderivative df(x) theneveryfunctionG(x)=F (x)+C, whereC is any
constant, also is an antiderivativef k) (show this!). Thus, given a functidr(x) and
an antiderivativeF(x) of f(x) we can find annfinite set of antiderivatives df (x);
namely, F£(x)+C / CeR}.

The infinite set={F(x)+C / CeR}, where F(x) is any antiderivative off (x), con-
tainsall antiderivatives of (x); that is, there are no antiderivativesf¢x) that do not
belong to the sdt. This conclusion is based on the following thearem

Theorem: Any two antiderivatives of a functioh(x) can differ at most by a con-
stant.

Proof: LetF(x) andG(x) be two antiderivatives off(x). Then,
FXN=G'(X)=f(X) @ FX)-GX=[FX)-G(X)] =0 < FX)-G(X)=C.
According to this theorem, the de{ F(x)+C / CeR} of antiderivatives off (x) is
uniquely defined, regardless of the choice of theigular antiderivativé-(x). Indeed,
any other antiderivative(x) will differ from F(x) only by a constant and, therefore,
G(x) itself will belong to the sdt In conclusion:
e To find the (infinite) set ofll antiderivatives of (x) it suffices to findany
antiderivativeF(x) and construct the sét= {F(x)+C / CeR} for all values of

the real constart.

Symbol: Omitting the bracketssmhich, however, will alwaybe assumed to exist!
we will denote theset |of antiderivatives off (x) as follows:

I=F() +C (all CeR).
Examples:
1. The set of antiderivatives 6{x)=x? is 1= x*/3 +C .

2. The set of antiderivatives d{x)=e* is I= €?/2 +C .

3. The set of antiderivatives d{x)=-2/x (x>0) is I= -2Inx +C.
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4.2 The Indefinite Integral

Definition: The infinite set of all antiderivatives of a functioh(x) is called than-
definite integralof this function and is denoteU:J' f (x)dx. The functionf (X) is

called thantegrand while x is called thevariable of integration

If F(X) is any antiderivative off (x): F'(X) = f (x), then the indefinite integrdlis
given by the expression

|=jf(x)dx= F(X+C

for all real values of the consta@t We emphasize again thatepresents amfinite
setof functions, not any particular function! If wesisted on being notationally accu-

rate, we should writé :j f(xX)dx={H ¥ + T Ce R. Thus, strange as it may seem,
the following relation is true:

jf x(dx:jf (Pt C ¥ Ce k()

(imagine that we ad@’ to all elements of ). This, of course, expresses equality be-
tweensets not between particular functions. Given tRafx) = f (x), we may write

'[F’(x) dx= F(X+ C 1)

for any functionF(x).

The symbotx inside the integral sign is called ttdfferential” . It should not be
perceived, however, as an actual differential ey it was defined in Chap. 2, nor
should it be interpreted as an infinitesimal qughffo understand the spirit of this
notation, let us temporarily change the symthoto ox and write (1) as

[F x63=F(9+C )

For F (x)=x this yields| ox=x+C. Puttingu in place ofx, | su=u+C. Now, let us sup-
pose thau is a function ofc. u=f (x). Then, | 5f (X)= f (x)+C. On the other hand, ac-
cording to (2) we havéf ‘(x)ox= f (x)+C. We notice thaf of (X)= | f "(X)ox, which al-
lows us to write, symbolicallygf (xX) = f '(X)ox. This, of courseresembleghe defini-
tion of the differential:d f (X) = f (X)dx! Moreover, it is not hard to prove that the
symbolsé andd share common properties when placed in front nétions. We thus
call ox the “differential” of integration and write relan (2) in the form (1). We also
write:

de x(:)j F x(dx= F x(+)C.
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Basic Table of Integrals

Idx= x+ C
Xa+1
.[xadx: +C (az-1)
a+l
dx

—=In|x|+C
X
Iexdx: €+ C

jcosxdx= sinx+ C

J'sinxdx= —cosx+ C

I dx =tanx+C
cos x

J' 'dz< =—cotx+C
sin® x

=arcsinx+ C

J‘dX

Il > =arctarx+ C
X
X_
n—il+C
X+

:In(x+ x2i1)+ C
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4.3 Basic Integration Rules

1. Integral of a sum or difference of functions:
JIf)+ g+ Tdx=| {x dxt [ g ) bt

How are we to interpret the “sum of sets” on tlghtihand side? Ldét(x) andG(x) be
any antiderivatives off (x) andg(x), respectively. Then, by definition,

[fe)dx+[g)de{R¥+ G} C & R= F)*» O)x*
2. Any constant multiplicative factor may be takmrside the integral:
j cf(X) dx= cj f(3 &> (c=const)
Combining the above two properties, we have:
fla f(= g Y=-] = gf € xdxt gf @)x dx--

3. As we have already mentioned,

jdf(x):j f'(x)dx= f(¥+ C

4. Change of variable of integration:

Assume that/ f (X)dx=F(X)+C, whereF(x) is an antiderivative of (x): F'(x)=f (x).
Renaming the variable to u, we write:| f (u)Jdu=F(u)+C , whereF '(u)=f (u). Now,
suppose that the variahlas a function ok u=u(x). Then,

jf(u)du:j f(UR) u(x)dx= F(U Q)+ C

This property plays an important role in the metloddntegration by substitution, to
be studied in the next section.

Exercise 4.1 Compute the following integrals:
2 3 1
1 ———+——|dx
()I[xz X 2&)

(2) j (3—% 4&) dx
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4.4 Integration by Substitution (Change of Variabg)

Assume that we are given the integraf f (x)dx, wheref (X) is not an elementary
function. It is often possible to find a new vat&b, which is a function ok: u=u(x),
such that the integrdltakes on the forni=[ g(u)du, whereg(u) is now an elementary
(or, at any rate, simpler) function. If

[g(u)du = F(u) +C ,
then
I=F[u(x)]+C .

Notice that
I=[g(u)du =Jg[u()] u’ (x) dx =] f(x)dx
which means that our aim is to set the given famcti(x) in the form
f(x) = glu(¥)]u’(x)

and then leti” (xX) be “absorbed” into the differentidk, thus creating a new differen-
tial du.

As an example, ldt(x) be of the formf (X)=u "(X)/u(x), so thatg(u)=1/u. Then, as-
suming thatu(x)>0,

Some useful transformations of the differential
dx=d(x+ g
dx=§ d(ay (a=0)
ady_ 1 +1
>mL;E¢f)(#ﬂ
x’ldx:%: d(n »
X
@wﬁlqéﬂ(&m
a

cosaxdx=1 d(sinax) , sinaxd)t——l d(cosax) (a (
a a

Exercise 4.2 Verify the above relations.
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Examples:
1. | =Ixexzdx.
We write xdx:% d(¥) and we seu=x°. Then,

I =1J‘exzd(x2)=—1j-éJ du:—l( &+ C)z—le“+ c-ltetic (whereC=C"/2) .
2 2 2 2 2

2
X“dx
2| :I2x3+1 '

We write x2dx=% d( ) :% d2 f):—é d2 %+1) and we seu=2+1:

~1pd(2X+1) 1rdu 1 Ny ] ] o~
|_6I—2x3+1 _6j = 6(Inu+C)_ énu+C_ én(2x3+1)+c:(c_c:/6).

3. |=j'”7xdx.

We write 1dx: d(in ¥ and we seu=Inx:
X

2
u 1 5

I =|Inxd(Inx)=|udu=—+ C==(In 3+ C.

Jinxd(inx)= fudu="7-+ C=7 (in ¥
4. | :jmdx _

X“+1
By writing xdx=% d( %) :% d ¥+1) and by settingu=x*+1, we have:
I :%jln—udu, which is of the form of Example 3 (within place ofx).
u

By making the new substitutiow=Inu, show thatl :% [IN(x*+1)]%+C.

5. Izjtanxdx (O< x<7 12).

We write:
I :jﬂdx:—jm) (setu= cosx )=— du__ (In+ C )=
COSX coX u

J'tanx dx=-In(cosx i C

(where C=-C"). Similarly, we find:

J'cotx dx= In(sinx)+ C

43



CHAPTER 4

6. | :jta”& d
\/§
By writing T dx= X2 dx= s d ¥?) =2 dy ¥ and by settingi =+/x, we find:
X

|I=2 [ tanudu, which takes us back to Example 5. The result is

| =—2In(cosVx )+C .

e -e”
70 =[S—dx.
e +e

By writing (e*-€*) dx= d é+ @) and by settingu=¢€‘+ e, we have:

= (Y jusc=in(e+ e+ C.
sin 2x
8. I = dx
J-1+sin2x
This is written:
sinx cosx sinx d (sinx ) . udu
=2 X=2|—————" (setu= sinx )=
J-1+S|n2x I 1+ sirf x ( ) 4‘]:Luz
jd(u) '[d(1+uz) (setw= ¥ u?) = '[—: Inw+ C
1+u? 1+ u?

=In(1+u?)+C = In (1+ sir® x)+ C .

Exercise 4.3 Verify the results in the above examples by singvthat the deriva-
tive of each expression found equals the functia wvas to be integrated.

Exercise 4.4Find the following integrals and verify your rétsu

mm%+nd

@ [ (x>1)
xIn x

@3 |

dx el cos(e )
(4) j—tanx v (O<x<7/2) (5) j—d

(7) .[ZL (Hint: Write the denominator as a sum of squares)
X —6x+18
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4.5 Integration by Parts (Partial Integration)
The method of partial integration is used for im&dg of the form
1= Ju(X) v’ (x) dx =] u(x) du(x)
when the method of substitution (change of varijaisi@ot applicable.

Theorem:Consider the functiong=u(x) andv=v(x). The following equality okets
IS true:

Ju) v () dx = VX)) - v(u (K dx <
[udv =uv-|vdu

(imagine that the produatv is added to every element of the infinite set anright-
hand side).

Proof: As mentioned in Sec. 4.2, the “differential” insithe integral sign shares
common properties with the ordinary differentiaffafctions. Thus,

d(uv) =udv +vdu = udv=d(uv) -vdu = Judv=/duv) -[vdu =
fudv=(uv+C)-Jvdu=uv-(vdu-C)=uv-]vdu ,
given that the infinitsets [ vdu and [vdu - C) coincide.

Method: Suppose we are given an integral of the for f (x) g (X) dx, which can-
not be computed by the method of substitution. B&ksan antiderivativia(x) of g(x)
and we write

I= Jfh ()dx=[f(x)dh(X) =f()hx)—Ih ) dfX)
=fh () —[h(x) f " (x)dx.
If this transformation does not lead to a simpigegration relative to the initial one,
we seek an antiderivative ¢{x) and we work in a similar way. In certain cases) t
successive partial integrations yield an algebegigation for that is easy to solve.
Examples:
1.1 =Ixexdx.
If we choose to put inside the differential and then apply partiakgnation, we will

end up with an even harder integral containihin place ofx! We thus try putting the
exponential factor inside the differential:

I =de(ex)= xé‘—j e dx x&-( & g=(x-1e’+C.
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2.1 :J'Inxdx .

Wehave:I:xInx—jxd(In XY= An X—I >& de  x( ¥ Q9 =
X

J'In xdx= x(In x-1)+ C

3.1 =jxlnxdx.
We putx inside the differential:| :%Ilnxd(xz) =
2l =j|nxd(x2)=x2|n x—szonn Y= %In )eJ- xdx Xn x(x—22+ g=>

2
=X nx—Yysc
2 2

4. | ZJ-XZCOSXdX :

We put the trigonometric function inside the diéfetial:

I :szd (sinx)= % sin x— 2J' xsinxdx X sinx 2|, where

Ilzjxsinxdx: —j x d(cosx)=— xcoswj coxdx— xcosk sink C Hence,
| = (x?-2)sinx+ 2x cosx+ C .

5.1 :J'eX cosxdx .

We put the exponential function inside the differan

I :Icosxd €)= ¢ cosx—j € d(cosx> & cosx ;, where

Ilzjexsinxdx=jsinxd(é)= & sin xJ' & dsin ¥ ’esin 9(] *ecos X

=e'sinx— 1.

