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A careful examination of Archimedes’ principle shethat the buoyant force on a
body that is either fully or partially immersedarliquid is unaffected by the external
(e.g. atmospheric) pressure, which acts both omeinemmersed part of the body (if
any) and on the immersed part via Pascal’s priaciphe net force on the body due
to the external pressure is zero and hence thisspre does not contribute to
buoyancy.

1. A proper understanding of the buoyant force

In the statement of Archimedes’ principle [1,2] theoyant force on a body that is
fully or partially immersed in a liquid is defineab the resultant of all elementary
normal forces exerted by the liquid on the immersedace of the body. It is then
stated that this upward force is equal in magnitiodthe weight of the fluid displaced
by the immersed part of the body. This definitidrire buoyant force turns out to be
consistent with Archimedes’ principle for a bodstlisfully immersed. The situation
is subtler, however, in the case gdaatially immersed floating body.

The force exerted by the fluid on the immdrsarfaceS of the body is due to the
total pressureP at the various points o According to Pascal's principle, this
pressure is equal to the sutma P, +Py of the hydrostatic pressuRe due to the liquid
itself and theconstant external pressur,. The buoyant force on the body is typically
defined as the total force &due toP.

In the case of a fully immersed body the imsed surfaceS as well as the
surface of the displaced fluid, coincides with tb&l surface of the body. Moreover,
as will be shown, the external pressBgedoes not contribute to the total force on any
closed surface. The buoyant force is thus excliysisree to the hydrostatic pressure
P, of the liquid itself, regardless of the value dfetexternal pressure. By the
equilibrium condition for the displaced fluid, thveeight of the latter is equal in
magnitude and opposite in direction relative tolibeyant force (see Appendix).

In the case of a partially immersed floatbugly the immersed surfa&is only a
part of the total surface of the body. Likewises #urfaceS constitutes only a part of
the total surface of the displaced liquid. The momersed surface of the body, as
well as the top surface of the displaced liquidsubject only to the external pressure
Po. Now, what is typically called “buoyant force” this case is the total force on the
immersed surfac& of the body, which force is due to the total pves$=P,+P, at
each point ofS. By the equilibrium condition this force is assuh® be equal in
magnitude to the weight of the body. But such ddibee” of forces makes no sense,
given that the weight is a fixed force while thec® on the immersed surfaBamay
vary arbitrarily by changing the external presdegéthis pressure is transferred to all
points of S and adds td? in accordance with Pascal’s principle). To resttive
balance of forces we must include tf@vnward force on thenon-immersed surface
of the body due to the external pressure. As itdut, this force exactly matches the
upward Pascal-oriented force on the immersed surfackie toP, alone, so that,
eventually, the force exerted over th@ire surface of the body (both immersed and
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non-immersed) by the external pressure is zerowallare left with, therefore, is the
hydrostatic force ors due to the pressuf® of the liquid alone. It ighis force that
will properly balance the weight of the body. Alsas this force that will balance the
weight of the displaced liquid. It is thus cleaatthfor Archimedes’ principle to be
satisfied, it is the force due B (not the force due to the total pressi)ethat must be
identified as the buoyant force in the case difoating body. For afully immersed
body, where the immersed surféges the total surface of the body, the total falce
to P reduces to that due 8 ; it is thus permissible to define the former foesethe
buoyant force in this case.

In conclusion: For consistency with Archimgderinciple regardless of whether a
body is fully or partially immersed in a liquid, weust generally define the buoyant
force as the total force on the immersed surfaoé the body due to the pressiRe
exerted by the liquid alone. Moreover, as shown below, the (constant) external
pressurd®, contributes no additional net force on the bodg asole.

By properly defining the buoyant force, theamce of forces for a floating body,
expressed by the equilibrium condition “buoyantcéor total weight of the body”,
determines the percentage of the total volume eflabdy that is immersed in the
liquid (cf. Sec. 8.9 of [1]). Since, as said abottee total force on the body is
independent of the external pressure, it follovat the cannot make a floating body
immerse further by increasing this pressure!

2. Constant external pressure on a closed surface

We propose to show thatcanstant external pressurie, does not affect the total force
on a body that is either fully or partially immedsm a liquid. [This pressure is felt
directly on the non-immersed part (if any) as wedl on the immersed part via
Pascal’s principle.] This means that an additioc@istant pressure over testire
surface of the body does not change the total fitraewould be exerted on the body
by the liquid alone (i.e., if the external pressBpedid not exist). The force on the
entire surface of the body due to a constant eatgmessuré, must thus be zero.

