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A careful examination of Archimedes’ principle shows that the buoyant force on a 
body that is either fully or partially immersed in a liquid is unaffected by the external 
(e.g. atmospheric) pressure, which acts both on the non-immersed part of the body (if 
any) and on the immersed part via Pascal’s principle. The net force on the body due 
to the external pressure is zero and hence this pressure does not contribute to 
buoyancy.  

 
 

1.  A proper understanding of the buoyant force  
 
In the statement of Archimedes’ principle [1,2] the buoyant force on a body that is 
fully or partially immersed in a liquid is defined as the resultant of all elementary 
normal forces exerted by the liquid on the immersed surface of the body. It is then 
stated that this upward force is equal in magnitude to the weight of the fluid displaced 
by the immersed part of the body. This definition of the buoyant force turns out to be 
consistent with Archimedes’ principle for a body that is fully immersed. The situation 
is subtler, however, in the case of a partially immersed floating body.  
      The force exerted by the fluid on the immersed surface S of the body is due to the 
total pressure P at the various points of S. According to Pascal’s principle, this 
pressure is equal to the sum P=Pl +P0 of the hydrostatic pressure Pl due to the liquid 
itself and the constant external pressure P0 . The buoyant force on the body is typically 
defined as the total force on S due to P.  
      In the case of a fully immersed body the immersed surface S, as well as the 
surface of the displaced fluid, coincides with the total surface of the body. Moreover, 
as will be shown, the external pressure P0 does not contribute to the total force on any 
closed surface. The buoyant force is thus exclusively due to the hydrostatic pressure 
Pl of the liquid itself, regardless of the value of the external pressure. By the 
equilibrium condition for the displaced fluid, the weight of the latter is equal in 
magnitude and opposite in direction relative to the buoyant force (see Appendix).  
      In the case of a partially immersed floating body the immersed surface S is only a 
part of the total surface of the body. Likewise, the surface S constitutes only a part of 
the total surface of the displaced liquid. The non-immersed surface of the body, as 
well as the top surface of the displaced liquid, is subject only to the external pressure 
P0 . Now, what is typically called “buoyant force” in this case is the total force on the 
immersed surface S of the body, which force is due to the total pressure P=Pl +P0 at 
each point of S. By the equilibrium condition this force is assumed to be equal in 
magnitude to the weight of the body. But such a “balance” of forces makes no sense, 
given that the weight is a fixed force while the force on the immersed surface S may 
vary arbitrarily by changing the external pressure P0 (this pressure is transferred to all 
points of S and adds to Pl in accordance with Pascal’s principle). To restore the 
balance of forces we must include the downward force on the non-immersed surface 
of the body due to the external pressure. As it turns out, this force exactly matches the 
upward Pascal-oriented force on the immersed surface S due to P0 alone, so that, 
eventually, the force exerted over the entire surface of the body (both immersed and 
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non-immersed) by the external pressure is zero. All we are left with, therefore, is the 
hydrostatic force on S due to the pressure Pl of the liquid alone. It is this force that 
will properly balance the weight of the body. Also, it is this force that will balance the 
weight of the displaced liquid. It is thus clear that, for Archimedes’ principle to be 
satisfied, it is the force due to Pl (not the force due to the total pressure P) that must be 
identified as the buoyant force in the case of a floating body. For a fully immersed 
body, where the immersed surface S is the total surface of the body, the total force due 
to P reduces to that due to Pl ; it is thus permissible to define the former force as the 
buoyant force in this case.  
      In conclusion: For consistency with Archimedes’ principle regardless of whether a 
body is fully or partially immersed in a liquid, we must generally define the buoyant 
force as the total force on the immersed surface S of the body due to the pressure Pl 
exerted by the liquid alone. Moreover, as shown below, the (constant) external 
pressure P0 contributes no additional net force on the body as a whole.  
      By properly defining the buoyant force, the balance of forces for a floating body, 
expressed by the equilibrium condition “buoyant force = total weight of the body”, 
determines the percentage of the total volume of the body that is immersed in the 
liquid (cf. Sec. 8.9 of [1]). Since, as said above, the total force on the body is 
independent of the external pressure, it follows that we cannot make a floating body 
immerse further by increasing this pressure!  
 
 

2.  Constant external pressure on a closed surface  
 
We propose to show that a constant external pressure P0 does not affect the total force 
on a body that is either fully or partially immersed in a liquid. [This pressure is felt 
directly on the non-immersed part (if any) as well as on the immersed part via 
Pascal’s principle.] This means that an additional constant pressure over the entire 
surface of the body does not change the total force that would be exerted on the body 
by the liquid alone (i.e., if the external pressure P0 did not exist). The force on the 
entire surface of the body due to a constant external pressure P0 must thus be zero.  

      Proposition: Consider a closed surface S inside a scalar field of constant value P0 

(Fig. 1). At each infinitesimal element ds of S the field exerts a force dF
�

 normal to ds 
and having magnitude dF proportional to the area of this surface element (which area 
will also be called ds): dF=P0 ds. We assume that, at each point of S, the elementary 

normal force dF
�

 on the local surface element ds is directed toward the surface, i.e., 
opposite to the local unit vector n̂  that is normal to S and directed outward. Then, the 
total force exerted on S by the field P0 is zero.  
 