Thus, | =€* cox+ € sik- | = 2=¢€ (cox sin+)C =
X

I :%(cosx+ sinx - C

Comment: Why was it necessary to add the cons@nin the expression for/2
(Remember thatis aset)
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Exercise 4.5Find the following integrals:

(1) j x€* dx (2) j e sin x dx
(3) J.sin2 xdx  (ithout making a trigopnometric transformation sif" x!)

(4) J'coszxdx (similarly)

Some integration problems are composite. Spatlif, a change of variable trans-
forms the given integral to a form that is intedealy parts.

Examples:

1. I:J'x5exsdx.
. (U3 1 3 1
We write I_Ixe xzdx_gj Xé& ¢ %) (set w ?’()_éj ue c,
which can be integrated by parts. We find:
I=ipc_ne’+cC.
3
2. | :J'e&dx.
We write Izj&e&idx=2jﬁ<efx dv ¥ (set w+ ¥= 4 ue ¢,
Jx

which is integrable by parts. We find:
| =2(W/x-1e™*+C .

Exercise 4.6 Compute the following integrals:

Jx
@) j—e f/";& dx

(2) jsinzx In(sinx)dx (< X<z /2]
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4.6 Integration of Rational Functions

A properrational functionis a fractional function of the forfR(xX)=P (x)/Q(x), where
P(x) andQ(x) are polynomials and where the degre®@J is lessthan that ofQ(x).
(In general, any rational fraction can be writterP8x)/Q(X)=S(x)+P1(X)/Q(x), where
SxX) andP;(x) are polynomials and the degreeRafx) is less than that d@(x). We
will only considerproperrational functions here.)

Let us assume that d€ifk)]=n (where “deg” means “degree”). Without loss of
generality, the coefficient of the highest-ordeme” in Q(X) is taken to be 1. That is,

QX=X+h X+ R, X%+t bx L
If o, p,. -, p, are the roots d(x) (not necessarily all different) then
Q(X) = (X=p)(X=p5) -+ (%= pp) .

If some root, sayp,, is complex, then its complex conjugate will atsoa root (call it
o =;l). Thus, given thaxeR,

(X=p)(X=p2) = (X= p)(X—p) = X + px+
where p?>-4q< 0. If the complex rootp, is of multiplicity |, thenQ(x) will contain
the factor(x— p,)' (x=p,) = (¥ + px+ Q' . Thus, finally,Q(x) will be of the form

QY =(x-a(X+ px ¢+ (& R p-4 q0)

wherea is a real root of multiplicityk and where the equatior’+ px+ q=0 has
complex conjugate roots.

Theorem: The rational functiorR(x)=P(x)/Q(x), where dedP(x)]< deg[Q(x)], can
be decomposed into a sumpatrtial fractions as follows:

PO _ A . A, oy A . Bx Q N
Q¥ x-a (x-a)? (x— g~ X+ px q
B,x+ C, B x+ G

+(x2+ pX-+ 0)2+m+(x2+ px- 0

whereA;, B, C; are constants to be determined.
Example: Let Q(X) = (¢ —4)(x+1)% (¥ + 1)%. We write
Q(X) = (x=2)(x+ 2)(x+ 17 (X + 17 .
Assume that de§fx)] <8. Then,

P(X) A B C D Exx F Gx H
= + + + st——t—— = -
QX x-2 x+2 x+1 (x+1) x“+1 (x°+1)
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Method: Suppose we are given an integral of the foraR(X)dx, where
R(X)=P (xX)/Q(X) is a proper rational function. We decomp®$e) into a sum of partial
fractions of the formgV(x-a)® and Bx+C)/(x*+px+q)’. Hence the integrdl becomes
a sum of integrals of the formx/(x-a)*, [dx(C+px+q) and | xdX¥(C+px+q)" .

Examples:

1, |=j#xf+4dx (x>2). Hint ¥-3@+4= (x+1)x-2)]

X—-5 X—-5 A B C
= = + + .
XC=3x°+4 (x+1)(x=2F x+1 x-2 (x 2Y

We write

The constant coefficients satisfy the equations

A+B=0, C-4A-B=1, A-2B+C=-5 = A=-2/3,B=2/3,C=-1. Thus

2 dx 2, [ %2 1
=——J. J. > = —In|—|+—+C.
x+1 3 x- 2 (x-2) 3 \x+1l x2

2. 1= [ —dx (x>1).  Hint ¥ 4xL= (1))

X — X2+ x—1

X+1 B X+1 _ A Bx+tC

We write = = + .
XX+ x-1 (x=1)(¥+1) x-1 ¥+1

The constant coefficients satisfy the equations

A+B=0, C-B=1, A-C=1 = A=1,B=-1,C=0. Thus

dx xdx *x1
| :J‘T - > = In > +C .
X-1 X +1 X +1
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DEFINITE INTEGRAL

5.1 Definition and Properties
Let f (X) be a function and Id¥(x) be any one of its antiderivativasi(x)=f (x). As we
know, theinfinite setof all antiderivatives of (x) is represented by thedefinite inte-
gral

[f()dx=F(x)+C (CeR).

Now, leta, b be real constants. We define thefinite integralof f (x) fromato b as
the realnumber

[ f(dx= F(H- K =[ RN

The constanta andb are called théimits (lower andupper, respectively) of integra-
tion.

Examples:
1. j;lzcosxdx= [sinxE'? = sing /2) sinG
Similarly,
I;lzsinxdx= [-cosxf/2=— cosf /2} cos®
But,

7zl
j “cos xdx= %sin 2x$’2:E sir—~ sin@
0 2 2

2 J'b%—[lnx]a—lnb Ina=In(b/ 3 (a0, b>0).

Exercise 5.1For < a<z/2 and &b<z/2, show that

(1) j cotxdx= In(smbj (Z)I tanx dx= In(

Cosa
Sina

cosbh
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Properties of the definite integral

1. The value of the integral is independent ofdheice of the antiderivativié(x) of
f(x). Indeed, ifG(X)=F (x)+C is any other antiderivative, then

[G(R2=QABH-Ga=(Rb+ 9-( K p+ G= EPp- Fl=[ Flks.

2. The value of the integral is independent ofrthme of the variable of integration:

[P Fogdx=]" f() dt=]" £y du=--

For example,J-jx2 dx=J-ju2 du=[ X/3]3=[ {1313 = &3 .

3. [t a(R] dx= [ (¥ dxt [ g% d

I

. j:cf(x)dx: cjb (3 dx (& const

o

. j:f(x)dx:—j: f(ax, "1y deo

[o2]

. j:f(x)dx=j: £(% dx+j: fydx (& F (show this!)

\]

. j:df(x)zj:f’(x)dx: f()— f(§  (Newton-Leibniz formula

5.2 Integration by Substitution

Consider the definite integralI:J':2 f (x)dx. Assume that we can find a transforma-

tion of the formu=¢(x), such that the indefinite integration with redptecu is easier
to perform relative to that with respectddSpecifically, assume that

[ £(x)dx =] g(u)du = G(u) +C (1)
whereG(u) is an antiderivative of(u). We can work in two ways:

1. We first find the indefinite integrdl f (x)dx by making the substitution=¢(x).
According to (1),

[ £(x) dx = G[p(X)] + C=F(x) +C

whereF(x) is an antiderivative df(x). Then the definite integralwill be equal to
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= F)dx=[F3 = Rop) ~ ALY -

2. We transform thdefiniteintegral/ directly into one with respect 19 taking into
account thaa change of variable ug(x) implies a corresponding change of the limits
of integration

[ f09d=[ "oy du=[ Gy = Y- G
where y=o(%), u=0(x).

Examples:
1.1 =j2xexzdx :
0
Let us first find the corresponding indefinite igtal:

e L[ & 1 1 1
jxe dx_zjé qd %) (set w %)_zj\éduz & € Yer

1. 422 1, 4
Then, | ==[e =—(e"-1) .
>e Jo=2(e-0)
Alternatively, we evaluate the definite integraieditly:
= [PxeXdx=2[?e¢ d %
_one X_EIO d x) .

We setu=x* and transform the integral with respect¢anto an integral foru, not
forgetting to adjust the limits of integration also

2 4 _1 4 _1 4_1
jodx—>jodu. Thus,I—EIOe du_—z[é‘]o_—z(é‘—l).

zl2  SinX
2. | = ——dx
IO 1+ co< X
l2 .
We write | :—j M . We make the transformation
0 1+co¥ X

nl2 0
U=COSX , jo dx—>j1 du. Then,

0 du 1 du Vs
| =— = =farctaru f=—— 0=
Il 1+u? J-01+u2 [ b l
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dx ==

J-frlz sinXx T
0 1+cofx 4

~2xIn(¢ +1)
3.1 _IOW ax .

2
2
We write | =£J' M

> d(x*+1) and we make the substitution
270 x“+1

_ 2 2 5 _1¢slnu 15
u=x+1, jo dx— jl du. Then, I _ELTdu_ELInud(In U .

We set w=Inu, J.lsdu—>J-;n5dV\. Then, | =%j;”5wdw=711(|n5)2 .

Exercise 5.2 Compute the following integrals:

X
1+ X2

o esin(z Inxj
dx (2) j Z cosx "™ dx (3) L — dx

@ [

5.3 Integration of Even, Odd and Periodic Functias

Consider an integral of the form
a
| = j © F e dx

over some “symmetric” interval of integrationd], a] (we assuma&>0). We write
=] foodxs[*F(9) dx= L+ |
-a 0 N 2 -
, , . 0 0
The integral; is written 1, =j7a f (x)dx= —J:a f(-(=¥) d(=» .
. 0 0
We perform the transformation = —-x, j_a dx— ja du:

|1=—j:f (-wydu=[" f(-U) du.

As we have mentioned, the value of a definite irgedoes not change if we give a
different name to the integration variable. Henemay now puk in place ofu:

|1:j0af (—x) dx .
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Finally, | = jof (—x) dx + jo f(%) dx =

j f(x) dx = joa[ f(—)+ f( 3] dx

This relation is valid foanyfunctionf (x) defined in the intervaHa, a]. Such a func-
tion, of course, need be neither even nor oddhdyever, it belongs to one of these
categories, then, as we know (Sec. 1.8),

f(=x) +f(x) = 2f(x) if f(x) iseven,

0 if f(X) isodd.
Thus,

[ tooax=2["f(9dx if f(xis evel
=0 if f(x)isodd

Exercise 5.3 Justify the following results by inspection (j.ithout performing
any integration):

1) jfasin(kx)dx=o (a, ke R
(2) J’facos«x)dx= ZIOa coskx )d>
(3) J‘:/ss x2tanx sin (¢ — 2¢+ 6x)dx= (

@ | ' xéin[ 22X @21 k=0
-1 2+ X

Consider now periodicfunction f (x), with periodT :
f(x+T) =1 (X) @

Proposition: For anyAeR,

j; f(%) clx:j:+T f(% dx @

That is,the integral of a periodic function has the samkigabver_anyinterval equal
to a period
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Proof: We write

[FT e ax=[ 109 de [Ty e [T € x dx=

A

[Tt ax= [ f(9 axr [ f(y dx[ " x d @3)

A

But, because of (1),

J'OAf(x)dx:J.oA f(x+ T) dX:J-OA (% Jdx T

A A+T
We make the transformation = x+ T, IO dx— IT du. Then,

joAf(x) olx:jTA+T f(U) alu:jTA+T ¥ o (4)

From (3) and (4) there follows (2).

Examples:

H

. J';”cosxdx= [sinxf" =0, J'_” cosxdx= [sinx]. = ¢

N

: j;ﬂsinxdx:—[cosxﬁ” =0, J._” sinxdx=— [cosx] = |

w

. J‘”cos’szx:1 [sinx} =0, J'”/Z cos X dx=+ [sin X7, =
0 2 -zl2 2

I

. J‘”sin2><dx:—i[cos2x1§: 0, jﬂlz Sin?3<0|><=—E [cos X* ?2:
0 2 -l2 2

5.4 Integrals with Variable Limits

As we know, thendefiniteintegral of a function represents tinéinite setof antideri-
vatives of this function, while theéefinite integral withconstantlimits of integration
(upper and lower) is just a real number. But, whate allow one of the limits of a
definite integral — say, the upper limit — to \@riable? In this case the integral will
no longer be a constant, since its value will delpem the value of the upper limit. In
other words, the integral will be a function ofufgper limit.