Proposition: Consider a closed surfaBanside a scalar field of constant valeg

(Fig. 1). At each infinitesimal elemeds of Sthe field exerts a forcdF normal tods
and having magnituddF proportional to the area of this surface elemesi¢h area
will also be calledds): dF=Pyds. We assume that, at each pointSpthe elementary

normal forcedF on the local surface elementt is directedtoward the surface, i.e.,
opposite to the local unit vectar that is normal t& and directesutward. Then, the
total force exerted o8 by the fieldPy is zero.
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Proof: We have thatF =—dFfi=-P,dsi, so that the total force @is

F = dF =-R§_fds 1)
We show that, for any closed surfégdhe following integral relation is true:
| = cﬁs Ads=0 2)

It suffices to show that this vector relation iserwhen projected tany arbitrary
direction. Letb be a unit vector defining such a direction. Wetavri

Now, consider the constant vector fiefdf) =b. By using Gauss’ integral theorem
[3] we have:

Ib:CﬁS f(r")ﬁds:jv(ﬁ f)dV:O [since?. f(f)zﬁ,lazo]

whereV is the volume enclosed by the surf&eThus, the projection of the vector-
valued integrall Ecﬁsﬁds to any arbitrary direction vanishes, which means that the

vector relation (2) is true. Accordingly, the tofalce F on S given by Eq. (1), is
zero.

An alternative, more “intuitive” proof of th&bove Proposition is the following:
SinceS is a closed surface, for any unit vectornormal toS at some point of this
surface there exists another point®fit which the normal unit vector is directed
opposite ton (of course, both unit vectors are directeatward relative to the
surface). This is easier to understand if insteb@ closed surface we consider a
closed plane curv€ (see Fig. 2). If we make a full trip && the normal unit vector
n will assume all possible directions until it fihaleturns to its original direction at
the starting point of the trip. One of these (iitety many) directions will be the
opposite of the initial direction af.
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Going back to our closed surfégeit follows from the above discussion that for
every surface elememds there is a corresponding element with oppositection.

This implies tha@sﬁds=0 (which is an interesting mathematical result s1atvn

right). Hence, by Eq. (1), the total forde on Sis zero. As seen in Fig. 3, for every
elementary forcedF on S there is always an opposite foregdF acting at some

other point of the surface, so that, eventuallg, et force org by the constant field
Po is zero.

A

Fig. 3

In conclusion: A constant external pressbgehas no effect on the total force
experienced by a body that is either totally ortiply immersed in a liquid. In
particular, the equilibrium situation of a floatifgpdy will not be altered if we
increase or decrease the external pressure.

Appendix: Proof of Archimedes’ principle for a fully immersed body

For a fully immersed body the principle is proveedretically as follows: Let us call
V4 and Wd the volume and the weight, respectively, of thedfldisplaced by the

body. Since the body is fully immersed in the ldjWy equals the volume of the
body.
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Fig. 4

Part &) of Fig. 4 shows an instantaneous picture of th@eérsed body. The word
“instantaneous” is related to the fact that, inegah the body iswot in a state of

equilibriuminside the liquid. The buoyant forcg is typically defined as the resultant
of all elementary forces acting normally on thefate of the body by the liquid.
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In part ) of Fig. 4 the body has been removed and has ilegdsced by liquid of
the same volume and shape. The surface of thabsextthe fluid is now subject to a

total force A’ (buoyant force) from the surrounding fluid. Theigve Wd of this fluid
section is equal to the weight of the fluid thatl meviously been displaced by the
body, while the line of action oWd passes through the center of gravity of the

displaced fluid.
In contrast to the submerged body, the platthe liquid that replaced the body is
in a state of equilibrium since it is a portioneofiuid at rest. Hence,

A+W,=0 = A=-W,.

Now, the buoyant force on the body is the saméadtioyant force on the part of the

fluid replacing the body (i.e.A= A') since the elementary forces exerted by a fluid
on a surface are independent of the nature of tilace [1]. Thus, finally, the

buoyant force exerted by the fluid on the bodyAs —VV/d. The direction ofA is

upward (i.e., opposite to the direction\&‘g) while its magnitude isA=W, = pgV,,
wherep is the density of the liquid.

We note that the total force on the surfacéhe fully immersed body contains
contributions from the constant external pres$yrewhich pressure is transferred via
Pascal’s principle to all points of the liquid. g have shown, however, the net
force due tdP, over any closed surface (hence the surface oballg) is zero. Thus

the buoyant forceA, which was defined as the total force exertedheysurrounding
liquid, is eventuallyndependent of the external pressuRy and equal to the force due
to the pressurB, of the liquid itself.

The case of partly immersed floating body is subtler, as we discussatier.
Consistency with Archimedes’ principle suggests tie properly defined buoyant
force is the force due to the pressBreexerted on the immersed part of the body by
the liquid alone, while the external press&g(acting on both immersed and non-
immersed parts of the body) contributes no extitaforee on the body as a whole.
Thus the buoyant force is independent of externedgure and equal in magnitude to
the weight of the displaced fluid, in accordancthwiirchimedes’ principle.
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