S

n̂

dF
�

dF
�

0P

 
 

Fig. 1 
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      Proof: We have that 0ˆ ˆdF dF n P ds n= − = −
�

,  so that the total force on S is  

 

0 ˆ
S S

F dF P n ds= = −∫ ∫
� �

� �                                                 (1) 

 
We show that, for any closed surface S, the following integral relation is true:  
 

               ˆ 0
S

I n ds≡ =∫
�

�                                                         (2) 

 
It suffices to show that this vector relation is true when projected to any arbitrary 

direction. Let ̂b  be a unit vector defining such a direction. We write  
 

ˆ ˆ ˆb S
I I b b n ds= ⋅ = ⋅∫
�

� . 

 

Now, consider the constant vector field ˆ( )f r b=
� �

. By using Gauss’ integral theorem 
[3] we have:  
 

ˆ( ) ( ) 0b S V
I f r n ds f dV= ⋅ = ∇⋅ =∫ ∫

� ���

�    [since ˆ( ) 0f r b∇⋅ = ∇⋅ =
�� ��

] 

 
where V is the volume enclosed by the surface S. Thus, the projection of the vector-

valued integral ˆ
S

I n ds≡ ∫
�

�  to any arbitrary direction vanishes, which means that the 

vector relation (2) is true. Accordingly, the total force F
�

 on S, given by Eq. (1), is 
zero.  
      An alternative, more “intuitive” proof of the above Proposition is the following: 
Since S is a closed surface, for any unit vector n̂  normal to S at some point of this 
surface there exists another point of S at which the normal unit vector is directed 
opposite to n̂  (of course, both unit vectors are directed outward relative to the 
surface). This is easier to understand if instead of a closed surface we consider a 
closed plane curve C (see Fig. 2). If we make a full trip on C, the normal unit vector 
n̂  will assume all possible directions until it finally returns to its original direction at 
the starting point of the trip. One of these (infinitely many) directions will be the 
opposite of the initial direction of n̂ .  
 

C

n̂

n̂

n̂

n̂

n̂

n̂  
 

Fig. 2 
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      Going back to our closed surface S, it follows from the above discussion that for 
every surface element n̂ ds  there is a corresponding element with opposite direction. 

This implies that ˆ 0
S

n ds =∫�  (which is an interesting mathematical result in its own 

right). Hence, by Eq. (1), the total force F
�

 on S is zero. As seen in Fig. 3, for every 

elementary force dF
�

 on S there is always an opposite force dF−
�

 acting at some 
other point of the surface, so that, eventually, the net force on S by the constant field 
P0  is zero.  

S

n̂

dF
�

dF−
�

   
 

Fig. 3 
 
      In conclusion: A constant external pressure P0 has no effect on the total force 
experienced by a body that is either totally or partially immersed in a liquid. In 
particular, the equilibrium situation of a floating body will not be altered if we 
increase or decrease the external pressure.  
 
 

Appendix: Proof of Archimedes’ principle for a full y immersed body  
 
For a fully immersed body the principle is proven theoretically as follows: Let us call 

Vd and dW
�

 the volume and the weight, respectively, of the fluid displaced by the 

body. Since the body is fully immersed in the liquid, Vd equals the volume of the 
body.  

                         

A
�

A′
�

dW
�

( )a ( )b
 

Fig. 4 
 
      Part (a) of Fig. 4 shows an instantaneous picture of the immersed body. The word 
“instantaneous” is related to the fact that, in general, the body is not in a state of 
equilibrium inside the liquid. The buoyant force A

�
 is typically defined as the resultant 

of all elementary forces acting normally on the surface of the body by the liquid.  
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      In part (b) of Fig. 4 the body has been removed and has been replaced by liquid of 
the same volume and shape. The surface of that section of the fluid is now subject to a 

total force A′
�

 (buoyant force) from the surrounding fluid. The weight dW
�

 of this fluid 

section is equal to the weight of the fluid that had previously been displaced by the 

body, while the line of action of dW
�

 passes through the center of gravity of the 

displaced fluid.  
      In contrast to the submerged body, the part of the liquid that replaced the body is 
in a state of equilibrium since it is a portion of a fluid at rest. Hence,  

0d dA W A W′ ′+ = ⇒ = −
� �� �

 . 

Now, the buoyant force on the body is the same as the buoyant force on the part of the 
fluid replacing the body (i.e., A A′=

� �
) since the elementary forces exerted by a fluid 

on a surface are independent of the nature of the surface [1]. Thus, finally, the 

buoyant force exerted by the fluid on the body is dA W= −
� �

. The direction of A
�

 is 

upward (i.e., opposite to the direction of dW
�

) while its magnitude is d dA W gVρ= = , 

where ρ is the density of the liquid.  
      We note that the total force on the surface of the fully immersed body contains 
contributions from the constant external pressure P0 , which pressure is transferred via 
Pascal’s principle to all points of the liquid. As we have shown, however, the net 
force due to P0 over any closed surface (hence the surface of the body) is zero. Thus 
the buoyant force A

�

, which was defined as the total force exerted by the surrounding 
liquid, is eventually independent of the external pressure P0 and equal to the force due 
to the pressure Pl of the liquid itself.  
      The case of a partly immersed floating body is subtler, as we discussed earlier. 
Consistency with Archimedes’ principle suggests that the properly defined buoyant 
force is the force due to the pressure Pl exerted on the immersed part of the body by 
the liquid alone, while the external pressure P0 (acting on both immersed and non-
immersed parts of the body) contributes no extra net force on the body as a whole. 
Thus the buoyant force is independent of external pressure and equal in magnitude to 
the weight of the displaced fluid, in accordance with Archimedes’ principle.  
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