Making a slight change to our previous notgtiwe putt in place ofx and we de-

note byx the variable upper limit of the integral. Givefuaction f (t) we then define
the following function ok:
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| (x) = j f(t)dt (1)

Theorem: The functionl(X) is an antiderivative of the functioi(x):

|'(x)=%(jaxf(t)dt=f(x)

Proof: LetF(x) be an arbitrary antiderivative df(x): F'(x)= f (X). Obviously,F(t)
will then be an antiderivative df(t): F'(t)=f (t). Therefore,

|(X)=I:f(t)dt= [FOlZ=FX¥-K3 = 1(3=F(3-0=1(3.

Comment: The functionl(x) does not depend on the choice of the antidevigati
F(X). Indeed, ifG(xX)=F (x)+C is any other antiderivative df(x), then

1) =[FOI;=[F() +A =[G ;=G X-C .
Example: Let f(x) =x* = f() =t*. We define
I(x):j:f(t)dtzj:tzdt:[t3/3]§ = (x313)—(a%3) .

Then, 1'(X) = x*= f(x).

Now, let us go one step further by assuming thaddition to the upper limit of an
integral, thelower limit is variable as well. In this case the intd(x) in relation (1)
does not represent a specific antiderivative Of) but, rather, a whol@nfinity of
antiderivatives, each one corresponding to a cextaiue of the lower limit. In other
words,I(x) in (1) is anindefinite integral We write, by omitting the lower-limit sym-
bol (since this limit is unspecified anyway):

|(x):jxf(t)dtzjf(x)dx= KR+ C, whereF(x=f(X).

5.5 Improper Integrals: Infinite Limits

A definite integral igroperif (a) the interval of integrationg] b] is closedandfinite
(neither of thea andb is infinite) and ) the function to be integrated (thmtegrand
takes orfinite valueseverywhere withind, b]. If even one of these conditions is not
satisfied, the integral is calléchproper.

We begin our study of improper integrals byrakang the case of infinite intervals
of integration. Such integrals are defined as fedp
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[ fe9ax= lim jb £} dx
j_iof(x)dxfairgw j; f(3 dx

[ fegax= tim jb £} dx

a—> —w©
If the limit exists and is finite, we say that tberresponding improper integrabn-
verges(is convergent If the limit does not exist, or if it is infiret the corresponding
integraldiverges(is divergeny.

LetF(x) be an antiderivative of(x). Then, for finitea andb,

J. 10 dx=F(B- K3 .

In the cases of infinite limits this is extendeda®ws:

1, I=J.:Of(x)dx= lim F(B - K9 ;

b— +o0

the integrall converges if the limit ofF(b) exists and is finite.

2. =] f(dx= F(B — lim K3 ;

a— —w

the integrall converges if the limit ofF (o) exists and is finite.

3, =]t () dx= lim F( - lim K3 ;

b— +w

the integrall converges if the limits of both(a) andF(b) exist and are finite (if either
limit does not exist or is infinitd, diverges). Alternatively, we can writeas a sum of
improper integrals:

| :J'iof(x)dx+jgw f(%) dx= jo‘” f(— 3 dx+j;°° {xd (1)
(Notice that

[T tegdx=-[° f(-C®)d-9=-[" -9 du=[" t-xd,

where in the last step we just renamed the intiegratariable fromu to x.) The inte-
gral/ converges if both integrals on the right-hand siflel) converge.
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Careful! It is generallywrongto definel as
I :J‘j‘”f(x)dx: IIim J‘jl' £(% dlenm [ K) - K-)] (wrong'!)

The reason is the following: In order forto converge, the limits dboth F(I) and
F(-I) must exist fol —+w. Now, imagine thaE(l) is an even function that becomes
infinite at +oo. Then obviously diverges On the other hand, sin¢gl) is even we
have that(lI) — F(-1)=0. Thus, if we adopted the aforementiomedneousdefinition

of I we would come to therrong conclusion thai=0, i.e., that/ converges!

Examples:
+oo X dX
1. 1= .
J-—°°1+x2
b xdx 1 owb 1
We have: =—[In(1+x ={In1+b) -In(0l+ a9)} . Then,
fatrz = 5 In@Hx1; = Sin@ +b) ~in+ &)

| = %{blim [IN(L +b3] —lim [In(@ +aj]} . Both limits are infinite, henckdiverges.
—> +00 a—> -

2. 1 =J'O+°Ocosxdx )

We have: | = lim J'bcosxdx= lim (sinb).
b 0 b—>+o0

—>+ 00

We observe that, dstends to infinity,sinb “oscillates” endlessly betweerl and +1,
never attaining a fixed value! Thus the limitgihb does not exist anéldiverges.

+00 dX
3. 1= :
I 2 14+ %
We have:
I = lim P_dx _ lim [arctanx ]2 = lim (arctarb }- lim (arctam #1— _(1 r
" botwda 1+ X2 bt 2 hote a>—o 2 2
a—>— a—>—0

=7

+o - dX
j = 1+ X

Exercise 5.4 Let | = j ;we""xdx. Show that/ diverges fora>0 and converges for

a<0. In the latter case show that

j”’e-“dx: 1 (k0
0 K
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Exercise 5.5 Show that the integral =J'jweaxdx diverges for all values od.

(Hint: Write I as a sum of two integrals from 0 te-ind notice that one of these in-
tegrals must diverge.)

o dx

K

Exercise 5.6 Let | :J'l
X

. Show that/ converges fork >1 and diverges for

k<1.

Theorem (comparison test)Consider the integrals
Ilzj.:of(x)dx, |2=ja+°"g(x) dx (ae B, where & f(xx g(XV x [aw .

The following can be proven [1]:

e |If I, convergeshen/; alsoconverges

e |If I; divergesthen/, alsodiverges

Examples:

1. Let I =[ e dx.

—o0

Since the integrand is an even function, we halve:zj'(:we‘xzdx.

0 1 0 : . .
Now, J'; e‘xzdx:J'0 e’ dxrj': e* d, where the first integral obviously con-

verges. We need to check the second integral forergence.

. . +0 7X2 400 _x
We consider the |ntegral$1=J.1 e dx, I2=J.1 e " dx.

In the interval [1;+00) we have thae™ < e (show this!). Moreover], converges

and equalsl,=1/e (show!). Thereford; converges and hence so does the given inte-
gral . As can be proven,

I_:oe*XZ dx= 7 .
Jx

2. Let I =[ " dx.
1 1+x
In the interval of integration (i.e. fox>1) we have that\/_ \/;( 1
1+x~ 2x 2x
On the other hand, the |ntegr§l j xl_’); diverges (see Exercise 5.6).

We conclude that the given mtegtiadilverges.
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Theorem (absolute convergencelLonsider the integrals
|1=ja°°f(x)dx, |2=ja°°|f(x)|dx (ac R .

As can be proven [1], if, convergeghen/; alsoconvergesWe say thaf; is abso-
lutely convergent(If 7, diverges,/; may or may not converge. Obviously, #f di-
verges ther, also diverges.)

® COSX
Example: We show thatl :J.O+ 5

dx converges.
1+x
© | COSX
2

|dx

It suffices to show that is absolutely convergent, i.e. thdqzj'o+ 1
+ X

1
converges. Indeed, we have thl?ﬁgls T2 as well as that
+ X + X

+o  dX . i
IO 1e 2 [arctanx }|* = z /2— 0=z /Z(converges).

By the comparison test; converges; hence so does the gilen

» SiNX
1+ x°

Exercise 5.7 Show similarly that the integral =J'O+ dx converges.

. +oo . g .
Comment: The mtegralj0 | cosx |[dx assumes an infinite value, hence diverges.

. . +00 . s .
As we saw earlier, the mtegré!} cosxdx also diverges, albeit in a different sense

(explain).

5.6 Improper Integrals: Unbounded Integrand

A different case of improper integral is that whére interval of integrationg| b] is
finite but the integrand itself becomes infinite eather limita or b (or perhaps at
both).

Definition:

1. Letf(x) be continuous in the interval,[b) but become infinite fox—b. Then,
[ dx=1lim [7 £} dx (¢>0)
a ~e»0Ja

provided that the limit exists.
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2. Letf(x) be continuous in the interva, (b] but become infinite foxx—a. Then,
“f(dx=lim [~ f(3 dx (6>0
J-a (X) nglinoJ.aH? ()9 X ( g )

provided that the limit exists.

3. Letf(x) be continuous in the intervad,(b) but become infinite forx—a and for
x—b. Then,

j f(x) dx = nmj f(® dx (¢>0, §>0)

50

provided that both limits exist.

4. Let f (X) be continuous in the intervalg,[c) and €, b] but become infinite for
x—>C (a<c<b). We write

|=j:f(x)dx:j:f(x) dxr jcb (3 dee J+ ).

The integral/ will converge if both/; and/, converge.

In any case, if the improper integral is cogesrt we write:
b
[ fdx= F(H- R(3

whereF(x) is an antiderivative off (x) .

Examples:

jadx VX1 =242 (a>0),

despite the fact that the integrand becomes iefiitthe lower limit.

;_1dx = [-In(L-x)]; = becomes infinite fok—1. Thus the integral diverges.
- X
3. aresinx]} = = - 2)= 7,

J-l 1 X [ Ll 2 ( 2) T

despite the fact that the integrand becomes iefiitooth limits.
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. fl%/% L;é jozf BYX°+ 3N 2=3+372 .

J-l dx J-O dX 1£x = both integrals diverge

Exercise 5.8 Show that the integrals

b dx b dx
g ™ Loy

converge fork<1 and diverge fok>1.

5.7 The Definite Integral as a Plane Area

By using the definite integral we may calculateagr@f domains of they-plane,
bounded by graphs of functions.

Theorem 1:Letf(x) be continuous in the interva [b], and letf (X) >0 Vxe[a, b]
(see Fig. 5.1). Then the area of the plane doiRdounded by the graph 6f(x), the
x-axis and the lineg=a andx=Db, is given by the integral

b
A= ja f(X) dx .
y=1(x)

R

a b

Fig. 5.1. A plane domaiR bounded by the graph g£f (x).

Theorem 2:Let f(x) andg(x) be continuous in the interva [b], and letf (x) > g(X)
Vvxe[a, b] (see Fig. 5.2). Then the area of the plane doRdnunded by the graphs
of f (X) and g(x) and the linex=a andx=b, is given by the integral

A:j:(f(x)—g(x)) d

(Notice that, forg(x)=0 the graph ofg(x) is a part of thex-axis and thus Theorem 2
reduces to Theorem 1.)
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y=f(x)

y=9(%
Fig. 5.2. A plane domaiR bounded by the graphs wff (x) andy=g(x).
Corollary: The variable area
A(X) = ja f(1) dt
is anantiderivativeof f(x): A"(x) =f(x) (explain).
Note 1: If g(x) is continuous ind, b] and ifg(x) <0 Vxe[a, b], then the area of the

plane domairk bounded by the graph gtx), thex-axis and the linegs=a andx=b is
equal to

A==[la0) o= |1 A3 .

Note 2: The area of the plane domain bounded by the grapfi(x) and g(x) for
a<x<b is equal to

b
A=, 11(9- (3] dx,
regardless of the sign of the differenfqe) — g(x) for the various values of

Example: Find the area of the domain bounded by the godph(x) = x® and the
x-axis, for —1<x<1.

Solution: We notice thatf (xX) <0 for xe[-1, 0] and f(x)>0 for x€[0, 1]. Thus,

A:jill|x3|dx: jj|>?|dx+j; | % | de -j‘i %dxj: X db
1

11

—+= :

4 4 2
Exercise 5.9 Imagine that the graph in Fig. 5.1 is displacedhie right by/4x=c.

Show that the area of the new plane donidibetween the displaced curve andxhe

axis will be the same as that of the original donfai [Hint: Notice that the new
curve extends froma+c to b+c and is described by the functigreh(x)= f (x—).]

Reference

1. A.F.Bermant, . G. Aramanovicklathematical AnalysigMir Publishers, 1975).
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SERIES

6.1 Series of Constants

Let a,=a;,a,as,..., be an infinite sequence of real numbers. Thaitefsum
D=t et gt
n=1

is called anumericalseries The numbeag, is thegeneral termof the series. To con-
struct the series we need to be given afralecording to whicka, = f(n) (n=1,2,3,...).

Examples:
1. Fora, = f(n):i = zanZZi :_1+Zl+_1+...
n=

n=
2. Fora, =f(n)=— = nzlaq— ;LE =L

The sum of the first terms,S,=a; +a, +... + a,, is called thenth partial sumof
the series. Fan=1,2,3,..., the partial sums themselves form amit&fisequence:

S=a, S=atay, ..., S=atat...+a,, ...

If this sequence converges to a finite limésn— «, i.e., if limS, = se F, we say

N— oo
that the seriesonvergegis convergentand the numbes is thesumof the series. We
write

S=2. &=3+a+
n=1

If the limit of the sequencé&, is infinite or does not exist at all, the seri@gerges(is
divergenj.

Example: Thegeometrical series written

Zaq”_1:a+aq+aq2+-~- (ax #0) .
n=1

Thatis, a1=a, @=aq, a=oad, ..., &=oaq"", ... Thenth partial sum is
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S =a+aqtad+-+ad'=a

Il
=]
N
=

o]
=

We have the following cases:
1. If g|>1then " -+, S, becomes infinite and the seridiserges
2. If g=1then $,=na — « and the seriediverges

3. If g=-1, the value ofS, alternates betweenn and 0 as n— «, so thatS, does
not tend to any definite limit. Hence the sedesrges

4. If <1 (i.e.,-1<q<1)thenq" >0 and S, - a/(1-q) , which is a finite limit.
Thus the seriesonvergesits sum being equal to

> g™t = ﬁ (lak1)
n=1

In conclusion,

the geometrical series converges igf<1 and diverges forjg|>1 .

Theorem (necessary condition for convergence):

If the series)_a, converges, then lim a, =0

n— oo
n=1

Careful: This condition immecessaryputnot sufficientfor convergence! That is, the
fact thata, — 0 doesnotimply that the series must converge!

Corollary: If lim a,=0 then the seriediverges

N— o0

Examples:
— 100n+ 1 101 201 301
n , 1 1 , ,
We have: lim a, = lim = lim = #0 = the series diverges.
n—>o0 nso 100N+ 1 now 100+ 1 100

n
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2. As can be proven, thermonic seriesz 1 =1+ ;+ ;+ - diverges(its sum is
n=1 n
infinite) despite the fact thad,= 1/n - 0!

Note: More generally, the series

- 1 1 1
il it S L
L T e T

converges fora >1 and diverges forr <1 .

6.2 Positive Series

In this section we consider seri@ a, with a, >0,V n (positive series
n=1

Theorem (comparison test):

Consider the serief= )" g, andB=) b, where 0<a,<b,, Vn.
n=1 n=1
The following can be proven [1]:

e If B convergeghend alsoconverges

e If 4 divergesthenB alsodiverges

Examples:

1Letz\/_ \/_f

We notice that, fom>1, VYn<n = 1 >E .
Jn n
Moreover, the harmonic serieg 1 diverges. Thus the given series diverges.
n=1 n
2. Let t —1+—1+—l+
~n2" 2 222 32

We notice that 1

n-2n

5

o0 1 o0
. Moreover, the geometrical ser§ 7 =>
n=1

N

converges (why?). Thus the given series converges.
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Theorem (D’Alembert’s test):

Consider the serlegan wherea, >0,vn. Wecallp=Ilim Gna
n=1 = an

The following can be proven [1]:

e If p<1 the seriesonverges
e If p>1 the seriediverges

e If p=1 the tesfails.

Example: Let z 21 =4Sy 0

n n+1 a, 1n+tl 1 1 1
We have:a, = — , = , = = ==|1+=| » =<1.
% 2" Pt 2™t a, 2 n 2( n) oo 2

Thus the given series converges.

6.3 Absolutely Convergent Series

A seriesA= z a, Is calledabsolutely convergerit the corresponding positive series
n=1

o0
=Y |a,| converges.

Theorem:If a series is absolutely convergent, then itaswergent [1]. (That is, if
the seriesd " of absolute values converges, then the seriéself also converges.)

The converse of this theoremnigt true: a convergent seriesrist necessarilyab-
solutely convergent also. For example, the series

diverges.
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Example: Let A= Z(—l)n+1i :_1__1+_1__1+... _
n-1 2" 2 4 8 16

The corresponding series of absolute values,

1 111 < 1(1}”1

- 4o = — | =
~on 2 48 ~ 2\ 2

is a convergent geometrical series. Thus, beinglatietp convergent, the given series
A is convergent.

Exercise 6.1By using D’Alembert’s test, verify that the aboseries4 " of absolute
values converges.

Exercise 6.2 Find the sums of the serigsandA4 " of the above exampleHint: No-
tice that both series are geometrical.)

6.4 Functional Series

Series whose terms afenctionsrather than constant numbers are caflgtttional
series The general form of a functional series is

ian(x) =a(X+a(J+- .
n=1

This series may converge for some values and diverge for others. A poirtx, at

which thenumericalseries a; (o) + a2 (Xo) +... converges is callegoint of conver-
genceof the series. The set of all points of convergascealleddomain of conver-
genceof the series. Theumof a functional series is a function xfdefined in the
domain of convergence of the series:

= a(d= a3+ a( ¥+ .
n=1

Example: Consider the geometrical series
D XM= 14 X+ K
n=

1

This series converges in the interval ( 1), given that for everx=xo in that interval
the corresponding numerical seriesx, + Xy +... converges. The sum of the series in
the domain of convergence is

DX =14 x4 K4 = » xe (L)

1
n=1 1-x

For x¢ (-1, 1) the serieslivergesand its sum cannot be defined.
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Example: We will find the domain of convergence of theisgr

= sinnx . sin2x  sin&X
A=) ——— =siNX+———+—F—+-
1 n 2 3
. . = | sinnx | .
We consider the series of absolute value.%,EZ—z. We notice that
n=1 n
[sinnx| 1 L T~ 1
>— <— , VXe R. Taking into account that the serleE — converges, we
n n o n

conclude that the series convergesvxeR. This means that the original seri¢ss
absolutely convergent and thus convergeéxtR. Therefore, the domain of conver-
gence ofA is R.

Example: Show that the series

o0 n
z X_ =1+X+ﬁ+£+-~- (1)
~ n 21 3l

converges for alkeR. By using this result, show that

n

im X -0, wxeR @)

n—o Nl

0 n
Solution: We consider the series of absolute vaIueE lX!
n=0 n:
an= |X|"/n! we notice thag,.1/an= [X| /(n+1) — 0 <1, ¥xeR. Thus, by D’Alembert’s
criterion this series convergé&xeR. This means that the given series (1) is abso-
lutely convergent, thus convergeviteR. Relation (2) then simply expresses the con-
dition for convergence of the series (1), whichditian is here satisfied.

By putting

Exercise 6.3 Show that the series

converges forx| <1 (-1<x<1). [Hint: Consider the series of absolute values and
use D’Alembert’s test to show that this series @vges in the interval-1, 1).]

6.5 Expansion of Functions into Power Series

A power seriess a functional series of the form
Y a,(x=%)"= a+a(x p+ a( x Y+ (1)
n=0

The constants, are thecoefficientsof the power series. In particular, fey= 0,
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ianx”: B+ a X+ g X+ (2)
n=0

We note thateverypower series can be written in the form (2) by mgkhe substitu-
tion Xx-Xp=X".

We consider a power series of the form (2). a4sume that a numbeexists such
that the series converges fgf<r and diverges foix|>r (the series may converge or
diverge forx=+r). The number is called theadius of convergencef the power
series, while the interval(, r) is calledinterval of convergencef this series. In par-
ticular, if r = O the series diverges for evexy: 0, while if r = «o the series converges
for everyxeR. For a series of the more general form (1) theruatl of convergence is
written (Xo—r, Xo+r).

Example: For the geometrical series

o0
DX = L4 x4 X
n=0

0

(notice that » X" :z x™1) the interval of convergence is {, 1) and the radius of
0 n=1

n=

convergence ig =1.

Problem: Given a functionf (x), is it possible to find a convergent power series
whose sum equalgx)? Let us see an example: We recall that

L. DX =14 x4 X+, VXe (-1,1) (3)
1-x n=0

We observe that, in the interval {, 1) (i.e., for | < 1) andonly in this interval the
function (:X)* equals the sum of the geometrical series, in¢heesthat, for every
in that interval the function and the series assaoramon values. Fo|> 1, how-
ever, the geometrical serieévergeswhile the function (2x)™* continues to be de-
fined (except at the single point= 1)! In any case, the series and the functiomalo
assume common values figf> 1.

Generally speaking, if we wish éxpand a functiori (x) into a power seriesf the
form

f(x)=ian(><— %)"= a+a(x ¥+ 3 x P+ (4)
n=0
or, for xo=0,
f(x):i(%)(": @+ g x+ g X+ (5)
n=0
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we must be careful to determine the intealvhere this expansion makes sense. In
that interval the function must k#efinedand the series musbnverge(that is,D
must be a subset of both the domain of definitibthe functionand the interval of
convergence of the series). The functigk) itself, however, may still be defined for
x¢D, at points where the serids/erge$

Taylor's theorem: Assume that the differentiable functibiix) may be expanded
into a power series of the form (4) in a neighboh®= (X—I , Xotl ) of Xo. Then the
coefficientsa, of the series are given by the formula

_1 .
&= (%)

where f ™ denotes theth-order derivative of (x). The series (4) is thus written

o0

(=3 2 100 (x- 0" = 109+ FOP0E Yoo F(Y(x oo

n=0 "'

and is called th&aylor series expansiaof f(x) about the poink=Xxo.

In the (more common) case whege= 0, so thatD= (I, | ), the power series ex-
pansion (5) off (x) aboutx=0 is calledMaclaurin’s seriesand is written

f(x) = i% fMO)x" = f(0)+ f'(0)x+2—1I " (0) % +---
n=0 ' :

A useful alternative form of Taylor’s seriedagind as follows: In the original form
of the seriesy is constant whilexis variable. The differenca= x—Xxy is a variable
quantity and can be taken as a new variable irepdg. Puttingx= %o+ h, we write
the Taylor series as follows:

(oo}

fO+h) =Y — 100 = 09+ F0) he o 103 oo

n=0 ""

For xo= 0 the above series becomes

f(h) = i% fMO)h" = f(0)+ f'(0)h+2—1I " (0)F +---

n=0 '"

which is the Maclaurin’s series (within place ofx).
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Maclaurin series expansions of some functiohs

0 Xl’l X2
= — =1+ X+ -+ . D=R
n! 2! 3!
n=0
o0 n
e_X=Z(—1)”X—= - +ﬁ—— . D=R
! 2! 3!
n=0
0 2n+1 3 5
sinx = 3 1= _x-2 X _ .. D=R
= (2n+1)! 31 5
o 2n 2 4
cosx = Y 1 >— = 1-> 4+ 2 ... D=R
= 5 (2n)! 21 41
1 zxnz 1+ X+ ¥+ X+, D=(1,1)
1-x n=0

Xn+1 X2 X3 X4

! We denote b the interval within which the expansion is valid.
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Exercise 6.4 Prove the relation

e:Zi = 1+1+_1+_1+...
Z ) 217 3

Exercise 6.5 Expand the functionsin(—x) and cos(—x) into power series. Show
that your results are in agreement with the prgpefrsinx being odd anadosx being
even.

Exercise 6.6 By using the expansion formula for )+, prove the expansion for-
mula for In(1+x). Hint: Notice that

x dt
IN@+x)=| — .
() IO 1+t
Exercise 6.7 Consider the polynomial
f(X) = bo+ by + b+ b +...+ by .

Show that the Maclaurin expansionfdk) is the function itself.

Exercise 6.8 For | << 1 we can make the approximatioh~0 for n>1 (that is,
the powersx’, X*, x*, ... , are considered negligible for very small valoégx|).
Show that a functiofi(x) that can be Maclaurin expanded in an intervad (a) may
be approximated by

f(X)~ f(0)+f (0)x for K<<1 .

As an application, show that fox| k< 1,

ef~1+x , SiK= X cox~1 .

Reference

1. A.F.Bermant, I. G. Aramanovichlathematical AnalysigMir Publishers, 1975).
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AN ELEMENTARY INTRODUCTION TO
DIFFERENTIAL EQUATIONS

7.1 Two Basic Theorems

Before we talk about differential equations, it Wwbbe useful to state two basic theo-
rems that play a key part in the development ofthigect.

Theorem 1: Suppose the following differential relation igdr

f(x)dx=g(y)dy where y=¢(x) .

Then,
[T dx=]g(y)dy .

(Careful: This is equality betweeanfinite setd)
Proof: By the definition of the differentialdy = dp (x) = ¢ "(X) dx. Thus,
f()dx=g(p (X)) ¢ (X)dx = (by eliminatingdx)
fX)=g(e(X) ¢ (X)) = (byintegrating identical functions)
Fe)dx=lg(p () ¢ (x) dx .
But, as we saw in Sec. 4.2, the symbal ‘inside the integral has similar properties

with the differential of a function. Thus we cart g€ (X) dx = d¢ (X) inside the inte-
gral, so that

[Ty dx=glp () dp () =Tg(y)dy.
Theorem 2: Suppose the following differential relation iaer
f(x)dx=g(y)dy where y=¢(X) .
Moreover, assume that

(X)) =Yo (i.e., y=yo for x=x).

Then,
X y
j f(t)dt:j g(u) du .
Xo Yo
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Proof: As we saw earlier,] f(x)dx =] g (0 (X) ¢ (X) dx.

We rename the variabbeast and we integrate fromg to x:

[, fodt=["gle®)e®dt= [ ge(t) do() .

We now make the substitutiam= ¢ (t) and we transform the right integral fotinto
an integral foru. To find the limits of the new integral, we thiak follows:

for t=xo = u=¢(X)=Yo ;
fort=x = u=p(X =Yy .

X y X y
Thus, | dt du , t)) do(t) = du, and therefore,
us, [ dt > [ du, [ g(p®)dp()=[ o du
[ tmdt=]"g(ydu.
Xo Yo
Note: To simplify our notation we often write
X y
jXOf(x)dx: jyo oy dy .

Note, however, that although the symbols are tineesdheir roles are different. In-
deed, each of the two integralsaigunction of its upper limitregardless of the name
given to the variable of integration!
7.2 First-Order Differential Equations
We begin with a quick look at the various typeggfiations of mathematics.

1. Analgebraic equations a relation of the form

FX)=0 1)

whereF(X) is some algebraic expression. Td@ution of (1) is the set of values af
(roots) that satisfy this equation. The roots of an atgebequation may be real, com-
plex, or mixed real and complex.

2. Afunctionis defined by an equation of the form

F(x,y)=0 2)

Often this relation can be solved for one variableerms of the othery= f (x), where
to every value ok corresponds a unique valueyofbut not necessarily vice versa).
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3. Afirst-order differential equatioms an equation of the form
F(x,y,y)=0 where y=y(X) and y'=dy/dx 3)
Often this relation can be solved for the derivatiy'=f (x, ) .
The general solutionof (3) is aninfinite set of functions y<¥) that satisfy this

equation. The general solution containsaabitrary constant paramete€, thus has
the form

y=¢(x,C) (4)
For a specific valu€=Cy of the constant we haveparticular solutionof (3):
y=¢(X,Co) (5)

To determine such a particular solution, in additto the differential equation we
must be given amitial condition, in the form

Yy=Yo when x=x% < Y(X)=Yo (6)
By substituting the information (6) into the genesalution (4) we get an algebraic
equation of the formyo= ¢ (Xo, C). Solving this forC we can determine the constant
Co and thus find the particular solution (5).
The process of finding the general or someqadar solution of a differential equa-
tion is calledntegrationof the differential equation.
7.3 Some Special Cases

Let us see some special cases of differential emsbf the formy'=f (x, y).

1. We begin with the most trivial case, whibbwever, is pedagogically useful for
understanding the general philosophy of solvinépdintial equations:

y=1() (1)
with initial condition y =y, whenx =X, . (2)
We can work in two ways:
(@) We find thegeneral solution of (1), which will contain an arbitrarpmstant,
and then use the initial condition (2) in orderdietermine the value of this constant

and the respectivparticular solution. We thus write, taking into account Thezorl
of Sec. 7.1:

%:f(x) = dy=f(ydx= [dy=| { xd.
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If F(X) is an arbitrary antiderivative #{x), then y+ C;=F(X) +C, =

y(X) =F(X) +C (general solution) 3)
We now apply the initial condition (2) to (3):

Yo=F(X) +C = C=yo-F(x).

Substituting forC into (3), we find y = F(X) +yo — F(X)) =

Y(X) = yp+ J':O f() dt | (particular solution) (4)

(b) We find the particular solutiodirectly [without finding the general solution (3)
first], taking into account Theorem 2 of Sec. 7.1:

Y _tx = dy= f(% dx = [T du=[" )y dt= (4, asbefore.
dx Yo Xo

This approach, although shorter and perhaps matabseifor practical applications,
has the drawback of not giving us any informatiegarding the general solution of
the differential equation.

Exercise 7.1 Verify that the particular solution (4) satisfidge differential equa-
tion (1) as well as the initial condition (2Hi@t: Notice thaty is a function of the up-
per limitx of the integral.)

Note: We usually simplify the notation in (4) by discergl the auxiliary symbot
and simply writingx in its place:

Y9 = Y%+ [, f(3 .

We should not forget, however, thats a function of the upper limaf the integral,
regardless of the name given to the variable egiration!

2. Consider the so-calledparable differential equation
y=f(9a(y) ()
with initial conditiony = yp whenx =X, .
Due to the special form of the right-hand side%)f the variablex andy can besepa-

rated so thaty may appear only on the left-hand side whilappears on the right-
hand side. We use the second method, which gieegdtticular solution directly:

dy _ _dy _
0= 1090) = 2= (g x>
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y dy X . .
7 f d
Vo (y) J-XO (X) X (partlcular SO|UtIOn) (6)

Exercise 7.2Verify that the expression (6) satisfies the ddfaial equation (5).
[Hint: Differentiate both sides with respectxXoNotice that in the right integrat is
an upper limit, while in the left integral“appears” in the upper limit through Con-
sider thus the left integral as a composite fumctm be differentiated first foy (the
one in the upper limit) and then frij

Exercise 7.3 Find expressions analogous to (6) for the pdercsolutions of the
following separable differential equations:

1) y=g9() (2)y=1()/9(y) @ y=9(y/fK

7.4 Examples
Let us see some examples of differential equatiatisgiven initial conditions.
1. y'=ay | y=Yyo when x=X%, .

We find the general solution (assuming that0 , VX) :

dy _ dy _ dy_ _
&—ay:—y—adx: J'—y— aj'dx: In v €= ax C=

Iny=ax+C = y= ¢ = y= C& (general solution)

where in the last step we pQtin place ofe®. To apply the initial condition, we set

—axg

X=Xo and y=yp in the general solution and we solve @rThe result isC=y, e
Thus the particular solution is

y = yO ea(X7XO) .

We can find the particular solution directly (witltausing the general solution) as fol-
lows:

N _ adx = jyﬂ/: al dx= In(—yj: dx )= v y&
y Yo y %o Yo

2. y=3x*y | y=2 when x=0 .

We find the particular solution directly:

ﬂzsxzy:ﬂ:\?xzdx: jyiy: 3jx>?dx:> In(y2)= = ¥2é3.
dx y 2 y 0
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Exercise:Find the general solution of the differential eijpra and show that it yields
the same particular solution for the given initahdition.

3. y=x*¢Y | y=0 whenx=0 .

X 4
N _ ey o e dy= X dx= J'y lédy&J' Yo Yel=X =
dx 0 0 4

4
X
=In| —+1] .
Exercise:Verify that this solution satisfies both the difatial equation and the ini-

tial condition.

4. y'=-x|y* (general solution only) .

dy X'3 3 y4 X4
2= dy = — X2 dx dy—| Rdes -=- =+
v+ xX*+ C=0.

Notice that the solution is amplicit function (Sec. 1.4).

Exercise: Verify that the above solution satisfies the givéifferential equation.
[Hint: Differentiate the solution with respect xo(cf. Sec. 2.12).]
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INTRODUCTION TO DIFFERENTIATION
IN HIGHER DIMENSIONS

8.1 Partial Derivatives and Total Differential

So far we have studied functioh$x) of a single independent variab{eln this chap-
ter we consider functions gkveralvariables. For simplicity, we restrict ourselves t
functions of two independent variables only, cakeahdy. These functions are of the
form u=f (x,y), whereu is the dependent variable.

The functionu=f (x,y), to be written more simply as=u (x,y), can be differenti-
atedseparatelyfor x and fory, this process yielding twpartial derivativesof u. To
find the partial derivative with respectxpwe simply differentiate for x while treat-
ing y as if it were a constan®imilarly, to find the partial derivative ofwith respect
to y we must keep constant. For the partial derivatives we use gmb®ls ou/ox
and ou/oy. In a formal sense, we define these derivativdslbsvs:

U(x+4x Y- uUxy

ou .
V=l

AX
@(X,y)E lim U(X, Y"‘AW—L(XV
oy 4y—0 Ay

We also introduce thgartial differential operators/ox and d/oy:

ouxy o _ouxy
ox '8yu(x»_ oy

0
—u =
r (% y)
Examples:
1. Let u(x,y) = x3cos2y . Then,du/ox = 3x*cos2y , duldy = —2x3sin2y .

2. Letu(xy) = (0C+yd)*. Then,dulox = 6x(xC+y%)?, duldy = 6y (C+y?)?.

Higher-order partial derivatives may also bérskl. For example,

a_zu_g(@j o%u_o(ou)  2%u_2(ou azu_%a_ul
ox2 ox\ox) ' oy* oylay) 0¥y X0y o9 x 0Yo R

According to a theorem of advanced mathematicdlysisa if u and its partial deriva-
tives are continuous functions then the two “mixpdttial derivatives on the right are
equal:
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o’u 9%
oxoy  OYOX

This means that the differentiationwfor x andy always yields a unique result inde-
pendently of the order in which the partial difieiations forx andy are performed.

Exercise 8.1 Verify the above statement far(x,y) = cosp)C+y?—xy) .
The concept of the differential of a functiohaosingle variable (Sec. 2.7) can be

extended to functions of two (or more) variables iNus define thotal differential
of u(x,y) by the expression

du= au dx+ ou dy
OX oy

where dx=4x and dy=4y are the changes afandy. [In general, however, the dif-
ferential du is not the same as the change= u(x+4x, y+4y) — u(x,y), unless the
function u (x, y) is linear (i.e., does not contain powers or prosluaftx andy) or
unless the changetx and Ay are infinitesimal.]

Example: For u(x,y)=>’Iny (y>0) we have:du= (2xIny) dx+ (x/y) dy.

Exercise 8.2Find the total differentiadiu of u(x,y)= (¢-y*)&?.

8.2 Exact Differential Equations

A first-order differential equatiordy/dx = f(x,y) can always be put in the form

dy_ MY )
dx  N(x Y

for suitable function$/ andN. This is written more symmetrically as
M(x y) dx + N(x, y) dy =0 1)

The differential equation (1) is said to éeactif there exists a functiomi(x, y) such
that the left-hand sideldx+Ndyis the total differential ofi:

M(x,y) dx + N(x, y) dy = du(x, y) 2

Then, by (1) and (2)du=0 =
u(xy)=C 3)

whereC is some constant. Equation (3) is an algebraaticgl connecting andy and
containing an arbitrary constant. Thus it can lgauréed as thgeneral solutiorof the
differential equation (1).
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Comment:Relation (2) is assumed to be identically satisfier all pairs of vari-
ables x,y). Thus,x andy in (2) areindependenbf each other and so are the differen-
tials dx anddy. On the contrary, the differential equation (ljabishes a connection
between the variablesandy, so that the latter becomes a function of the &rihis
means that (1) is no longer an identity but isséatl only for certain functions
y=y(X), namely, the solutions of the differential eqaati

The differential relation (2) is written as

M (X, y)dx+ N( % Y dyt@ Xm-@ d.
OX oy

Given that, as remarked above, the differentiddand dy are independent of each
other, the only way to satisfy the above equatsoioirequire that

ou ou
&—M(X,y) ; a—y—N(X,Y) 4)

Differentiating the first relation foy and the second one far and taking into ac-
count thatdu /oyox = &°u loxdy (cf. Sec. 8.1), we find:

M _ o

oy ox (5)

Relation (5) is anecessary conditiofor existence of a solution(x, y) to the system
(4) or, equivalently, to the differential relati¢®). If such a solution is found, then by
(3) we obtain the general solution of the differanequation (1).

The constant in the solution (3) is determined by tinétial condition of the prob-
lem. If the specific valua=x, corresponds to the valyeyy, thenC=Cy=u(Xo, Yo).
We thus get thearticular solutionu(x, y)=Co.

Example: We consider the differential equation

(x+y+1)dx + (x=y?+3)dy =0, with initial conditiony=1 for x=0 .
Here, M=x+y+1, N=x—y*+3 and oM/dy=0N/éx (=1). The system (4) is written
AUlOX = x+y+1, Ouldy = x—y+3 .

The first equation yields
U = X/2+xy+x+o(y)

while by the second one we get

0'(Y) = —Y+3 = o(y) = —y/3+3y+C;.
Thus,
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U = X/2—y33+xy+x+3y+C; .
The general solution (3) igx,y)=C,. PuttingC,—C;=C, we have:
X*/2-y*I3+xy+x+3y = C (general solution) .

Making the substitutiong=0 andy=1 (as required by the initial condition) we find
C=8/3 and

X22—yP13+xy+x+3y = 8/3 (particular solution) .

Exercise 8.3Show that evergeparabledifferential equation of the form

dy/dx=f (X) /g(y)
is exact.

8.3 Integrating Factor
Assume that the differential equation

M (x,y) dx + N(x,y) dy =0 (1)
IS not exact; i.e., the left-hand side is not altdifferential of some function(x,y).
We say that this equation admitsiategrating factoru(x,y) if there exists a function

1(xy) such that the differential equatiariMdx+Ndy)=0 is exact; that is, the expres-
sion u(Mdx+Ndy) is a total differential of a function(x, y):

1 (% y) [M(x,y) dx + N(x, y) dy] = du(x,y) .
Then the original equation (1) reduces to the cifiéial relationdu=0 =
u(x,y)=C 2

on the condition thathe functionu(x,y) does not vanish identically wherandy are
related by (2). Equation (2) is the general sotutbthe differential equation (1).

Example: The differential equatioydx—xdy= is not exact sincél=y, N=—x and
oM/oy=1, oN/ox=-1. However, the equation

1
— (ydx— xdy =0
y
is exact, given that the left-hand side is equati{e/y). Thus,
d(xy)=0 = y=Cx.

The solution is acceptable since the integratimtpfay=1/4? does not vanish identi-
cally for y=Cx.
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8.4 Line Integrals on the Plane
Consider thexyplane with coordinates(y). LetL be anoriented curvepath) on the

plane, with initial pointA and final pointB (Fig. 8.1). The curvé may be described
by parametric equations of the form

{x=x(t) , y=y(9) } (1)

By eliminatingt between these equations we obtain a relationefdhm F(x,y)=0
which, in certain cases, may be written in the fofra functiony=y(x).

A/’/\B

Example: Consider the parametric curve (semicircle) shawhig. 8.2:

y

Fig. 8.1. An oriented curve on tlgplane.

{x=Rcod, y=Rsint} , 0<t<rx.

The orientation of the curve depends on whethecreases (“counterclockwise”) or
decreases (“clockwise”) between 0 andy eliminatingt, we get

X¥+y'-R=0 = y=(R-)"

y

AN

-R R

Fig. 8.2. A semicircle.

Given a plane curve from A to B, as well as two differentiable functioR$x, y)
andQ(x,y), we consider an integral of the form

L= PO y)dx+ Q% Y o 2)

Since thepath of integratiorconsists of the point,fy) of a certain curve, an integral
of the form (2) is calletine integral In the parametric form (1) &f we have:

dx = (dx/dt)dt = x'(t) dt, dy =y/(t)dt
so that

|L=I§{P[X(t), yOIX()+Q X3 Y0 LX) d ®3)
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In the form y=y(x) ofL, we write dy=y'(x)dx and
=[PP YO+ A X Y 4 % d (4)

In general, the value of a line integrial depends on the path connectingA andB
(not just on the choice of the end poiAtandB).

Example: We want to compute the line integral (4) f(x, y)=Q(X, y)=xy, along
the parabolay=x® from x= -1 to x=+1.

Solution: Along the parabolay=x*> we have P(x, y)=Q(X, y)= Xy =x>. Moreover,
y'(X)=2x . From (4) we then get

I, = Lll(x3 + 2x4) dx

which is easy to compute. (Complete the computatiecall what was said in Sec.
5.3 regarding integrals of even and odd functions.)

For every pati.: A—B, we can define the pathL: B—A, with oppositeorienta-
tion. From (3) it follows that, if

|L:J'::‘(...)dt
then
I, :J'tt:(---)dt.
Thus,
lL=—1 .

If the end point®\ andB of a path coincide, then we havelased curveC and,
correspondingly, alosed line integrallc , for which we use the symbcjjc. We then

<ﬁ_c(...) - _ 95(:(...)

where the orientation ofC is oppositeto that ofC (e.g., ifC is counterclockwise on
the plane, ther-C is clockwise).

have:

Example: The parametric curve
{x=Rcod, y=Rsint} , 0<t<2r

represents a circle on the plane (Fig. 8.3). Ifdbenterclockwiserientation of the
circle (wheret increasedrom 0 to Z) corresponds to the curé then theclockwise
orientation (witht decreasingrom 2z to 0) corresponds to the curv€.
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Fig. 8.3. A circle on thayplane.

Proposition: LetP(x,y) andQ(x,y) be differentiable functions. If
gSC Pdx+ Qdy=0
for everyclosed curveC on thexyplane, then the line integral
jL Pdx+ Qdy

Is independent of the path ¢connecting any two pointd andB on this plane (Fig.
8.4). The converse is also true.

A Fig. 8.4. Two paths connecting poit@ndB on a plane.
Proof: We consider any two poin&s andB on the plane, as well as two different
pathsL; andL; connecting these points, as seen in the aboveefigere is an infi-

nite number of such paths). We form the closed g&th,+(-L,) from A to B
throughL; and back again tA through-L,. We then have:

§,_Pdx+ Qdy=0 < [ Pde Qdy [ Pdx Qady0 <
J'L Pdx+ Qdy- IL Pdx% Qdy0 < IL Pdx Qdij Pdx  Qc

As can be proven [1,2], the path independeridheointegral J'L Pdx+ Qdy sug-

gests that the expressi®ux+Qdyis anexact differential That is, there exists a func-
tion u(x,y) such that

du =Pdx + Qdy=> Ju/ox =P, 0uldy =Q (5)

Moreover, the functionB(x,y) andQ(x,y) satisfy the relation

86



DIFFERENTIATION IN HIGHER DIMENSIONS

P _0Q

oy ox (6)

Exercise 84 Justify the above relation (see Sec. 8.2).

Exercise 8.5 (a) Show that the functionB(x,y)=y and Q(X,y)=x satisfy the con-
dition (6) of path independence. Using (5) and waglas in the Example of Sec. 8.2,
determine the function(x,y).

[Ans. u(x,y)=xy+C]

(b) Repeat the problem fd?(x,y)=x and Q(x,y)=y.
[Ans. u(x,y)= (+y?)/2+C]

References
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CHAPTER 9

COMPLEX NUMBERS

9.1 The Notion of a Complex Number
Consider the equatior’ +1=0. Obviously, it cannot be satisfied for anyl neslue of

X. We now extend the set of numbers beyond thentgabers by defining thienagi-
nary unit numbern by

i2=—1 or, symbolically, i=+-1 .
Then, the solution of the equatio+1=0 isx= =+ .
Given thaeal numbersx andy, we define theomplex number
Z=Xx+1iy.
This is often represented as an ordered pair:
z=x+iy=(xy).
The numberx= Re z is thereal partof z, while y=1Im z is theimaginary partof z
In particular, the valuez= 0 corresponds tx=0 and y= 0. In general, ify=0
then z is areal number.
Given a complex number = x+ iy, the number
Z=x-ly=(x-}

is called thecomplex conjugatef z (the symbolz* is also used for the complex con-
jugate). Furthermore, threal quantity

21= 6€ 4y
is called themodulus(or absolute value) of. We notice that
|z]=1Z].
Example: If z= 3+2i,then Z=3-2i and |z|=[z Ev/15.
Exercise 9.1Show that, ifz="Z, then z isreal, and conversely.

Exercise 9.2Show that, ifz = x+iy, then

Z+7Z -7
Rez=x=——, Imz= y=——.
2 2i
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Consider the complex numbezs= x1+ iy1, z = X+ iy, . As we can show, their
sum and their difference are given by

n+2=(X+x)+i(yi+y2),
zZ-2=(—%) +i(y1—¥) .
Exercise 9.3Show that, ifz1= z, , thenx;= X, andy;= Y- .
Taking into account that® = -1, we find the product of; and z to be
22= (XX —YY2) +i XYz + Xo W) -
In particular, forzz= z=x+iy and z= Z = x— iy, we have:
z7z= X+ y=| 74
To evaluate the quotiersy/ 2, (z # 0) we apply the following trick:

a_2z2z_ 7z (x (¥ 1y X% yy ., Xy X:
z %3 |3f X+ ¥ X+ ¥ ¥+ ¥

In particular, forz = x+iy theinverseof z is

Tz |4 A+ § R kY

1 zZ_ z  xiy_ X , y

Properties:

|7|:|Z| ) Z_Z:| 21 ) |1ZZZ4: |1Z||22

2 =120 H=U
5 1z

Exercise 9.4Given the complex numbeiz = 3—-2i and z= -2+ i, evaluate the
quantities |z + z |, Z z and z/z .
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9.2 Polar Form of a Complex Number

y
e ——— o Z=X+1Y
r
)0 X
O X

Fig. 9.1. Vector representation of a complex nunzber

A complex numberz = x+iy= (x,y) corresponds to a point of thkg-plane. It may
also be represented by a vector joining the orfgiof the axes of the complex plane
with this point (Fig. 9.1). The quantitiesandy are the Cartesian coordinates of the
point, or, the orthogonal components of the cowadmg vector. We observe that

X=rcosf , y=rsind

where

r=lz|]= (C+y))*? and tang=2 .
X

Thus, we can write

Z=x+iy=r(cosd+isinb)

The above expression representspblar formof z Note that
Z=r(cosd—i sirg .

Let z=r; (cosH; +i sinf;) and z=r, (cosH, + i sind,) be two complex num-
bers. As can be shown [1],

zz=1trfcos@,+6,)+isin@+6,)] .
4 _ Y cos@,-6,)+i sin@,-6,)] .
5z 0
In particular, the inverse of a complex numlzerr (cosf + i sind) is written

7= Y icosp—ising =2 [costo yi sindo .
Z r r

Exercise 9.5By using polar forms, show analytically thaz *=1.
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9.3 Exponential Form of a Complex Number

We introduce the notation

e’ =cosf + i sing

(this notation is not arbitrary but has a deepeamrg that reveals itself within the
context of the theory of analytic functions; seea@hl0). Note that

e’ =d? =cos6 )+ isinEh )= cod—i sif .
Also,
e’ =|e'’ E cod0+ sihd= .

Exercise 9.6Show that

Also show that

¢lre? o d

The complex numbez=r (cosf+isind), wherer =|z|, may now be expressed
in exponential form

z=re"’
As can be verified,
~ 1 1 1 .. _
z7t==="¢""==¢09 = ré’
Z r
. r . _
Z:]_ZZZ Erzel(€1+€2), i__l é(gl 05)
Z 5L

where z =t e, z= 1 &%,

Example: The complex numbez=~/2 - iv/2, with |z|=r=2, is written

z:Z(g - |gj = Z{CO{—%)H sirE—%ﬂ S DN YL
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9.4 Powers and Roots of Complex Numbers

Let z=r (cosh +isinf) =re'’ be a complex number, where= |z|. As can be
proven,

z"=r"e"=r"(cosnd+isinnd ) (= Ot Lt 2;-

In particular, for z= cosf + i sind = e (r=1) we find thede Moivre’s formula
(cosf +i sid ) = (cosd+i sind
Note also that, foz =0, we have thaz®=1 and z™" = 1/z".

Given a complex numbez=r (cosf + i sind), wherer =|z|, an nth root of zis

any complex numbec satisfying the equation"=z. We writec = Yz. Thenth root
of a complex number admits different values given by the formula [1]

Ck={‘/?(c050+2kﬂ+i sin0+2kﬂJ , k=10,14,2;- - 1.
n n

Example: Let z=1. We seek the 4th roots of unity, i.e., the carplumbersc
satisfying the equatior®= 1. We write

z=1 (cosD +i sin0) (thatis,r=1, 6=0).
Then,

2kzr . . 2kr kr . . kr
C =COS—+i si— = cos—+i sir— ,k= 0,1,2.
4 4 2 2
We find: =1, =i, = -1, c3=—i.

Example: Let z=i. We seek the square roots othat is, the complex humbecs
satisfying the equatiom®= i . We have:

z =1 [cos(n/2) +i sin(z/2)] (thatis,r=1, 0= n/2);

(m12)+2knr . . (m12)+ XKx

ck:cosfﬂsm# , k=0,;
C, =COS(r /4)+i sing /4#% &),

¢, =cos(5r /4)i sin(F /4):—% @&i)

Reference

1. R. V. Churchill, J. W. BrownComplex Variables and ApplicatignSth Edition
(McGraw-Hill, 1990).
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CHAPTER 10

INTRODUCTION TO COMPLEX ANALYSIS

10.1 Analytic Functions and the Cauchy-Riemann Rations

Complex analysis (the theory of complex functiond ¢heir differentiation and inte-
gration) is a subject too deep to treat in a sbloapter. We will thus only give some
elements of this subject, “borrowing” some mateitian a previous book by this au-
thor [1].

We consider complex functions of the form
w=f(@=uxy) +iv(xy) 1)

where z=x+iy = (X, y) is a point on the complex plane, and wher@ndv are real

functions ofx andy. Let Az be a change afand letAw=f (z+Az) — f(2) be the corre-
sponding change of the value 6z). We say that the function (1) afferentiableat
point z if we can write

AW

- f'(2)+e(zA3 with lim £( zA ¥=0 2
AZ Az—0

Then, the function

£'(2) = lim &Y _ jim 1249~ 13 3)
Az5>0 AZ Az>0 Az
Is thederivativeof f (2) at pointz. Evidently, in order fof (2) to be differentiable &,
this function must beefinedat that point. We also note that a function déferable
at a pointz, is necessarilgontinuousat z, (the converse is not always true) [2-4].
Thatis, lim f(2) = f(z) (assuming that the limit exists).
Van )

A functionf (2) differentiable at every point of a domamof the complex plane is
said to beanalytic (or holomorphig¢ in the domainG. The criterion for analyticity is
the validity of a pair of partial differential edqi@mns (PDEs) called th€auchy-
Riemann relations

Theorem: Consider a complex function(z) of the form (1), continuous at every
point z= (X, y) of a domainG of the complex plane. The real functioms,y) and

v(x,y) are differentiable at every point & and, moreover, their partial derivatives
with respect tox andy are continuous functions @. Then, the functiori(2) is ana-
lytic in the domairG if and only if the following system of PDEs isiséied [2-4]:

ou ov ou_  ov

=, o= @)
oX oy oy oX
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It is convenient as well as economical, withaml to notation, to denote partial
derivatives by using subscripts:

o¢ o¢ 0’9 0% 0%
- = y = v T o = v o = y T = ’ etc.
X ¢x ay ¢y 8X2 ¢xx ayz ¢yy P) )@y ¢X)
The Cauchy-Riemann relations (4) then read
UX = Vy y Uy = - Vx ’X4

The derivative of the function (1) may now be esgex in the following alternate
forms:

f(2) = uxH Ve = Vy—i Uy = Ux—i Uy = Vy+i Vg (5)
Comments:
1. Relations (4) allow us to fimd when we knowu, and vice versa. Let us put
u=P, u,=Q, so that {x= —Q, w=P}. The integrability (compatibility) condition of

this system for solution for, for a givenu, is found by equating the “mixed” partial
derivatives ofv (see Sec. 8.1):v)x = (\wy =

OPIOX = —0QI0y = Uxtuy=0.
Similarly, the integrability condition of system)(#r solution foru, for a givenv, is
ViHVyy= 0. We notice that both the real and the imaginary of an analytic function
areharmonic functionsi.e., they satisfy theaplace equation

Wiy + Wyy = 0 (6)

Harmonic functions related to each other by medrikeo Cauchy-Riemann relations
(4) are calledonjugate harmonic

2. LetZ= x— iy be the complex conjugate aEx+iy. Then,
x=(z+2/12, y=(z73/2 (7)
By using relations (7) we can expregg,y) andv(x,y), thus also the sumv=u+iv, as
functions ofz and Z. The real Cauchy-Riemann relations (4), then,rav&itten in
the form of a single complex equation [2-4]
ow/0z=0 (8)
One way to interpret this result is the followifidie analytic function (1) isterally a

function of the complex variable=x+iy, not just some complex function of two real
variablesx andy!
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Examples:

1. We seek an analytic function of the form, (dith v(x,y)=xy. Note first thatv
satisfies the PDE (6¥it+Vy,=0 (harmonic function). Thus, the integrability cdiah
of the system (4) for solution faoris satisfied. The system is written

ou/ox=x, ouloy=-y.
The first relation yields
u=>x/2+ p(y) .
From the second one we then get
P =-y = oly)=-y/2+C
so that
u=(—y)/2+C.
PuttingC=0, we finally have
W=u+iv= (=) /2+ixy.

Exercise 10.1Show thatuxtuy=0; i.e., u(x,y) is a harmonic function.

Exercise 10.2 Using relations (7), show thatv=f (2= Z/2, thus verifying condi-
tion (8).

2. Consider the functiow=f (2= |z defined on the entire complex plane. Here,
u(x,y)=x>+y? v(xy)=0. As is easy to verify, the Cauchy-Riemann retati¢4) are

not satisfied anywhere on the plane, except asitigde pointz=0 where X,y)=(0,0).
Alternatively, we may writew= zz, so thatow/0zZ= z=0 (except atz=0). We
conclude that the given function is not analytictib®@ complex plane.

3. In Chapter 2 we learned that the simple aeptial functionf (X)= €'=expx is
the only real function that equals its own derivatii.e., satisfies the differential
equationf "(X)=f (x). By extension, the functioh(2)= € =expz is defined as the com-
plex function that satisfies the differential redatf '(2)=f (z). As can be proven [2-4],
this function is given by the formula

f(z2)= &= &Y= é&(cos y isiny (9)

This function is analytic on the entire complexr@aNotice that fox=0 we have the
important formula

€Y =cosy+ i siny
which we used in Sec. 9.3 to express the exporndatra of a complex number.

Exercise 10.3 For the exponential function (9), identify thealréunctionsu(x,y)
andv(x,y) [see Eq. (1)] and show that the Cauchy-Riemalatioas (4) are satisfied.
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10.2 Integrals of Complex Functions

Let L be an oriented curve on the complex plane (Fidl)1€he points of which plane
are represented asx+iy = (X, y). The pointsz of L are determined by some paramet-
ric relation of the form

z=AO=x®+iy@®) , a<t<p (1)

As t increases from to S, the curvel is traced fromA to B, while the opposite curve
—L is traced fronB to A with t decreasing fronf to o (see Sec. 8.4).

A/’/\B

Fig. 10.1. An oriented curve on the complex plane.

y

We now consider integrals of the forf{ﬁ (2) dz, wheref (2) is a complex func-
tion. We write dz=4'(t) dt, so that

jL f(z)dz= jj LA A} dt 2)

Also,

[ f@dz=[7()dt=-["¢) dt =

LL f(2)dz= -jL f(2 d; 3)

A closedcurve C will be conventionally regarded gmositively oriented if it is
tracedcounterclockwiseThen, the opposite curveC will be negativelyoriented and
will be tracedclockwise Moreover,

cj;_cf(z)dz=-<ﬁc f(3 d: (4)

Examples:
1. We want to evaluate the integral
| = ¢ dz ,
jz-al-p 272

where the circlez}-gd=p is tracedd) counterclockwise,b) clockwise.
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(@) The circle 2—g=p is described parametrically by the relation
z=a+pe', O<t< 2.
Then,
dz= (a+pe")’dt = i pe'dt.
Integrating from O to 2 (for counterclockwiséracing) we have:

.-f”'/’edt R

|- alp

(b) Forclockwisetracing of the circlez}-d=p , we write, again,
z=a+pe' (0<t< 27).
This time, however, we integrate from @ 0. Then,

|=ij§dt=—27zi.

Alternatively, we write
z=at+pe™ (0<t< 27)

and integrate from 0 tar2arriving at the same result.

2. Consider the integral

where the circlez}-gd=p is tracedcounterclockwiseWe write
z=a+pd' (0<t < 2n)
so that
| :J-er ipe'dt _ —ijoz”e‘”dt _o.

0 pZeZII P

In general, fork=0,+1,+2, ... and for goositively(counterclockwisgoriented cir-
cle g—d=p, one can show that

95 dz {27zi , If k=1 5)
k - .
ok, (Z— @) 0, if k=1
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10.3 The Cauchy-Goursat Theorem
We now state an important theorem concerning andlytctions [2-4].

Theorem: Assume that the functiof (2)=u (x, y)+i v(x,y) is analytic atll points
of a domainG of the complex plane, bounded by a closed c@v@mong other
things, this means thé(2) is definedeverywheren the interior ofC ).* Then,

gSC f(z)dz=0 (1)

Corollary: The line integral of the analytic functidiiz) is independent of the path
connecting any two poin#s andB of the domairG.

Proof: As in Sec. 8.4, we consider two pathsandL, (Fig. 10.2) and we form the
closed pattC=L1+(-L,). By (1) we then have:

gSCf(z)clz:jL f( 3 o|z+j_L (g dz0 <

Lf(z)dz— L f(3 dz=0 < L {y dz L )z d

Fig. 10.2. Two paths connecting poitsndB on the complex plane.

10.4 Indefinite Integral of an Analytic Function

Let Zy andz be two points of a domai@ of the complex plane. We regazglas con-
stant whilez is assumed to be variable. According to the Cat&byrsat theorem,
the line integral frong, to z, of a functionf (z) analytic inG, depends only on the two
limit points and is independent of the curved pathnecting them. Hence, such an
integral may be denoted by

[RICALE:
Zy
or, for simplicity,
[ f(@dz
Z,
For variable upper limit, this integral is a function of its upper limit.aMrite
J, f@dz= 1 1)(

! Note, for example, that the functidiiz)=1/Z is not defined foz=0. Thus (1) is not valid fok=1 if C
encircles the origin of the complex plane.i§lvvalid, however, fok=1; see Eq. (5) of Sec. 10.2.]
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As can be shown [2]l(2) is an analytic function. Moreover, it is antiderivative
of f(2); thatis, 1'(2)=f (2) . Analytically,

@)= [ f@dz- 13 @

Any antiderivativeF(2) of f (2) [F'(2= f (2)] is equal toF(2)=I (2+C, whereC=F(z)
IS a constant [notice th#{zy)=0]. We observe that(2)=F(2) - H(z)) =

|, f@dz= R3- R 9 ®)

In general, for givenz; , z and for anarbitrary antiderivativeF(z) of f(z), we may
write

[ f(@dz= K3)- R 2 (4)

Now, if we also allow the lower limi, of the integral in relation (1) to vary, then
this relation yields amfinite set of antiderivativesf f (z), which set represents the

indefinite integralof f (2) and is denoted by f(2) dz. If F(2) is any antiderivative of
f(2), then, by relation (3) and by puttingF(z0)= C,

jf(z)dz:{F(z)+ Cl M= tr G condl
To simplify our notation, we write
jf(z)dz: R+ C (5)

where the right-hand side representgrdimite setof functions, not just any specific
antiderivative off (2)!

Examples:

1. The function f (2=z* is analytic on the entire complex plane and onétof
antiderivatives isF(2=z°/3 . Thus,

5 z i 1 .
jz dz=—+ C and J' z°dz==(1-1) .
3 -1 3

2. The functionf (2)=1/7 is differentiable everywhere except at the ori@iof the
complex plane, wherg=0. An antiderivative, forz#0, is F(2)= —1/z. Hence,

d_ZZ:_E+C and [*92_1_1

z z 272 7z g

where the path connecting the poits0 and z=0 does not pass through
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APPENDIX

Trigonometric Formulas

sinf A+ cod A= 1 ; tanx=—X . cog=X_ 1
COSX sinx  tarx
co@x=— T :sirf x= . tarf x
1+ tarf x 4 cofx * taAx

sin(A+ B)= sinAcosB+ CO%A siB
COS(A+ B)= cOsA coBF sirA siB
tanA+ tanB CotA coB¥ !

tan(A+tB)=——— , cot(A+ B)=
1¥ tanA tarnB coBt cotA

sin 2A= 2sinA COA
cos2A= co8 A— siNA= 2cdsA- 4 -12sif A

tan 98— 2tanA  cotA- cot A- 1
1-tarf A 2CcotA

SinA+ sinB= Zs,ir:AJZr B ccsA_2 B

sinA— sinB= ZsinA_ B cosA+ B
2 2

A+ B A- B

05— cos_—

cosA— coB= Zsinp%B siﬂB_—A

CosA+ coB= 2c

sinAsinB:%[cos(A— B) cos@+ B)]
COSA cosB:% [cosA+ B } cosi&— B )]

sinAcosB:% [SinA+ B ) sin( B)]

sin(-A)=—-sinA , costA ¥ COA
tanA)=—tanA , cot{A ¥»— coi®

sin(%iA): COsA , cos%iA%rr SiA

sin(zx A)=FsinA , cosf+ A¥x— coP
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sin | cos| tan| cot
0 0 1 0 o0

1| 3|3
76=30| = | X2 | X2 3

2 2 3 V3
nl4 = 45 ﬁ ﬁ 1 1

2 2

5|1 J3
r3=60| = | = 3| X2

2 2 V3 3
n2=90| 1 0 0 0
=180 | O -1 0 o0

Basic Trigonometric Equations

oy o X=a+2kr _ .
sinx = sina = {x:(2k+1);r—a k= 0f 1t 2, °
_ X=a+2kr _

COSX = CO® = {X=2k7z—a k= 0t & 2
tanx = tanr = X=a+kr k= Ot & 2;-
COotX=cota = X=a+ kr (k= O 1Lt 2.+
oy o X=2kr—a _ o
sinx=-sina = {X=a+(2k+1)7z k=0t 1t 2.

_ x=k+Dr-a
COSX=— CO®%¥r — {X=0{+(2k+1)7z' k_ o+ B 2.
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Power Formulas

(ath)?=a’+2ab+ If
(axb)®=a’+3ab+3alf+ b
a’-b?’=(a+b(a- b

a®+tb®=(at h(&F abr B)

(a+b)"=a"+ n&lm% a2 B+%I(n_2) &3B++ B ( B1,23;)

Quadratic Equation: axX+bx+c =0

Call D=b®-4ac (discriminant)

—b++/D

2a

Roots: x=

Roots are real and distinctd&0; real and equal iD=0; complex conjugates DH<0.

Hyperbolic Functions

X X ~ X

_ ~ _ L
coshx= & €  sinfx= g—- €  tank= sinh x_ g- € 1
2 coslx e +e* cothx

cosif x— sinf x= 1

coshEx )= coskx  ,  sink(x 3— sink

(sinhx)y=coshx , (cosk'} sink
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Properties of Inequalities

a<b and bk c=> & C
a>b and b> a=> a b
a<b = —-a>-b

O<a<b > l>1

a

a<band < d=> a « b d

O<a<b and O< < d= a& bd

O<a<l= a>&>a>--, d<1, Ya<1]
a>l = a<d<a<-, d>1, Ya>1

O<a<b = a"<b", Ya<¥b

Properties of Proportions

Assume thatﬁzlzzc. Then,
p o
aty
ad = , =K
By Y
atfB y+o a vy
p 1) ’ frta oty
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Properties of Absolute Values of Real Numbers

la]=a, if a>0
=-a, if a<0

\/¥=|a|

[X|[€e & —e<xZLe (6>0)
[x][>a>0 <& x>a or xx-¢
lal-1b|< latbl< Jat b |

la-bl=|allb]

la“|=laf ke Z)

a

b

_lal
=15 ©*0
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Properties of Powers and Logarithms

x°=1  (x=0)

X xP = x**P
X' b
NG
)

In1=0
|n(ea):a (CXER) , elna:a (a€R+)

In(af)=Ina+Inp

(g2
o2

In(e*)=kina (keR)
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Continuity and Differentiability

Consider a functioy=f (x) defined in an open interval containing the pomx, . At
this point the value of is yo=f (Xp). Assume further that the limit df(x) for x—>Xo
exists and is equal to(xp) :

lim £(x) = () (1)
X=X

Thenf (X) is said to beontinuousatx=xo .

Putx—=Ax andf (X) — f (X0) = y— Yo = Ay. If x—>X, thenAx—0. From (1) we
have:

im £(3) = 106)=lim [ (3 - f(39]=0 =

lim Ay=0 < Ay—>0 whenA x>0 (2)

Ax—0

Theorem:Let y=f (X) be defined in an open interval containixg If the derivative
f '(Xo) exists, therf (x) is continuous ak=Xy. (The converse is not necessarily true.)

Proof: We must show thaty—0 when Ax—0, whereAx= x—¥ and where

Ay =y—Yo=T (X)—f(x) =T (Xo+AX) - f(Xo) .

v Y — i Y
We have thatf (XO)_A|!<TO vE But,
lim Ay = lim (ﬂ ij:[lim ﬂj(nm Ax)z f %) 0 =0
Ax—0 Ax—0\ AX Ax>0AX J\Ax>0

given that, by assumption, the derivativVéxp) exists (in particular, it assumes a finite
value). Thus condition (2) is satisfied, i.€(x) is continuous ax=Xg.
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1.3
1.5

1.8
2.1

2.2

3.2
4.1

4.4

4.5

4.6
5.2

ANSWERS TO SELECTED EXERCISES

(1) D=R (2)D=[-1,1] (3)D=(~o0,-1)U(1,+x) (4)D=[-1/3,1]
(5)D=(-5,2) (6)D=(1,+x) (7)D=R—{kn/2+7r/4} (8) D=R—{3kr+ 37/2}
@o @22 31

(1) even (2) odd (3) neither (4) even (5) odd

(6) odd (7) even (8) odd (9) even (10) odd

(1) not periodic  (2a=12z (3)a=xn (4)a=x/l

Q) y=1Ua/x+1N%  (2)y=(xcosx—sinx)/e

@) v = (3/x+ 2V ¢ )& - 3(1- Inx)/ R

(1) y' =2xy[sin(3% + 1)[?® cos(3¢+ 1

@)y = —2x5(x6+1)‘2’3sin( zé/ﬁ]) (3) y' = 3sin2x sin4 /cok (sh &

@)y =431 (X +1)In(x¢ + 1) (5)y':x(ln x2+1)_l/2/2(x2+1)

(6) y=y[1+In(x+1)] (7) y=xy(1+2Inx)
(8) y'=y[cosx cotx—sinxIn(sinx)] (9) y'= 1/
M3 @0 @e @)1k

(2) —%—SIn X+/x+C (2) 3x—2|nx+g\/?+ C
(1) In(lnx)+C (2)—% &L c (3)%[In(x2+1)]2+C

(4) In(tanx)+C  (5) 2sin@* )+ C (6)i5arctan§< A 5% C

NG

1
(7) P arctané - 1xC

X

(1) 0@ —2x+2)& + C (2)%(Sinx— cosx - C

1 . 1 sin X
3) = (Xx—sinxcosx it C== (x
(3) 2( » > ( 5

(4) %(x+sinxcosx)r C:—; (+ S|r122< K C

(1) e™(cosVx+ sifdx ) C  (2)sin®x [In(sinx)— 1/2]+ C
(1) (In5)2 (2ne-1  (3) 24

¥ C
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Absolutely convergent integral, 60
Absolutely convergent series, 67
Analytic (holomorphic) function, 93
Angle of intersection of two curves, 32
Antiderivative, 38, 99

Cauchy-Goursat theorem, 98
Cauchy-Riemann relations, 93, 94
Comparison test, 59, 66

Complex conjugate, 88

Complex number, 88

Composite function, 2, 22, 28
Continuous function, 2, 93, 107
Convergent series, 64

Critical point, 33

D’Alembert’s test, 67

Definite integral, 50, 62

de Moivre’s formula, 92

Derivative, 17, 28, 93

Differentiable function, 17

Differential, 25, 28, 39

Differential equation, 76

Differential operator, 27, 80
Differentiation rules, 19

Divergent series, 64

Domain of convergence of a series, 68
Domain of definition, 1, 3

Even function, 9, 54

Exact differential, 86

Exact differential equation, 81
Exponential form of complex number, 91
Exponential function, 7, 95

Fourier series, 14

Functional series, 68

Functions, 1

General solution of differential equation, 76
Geometrical series, 64, 65, 68, 70
Graph of a function, 1

Harmonic function, 94

Harmonic series, 66

Higher-order derivatives, 29
Hyperbolic functions, 103

Implicit function, 4, 30

Improper integral, 56, 60

Indefinite integral, 39, 56, 99
Indeterminate forms, 35

Initial condition of differential equation, 76
Integral with variable limit(s), 55, 56, 98
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Integrand, 39

Integrating factor, 83

Integration by parts, 45

Integration by substitution (change of variabl&), 81
Integration rules, 41

Intervals, 1

Inverse function, 15

Inverse of complex number, 89, 90, 91
Laplace equation, 94

Leibniz rule, 19, 27

L’'Hospital’s rule, 35

Limits of integration, 50

Line integral, 84, 96

Linear function, 7, 26

Logarithmic function, 7

Maclaurin series, 71, 72

Maximum and minimum values, 33, 34
Modulus of complex number, 88
Monotone function, 16

Multiple-valued function, 4
Newton-Leibniz formula, 51

Normal line, 31

Numerical series, 64

Odd function, 9, 54

Oriented curve, 84, 96

Partial derivative, 80

Partial differential operator, 80

Partial fractions, 48

Particular solution of differential equation, 76
Path independence of line integral, 86, 98
Periodic function, 11, 54

Polar form of complex number, 90
Positive series, 66

Power of complex number, 92

Power series, 69

Quadratic function, 9

Radius of convergence of a power series, 70
Range of a function, 1

Rational function, 48

Real numbers, 1

Roots of complex number, 92

Second derivative, 29

Separable differential equation, 77
Series, 64

Slope, 8

Tangent line, 31

Taylor series, 71

Total differential, 81

Trigonometric equations, 102
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